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Abstract

We solve, by means of a nested coordinate Bethe ansatz, the open-boundaries scattering

theory describing the excitations of a free open string propagating in AdS5 × S5, carrying

large angular momentum J = J56, and ending on a maximal giant graviton whose angular

momentum is in the same plane. We thus obtain the all-loop Bethe equations describing

the spectrum, for J finite but large, of the energies of such strings, or equivalently, on the

gauge side of the AdS/CFT correspondence, the anomalous dimensions of certain operators

built using the ǫ tensor of SU(N). We also give the Bethe equations for strings ending on

a probe D7-brane, corresponding to meson-like operators in an N = 2 gauge theory with

fundamental matter.
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1 Introduction

Following progress in recent years, see e.g. [1–5], the spectral problem in the planar limit of

N = 4 super Yang-Mills is nowadays accepted to be integrable. Integrability allows the scale

dimensions of very long single-trace operators to be encoded in a certain system of Bethe

equations [6]. These equations can be derived by solving, by means of a nested Bethe ansatz,

the 1+1 dimensional scattering theory [7] that describes the excitations about the BPS

operator tr
(
ZJ
)
, which serves as the Bethe reference vacuum. Symmetry considerations fix

the S matrix of this theory (at least for the elementary particles, cf. [8]) up to an overall scalar

factor, which is now also believed to be known [9–11]. The asymptotic Bethe equations are

a key ingredient in the formulation of the TBA equations [12] which are believed to encode

the spectrum of operators of all lengths.

The spectral problem extends to cases with open boundary conditions. Integrable open

boundary conditions appear in the duality between N = 4 SU(N) SYM and IIB strings on

AdS5 × S5 when one considers open strings ending on certain maximal giant gravitons [13]

(for earlier work see [14, 15]). These giant gravitons are D3-branes that wrap a maximal S3

of the S5. Such a D3-brane has charge J = N under the angular momentum generator J

corresponding to the plane defining the S3, and the dual operator is ǫi1,··· ,iNj1,··· ,jN
Zj1

i1
· · ·ZjN

iN
∼

detZ, where Z is the unique scalar field of the N = 4 action with charge +1 under J . The
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operator dual to the brane with a single string ending on it has one of these Z’s replaced

by a chain (i.e. a matrix product) of many N = 4 adjoint fields. To set up an asymptotic

scattering theory, one has to pick a Bethe vacuum for this chain – and in contrast to the

closed case, there are inequivalent choices. In [13] it was shown that the scattering theory is

integrable for (at least) two choices, whose vacuum states are

ǫi1,··· ,iNj1,··· ,jN
Zj1

i1
· · ·ZjN−1

iN−1
(Y L)jNiN , (1)

and

ǫi1,··· ,iNj1,··· ,jN
Zj1

i1
· · ·ZjN−1

iN−1
(χLZ

LχR)
jN
iN
, (2)

with N ≫ L ≫ 1 and where, as we recall below, χL, χR are certain boundary degrees of

freedom. The boundary reflection matrices, to all-loop in λ’t Hooft, were derived for both

scattering theories in [13] – for subsequent progress, see [16–21] – but only for the former

has the system been solved, in [22, 23].

In the present paper our main goal is to fill this gap in the literature by finding the Bethe

equations for the latter choice of vacuum, known as the Z = 0 case. To this end, in section

2 we recall the details of the bulk and boundary scattering theory and proceed to solve it

by a nested coordinate Bethe ansatz. In this way we identify the entries of the diagonalised

reflection matrix, which allows us to write down the Bethe equations.

In section 3 we go on to find the Bethe equations for a different but closely related set of

boundary conditions. These arise when one adds to the gauge theory a chiral hypermultiplet

of fundamental matter (breaking N = 4 to N = 2) and uses these fundamental fields to

form “meson-like” operators q̄ZZ . . . ZZq. This setup is dual to open strings ending on a

probe D7-brane [24, 25] and the all-loop scattering theory for it was proposed in [26].

2 Z = 0 giant graviton

Let D be the dilatation operator, and J ∈ so(6)R the R-symmetry which generates rotations

in (say) the 56 plane. Of the (complexified) superconformal algebra psu(4|4) of the N = 4

theory, the subalgebra commuting with D − J is a copy of psu(2|2)× psu(2|2). The scalar

Z := Φ5+ iΦ6 is the unique field in the N = 4 SYM action whose charge under D−J is zero;

on the remaining fields D− J > 0. There are 16 fields with the smallest positive eigenvalue,
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D − J = 1: the 4 scalars Φ1,Φ2,Φ3,Φ4, the 4 gauge fields Aµ, and 8 out of the 16 fermions.

These fields1 transform in the bi-fundamental representation (�,�) of psu(2|2) × psu(2|2)
and we denote them by

{
χa,ȧ
}
a,ȧ∈{1,2,3,4}

.

Just as one can build a scattering theory with closed boundaries whose vacuum state is

the operator trZL, L ≫ 1, [7], so it is also possible to construct a scattering theory with

open boundary conditions.

In this section the vacuum states will be the operators

ǫi1,··· ,iNj1,··· ,jN
Zj1

i1
· · ·ZjN−1

iN−1
(χa,ȧ

L ZJχe,ė
R )jNiN , (3)

where L and R stand for the Left and Right boundaries. The boundary degrees of freedom

also transform in a bi-fundamental representation (�,�) of psu(2|2)× psu(2|2) [13] and the

full symmetry is preserved by reflections of bulk excitations from the boundary. As usual,

we begin by considering the simpler scattering theory in which the symmetry is only one

copy of psu(2|2) and both bulk and boundary excitations transform in the fundamental.

2.1 The scattering theory.

The psu(2|2)⋉R
3 symmetry algebra. Recall from [7,27] that the algebra psu(2|2)⋉R

3 is

spanned by the bosonic generatorsRa
b, L

α
β of the two su(2) factors and C,P,K of the central

extension R
3, together with the fermionic generatorsQα

a andSa
α. We write a, b, . . . ∈ {1, 2}

and α, β, . . . ∈ {3, 4} for fundamental indices of, respectively, the su(2)R and su(2)L factors:

[Ra
b, J

c] = δcbJ
a − 1

2
δabJ

c , [Ra
b, Jc] = −δacJb +

1
2
δabJc ,

[Lα
β, J

γ ] = δγβJ
α − 1

2
δαβJ

γ , [Lα
β, Jγ] = −δαγ Jβ +

1
2
δαβJγ , (4)

where J is any generator with the index shown. Then the supersymmetries transform canon-

ically under su(2)L × su(2)R and close into the bosonic generators according to

{Qα
a,Q

β
b} = ǫαβǫabP , {Sa

α,S
b
β} = ǫαβǫ

abK ,

{Sa
α,Q

β
b} = δabL

β
α + δβαR

a
b + δab δ

β
αC . (5)

1more precisely, cf. eqn (84) below.
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Fundamental representations. The boundary degrees of freedom and the elementary

excitations propagating in the bulk all transform in fundamental representations of psu(2|2)⋉
R

3. The carrier space (2|2) of such representations has a basis |χa〉 = { |φa〉 , |ψα〉 } con-

sisting of an su(2)R doublet of bosons |φa〉 and an su(2)L doublet of fermions |ψα〉 . A

fundamental representation is specified by the values of the coefficients a, b, c, d that deter-

mine the action of the supersymmetries on these basis states:

Qα
a

∣∣φb
〉
= aδba |ψα〉 , Qα

a

∣∣ψβ
〉
= bǫαβǫab

∣∣φb
〉
, (6)

Sa
α

∣∣φb
〉
= cǫαβǫ

ab
∣∣ψβ
〉
, Sa

α

∣∣ψβ
〉
= dδβα |φa〉 , (7)

which must obey the shortening (or mass-shell) condition ad− bc = 1.

For an elementary magnon propagating in the bulk, with momentum p, these coefficients

are parameterized as [27]

a =
√
g η, b = −√

g
iζ

η

(
1− x+

x−

)
, c = −√

g
η

ζx+
, d =

√
g
x+

iη

(
1− x−

x+

)
, (8)

where |η|2 = i(x−−x+), to ensure unitarity, x± are the standard spectral parameters obeying

eip =
x+

x−
, x+ +

1

x+
− x− − 1

x−
=
i

g
, (9)

and ζ is pure phase given by the product
∏

k e
ipk over all magnons to the left of the magnon

in question. The values of the central charges C,P,K are given in terms of p and ζ by

P = ab = gζ
(
1− eip

)
, K = cd =

g

ζ

(
1− e−ip

)
, (10)

C = 1
2
(ad+ bc) = 1

2

√
1 + 16g2 sin(p

2
)2, (11)

and the energy E of the magnon is identified with 2C. We will write �(p,ζ,η) to denote this

representation.

The boundary excitations, on the other hand, do not carry momentum. They transform

in the representation given by [13]

aB =
√
g ηB, bB = −√

g
iζB
ηB

, cB = −√
g

ηB
xBζB

, dB =
√
g
xB
iηB

, (12)

where |ηB|2 = −ixB , ζB is a boundary phase to be specified below, and the mass-shell

condition ad− bc = 1 now reads

xB +
1

xB
=
i

g
. (13)
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The values of the central charges C,P,K and the energy E of an unexcited boundary are

given by

P = aBbB = giζB, K =
g

iζB
, 1

2
E = C = 1

2

√
1 + 4g2. (14)

We write this representation as �(ζB ,ηB).

Bulk and boundary scattering. Asymptotic components of energy eigenstates trans-

form in tensor products of these representations,

�(ζL,ηL) ⊗ �(p1,ζ1,η1) ⊗ · · · ⊗ �(p
KI ,ζKI ,ηKI ) ⊗ �(ζR,ηR) (15)

where KI is the number of bulk magnons. The phases ζL, ζR and ζi associated to all the

particles, bulk and boundary, are conveniently visualized using the Lin-Lunin-Maldacena

(LLM) disk picture [28, 29]. In this picture, the boundary degrees of freedom correspond to

radial line segments, and bulk excitations to line segments between points on the circum-

ference. For example, an asymptotic component of a state with three bulk magnons might

look as follows [13].

ζ1 = −ζL

ζ2 = ζ1e
ip1

ζ3 = ζ2e
ip2

ζR = ζ3e
ip3

As usual in 1+1 dimensional scattering theories with boundaries, an asymptotic region

is labelled by the ordering of the bulk particles (specified by a permutation σ ∈ SKI of some

fiducial ordering) and a sign ±1 for each bulk particle which specifies whether it is ingoing

or outgoing from (say) the right boundary. That is, the asymptotic regions correspond to

the Weyl chambers of the BCKI ≡ SKI ⋉ Z
KI

2 group of reflections [30–33]. The components

of an energy eigenstate in different asymptotic regions are related by the bulk and boundary

scattering matrices, S and R; to respect the symmetry of the problem, S and R must

commute with the action of psu(2|2) ⋉ R
3. The labels of the representations can change

under scattering, but must do so in a way which preserves the values of the three central
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charges C,P,K. The correct changes turn out to be [7, 13, 27]

S : �(p,ζ,η) ⊗ �(p′,ζeip,η′) −→ �(p′,ζ,η̃′) ⊗ �(p,ζeip′ ,η̃) (16)

RL : �(−ζ,ηB) ⊗ �(p,ζ,η) −→ �(−ζe2ip,η̃B) ⊗ �(−p,ζe2ip,η̃) (17)

RR : �(p,ζ,η) ⊗ �(ζeip,ηB) −→ �(−p,ζ,η̃) ⊗ �(ζe−ip,η̃B) (18)

which are rather natural when visualized in the LLM disk picture:

RR
RL

S12

The tensor product of two fundamental representations is irreducible for generic values of the

parameters, and therefore (by Schur’s lemma) each of the maps S12,RL andRR is determined

by symmetry up to an overall factor. The most general intertwiner I of su(2) ⊕ su(2)

representations is

I
∣∣φaφb

〉
= A

∣∣φ{aφb}
〉
+B

∣∣φ[aφb]
〉
+ 1

2
Cǫabǫαβ

∣∣ψαψβ
〉

I
∣∣ψαψβ

〉
= D

∣∣ψ{αψβ}
〉
+ E

∣∣ψ[αψβ]
〉
+ 1

2
Fǫabǫ

αβ
∣∣φaφb

〉

I
∣∣φaψβ

〉
= G

∣∣ψβφa
〉
+H

∣∣φaψβ
〉

I
∣∣ψαφb

〉
= K

∣∣ψαφb
〉
+ L

∣∣φbψα
〉
,

for some coefficients A,B,C,D,E, F,G,H,K, L, which are then fixed by demanding that

I commute with the supersymmetries. They were computed in [7] for the bulk S matrix

and [13] for the boundary reflection matrix, and are reproduced in tables 1 and 2. Note that

we have not yet specified the parameters η, and for the moment we allow them to change in

an unspecified way η → η̃ under scattering.
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A = S0(p1, p2)
η1η2
η̃1η̃2

x+2 − x−1
x−2 − x+1

B = S0(p1, p2)
η1η2
η̃1η̃2

x+2 − x−1
x−2 − x+1

(
1− 2

1− 1/x−2 x
+
1

1− 1/x+2 x
+
1

x−2 − x−1
x+2 − x−1

)

C = −2iη1η2
ζ

S0(p1, p2)
1

x+1 x
+
2

x−2 − x−1
x−2 − x+1

1

1− 1/x+2 x
+
1

D = −S0(p1, p2)

E = −S0(p1, p2)

(
1− 2

1− 1/x+2 x
−
1

1− 1/x−2 x
−
1

x+2 − x+1
x−2 − x+1

)

F = − 2iζ

η̃1η̃2
S0(p1, p2)

(x+1 − x−1 )(x
+
2 − x−2 )

x−1 x
−
2

x+2 − x+1
x−2 − x+1

1

1− 1/x−2 x
−
1

G = S0(p1, p2)
η1
η̃1

x+2 − x+1
x−2 − x+1

H = S0(p1, p2)
η1
η̃2

x+2 − x−2
x−2 − x+1

K = S0(p1, p2)
η2
η̃1

x+1 − x−1
x−2 − x+1

L = S0(p1, p2)
η1
η̃1

x−2 − x−1
x−2 − x+1

.

Table 1: Coefficient functions for the bulk scattering matrix of two elementary magnons.

A = R0(p)
ηBη

η̃B η̃

x− (x− − xB)

x+ (x+ + xB)
,

B = R0(p)
ηBη

η̃B η̃

x−
(
−2 (x−)

2
+ x+x− + 2 (x+)

2
)
− xB

(
2 (x−)

2
+ x+x− − 2 (x+)

2
)

(x+)2 (xB + x+)
,

C = −R0(p)
2iηBη

ζ

(xB + x− − x+) (x− + x+)

x+ (xB + x+)
,

D = R0(p) ,

E = R0(p)
x+
(
2 (x−)

2
+ x+x− − 2 (x+)

2
)
+ xB

(
−2 (x−)

2
+ x+x− + 2 (x+)

2
)

x−x+ (xB + x+)
,

F = −R0(p)
2iζ

η̃B η̃

(
(x−)

2 − (x+)
2
)
(x−x+ + xB (x+ − x−))

x− (x+)2 (xB + x+)
,

G = −R0(p)
η

η̃B

xB (x− + x+)

x+ (xB + x+)
, H = R0(p)

η

η̃

(x+)
2 − xBx

−

x+ (xB + x+)
,

K = R0(p)
ηB
η̃B

(x−)
2
+ xBx

+

(x+)2 + xBx+
, L = R0(p)

ηB
η̃

(x− − x+) (x− + x+)

x+ (xB + x+)
,

Table 2: Coefficient functions for the right reflection of an elementary magnon. Left reflection ones

are obtained by parity symmetry. In the LLM disk, this is visualized by reversing the arrows, i.e.

x± → −x∓ and ζ → −ζ x+

x−
.
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2.2 Coordinate Bethe Ansatz

We can now turn to solving the scattering problem by Bethe ansatz methods. As usual

when treating integrable systems with boundaries, the strategy is to begin by considering

the scattering problem on the half-line with one boundary. One uses a Bethe ansatz to

construct (the asymptotic components of) energy eigenstates for this semi-infinite system,

parameterized by a collection of continuous parameters (the particle rapidities). Then the

next step is to introduce the other boundary, which will place extra consistency conditions

(the Bethe equations) on the rapidities – thereby quantizing the spectrum, as one expects

for a system in finite volume.

Following the work of Sklyanin [34], systems with boundaries are very commonly treated

by means of the algebraic Bethe ansatz [35]. This was the approach taken in [22] for Y = 0

giant graviton boundary conditions. But it is certainly also possible to use a coordinate

Bethe ansatz in systems with boundary: see [30,33], and, for a system (the Hubbard model)

which requires nesting [36]. We adopt the coordinate approach here because, although it is

perhaps less mathematically deep, its physical interpretation is slightly more transparent;

and our goal is to obtain the Bethe equations with the minimum of effort. We shall follow

rather closely the notation used in [7] in solving the closed case.

Let us, then, consider the scattering problem on the half-line with, say, a right boundary.

Consider states with KI elementary bulk particles. An asymptotic component

|χa
1〉 ⊗ · · · ⊗

∣∣χy
KI

〉
⊗ |χz

R〉 ∈ �(p1,ζ1,η1) ⊗ · · · ⊗ �(p
KI ,ζKI ,ηKI ) ⊗ �(ζR,ηR) (19)

of such a state can be abbreviated as

∣∣χa
1 . . . χ

y
KI χ

z
R

〉
I. (20)

Any such asymptotic component extends, in a unique way, to an energy eigenstate: the

components in the remaining asymptotic regimes are obtained by acting with all possible

products of

SI
12,SI

23, . . . ,SI
KI−1,KI and RI. (21)

(Here we have introduced the superscript I to distinguish these as the level I states and

scattering operators.) In general, however, the internal indices a, b, . . . of the particles will

change in a complicated way under these scattering operations. The nested coordinate Bethe
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ansatz [37] consists in choosing a special subspace of states |Ψ〉 on which, by contrast, SI
i, i+1

andRI act merely by changing the representation labels (as discussed above) and multiplying

by fixed scalar factors SI, I
i, i+1 and RI. On such states |Ψ〉 the theory is, loosely speaking, as

close as possible to one with diagonal scattering. Precisely, we demand

Si, i+1 |Ψ〉 = |Ψ〉 σi, i+1
SI, I
i, i+1, R|Ψ〉 = |Ψ〉 τR

I (22)

where

σ12, σ23, . . . , σKI−1,KI, τ (23)

are the operators which change the representation labels (thus mapping to a ket in a neigh-

bouring asymptotic region) but which leave unaltered the internal indices a, b, . . . of the

basis states (20). They obey the defining relations

σi, i+1σi+1, i+2σi, i+1 = σi+1, i+2σi, i+1σi+1, i+2, σ2
i, i+1 = id

τ 2 = id, τ σKI−1, KI τ σKI−1,KI = σKI−1, KI τ σKI−1,KI τ.
(24)

of the BCKI group. The Si, i+1 and R also realize these relations, which is really the precise

statement of integrability here: it is what guarantees that the extension from one asymptotic

region to all the others can be consistently completed by adding only a finite number of terms

to the state vector. Note that, here, Si, i+1 is the scattering of the ith and (i+ 1)st particles

labelled as they are ordered in space, and consequently it is the braided version of the Yang-

Baxter equation, which is the first of the relations in (24), that the Si, i+1 obey.

Level II

We first define the level II vacuum to be the state

|0〉 II :=
∣∣ψ3

1ψ
3
2 . . . ψ

3
KIψ

3
R

〉
. (25)

This is an su(2)⊕su(2) highest-weight state, so indeed SI
i,i+1 and RI can only act diagonally.

From tables 1 and 2 one sees that

SI, I
i, i+1 = −1, RI = 1. (26)

Single particles: bulk. The next step is to define additional states – interpreted as level

II excitations above this level II vacuum – with the property that they transform under

9



SI
i,i+1 and RI in exactly the same fashion as |0〉 II. Consider first single excitations, and

temporarily forget about the boundary. The situation is then just as in [7]: one makes a

spin-wave ansatz

|φa(y)〉 II
left tail :=

KI∑

k=1

∣∣ψ3
1ψ

3
2 . . . φ

a
k . . . ψ

3
KI

〉 k−1∏

ℓ=1

SII, I(y; xℓ)f
L(y; xk, ηk). (27)

Here it is necessary to include the “tail” running to the left of the particle because the

background is inhomogeneous. The level I parameters (i.e. the representation labels x±i ,

ζi and ηi) have the status of inhomogeneities at the sites of the level II spin chain, and a

priori fL and SII, I can depend on all of them, though in fact they need only depend on

the arguments shown. It suffices to consider a chain of length KI = 2. The compatibility

condition is then

SI
12 |φa(y)〉 II = |φa(y)〉 II

σ12
SI, I = − |φa(y)〉 II

σ12
. (28)

One finds a solution2

fL(y; x, η) =
1

η

x+ − x−

y − x−
, SII, I(y; x) = −y − x+

y − x−
. (32)

It is useful to define, in addition,

SI, II(x; y) = 1
/
SII, I(y; x) = −y − x−

y − x+
(33)

2Readers familiar with the literature [38–41] will note that here SII, I does not include
√
x+/x− factors,

and may object that we should be using the “string basis” for the η and η̃ parameters in order to produce

them. So we should stress that this solution, though not unique, is valid for any choice of η’s (constrained

only by the requirement that Si, i+1 and R realize (24)). This is so because, possibly unusually, we chose

to treat the ηi as level I parameters on the same footing as the x±

i . Both fL and SII, I can thus depend

explicitly on η, just as on x±, and this is reflected in the form of the compatibility condition (28). With the

shorthand Fi = ηif
L(y;xi, ηi), F̃i = η̃if

L(y;xi, η̃i), Si = SII, I(y;xi, ηi) and S̃i = SII, I(y;xi, η̃i), one finds

that (28) unpacks to give

(x−

2 − x+
2 )F1 + (x−

1 − x−

2 )F2S1 = −(x+
1 − x−

2 )F̃2 (29)

(x+
1 − x+

2 )F1 + (x−

1 − x+
1 )F2S1 = −(x+

1 − x−

2 )F̃1S̃2 (30)

and hence

F1 + F̃1S̃2 = F̃2 + F2S1. (31)

The equation above is separable if F̃1 = a2F1 and F2 = a1F̃2 for some function ai = a(xi, fi, ηi). We are

quite free to take the simplest possibility, namely a ≡ 1, yielding the solution shown in the text. Thus, for

us,
√
x+/x− factors do not originate in the choice of η’s, and we shall introduce them by different reasoning

in §2.3 below.

10



fR(x, η; y) = SI, II(x; y)fL(y; x, η) =
1

η

x− − x+

y − x+
(34)

and verify that the compatibility condition (28) is also solved by the spin-wave with its tail

trailing away to the right,

|φa(y)〉 II
right tail :=

KI∑

k=1

∣∣ψ3
1ψ

3
2 . . . φ

a
k . . . ψ

3
KI

〉 KI∏

ℓ=k+1

SI, II(xℓ; y)f
R(xk, ηk; y). (35)

Single particles: boundary Let us now re-introduce the boundary. One certainly ex-

pects that a Bethe state with a single level II excitation should be a linear combination of

an ingoing (right-moving) spin-wave, an outgoing (left-moving) spin-wave, and a term in

which the excitation has just reached the boundary. The subtlety is in arranging the tails

consistently, but the correct answer is easy to guess pictorially:

∣∣ΨII
(y,a)

〉
= · · ·+ + + + · · · (36)

=
KI∑

k=1

∣∣ψ3
1ψ

3
2 . . . φ

a
k . . . ψ

3
KIψ

3
R

〉 k−1∏

ℓ=1

SII, I(y; xℓ)f
L(y; xk, ηk)

+
∣∣ψ3

1ψ
3
2 . . . . . . ψ

3
KIφ

a
R

〉 KI∏

ℓ=1

SII, I(y; xℓ)f
τ (y; xB, ηB)

+

KI∑

k=1

∣∣ψ3
1ψ

3
2 . . . φ

a
k . . . ψ

3
KIψ

3
R

〉 KI∏

ℓ=1

SII, I(y; xℓ)R
II(y; xB)

×
KI∏

ℓ=k+1

SI, II(xℓ;−y)fR(xk, ηk;−y)

for new unknown functions f τ and RII. By construction, this automatically satisfies the

compatibility condition everywhere in the bulk. The new compatibility condition is

RI
∣∣ΨII

(y,a)

〉
=
∣∣ΨII

(y,a)

〉
τ
RI =

∣∣ΨII
(y,a)

〉
τ
. (37)

To solve it, it suffices to consider a level I state with only KI = 1 bulk excitation, in which

case
∣∣ΨII

(y,a)

〉
= B

∣∣ψ3φa
R

〉
+ D

∣∣φaψ3
R

〉
, (38)

where we have introduced the shorthands

B = + = fL(y; x, η) + SII, I(y; x)RII(y; xB)f
R(x, η;−y), (39)

D = = SII, I(y; x)f τ(y; xB, ηB). (40)

11



The compatibility condition is then

KR(x)D+GR(x)B = DR(x)(D)τ , (41)

LR(x)D+HR(x)B = DR(x)(B)τ , (42)

which admits the solution

f τ (y; xB) =
1

ηB

2xB
y + xB

, RII(y; xB) = −y − xB
y + xB

, . (43)

The fact that these indeed depend solely on the level II rapidity y and the boundary level I

parameters confirms that the ansatz was suitable.

Two particles: bulk. We now turn to states with KII > 1 level II excitations. Let us

once more temporarily ignore the boundary. An asymptotic component of a level II state of

two particles, with both tails running to the left, is

∣∣φa(y1)φ
b(y2)

〉
II
tails left =

KI∑

k,m=1
k<m

∣∣ψ3
1 . . . φ

a
k . . . φ

b
m . . . ψ

3
KI

〉 k−1∏

ℓ=1

SII, I(y1; xℓ)f
L(y1; xk, ηk)

×
m−1∏

n=1

SII, I(y2; xn)f
L(y2; xn, ηn). (44)

The complete level II eigenstate of KII = 2 particles in the absence of boundaries is (as in [7],

except that we are working in the “non-local” picture without markers Z±, c.f. [27])

∣∣ΨII
(y1,a; y2,b)

〉
=

∣∣φa(y1)φ
b(y2)

〉
II (45)

+M(y1, y2)
∣∣φa(y2)φ

b(y1)
〉
II +N(y1, y2)

∣∣φb(y2)φ
a(y1)

〉
II

+ ǫab
∣∣ψ4(y1, y2)

〉
II.

Here the second line is the most general su(2)-covariant level II scattering matrix.3 It is also

necessary to include a component in which the particles are at the same site, combining to

3Just as at level I, in the presence of a boundary the regions at level II correspond to the Weyl chambers

of the reflection group BCKII , and components in different regions are related by scattering operators SII
i, i+1

and RII. To avoid unnecessary formalism, we do not introduce these operators explicitly. But note that,

strictly, (36) is already a linear combination of components from two regions related by RII.
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form the composite excitation ψ4:

∣∣ψ4(y1, y2)
〉
II =

KI∑

k=1

∣∣ψ3
1 . . . ψ

4
k . . . ψ

3
KI

〉 k−1∏

ℓ=1

SII, I(y1; xℓ)f
L(y1; xk, ηk) (46)

×
k−1∏

ℓ=1

SII, I(y2; xℓ)f
L(y2; xk, ηk)f

σ(y1, y1; xk, ηk, ζk).

The unknown functions are M,N and fσ. Let us recall how they are computed, since it is

a useful warm-up for the boundary calculation below. Consider a level I state of KI = 2

particles. The overlap of
∣∣∣ΨII

(y1,a; y2,b)

〉
with 1

2
(
∣∣φa

1φ
b
2

〉
I ±

∣∣φb
1φ

a
2

〉
I) is

A
± :=

1 2

+

1 2

= fL(y1; x1, η1)S
II, I(y2; x1)f

L(y2; x2, η2) (47)

+ fL(y2; x1, η1)S
II, I(y1; x1)f

L(y1; x2, η2)(M(y1, y2)±N(y1, y2))

while its overlap with 1
2
( |ψ3

1ψ
4
2〉 I ± |ψ4

1ψ
3
2〉 I) is

F
± := ±

1 2

+

1 2

= ±fL(y1; x1, η1)f
L(y2; x1, η1)f

σ(y1, y2; x1, η1, ζ) (48)

+ SII, I(y1; x1)f
L(y1; x2, η2)S

II, I(y2; x1)f
L(y2; x2, η2)

× fσ(y1, y2; x2, η2, ζe
ip1).

In terms of these shorthands, A and F, and the coefficient functions A, . . . , L of the level I

scattering matrix in table 1, the consistency condition

SI
12

∣∣ΨII
(y1,a; y2,b)

〉
=
∣∣ΨII

(y1,a; y2,b)

〉
σ12S

I, I (49)

reads as follows, component by component:

∣∣∣φ(a
1 φ

b)
2

〉
I
σ12

: AA+ = DA
+
σ12

(50)
∣∣∣φ[a

1 φ
b]
2

〉
I
σ12

: BA
− + FF− = DA

−
σ12

(51)
∣∣∣ψ[3

1 ψ
4]
2

〉
I
σ12

: CA− + EF− = DF
−
σ12

(52)
∣∣∣ψ(3

1 ψ
4)
2

〉
I
σ12

: DF
+ = DF

+
σ12
. (53)

The first of these equations yields M(y1, y2) = −1 − N(y1, y2). By considering the second

or third, one notices that the phase ζ dependence of fσ must be ∼ 1/ζ . In the fourth

13



equation, recall how these phases transform: on the right-hand side of the equation it is

fσ(y1, y2; x2, η̃2, ζ) and fσ(y1, y2; x1, η̃1, ζe
ip2) that appear. The equation is then separable,

with solutions

fσ(y1, y2; x, η, ζ) =
η2

ζ

(x+x− − y1y2)

x+(x+ − x−)
f̃σ(y1, y2) (54)

for any function f̃σ(y1, y2). Finally both remaining unknowns f̃σ(y1, y2) and N(y1, y2) are

fixed by the second and third equations. At this step for the first time it is necessary to

make use of the mass-shell condition in (9). The solution is

M(y1, y2) =

i
g

v1 − v2 − i
g

, N(y1, y2) = − v1 − v2

v1 − v2 − i
g

, (55)

f̃σ(y1, y2) = −
i
y1

− i
y2

v1 − v2 − i
g

, where vi = yi +
1

yi
. (56)

The calculation above was for level II excitations whose tails both trailed to the left. But

the same result holds when (44) is replaced with an asymptotic piece in which either or both

tails run to the right, in the sense of (35). The calculation is essentially the same: we omit

the details but, for example, the pictures in the case with the tail of y1 trailing to the left

and the tail of y2 trailing to the right are

Aleft-right ∼
1 2

+

1 2

Fleft-right ∼
1 2

+

1 2

. (57)

Two particles: boundary. We are ready to re-introduce the boundary, this time for

states of KII = 2 excitations. We have almost all the needed ingredients: we know how

to scatter two level II excitations in the bulk (45) and how to scatter a level II excitation

from the boundary (36). So, starting from a component (44) in the region in which the level

II particles are ordered 1, 2 and are both heading towards the boundary, we can certainly

construct a state
∣∣ΨII

(y1,a;y2,b)

〉
which solves the compatibility condition

1. everywhere in the bulk, and

2. at the boundary whenever only one level II excitation lies on or next to the boundary.

The one remaining case is when both level II excitations are on sites {KI, R}. Correspond-

ingly, there is one new term we can introduce in the state vector, namely the term in which

14



two level II particles coincide at the boundary :

1 2

=
∣∣ψ3

1ψ
3
2 . . . . . . ψ

3
KIψ

4
R

〉 KI∏

ℓ=1

SII, I(y1; xℓ)f
τ (y1; xB, ηB) (58)

×
KI∏

ℓ=1

SII, I(y2; xℓ)f
τ(y2; xB, ηB)f

στ (y1, y2; xB, ηB, fB).

To fix the final unknown function fστ it suffices to consider a state of KII = 2 level II

particles on a background level I chain with only KI = 1 bulk sites (plus the boundary site).

The compatibility condition we have to solve is

RI
∣∣ΨII

(y1,a;y2,b)

〉
=
∣∣ΨII

(y1,a;y2,b)

〉
τ R

I =
∣∣ΨII

(y1,a;y2,b)

〉
τ . (59)

Now the overlap of the full state vector
∣∣ΨII

(y1,a;y2,b)

〉
with 1

2
(
∣∣φaφb

R

〉
I ±

∣∣φbφa
R

〉
I) is

A
±
B :=

1 2

+

1 2

+

1 2

+

1 2

(60)

= fL(y1; x, η)S
II, I(y2; x)f

τ (y2; xB, ηB)

+ SII, I(y1; x)f
τ (y1; xB, ηB)f

L(y2; x, η) [M(y1, y2)±N(y1, y2)]

+ SII, I(y1; x)f
τ (y1; xB, ηB)S

II, I(y2; x)R
II(y2; xB)f

R(x, η;−y2)

× [M(y1,−y2)±N(y1,−y2)]
+ SII, I(y1, x)R

II(y1; xB)f
R(x, η;−y1)SII, I(y2; x, η)f

τ(y2; xB, ηB)

×
[
M(y1, y2)M(y2,−y1)±N(y1, y2)M(y2,−y1)
±M(y1, y2)N(y2,−y1) +N(y1, y2)N(y2,−y1)

]
(61)

while its overlap with 1
2
( |ψ3ψ4

R〉 I ± |ψ4ψ3
R〉 I) is

F
±
B :=

1 2

±
1 2

±
1 2

±
1 2

±
1 2

(62)

= SII, I(y1; x)f
τ (y1; xB, ηB)S

II, I(y2; x)f
τ (y2; xB, ηB)f

στ (y1, y2; xB, ηB, ζe
ip)

± fL(y1; x, η)f
L(y2; x, η)f

σ(y1, y2; x, η, ζ)

± SII, I(y1; x)R
II(y1; xB)f

R(x, η;−y1)fL(y2; x, η)f
σ(y2,−y1; x, η, ζ)

× [M(y1, y2)−N(y1, y2)]

± fL(y1; x, η)S
II, I(y2; x)R

II(y2; xB)f
R(x, η;−y2)fσ(y1,−y2; x, η, ζ)

± SII, I(y1; x)R
II(y1; xB)f

R(x, η;−y1)SII, I(y2; x)R
II(y2; xB)f

R(x, η;−y2)
× fσ(−y2,−y1; x, η, ζ) [M(y1,−y2)−N(y1,−y2)] . (63)

15



Here it is necessary to think rather carefully about which terms should be included. Let us

comment on this.

Recall the structure of a coordinate Bethe ansatz: there is always a component in the state

vector for each region, i.e. each Weyl chamber of the relevant reflection group, here BC2.

Neighbouring Weyl chambers meet at one of the mirrors, where a compatibility condition

must be met. In the present case it was necessary to include additional components (the f τ

and fσ terms, respectively) associated to boundaries between neighbouring regions, which

are subsets of the τ and σ12 mirrors themselves. And finally, the fστ term is associated to

the intersection of the σ12 mirror with the τ mirror.

With this structure in mind, it is possible systematically to list all the ways in which the

two particles can end up next to and on the boundary. One finds that only those processes

pictured in (60) are valid. For example, one might be tempted to include

1 2

and

1 2

.

But in the first of these, y2 is initially the particle closest to the boundary, so y1 cannot in

fact reach the boundary and reflect until it has intersected the path of y2. And likewise in

the second diagram after the first scattering of y1 with y2.

Similarly it is possible to list all the ways in which both particles can end up at the site

next to boundary, and find the final four diagrams in (62). In doing so, one should consider

also the process

1 2

= ± SII, I(y1; x)R
II(y1; xB)f

R(x, η;−y1)SII, I(y2; x)R
II(y2; xB)f

R(x, η;−y2)

×fσ(−y1,−y2; x, η, ζ)
[
M(y1, y2)M(y2,−y1)−N(y1, y2)M(y2,−y1)
−M(y1, y2)N(y2,−y1) +N(y1, y2)N(y2,−y1)

]
. (64)

This is a valid sequence of scattering events. But observe that it produces the term in

the ansatz associated to the boundary between the following two regions: both particles

outgoing, ordered y1, y2; and both particles outgoing, ordered y2, y1. We have already

included a term associated to this boundary: it is the final term in (62). And indeed these

terms turn out to be equal, as they must be. So one should include one or other but not

both.
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Having found the overlap functions A
±
R and F

±
R for the boundary, we can plug them in

to the consistency condition, which is, once more component by component,

∣∣∣φ(a
1 φ

b)
2

〉
I
τ : AA+

R = D(A+
R)τ (65)

∣∣∣φ[a
1 φ

b]
2

〉
I
τ : BA

−
R + FF−

R = D(A−
R)τ (66)

∣∣∣ψ[3
1 ψ

4]
2

〉
I
τ : CA−

R + EF−
R = D(F−

R)τ (67)
∣∣∣ψ(3

1 ψ
4)
2

〉
I
τ : DF

+
R = D(F+

R)τ . (68)

The first of these does not include the new unknown fστ , and is satisfied upon inserting the

level II scattering matrix in (56). On inspecting the second or third one sees that fστ must

go like η2B/ζ . One then looks for a solution to the forth equation of this form, and finds

fστ (y1, y2; xB, ηB, ζ) =
iη2B
ζ

( 1
y1

− 1
y2
)( 1

y1
+ 1

y2
)(1− iy1y2

xB
)(1 + iy1y2

xB
)

(v1 − v2 − i
g
)(v1 + v2 − i

g
)

. (69)

Given the mass shell conditions, we have verified that all four equations are then satisfied.

At this stage we have solved for all the functions that appear in the level II ansatz, and

demonstrated that it works for states of KII = 2 particles. No new types of terms arise for

states of KII > 2 particles and, since the original problem is solvable in the sense discussed

after (24), one can be confident that the ansatz continues to work. This is, admittedly, not

quite manifest because there are superficially new types of compatibility conditions to check

when KII > 2. But these are not exclusive to our present boundary case: even in the bulk

one sees for the first time ψ4φa appearing as neighbouring spins in the level II chain.

Level III

Finally we come to level III of the nesting. The goal is much as it was in going from level I

to II: we know that a component

∣∣φa(y1)φ
b(y2) . . . φ

z(yKII)
〉
II (70)

of a level II state in any one region can be uniquely completed, by including the terms

for all other regions and the additional terms for boundaries of regions, to a Bethe state
∣∣ΨII

(y1, a; y2, b; ...; yKII , z)

〉
obeying (22). But the su(2) indices a, b, . . . , z will in general be trans-

formed non-trivially by these level II scattering processes. We want to identify those linear

combinations of states (70) on which the level II scattering operators act diagonally.
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Let the level III vacuum be

|0〉 III =
∣∣φ1(y1)φ

1(y2) . . . φ
1(yKII)

〉
II. (71)

For single particles in the bulk we again make a spin-wave ansatz,

∣∣φ2(w)
〉
III =

KII∑

k=1

∣∣φ1(y1) . . . φ
2(yk) . . . φ

1(yKII)
〉
II

k−1∏

ℓ=1

SIII, II(w, yℓ)h
L(w, yk), (72)

and find that the bulk compatibility condition (cf. 45 and 56) is solved by

hL(w, y) =

i
2g

w − v − i
2g

, SIII, II(w, y) =
w − v + i

2g

w − v − i
2g

. (73)

Then, defining SII, III and hR just as at level II, cf. (33-34), we can make an ansatz for a single

particle in the presence of a right boundary as in (36), except that there is no distinguished

boundary site for the level III chain and so no boundary term in the ansatz. Finally, after

also solving for SIII, III component of the diagonalized scattering matrix, one has

RIII(w) = −1, SIII, III(w1, w2) =
w1 − w2 − i

g

w1 − w2 +
i
g

. (74)

2.3 Bethe Equations

The nested coordinate Bethe ansatz above was for the semi-infinite system with a right

boundary. Let us now add the left boundary, so placing the system on a finite interval.

Then the Bethe equations are the quantization conditions obtained as follows: starting from

any given component of the state vector, consider picking up a particle (belonging to any

level, I, II or III, of the nesting), moving it through all the particles lying its right, reflecting

it from the right boundary, moving it back again through all the particles, reflecting it from

the left boundary, and finally moving it through all the particles that were originally its left:

Since this sequence of operations returns all the particles to their initial positions and

(quasi)rapidities, we must recover the component of the state vector we began with – mod-

ulo, in case of the physical i.e. level I particles, a phase factor “e2ipL” that comes from
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translating to the right a total distance L with momentum p and a distance L to the left

with reflected momentum −p. Here we add scare-quotes, because we need to be more precise

about the meaning of the system size L. Thus, the Bethe equations take the form:

RA
R(x

A
k )R

A
L(−xAk )

III∏

B=I

KB∏

ℓ=1
(A,k)6=(B,ℓ)

SA,B(xAk , x
B
ℓ )S

B,A(xBℓ ,−xAk ) =





(
x+
k

x−

k

)−2L

for A = I

1 for A = II, III.

(75)

Here xA denotes the relevant rapidity variable for a particle at level A ∈ {I, II, III}, and −xA

the reflected rapidity: thus in particular xI = x±, −xI = −x∓. We can use parity symmetry

to write RA
L(−xA) = RA

R(x
A) and SB,A(xBℓ ,−xAk ) = SA,B(xAk ,−xBℓ ) in the equations. Explic-

itly then, the Bethe equations for the su(2|2) scattering theory with “Z = 0” boundaries

are

1 = R0R(x
±
k )

2

(
x+k
x−k

)2L KI∏

ℓ 6=k

S0(x
±
k , x

±
ℓ )S0(x

±
k ,−x∓ℓ )

KII∏

ℓ=1

yℓ − x−k
yℓ − x+k

yℓ + x−k
yℓ + x+k

(76)

1 =

(
yk − xB
yk + xB

)2 KI∏

ℓ=1

yk − x+ℓ
yk − x−ℓ

yk + x−ℓ
yk + x+ℓ

KIII∏

ℓ=1

wℓ − vk − i
2g

wℓ − vk +
i
2g

wℓ + vk +
i
2g

wℓ + vk − i
2g

(77)

1 =

KII∏

ℓ=1

wk − vℓ +
i
2g

wk − vℓ − i
2g

wk + vℓ − i
2g

wk + vℓ +
i
2g

KIII∏

ℓ 6=k

wk − wℓ − i
g

wk − wℓ +
i
g

wk + wℓ − i
g

wk + wℓ +
i
g

. (78)

To be more precise about the meaning of L, we can consider the equations in the weak

coupling limit, where they should be those of an open spin chain. It suffices to consider the

case of a single level I excitation. We have to specify how our definition of the reflection

factor relates the in-going and out-going spin-waves. We do that explicitly in the appendix.

In the conventions we are following, the R0 appearing in the Bethe equations would be

the overall scalar factor of Hofman and Maldacena [13], times the corresponding dressing

factors to satisfy the boundary crossing symmetry condition [16, 17],

R2
0L = − (x−)2(xB − x−)(xB + x−)(xB + 1

x+ )(xB + 1
x−

)

(x+)2(xB − x+)(xB + x+)(xB − 1
x−

)(xB − 1
x+ )

σ(x,−x)σ2(x,±xB). (79)

Let us take for instance (76) for KI = 1 and KII
(α) = 0. This should reproduce the Bethe

equation for single particle in the sl(2) sector which reads (113)

R4
0L(x) =

(
x+

x−

)2(K0−1)

, (80)
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where K0 is the number of sites in the underlying spin-chain (including the boundary sites).

This implies that we have to take L = K0 − 1 in (76).

At this point we should recall that, for the operators we are considering, the symmetry is

actually su(2|2)2 and that the excitations are in bifundamental representations. This simply

means there are two kinds of level II and level III particles, indexed by α = 1, 2. So the full

Bethe equations read

1 = R0R(x
±
k )

4

(
x+k
x−k

)2(K0−1) KI∏

ℓ 6=k

S0(x
±
k , x

±
ℓ )

2S0(x
±
k ,−x∓ℓ )2

2∏

α=1

KII
(α)∏

ℓ=1

y
(α)
ℓ − x−k

y
(α)
ℓ − x+k

y
(α)
ℓ + x−k

y
(α)
ℓ + x+k

(81)

1 =

(
y
(α)
k − xB

y
(α)
k + xB

)2 KI∏

ℓ=1

y
(α)
k − x+ℓ

y
(α)
k − x−ℓ

y
(α)
k + x−ℓ

y
(α)
k + x+ℓ

KIII
(α)∏

ℓ=1

w
(α)
ℓ − v

(α)
k − i

2g

w
(α)
ℓ − v

(α)
k + i

2g

w
(α)
ℓ + v

(α)
k + i

2g

w
(α)
ℓ + v

(α)
k − i

2g

(82)

1 =

KII
(α)∏

ℓ=1

w
(α)
k − v

(α)
ℓ + i

2g

w
(α)
k − v

(α)
ℓ − i

2g

w
(α)
k + v

(α)
ℓ − i

2g

w
(α)
k + v

(α)
ℓ + i

2g

KIII
(α)∏

ℓ 6=k

w
(α)
k − w

(α)
ℓ − i

g

w
(α)
k − w

(α)
ℓ + i

g

w
(α)
k + w

(α)
ℓ − i

g

w
(α)
k + w

(α)
ℓ + i

g

. (83)

But K0 is not a good quantum number, because, beyond one-loop, the length of the

chain can vary under mixing [42]. We would therefore like to eliminate it, in favour of the

R-charge J = J56 (which, being the Noether charge of a symmetry of the quantum theory,

is certainly a good quantum number). More precisely, we will eliminate K0 in favour of

J ≡ Jstring = Jtotal −N + 1, where Jtotal is the total R-charge J56 in the operators (3) we are

considering.

We can translate states χa,ȧ into fields of the N = 4 action and specify how much they

contribute to J and KA.

J K0 KI KII
(1) KII

(2)

χ1,1̇ ∼ Φ 0 1 1 1 1

χ3,1̇ ∼ Ψ 1
2

1 1 1 0

χ1,3̇ ∼ Ψ̄ 1
2

1 1 0 1

χ3,3̇ ∼ DµZ 1 1 1 0 0

Z 1 1 0 0 0

(84)

In each case J = K0 − 1
2
KII

(1) − 1
2
KII

(2). Thus, the total contribution to J is

J = K0 − 1
2
KII

(1) − 1
2
KII

(2) (85)
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and the Bethe equations can be re-written as

1 = R0(x
±
k )

4
(
x+
k

x−

k

)2(J−1) K
I∏

ℓ 6=k

S0(x
±
k , x

±
ℓ )

2S0(x
±
k ,−x∓ℓ )

2
2∏

α=1

KII
(α)∏

ℓ=1

√
x+
k

x−

k

y
(α)
ℓ − x−k

y
(α)
ℓ − x+k

√
x+
k

x−

k

y
(α)
ℓ + x−k

y
(α)
ℓ + x+k

(86)

1 =

(
y
(α)
k − xB

y
(α)
k + xB

)2 KI∏

ℓ=1

√
x+
ℓ

x−

ℓ

y
(α)
k − x+ℓ

y
(α)
k − x−ℓ

√
x−

ℓ

x+
ℓ

y
(α)
k + x−ℓ

y
(α)
k + x+ℓ

KIII
(α)∏

ℓ=1

w
(α)
ℓ − v

(α)
k − i

2g

w
(α)
ℓ − v

(α)
k + i

2g

w
(α)
ℓ + v

(α)
k + i

2g

w
(α)
ℓ + v

(α)
k − i

2g

(87)

1 =

KII
(α)∏

ℓ=1

w
(α)
k − v

(α)
ℓ + i

2g

w
(α)
k − v

(α)
ℓ − i

2g

w
(α)
k + v

(α)
ℓ − i

2g

w
(α)
k + v

(α)
ℓ + i

2g

KIII
(α)∏

ℓ 6=k

w
(α)
k − w

(α)
ℓ − i

g

w
(α)
k − w

(α)
ℓ + i

g

w
(α)
k + w

(α)
ℓ − i

g

w
(α)
k + w

(α)
ℓ + i

g

. (88)

Vacuum 1 Had we chosen 1 as the vacuum orientation throughout rather than 3, we would

have J = K0 −KI − 2 + 1
2
KII

(1) +
1
2
KII

(2), and would have obtained, by arguments paralleling

those above, the Bethe equations in the following form:

1 = R0(x
±
k )

4

(
x+k
x−k

)2(J−1)((
x+
k

x−

k

)3/2 x−k (x
−
k − xB)

x+k (x
+
k + xB)

)4

×
KI∏

ℓ 6=k

S0(x
±
k , x

±
ℓ )

2S0(x
±
k ,−x∓ℓ )

2

(√
x+
k
x−

ℓ

x−

k
x+
ℓ

x−k − x+ℓ
x+k − x−ℓ

)2(√
x+
k
x+
ℓ

x−

k
x−

ℓ

x−k + x−ℓ
x+k + x+ℓ

)2

×
2∏

α=1

KII
(α)∏

ℓ=1

√
x−

k

x+
k

y
(α)
ℓ − x+k

y
(α)
ℓ − x−k

√
x−

k

x+
k

y
(α)
ℓ + x+k

y
(α)
ℓ + x−k

(89)

1 =

(
y
(α)
k + xB

y
(α)
k − xB

)2 KI∏

ℓ=1

√
x+
k

x−

k

y
(α)
k − x−ℓ

y
(α)
k − x+ℓ

√
x−

k

x+
k

y
(α)
k + x+ℓ

y
(α)
k + x−ℓ

KIII
(α)∏

ℓ=1

w
(α)
ℓ − v

(α)
k + i

2g

w
(α)
ℓ − v

(α)
k − i

2g

w
(α)
ℓ + v

(α)
k − i

2g

w
(α)
ℓ + v

(α)
k + i

2g

(90)

1 =

KII
(α)∏

ℓ=1

w
(α)
k − v

(α)
ℓ − i

2g

w
(α)
k − v

(α)
ℓ + i

2g

w
(α)
k + v

(α)
ℓ + i

2g

w
(α)
k + v

(α)
ℓ − i

2g

KIII
(α)∏

ℓ 6=k

w
(α)
k − w

(α)
ℓ + i

g

w
(α)
k − w

(α)
ℓ − i

g

w
(α)
k + w

(α)
ℓ + i

g

w
(α)
k + w

(α)
ℓ − i

g

(91)

Eq. (86)-(88) should be, of course, equivalent to eq. (89)-(91). Consider for instance an

sl(2) state with a single bulk impurity, which has KI = 1, KII
(1) = KII

(2) = 3 and KIII
(α) = 0.

The corresponding auxiliary rapidities y
(α)
k solving eq. (90)4 can be taken such that when

plugged back in (89), equation (86) for KI = 1 and KII
(1) = KII

(2) = KIII
(α) = 0 is recovered.

We expect the Bethe equations we presented here to be valid also for arbitrary Q-bound

state magnons, just by using the spectral parameters satisfying the Q-bound state mass-shell

condition. This could be shown in general by reformulating the coordinate Bethe ansatz

4For a single bulk impurity eq. (90) is solved by y → 0,∞,

√
xB(xB(x−

−x+)+2x+x−)
x+−x−+2xB
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in terms of coproducts of Yangian symmetry generators [43]. For the particular case of

fundamental boundary magnons and generic Q-bound state magnons, these Bethe equations

could be obtained from a coordinate Bethe ansatz using the explicit 1-Q boundary reflection

matrix obtained in [44], much as we did here for fundamental bulk magnons.

3 Z = 0 D7-brane

Another system enjoying integrable open boundary conditions is the spectral problem in

the planar limit of a N = 2 super Yang-Mills theory, consisting of the N = 4 theory

supplemented with a chiral hypermultiplet of fundamental matter [24].

Given a chain of N = 4 fields, one can either take a trace to make a gauge invariant

operator, or use the fundamental matter to contract the SU(N) indices. In the planar

limit, the first possibility would lead to the same spectral problem as that of N = 4 with

periodic boundary conditions. The second possibility amounts for imposing open boundary

conditions to the chain of fields. In the dual gravity description this corresponds to an open

string attached to a probe D7-brane in AdS5×S5, whose worldvolume wraps the entire AdS5

and a maximal S3 ⊂ S5.

In certain sectors, this open problem was shown to be integrable at its weak [25] and

strong coupling [15] limits. Moreover, we have proposed in a previous paper [26] a reflection

matrix interpolating between both limits, consistent with the symmetries of the problem and

satisfying the boundary Yang-Baxter equation.

As for the giant graviton cases, the relative orientation between the vacuum field Z and

the 3-sphere matters. If the maximal 3-sphere was defined by the intersection of Y = 0

with |X|2 + |Y |2 + |Z|2 = 1, only a psu(2|1) × psu(2|1) ⊂ psu(2|2) × psu(2|2) would be

preserved [26]. This is essentially the same problem as the Y = 0 giant graviton. Therefore,

the corresponding Bethe ansatz would be the one formulated in [22, 23].

When the maximal 3-sphere is defined through Z = 0, we have for the reference state of

the Bethe ansatz the following operator

χȧ
LZ

Jχė
R. (92)

The boundary matter fields transform in a representation (1,�) of psu(2|2)× psu(2|2) and
only a su(2)× su(2)× psu(2|2) symmetry is preserved by the reflection of bulk excitations.
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Concerning excitations carrying fundamental dotted psu(2|2) indices, their boundary

reflection

RR : �(p,ζ,η) ⊗ �(ζeip,ηB) −→ �(−p,ζ,η̃) ⊗ �(ζe−ip,η̃B) (93)

would be exactly the same one that is reproduced in table 2. Therefore, the spin-wave

functions for excitations of higher levels of nesting would also be the same ones as those

described in the section 2.2.

However, the problem becomes different when it comes to the undotted psu(2|2) funda-
mental excitations, because they are reflected by a singlet boundary

RR : �(p,ζ,η) ⊗ 1 −→ �(−p,ζ,η̃) ⊗ 1. (94)

In [26], we have shown that the most general form of this reflection consistent with

integrability is of the form

R|φa(x)〉 = R0(x)
η

η̃

xB − x−

xB + x+
|φa(−x)〉, (95)

R|ψα(x)〉 = R0(x)|ψα(−x)〉. (96)

As before, a coordinate Bethe ansatz can be formulated for this case. When we introduce

a boundary, the spin-wave for a single level II excitation would be slightly simpler this time,

because the excitation can not be allocated at the boundary site. The Bethe state will be

the following combination of ingoing and outgoing spin-waves,

∣∣ΨII
(y,a)

〉
= · · ·+ + + · · · (97)

=
KI∑

k=1

∣∣ψ3
1ψ

3
2 . . . φ

a
k . . . ψ

3
KI

〉 k−1∏

ℓ=1

SII, I(y; xℓ)f
L(y; xk)

+

KI∑

k=1

∣∣ψ3
1ψ

3
2 . . . φ

a
k . . . ψ

3
KIψ

3
R

〉 KI∏

ℓ=1

SII, I(y; xℓ)R
II(y; xB)

×
KI∏

ℓ=k+1

SI, II(xℓ;−y)fR(xk;−y),

with only one unknown function RII(y; xB).

The bulk compatibility condition is again satisfied by construction. For the boundary

compatibility condition, it suffices to consider a state with only KI = 1. The compatibility
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condition requires then

xB − x−

xB + x+
=
fL(y;−x) + SII, I(y;−x)RII(y)fR(−x;−y)
fL(y; x) + SII, I(y; x)RII(y)fR(x;−y) , (98)

which admits the solution

RII(y; xB) =
y − xB
y + xB

. (99)

The compatibility conditions for states with KII ≥ 2 excitations are going to be just

those of the bulk, because the boundary is a singlet and therefore level II excitations can

not be allocated there.

When moving to the next level of nesting one has got, of course, the same components

SII, III and SIII, III for the diagonalized bulk scattering matrix. For the reflection of a level III

impurity we find again RIII(w) = −1

To finish this section let us write down the resulting Bethe equations after the introduction

of two boundaries. The first thing to note is that the RII(y; xB) is the same (up to a sign)

as in the case with the fundamental excitations in the boundary. One should also note that

level II excitations of the right psu(2|2) move in a chain (of level I excitations) two sites

longer than the level II excitations of the left psu(2|2). This so because the boundary degree

of freedom have dotted (right) psu(2|2) indices only. Nonetheless, this has no relevance for

the Bethe equation because level II excitations do not pick up any phase when moved around

the chain.

Therefore the Bethe equations are in this case also of the form

1 = R0(x
±
k )

4
(
x+
k

x−

k

)2(J−1) K
I∏

ℓ 6=k

S0(x
±
k , x

±
ℓ )

2S0(x
±
k ,−x∓ℓ )

2
2∏

α=1

KII
(α)∏

ℓ=1

√
x+
k

x−

k

y
(α)
ℓ − x−k

y
(α)
ℓ − x+k

√
x+
k

x−

k

y
(α)
ℓ + x−k

y
(α)
ℓ + x+k

(100)
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y
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y
(α)
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y
(α)
k − x−ℓ

√
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(α)
k + x−ℓ
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(α)
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KIII
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w
(α)
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2g

w
(α)
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2g
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(101)

1 =
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(α)
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2g
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(α)
k − v

(α)
ℓ − i

2g

w
(α)
k + v

(α)
ℓ − i

2g

w
(α)
k + v

(α)
ℓ + i

2g

KIII
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w
(α)
k − w

(α)
ℓ − i

g
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(α)
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ℓ + i

g

w
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k + w

(α)
ℓ − i

g

w
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k + w
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ℓ + i

g

. (102)

where now R0 must be the corresponding D7-brane dressing phase5.

5One should be able to obtain it imposing crossing symmetry as in the giant graviton cases [16, 17].
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4 Discussion

In this paper we have used a nested coordinate Bethe ansatz to obtain the Bethe equations for

excitations on free strings on AdS5×S5 with certain open-boundary conditions. In particular

we considered strings whose large angular momentum is in the same plane as the angular

momentum of the maximal D3-brane (giant graviton) to which it is attached. In section 3

we derived the Bethe equations for the closely-related case of an open string ending on a

D7-brane. As usual, these equations are asymptotic in the sense that they characterize the

spectrum of strings in the limit of very large angular momentum J . An obviously interesting

step forward would be the formulation of a Boundary Thermodynamic Bethe Ansatz for

these cases, which should encode the spectrum of strings with finite angular momentum.

Studying finite size effects for planar AdS/CFT with open boundaries has some appeal-

ing features in comparison with the case of periodic boundary conditions. In the first place,

at weak coupling, the analogues of wrapping effects can show up as early as at 1-loop or-

der. Therefore, explicit verifications of finite size corrections to the asymptotic Bethe ansatz

spectrum can be made without daunting higher-loop computations. Secondly, for short op-

erators one can swap the roles between background fields and impurities, thus obtaining

inequivalent Bethe ansatz descriptions. Interestingly, their failures due to finite size correc-

tions occur at different orders, and this interplay between alternative points of view allows

one to test certain finite size corrections without an explicit perturbative gauge field theory

computation. In other words, some aspects of finite size effects should be easier to derive

in cases with open boundaries and, for instance, explicit checks beyond the leading Lüscher

approximation should be possible.
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Appendix: 1-loop Bethe equations

The 1-loop Hamiltonian in the su(2) sector (for states with chiral fields Y and Z only) is:

Hsu(2) = 2g2
L−1∑

l=1

(1− Pl,l+1) + 2g2qZ1 + 2g2qZL , (103)
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where qZl is 1 or 0 whether the lth site is occupied by a Z or not. These L sites do not include

the boundary sites. So, there are a 0th and a (L+ 1)st site, both occupied by a Y .

Let us consider a single bulk Y impurity in a background of Z fields

|ψ〉 =
L∑

n=1

(eipn +R
su(2)
L (p)e−ipn)|n〉, |n〉 ≡ |YL;Zn−1Y ZL−n; YR〉. (104)

This superposition of left-moving and right-moving spinons is an eigenstate with eigenvalue

8g2 sin2(p
2
) + 4g2, provided the following two conditions are met

R
su(2)
L (p) = − 1− 2eip

1− 2e−ip
, e2ip(L+1) = (R

su(2)
L (p))2. (105)

Let us consider now states in the sl(2) sector

|a0, a1, · · · , aL+1〉 ≡ ǫi1,··· ,iNj1,··· ,jN
Zj1

i1
· · ·ZjN−1

iN−1
(Da1ZDa2Z · · ·DaLZ)jNiN . (106)

In the boundary sites, a0 and aL+1 must be different from zero. The 1-loop Hamiltonian is

that of [45] setting what is defined there as α to zero (for maximal giant graviton boundaries).

The Hamiltonian is conveniently split into bulk and boundary terms

Hsl(2) = 2g2H0 + 2g2
L∑

l=0

Hl,l+1 + 2g2HL+1, (107)

with

Hl,l+1|al, al+1〉 =

al∑

k=1

1

k
(|al, al+1〉 − |al − k, al+1 + k〉) +

al+1∑

k=1

1

k
(|al, al+1〉 − |al + k, al+1 − k〉)

H0|a0, . . . 〉 =

a0−1∑

k=1

1

k
|a0, . . . 〉, HL+1| . . . , aL+1〉 =

aL+1−1∑

k=1

1

k
| . . . , aL+1〉.

Note that whenever |0, a1, · · · , 〉 or | · · · , aL, 0〉 is retrieved, those states must be taken as

identically zero. We now consider a single D bulk impurity

|ψ〉 =
L+1∑

n=0

(eipn +R
sl(2)
L (p)e−ipn)|n〉, (108)

with n in |n〉 indicating the position of the bulk impurity. For example |0〉 = |2, 0, · · · , 0, 1〉,
|1〉 = |1, 1, · · · , 0, 1〉, · · · , |L+ 1〉 = |1, 0, · · · , 0, 2〉. For |ψ〉 to be eigenstate with eigenvalue

8g2 sin2(p
2
) + 4g2, the following two conditions are required

R
sl(2)
L (p) = −1− 2e−ip

1− 2eip
, e2ip(L+1) = (R

sl(2)
L (p))2. (109)
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BothR
su(2)
L and R

sl(2)
L are consistent with the weak coupling limits of the all-loop reflection

factors obtained by Hofman and Maldacena [13]

R
su(2)
L = R2

0LA
2
L ∼ − 1− 2eip

1− 2e−ip
+O(g2), (110)

R
sl(2)
L = R2

0L ∼ −1− 2e−ip

1− 2eip
+O(g2). (111)

Defining, K0 = L+ 2 the total number of sites in the open chain, the Bethe equations read

for a single bulk particle in the su(2) sector:
(

x+

x−

)2(K0−1)

= R4
0LA

4
L, (112)

for a single bulk particle in the sl(2) sector:
(

x+

x−

)2(K0−1)

= R4
0L. (113)
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