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Abstract 

Prostacyclin is an anti-thrombotic hormone produced by the endothelium, whose 

production is dependent on cyclo-oxygenase (COX) enzymes of which two isoforms 

exist. It is widely believed that COX-2 drives prostacyclin production and that this 

explains the cardiovascular toxicity associated with COX-2 inhibition, yet the 

evidence for this relies on indirect evidence from urinary metabolites. Here we have 

used a range of experimental approaches to explore which isoform drives the 

production of prostacyclin in vitro and in vivo. Our data shows unequivocally that 

under physiological conditions it is COX-1 and not COX-2 that drives prostacyclin 

production in the cardiovascular system, and that urinary metabolites do not reflect 

prostacyclin production in the systemic circulation. With the idea that COX-2 in 

endothelium drives prostacyclin production in healthy individuals removed, we must 

seek new answers to why COX-2 inhibitors increase the risk of cardiovascular events 

in order to move forward with drug discovery and to enable more informed 

prescribing advice. 

  



Introduction 

Prostacyclin is an anti-thrombotic hormone produced by the vascular wall, inhibition 

of which has been associated with an increased risk of heart attacks and strokes (1-3). 

The production of prostacyclin is dependent upon cyclo-oxygenase (COX) enzymes, 

which convert arachidonic acid into prostaglandin H2, the precursor of all prostanoids.  

Twenty years ago it was established that COX exists in two isoforms, COX-1 and 

COX-2 (4-6). Originally it was thought that COX-2 was largely responsible for the 

pathological production of prostanoids, for instance in inflammatory conditions, but 

now it is understood that COX-2 may fulfill physiological as well as pathological 

roles (7, 8). With regard to the cardiovascular system, there has been strong debate as 

to which isoform supports the vascular production of prostacyclin and it is currently 

widely believed that COX-2 and not COX-1 is expressed within endothelial cells (1, 

2, 9, 10). Inhibition of COX isoforms explains both the therapeutic and deleterious 

effects of traditional non-steroid anti-inflammatory drugs (NSAIDs; e.g. ibuprofen, 

diclofenac) as well as COX-2-selective drugs (e.g. celecoxib, rofecoxib). As it is 

commonly believed that COX-2 in endothelial cells is responsible for prostacyclin 

release, it is also thought that inhibition of endothelial COX-2 explains the increased 

incidence of atherothrombotic events associated with the use of traditional NSAIDs 

and COX-2-selective drugs (11, 12).  

 

The idea that COX-2 drives vascular prostacyclin production is rooted 

particularly in studies showing that the urinary prostacyclin marker, 2,3-dinor-6-keto-

PGF1α (PGI-M) is reduced by COX-2 selective inhibitors (13, 14). Evidence from 

other experimental approaches, especially immunohistochemistry, has in many 

regards failed to support this conclusion (15-19); the most recent study of vascular 



targeted COX-2 gene deletion, for instance, reporting COX protein expression in cells 

in culture but not within the intact vasculature (10). Here we have used a range of 

experimental approaches including human cells, genetically modified laboratory 

animals where the COX-1 or COX-2 gene has been deleted, and measures of 

prostacyclin release in vitro and in vivo to explore which isoform drives the 

production of prostacyclin. Our data shows that under physiological conditions it is 

COX-1 and not COX-2 that drives prostacyclin production in the cardiovascular 

system, and that urinary measures of prostacyclin do not reflect endogenous 

prostacyclin levels in the systemic circulation.  The belief that COX-2 drives 

prostacyclin has had a major impact on the impetus to develop new therapeutic 

avenues and/or new drugs in the COX-2 inhibitor class. Thus, it is essential that we 

fully understand the role of COX-2 in the cardiovascular system in order to move 

forward with drug discovery and to enable more informed prescribing advice. 

 

Results and discussion 

COX expression and activity by cells in vitro and arteries ex vivo 

We have previously shown that COX-1, and not COX-2 is expressed in human aortic 

endothelial cells grown in culture under static conditions (15)
,
(20). Endothelial cells 

grown under static conditions often quickly lose phenotypic markers. In particular, it 

has been suggested that COX-2 expression is lost rapidly in endothelial cells in static 

culture but that this can be rescued by applying shear stress (21-24). This conclusion 

regarding the regulation of expression of COX-2 by shear, however, is based upon 

studies employing short periods of shear stress, which may be perceived by cells as an 

inflammatory insult that resolves with time. Previous work from our group has shown 

that chronic exposure to shear stress (up to 7 days) is not associated with increases in 



COX-2 expression in porcine aortic endothelial cells (25). Here we confirm our 

earlier observations, showing that COX-1, but not COX-2, immunoreactivity was 

abundant in human aortic endothelial cells cultured under static conditions (Figure 

1a). Furthermore, growing cells under shear stress conditions for 7 days did not 

increase COX-2 immunoreactivity. COX-2 expression (fluorescence intensity) could 

however, be increased by the addition of lipopolysaccharide (LPS) (control; 1.2±0.4: 

plus 0.1μg/ml LPS; 6.0±1.8; n=6).  This result is in accordance with previous 

observations which taken together indicate that whilst acute periods of shear stress 

induce COX-2 expression, this is a transient response of the cells and does not result 

in sustained COX-2 expression (20, 23, 24, 26, 27). Studies with isolated endothelial 

cells can only tell us so much about the situation in blood vessels where cells are 

exposed to complex patterns of shear stress for the entire life span of the animal. In 

order to address the role of COX-2 in whole blood vessels more directly, we imaged 

COX immunoreactivity in the endothelium of the mouse aortic arch. As an 

experimental model this offers both well-characterized endothelial phenotypes and a 

vessel architecture that maps to defined complex shear patterns (28-30). As we found 

in human endothelial cells, endothelium of the mouse aortic arch exhibited abundant 

COX-1 immunoreactivity with sparse levels of COX-2 (Figure 1b). In line with what 

we found for isoform expression, prostacyclin release, measured as 6-ketoPGF1α, 

from aortic arches stimulated with calcium ionophore (Figure 1c) was found to be 

COX-1 and not COX-2 dependent. Similar results were obtained in parallel studies 

using thoracic aorta stimulated with calcium ionophore (Figure 1d) or un-stimulated 

conditions (Figure 1e) and, in both cases, release could be abolished (reduced <95%) 

by the non-selective COX-1/COX-2 inhibitor, diclofenac (Supplementary Figure 1). 

Similar results were recently published by Lui and colleagues (31). These 



experiments clearly demonstrate that in the aorta COX-1 and not COX-2 mediates 

prostacyclin release. The finding that COX-1 immunoreactivity is expressed in blood 

vessels is not new, others have shown this in a variety of tissues and using a variety of 

imaging techniques (see (15-19)). It has been suggested, however, that COX-2 is a 

very unstable protein, which could be rapidly lost in post mortem processing of 

tissues explaining its absence in immunohistochemical studies (1). Indeed, here we 

report that human COX-2 protein induced by IL-1β in the human lung epithelial cell 

line, A549(32), was relatively unstable with a half-life of 2-4 hours (Supplementary 

Figure 1). In our studies, aortic arch tissue was fixed as rapidly as possible (<5 min 

post mortem) and prostacyclin release assays performed ≤10 min post mortem, well 

within the half-life for COX-2 protein (Supplementary Figure 2). In order to test 

directly the stability of COX-2 in vascular tissue we removed aorta from wild-type, 

COX-1
-/-

 and COX-2
-/-

 mice and followed the time course of COX expression and 

prostacyclin release. As before, we saw very little COX-2 expression in the 

endothelium of the aorta up until 2 hours post mortem (Figure 2a-c). Consequently, up 

to this time point, prostacyclin release was dependent upon COX-1, and not COX-2 

(Figure 2d). Paradoxically, however, we found that at time points after 2 hours, COX-

2 immunoreactivity was clearly detected in the endothelium of aorta from wild-type 

mice. In line with this, COX-2 activity took over from COX-1 as the main isoform 

driving prostacyclin release in tissue maintained in culture from 4 hours up until 7 

days (Figure 2d,e). Clearly, COX-2 is not present in healthy tissues, but can be 

rapidly induced post mortem.  

 

 

 



Microvascular COX expression and activity ex vivo 

The majority of the endothelium in the body is within organs in which different local 

stimuli will be present than in the aorta. In order to address this we investigated the 

expression of COX in lungs and hearts and found they contained abundant levels of 

COX-1 with minimal levels of COX-2 protein (Figure 3a). Importantly, as in isolated 

vessels, the release of prostacyclin by segments (Figure 3b-c) or homogenates (Table 

1) of lung or heart was completely dependent on COX-1. We also found that 

prostacyclin release from the endocardium, sampled from medium incubated within 

the chamber of the left ventricle, was dependent on COX-1 and not COX-2 (Figure 

3d). In a separate study where paired tissue samples from various organs were rapidly 

removed post mortem (<10 minutes) and incubated in parallel, we found that COX 

activity in lung, heart, kidney, liver, spleen and blood was, in each case, dependent 

upon COX-1 and not COX-2 (Figure 4).  

 

In vivo endothelial cell COX activity 

The experiments above clearly show that for all the in vitro assays of COX activity 

we conducted, COX-1 regulates prostacyclin production. In vitro studies may not 

however reflect what is happening in vivo. The notion that COX-2 regulates 

prostacyclin production in the circulation comes from measurement of the urinary 

prostacyclin marker, PGI-M, in the urine of human volunteers (13, 14) and laboratory 

animals (33). In the current study we performed similar experiments using wild-type 

and COX-2
-/-

 mice.  Mice were dosed daily with either the non-selective COX-

1/COX-2 inhibitor naproxen (30mg/kg/day), or rofecoxib (50mg/kg/day), which is a 

selective COX-2 inhibitor. Ex vivo validation studies, measuring circulating drug 

activity in the plasma of mice confirmed that naproxen inhibited both COX-1 and 



COX-2, whilst rofecoxib selectively inhibited COX-2 (Figure 5a,b). Urine was 

collected from these animals, PGI-M measured by mass spectrometry (34) and data 

analyzed as described previously (33). In line with what others have found in COX-2 

deficient mice, we found that levels of PGI-M were reduced compared to those found 

in urine of wild-type mice (Figure 5c). Moreover, in addition to naproxen, the COX-2 

inhibitor, rofecoxib, inhibited urinary PGI-M in wild-type, but not in COX-2
-/-

 mice 

(Figure 5c).  These observations are in accordance with those of others in the field 

and clearly point to urinary PGI-M being driven by a COX-2-dependent pathway, yet 

these findings are at direct odds to what we find in vessels and organs of mice ex vivo. 

We reasoned that perhaps urinary markers of prostacyclin are not reflective of levels 

in the circulation. Most recently others have found the same to be true for urinary 

markers of thromboxane (TX-M) (35). In order to consolidate our observations and 

those of others in the literature, we performed experiments in which prostacyclin 

levels in the circulation were measured as its direct breakdown product in plasma, 6-

ketoPGF1α. Circulating levels of prostacyclin are low, but can be increased by 

intravenous administration of bradykinin (36), which selectively activates endothelial 

cells but not platelets. Basal plasma levels of 6-ketoPGF1α were relatively low, but 

detectable (Figure 6). Bradykinin (100nmol/kg, i.v.) increased plasma levels of 6-

keto-PGF1α approximately 5-fold (Figure 6a). Both basal and bradykinin stimulated 6-

keto-PGF1α levels were greatly depressed in COX-1
-/-

 mice, but unaffected in COX-2
-

/- 
mice (Figure 6a), showing that endothelial derived prostacyclin in vivo, as in vitro, is 

driven by the activity of COX-1 and not COX-2. Furthermore, these results indicate 

that urinary PGI-M is not a good correlate of circulating levels of prostacyclin 

metabolite, 6-keto-PGF1α. In line with this, we found that the COX-2 inhibitor, 

paracoxib, at concentrations that spared the platelet (Figure 6b) but inhibited COX-2 



activity >85% ex vivo (Figure 6c) had no effect on basal (Figure 6d) or bradykinin-

stimulated (Figure 6e) prostacyclin release in the circulation. This data further 

corroborates the idea that prostacyclin in the circulation is driven by COX-1 and that 

urinary markers of prostacyclin are not reflective of the situation in the circulation. 

 

In healthy human endothelium and in healthy laboratory animals, therefore, COX-1, 

and not COX-2, drives prostacyclin, and urinary PGI-M levels are not reflective of the 

prostacyclin in the circulation. With the idea that COX-2 in endothelium drives 

prostacyclin production in healthy individuals removed, we must seek new answers to 

why COX-2 inhibitors increase the risk of cardiovascular events. Our group has 

previously published data showing that COX-2 inhibitors can have an acetaminophen-

like effect, inhibiting COX-1 in low lipid peroxide environments, and this may now 

warrant further research (15). Furthermore, COX-2 in the kidney has well defined 

effects on blood pressure, and so the role of COX-2 and NSAID pharmacology in 

renal function may need to be re-visited and associations between COX-2 and blood 

pressure regulation more deeply investigated (7, 10). COX-2 inhibition may also 

regulate cardiovascular health indirectly by functions in nerves or in the gut (8), or by 

affecting the progression of inflammatory disease within the circulation (9). These 

and other possibilities now need to be properly investigated in order for us to fully 

understand the effects of NSAIDs upon cardiovascular health. The prevailing dogma 

that COX-2 in the endothelium supports vascular prostacyclin production is simply 

not supported by evidence from immunohistochemical, pharmacological, or 

physiological investigations. 

 

  



Materials and Methods 

Mice 

COX1
-/-

 (37) and COX-2
-/-

 (38) mice, were back-crossed for >7 generations onto a 

C57Bl/6 background (Harlan, UK).  Wild-type mice were generated by inter-crossing 

C57Bl/6 back-crossed COX-1
+/-

 and COX-2
+/-

 mice. All mice used in the study were 

genotyped (40) to establish COX-1 and COX-2 status before use. Unless otherwise 

stated, experiments were performed on male and female 10-12 week old mice. All 

animal procedures were conducted in accordance with Animals (Scientific 

Procedures) Act 1986 and after local ethical review. 

 

Cell culture 

Human aortic endothelial cells were purchased from Lonza and cultured according to 

manufacturers instructions using recommended media (EGM-2 containing 

hydrocortisone). As hydrocortisone can inhibit the induction of COX-2, 3 days prior 

to shear experiments cells were switched to hydrocortisone-free EGM-2. Cells were 

seeded onto Transwell filters coated with fibronectin (50μg/ml; Sigma) and allowed 

to equilibrate for 24 hours before further experimentation. To assess the effect of 

shear stress, a PS-300 orbital shaker (Grant Instruments) was used as previously 

described (25). In some cultures, lipopolysaccharide (LPS; 0.1μg/ml; from 

Escherichia coli serotype 0111:B4, Sigma) was added to the media as a positive 

control. Cells were incubated under either static conditions (no shear) or shear stress 

for 7 days, with media replaced every 2 days. At the end of the experiment, media 

was removed and cells were fixed in 2% formalin (Sigma) as described previously 

(25). 

 



Immunohistochemistry and confocal imaging 

Mice euthanised with CO2 were immediately perfused across the heart with PBS 

(20ml) followed by 2% formalin (20ml) and the aortic arch was carefully removed. 

The aortic tissue was then blocked (20% normal goat serum, Vector labs) and 

permeabilized (0.1% Triton X-100, Sigma), treated with rabbit anti-mouse COX-1 

(1:50; Cayman Chemical) or rabbit anti-mouse COX-2 (1:50; Cayman Chemical) 

primary antibodies, followed by Alexa594-conjugated goat anti-rabbit IgG secondary 

antibodies (Invitrogen). Tissues were counterstained with Alexa488-conjugated rat 

anti-mouse CD31 (1:100; Biolegend) and DAPI (25ug/ml; Invitrogen). After staining, 

aortic rings were cut open to reveal the luminal surface, mounted flat between a glass 

slide and coverslip with aqueous hard-set media (Vector Labs) and pressed until the 

media had firmly set. Formalin-fixed transwell filters on which human aortic 

endothelial cells were grown were stained as aortic arches except that cells were 

blocked in 1% BSA, permeabilized in 0.2% Triton X-100, and rabbit anti-human 

COX-1 (1:250; Cayman Chemical), rabbit anti-human COX-2 (1:250; Cayman 

Chemical). Stained filters were mounted under on glass slides under coverslips with 

aquous media (Vector Labs) as we previously described (25).  

 

The luminal surface of aortic rings, and the human aortic endothelial cells-coated 

surface of the transwell filters were visualized with a Leica SP5 inverted confocal 

microscope using a 40X objective oil immersion lens. Laser and gain settings were 

fixed at the beginning of each imaging protocol. In aortic arch preparations, areas 

corresponding to the lesser and greater curvature were determined by tissue 

orientation and confirmed by the cell morphology in the CD31
+
 endothelial cell layer 

as described previously (28, 29).  For both aortic arches and human aortic endothelial 



cells coated transwell filters, non-specific binding was excluded by subtracting the 

fluorescence of tissue/cells in which the primary antibody was omitted from the 

staining protocol. The COX-1 and COX-2 immunoreactivity was quantified as mean 

fluorescence intensity using Fluorescence Lite software (Leica Microsystems) (25). 

The specificity of the antibodies used was confirmed by the ability of specific 

blocking peptides to quench immunoreactivity (Supplementary Figure 3). 

 

In vitro COX activity bioassays 

Aortic tissue, blood and various organs from animals perfused with PBS, were 

carefully dissected into small pieces (~2mm rings for aortic tissue, ~25mm
3
 for solid 

organs) and placed into individual wells of 48 or 96 well microtitre plates containing 

DMEM (200mM L-Glutamine; Sigma). For studies where tissue were incubated ex 

vivo for up to 7 days, DMEM was additionally supplemented with FCS (10%; Sigma), 

penicillin (100 U/mL; Sigma), streptomycin (100 µg/mL; Sigma), 2.5 µg/mL 

amphotericin B (2.5 µg/mL; Sigma) and non-essential amino acid solution (Sigma). 

In some studies tissues were treated with non-selective COX inhibitor diclofenac 

(100μM; Sigma) and/or the calcium ionophore, A23187 (50μM; Sigma). These 

details, as well as the period of incubation of tissues ex vivo are defined in individual 

figure legends. In some studies, after bioassay, aortic rings were fixed for 10 minutes 

in 2% formalin and COX-1 and COX-2 immunoreactivity evaluated as above. 

 

In separate studies organs were removed and homogenized in order to assay COX 

activity in cell press preparations. Prostacyclin was measured in conditioned media or 

homogenate supernatants, by selective enzyme immunoassay for 6-keto-PGF1α (a 

stable breakdown product of prostacyclin; Cayman Chemical). For blood COX 



activity, thromboxane release was measured using a selective ELISA for the 

breakdown product thromboxane B2 (Cayman chemical, USA).  

 

Western blotting 

Snap-frozen tissues were homogenised in PBS containing EDTA (10mM), Triton-X 

100 (1%), polymethylsulfonyl fluoride (1mM) and Roche protease inhibitor cocktail 

(1X) using a Precellys 24 homogeniser. Protein concentration in homogenates was 

determined by Bradford assay and samples separated by SDS-PAGE (20ug/ml total 

protein/lane). Protein was transferred onto nitrocellulose membranes, which were then 

probed with anti-COX-1 (1:1000; Cayman Chemical), anti-COX-2 (1:1000; Cayman 

Chemical), anti-beta-actin (1:10000; Dako) or anti-GAPDH primary antibodies 

(1:2000; Abcam). Immunoreactivity was visualised using corresponding HRP-

conjugated secondary antibodies (Dako) and electrochemiluminescent detection (GE 

Amersham). 

 

Urinary prostacyclin metabolite excretion 

Mice were treated for 7 days with rofecoxib (50mg/kg; Merck), naproxen (30mg/kg; 

Sigma) or vehicle (1% DMSO; VWR) by once-daily oral gavage in a randomised 

triple crossover fashion with 14 days wash out between treatments. For the final 2 

days of each treatment, mice were housed in metabolic cages for the collection of 

urine, and the urinary levels of PGI-M (2,3-dinor-6-keto-PGF1α) determined by gas 

chromatography-tandem mass spectrometry as previously described (34). To confirm 

the effectiveness and selectivity of treatments, 2 or 24 hours after the final dose of 

NSAID was administered, blood was collected for measurement of COX-1 and COX-

2 inhibitory activity as we have previously described (39). COX-1 inhibition was 



determined by stimulating whole blood with A23187 (50uM, 30 mins) and 

measurement of platelet TxB2 formation by enzyme immunoassay (Cayman 

Chemical). COX-2 inhibitory activity was determined by applying plasma to J774 

murine macrophages in which COX-2 had been induced with LPS (from Escherichia 

coli serotype 0111:B4; 10ug/ml; Sigma)-induced, before stimulation with A23187 

(50uM, 30 mins) and measurement of PGE2 formation by enzyme immunoassay 

(Cisbio).  

 

Circulating prostacyclin measurement in vivo 

Under isoflurane anesthesia, the right jugular vein and left carotid artery of wild-type, 

COX-1
-/-

 and COX-2
-/-

 mice were cannulated. Where required, the selective COX-2 

inhibitor, paracoxib (0.5mg/kg; Pfizer, UK), the non-selective COX-1/COX-2 

inhibitor diclofenac (1mg/kg; Novartis, UK) or vehicle were administered via the 

venous cannula. After a 30 min stabilisation period, 0.2ml arterial blood was 

withdrawn and 0.2ml warm saline infused into the venous canula. After a further 5 

minutes of stabilisation, bradykinin (100nmol/kg; Tocris Bioscience) was 

administered intravenously and 0.5ml arterial blood collected 5 mins later before the 

animal was euthanised. Plasma was separated from heparinized (10U/ml) blood and 

the levels of the prostacyclin breakdown product 6-keto-PGF1α measured in pre- and 

post-bradykinin plasma samples by enzyme immunoassay (Cayman Chemical). In 

parallel studies, 30 mins after treatment with paracoxib, diclofenac or vehicle, blood 

was collected for measurement of COX-1 and COX-2 inhibitory activity ex vivo as 

described above. 
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Figure 1 Expression and activity of COX-1 and COX-2 in endothelium and 

vessels. (a) Abundant COX-1 but sparse COX-2 immunoreactivity was detected in 

human aortic endothelial cells cultured under static conditions or after 7 days of shear. 

Data is representative of 6 wells using cells from 3 separate donors. (b) Abundant 

COX-1, but sparse COX-2 immunoreactivity (red) were detected in the endothelium 

of the mouse aortic arch. (a-b) Images are from aortic arches from 12 week old male 

mice and are representative of data from at least n=6 each of young (10-12 weeks) 

and aged (50-60 weeks), male and female mice. COX activity was stimulated in aortic 

arches (c) or thoracic aorta (d) by placing tissue immediately (<10 minutes after 

death) into media containing the calcium ionophore, A23187 (50μM) and incubation 

for 30 minutes or (e) placing rings of thoracic aorta into DMEM alone, and after a 1hr 

equilibration period, replacing media and incubating for 30 mins. Prostacyclin release 

was measured as the breakdown product 6-keto PGF1α by enzyme immunoassay. Data 

is the mean ± S.E.M for tissue from n=4 (d-f) mice aged 10-12 weeks. Data was 

analyzed using one-way ANOVA followed by Bonferroni’s multiple comparison test; 

*p<0.05 vs. wild-type.  

 

Figure 2 Effect of time post mortem on COX-1 and COX-2 expression and 

activity in mouse aorta. Representative images of COX-2 (a; red) and COX-1 (b; 

red) immunoreactivity in the endothelium of aorta from a wild-type mouse incubated 

ex vivo for between 0.5 and 12 hours post-mortem. Pooled mean fluorescence values 

for (b) COX-2 and (c) COX-1 immunoreactivity from n=4 separate animals, 10-12 

week old male and female wild-type mice.  (d) COX activity (as 6-keto PGF1α) 

measured in the same aortas over this time course, and (e) COX activity measured 7 

days from n=5 separate animals. 



 

Figure 3 COX-1 and COX-2 protein expression and activity in mouse lung and 

heart. Western blot analysis (a) showed abundant COX-1 with little COX-2 in lungs 

or hearts wild-type mice. Mouse platelets, which contain only COX-1 and murine 

J774 macrophages treated with LPS to induce COX-2 were used as controls. COX 

activity, measured as 6-ketoPGF1α release from intact pieces of (b) lung or (c) heart  

was measured after 90 minutes equilibration followed by 30 minutes treatment with 

A23187 (50μM). COX activity within the chamber of the left ventricle (interior) was 

measured by cannulating the left ventricle of isolated hearts and after equilibration 

(90 mins) filling with A23187 (50μM) and incubating 30 minutes before collection of 

the contents. Data is the mean ± S.E.M. for n=6 male and female, 10-12 week old 

mice. Data is analyzed using one-way ANOVA followed by Bonferroni’s multiple 

comparison test; *p<0.05 vs. wild-type. 

 

Figure 4 COX activity in a range of mouse organs measured immediately after 

death. Aorta (a), heart (b), kidney (c) liver (d), blood (e) and spleen (f) were taken 

from mice and immediately placed into DMEM and stimulated with A23187 (50μM). 

After 30 minutes, conditioned media was collected and COX activity was measured 

by the formation of 6-ketoPGF1α. Data is the mean ± S.E.M. for n=4 mice. Data is 

analyzed using one-way ANOVA followed by Bonferroni’s multiple comparison test; 

*p<0.05 vs. wild-type. 

 

Figure 5 Effect of naproxen and rofecoxib in vivo on urinary prostacyclin 

metabolite (PGI-M). Mice were dosed by oral gavage daily with naproxen 

(30mg/kg), rofecoxib (50 mg/kg) or vehicle and COX inhibitory activity of their 



blood measured ex vivo (a) in A23187-stimulated whole blood for COX-1 or (b) on 

LPS-induced murine J774 macrophages for COX-2 (n=4). (c) PGI-M levels in urine 

collected from n=4 metabolic cages, each containing 3-4 mice were analyzed 

normalized to vehicle control as described previously for studies of this type (33). 

Data is the mean ± S.E.M. Data in (a) and (b) was analyzed using one-way ANOVA 

followed by Bonferroni’s multiple comparison test; *p<0.05 vs. wild-type vehicle. 

 

Figure 6 Role of COX-1 versus COX-2 in driving prostacyclin production in the 

circulation in vivo. (a) Prostacyclin release in vivo was measured as 6-ketoPGF1α 

levels in plasma under control (basal) conditions and after administration of 

bradykinin (100nmol/kg; i.v.) in wild-type, COX-1
-/-

 and COX-2
-/-

 mice (n=6). The 

COX inhibitory activity of blood from mice treated with intravenous paracoxib 

(0.5mg/kg), diclofenac (1mg/kg) or vehicle was measured ex vivo (b) in A23187-

stimulated whole blood for COX-1 or (c) on LPS-induced murine J774 macrophages 

for COX-2 (n=4). The effect of these drugs on prostacyclin release in vivo was 

measured as 6-ketoPGF1α levels in plasma under (d) control (basal) conditions and (e) 

after administration of bradykinin (100nmol/kg; i.v.) Data is mean ± S.E.M. for n=6 

male and female, 10-12 week old mice per genotype. Data was analyzed using one-

way ANOVA followed by Bonferroni’s multiple comparison test; *p<0.05 vs. wild-

type. 

  



Tables 

 

6-keto-PGF1a (ng/ml)  Wild-type COX-1
-/-

 COX-2
-/-

 

Heart  27.2 ± 8.6 4.1 ± 1.5 * 29.8 ± 10.9 

Lung  661.8 ± 59.7 7.6 ± 2.5 * 894.9 ± 72.4 

Kidney  80 ± 13.4 5.5 ± 1.7 * 77.1 ± 15.2 

Brain  31.1 ± 2.1 6.2 ± 1.1 * 23.9 ± 2.7 

 

 

Table 1 Prostacyclin associated COX activity in tissue homogenates of heart, 

lung, kidney and brain. Organs were snap-frozen immediately post-mortem, then 

homogenized in 50mM Tris buffer. Homogenates were incubated for 20 minutes at 

37°C before addition of diclofenac (1 mM) to halt residual COX activity. 

Homogenates were centrifuged and 6-ketoPGF1α measured in the supernatant by 

enzyme immunoassay. Data is mean± S.E.M. from n=4 animals. Data was analyzed 

by one-way ANOVA followed by Bonferroni’s multiple comparison test; *p<0.05 vs. 

wild-type. 


