



Abstract—In this paper the novel generic cognitive robot

control architecture CORBYS is presented. The objective of the

CORBYS architecture is the integration of high-level cognitive

modules to support robot functioning in dynamic environments

including interacting with humans. This paper presents the

preliminary integration of the CORBYS architecture to sup-

port a robotic follower. Experimental results on high-level

empowerment-based trajectory planning have demonstrated

the effectiveness of ROS-based communication between dis-

tributed modules developed in a multi-site research environ-

ment as typical for distributed collaborative projects such as

CORBYS.

I. INTRODUCTION

NCREASING demands for robots whose purpose is to work

effectively with humans have raised the need for devel-

opment of robot control architectures that enable integration

of advanced robot functionalities. The objective of the Inte-

grated Project CORBYS funded by the European Commis-

sion under the 7th Framework Program [1] is to design and

implement a robot control architecture that allows the inte-

gration of high-level cognitive control modules, a semanti-

cally-driven self-awareness module and a cognitive frame-

work for anticipation of, and synergy with, human behaviour

based on biologically-inspired information-theoretic princi-

ples. CORBYS will provide a generic control architecture to

benefit a wide range of applications where robots work in

synergy with humans, ranging from mobile robots such as

robotic followers to gait rehabilitation robots.

In this paper, a preliminary realisation of the CORBYS

control architecture for a robot following a human co-worker

is presented. The presented preliminary realisation does not

include complete high-level cognitive modules which will be

integrated in the CORBYS architecture within future devel-

opments, but includes novel high-level empowerment-based

trajectory planning providing inputs for low-level robot con-

trol. The integrated cognitive module uses empowerment

[7], a generic, task-independent, information-theoretic

This research was supported by the European Commission as part of the

CORBYS (Cognitive Control Framework for Robotic Systems) project
under contract FP7 ICT-270219.

A. Leu, D. Ristić-Durrant and S. Slavnić are with the Institute of Auto-

mation, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germa-
ny (e-mail:{aleu,ristic,sslavnic}@ iat.uni-bremen.de).

C. Glackin, C. Salge and D. Polani are with the Adaptive Systems Re-

search Group, University of Hertfordshire, United Kingdom (e-mail:
{c.glackin2,c.salge,d.polani}@herts.ac.uk).

A. Badii, A. Khan, and R. Raval are with Intelligent Systems Research

Laboratory, School of Systems Engineering, University of Reading RG6
6AY United Kingdom (e-mail:{atta.badii,a.a.khan,r.raval}@reading.ac.uk).

measure, to provide an intrinsic motivation to the agent,

enabling the robotic follower to modify its task-based trajec-

tory (following the human) with the additional intrinsic mo-

tivation of maintaining the robot’s mobility and ability to

influence the world, i.e., an incentive to not get stuck. The

focus of the presented preliminary realisation of the

CORBYS architecture is also on robot safety functionality

through the implementation of a functionality supervisor

module as well as a reflexive module. However, the main

goal of this paper is to describe the different layers of the

robot control architecture and communication across the

various layers.

The rest of the paper is organised as follows. Section 2

presents related work on cognitive robot control architec-

tures. The innovative CORBYS architecture is presented in

Section 3. The ROS-based communication in the CORBYS

architecture is presented in Section 4. The robotic follower is

presented in Section 5 which also includes experimental

results on cognitive empowerment-based trajectory plan-

ning.

II. ARCHITECTURES FOR COGNITIVE CONTROL

OF ROBOTIC SYSTEMS

Robots capable of working in dynamic environments

alongside humans need to meet new levels of cognitive ca-

pabilities such as reasoning, decision making, adaptation,

goal setting, problem solving and learning in complex envi-

ronments and in real-time. A growing number of robotics

researchers have realised that cognitive robotic architectures

are a natural way to achieve this goal of designing a robot

with such general capabilities [2]. Recent research has been

mainly dedicated to the use of hybrid architectures which

could overcome the problems of both purely deliberative so-

called Sense-Plan-Act (SPA) architectures and purely reac-

tive architectures. SPA architectures failed to perform well

because the level of cognitive tasks attempted was too com-

plex to cope with in a real-world environment while purely

reactive architectures had the drawback that while immedi-

ate reactive actions could be performed, complex tasks could

not, as the necessary cognitive functions were not supported

[3]. Hence, the development of hybrid architectures compris-

ing both reactive and deliberative components was a natural

progression in the design of robot control architectures.

Hybrid cognitive architectures are mainly characterised by

a layering of capabilities where low-level layers provide

reactive capabilities, whereas high-level layers provide the

CORBYS Cognitive Control Architecture

for Robotic Follower

Adrian Leu, Danijela Ristić-Durrant, Siniša Slavnić, Cornelius Glackin,

Christoph Salge, Daniel Polani, Atta Badii, Ali Khan, and Rajkumar Raval

I

more computationally intensive deliberative capabilities. A

key problem in such architectures is what kind of control

framework to embed, to manage the interactions across the

various layers.

In this paper, the layered architecture for robot control en-

titled CORBYS is presented. It aims at integration of high-

level cognitive modules that support human-robot symbiotic

relationships. CORBYS follows a trend of using features of

ROS (Robot Operating System) [4] for developing generic

architectures with effective communication between the

modules. ROS simplifies software development for robots

by providing a modular, scalable, and easily extendable

system. A novelty of CORBYS is the standardisation of

software modules through the so-called CORBYS ROS

Node Template. This standardisation is of high importance

in distributed multi-site development within collaborative

research projects such as CORBYS.

III. CORBYS ARCHITECTURE FOR ROBOT CONTROL

As illustrated in Fig. 1, the CORBYS architecture is com-

prised of four layers: cognitive, executive, control and phys-

ical layer.

Fig. 1. Layout of layered CORBYS robot control architecture.

The Cognitive layer contains the high-level cognitive

modules that enable the robot to understand the current state

of the system and environment including the human operator

so as to generate adequate high-level commands for the spe-

cific robotic application to be communicated to the low-level

control system. These modules are supported with a multi-

sensor system to facilitate dynamic environment perception.

The Control layer is in direct connection with the physical

layer where it reads sensors data and provides direct com-

mands to the actuators. The Sensor Data Server (SDS) is

responsible for providing sensor data (either as raw or pro-

cessed sensor data) to the Cognitive layer while the Real-

Time Control (RTC) receives high-level commands from the

Cognitive layer and translates them into commands that are

directly executable by the actuators.

The Reflexive module (RM) is also included in the Control

layer in order to allow fast reflex-like behaviour in critical

situations. This module detects dangerous situations and can

independently take action without the need to wait for a

command from the software-based Cognitive layer. The

hardware-based reflex capability in the CORBYS frame-

work is composed of an implementation of invariant system

reflexes, e.g. stopping the robot moving forward in the case

that an obstacle is detected in dangerously close proximity,

or for any other situations requiring immediate risk-aversive

control.

The Executive layer is the core of the CORBYS architec-

ture as it is responsible for enabling the communication be-

tween the Control layer and the Cognitive layer, as well as

for coordinating and supervising the overall system func-

tionality. This layer comprises two modules: Task Manager

(TM) and Functionality Supervisor (FS).

The TM coordinates the overall system functionality. One

of the main tasks of the TM module is to respond to instruc-

tions from the human co-worker in terms of enabling specif-

ic working modes such as starting a desired operational

mode after system start-up. The TM is based on a state ma-

chine where each working mode is a state and the transitions

depend on the user input, on the current working mode as

well as on the state of each required module. Therefore, in

order to put the system into a specific working mode, the

TM first checks whether all pre-conditions are met and then

determines the configuration parameters for each module

based on the specific working mode. Next, the TM informs

the modules about the desired change in the working mode

and then remains on stand-by until all modules have com-

pleted their configuration and are ready to start. Finally, the

TM enables the desired working mode.

The FS monitors the state of all modules through heart-

beat messages that are sent by the modules to FS at regular

time intervals. In this way the FS keeps track of the health

status of each module, as these heart-beats include status

information, so that each module can signal whether it is

functioning properly, or if some error is encountered. If a

module fails to send a heart-beat within the given time inter-

val, the FS assumes that the module malfunctions and in-

forms the TM about the encountered problem. At the same

time, if the malfunctioning module is critical for the safe

functioning of the system, the FS sends a signal to the Robot

Safety Controller (RSC) to trigger the emergency stop. The

RSC then immediately cuts the power to the actuators.

The Physical layer consists of sensors and actuators that

are application and robotic system specific. In the CORBYS

robotic follower, this layer is composed of mobile robot

sensors and actuators. These will be presented in detail in the

following sections together with other specific aspects of the

cognitive control architecture for the robotic follower.

IV. ROS-BASED COMMUNICATION IN THE CORBYS

ARCHITECTURE

Considering the fact that multiple modules running on dif-

ferent computers need to communicate with each other, and

that this communication has to be reliable and easy to im-

Reflexive Module

Functionality Supervisor

FS

Task Manager

TM

Cognitive Module 1

COG.

1

Cognitive Module N

COG.

N

Sensor Data Server

SDS

Real-Time Control

RTC

…

Sensors &Actuators
Physical

Layer

Control

Layer

Cognitive

Layer

Executive

Layer

Robot Safety Controller

User GUI

plement, the ROS (Robot Operating System) [4] was chosen

in CORBYS as the communication framework, due to the

advantages that it brings. Hereby CORBYS follows a trend

of using features of ROS for developing generic architec-

tures with effective communication between the modules.

ROS simplifies software development for robots by provid-

ing a modular, scalable and easily extendable system. ROS

facilitates communication between different modules (so-

called nodes) regardless of whether they run on the same or

on different computers. This allows for flexible adaptation of

the robot control architecture to specific hardware layouts.

The communication between the modules is carried over

topics, which are virtual “one-to-many” communication

channels used for data sharing. This communication protocol

has been chosen for the CORBYS layered architecture as it

enables asynchronous communication between the cognitive

modules, which run more slowly due to the complex delib-

erative processes, and, the control modules that run consid-

erably faster.

Besides communication over topics, several other ROS

utilities were used in the CORBYS architecture for module

configuration and data logging. One of them is the parameter

server, which is a shared multivariate dictionary that is used

by the CORBYS TM to store configuration data for all mod-

ules. The significant advantage of this approach is that all

the parameters of the various modules are stored centrally,

thus facilitating the changing of the robot working mode

(e.g. at system initialisation or system startup), where multi-

ple modules need to be reconfigured at the same time. Data

logging is enabled via the so-called ROS bags, which are

data files that can store messages sent to specified topics.

When these files are played back, the original message data

flow is simulated. In this way modules can be developed and

tested off-line using the recorded data so that later they can

be tested with online data without any changes to the mod-

ules’ functionality. This approach enabled CORBYS devel-

opers to develop the modules of the presented robotic fol-

lower remotely without need to have the physical system on

site – a critical enabler in distributed multi-site development.

The off-line tests using ROS bags are followed by remote

on-line tests over OpenVPN, which creates a so-called “Vir-

tual Private Network”. This approach enables modules lo-

cated at different sites to communicate with each other as if

they were parts of the same local network.

A. CORBYS standardisation of software modules

All the software modules of the CORBYS architecture are

standardised using the novel CORBYS ROS Node Tem-

plate. The benefit of module standardisation is that the struc-

ture of the software module is predefined. As illustrated in

Fig.1, a CORBYS module, for example, Cognitive Module 1

(COG 1), according to the CORBYS ROS Node Template

contains three sections: module logic (depicted in light blue),

libraries for communication with the FS and TM (depicted in

red and dark blue respectively) and libraries for communica-

tion with other modules (depicted in green). Out of these

three sections only the module logic is individually imple-

mented by module developers according to the specific

module functionality. The other two sections are common to

all modules.

The section with libraries for communication with other

modules is based on ROS and represents a layer between the

module developer and the actual ROS communication.

B. ROS-based data messages

The communication between CORBYS modules is done

using messages that are defined using ROS. All defined

messages contain a standard header that includes, among

other fields, an automatically incremented sequence number

and the time stamp of when the message was sent. Besides

the header, the message contains the actual data field whose

content depends on the communicating modules and on the

used topic. The header data is used to perform automatic

tests that are not part of the standard ROS communication.

Based on the sequence number, a sequence number check is

automatically performed for determining whether messages

were missed during transmission. Additionally the transmis-

sion times are automatically monitored based on the time

stamps of the messages. These transmission times give valu-

able information about the network load. If either messages

are lost or the transmission time is too long, a heart-beat

containing the corresponding error code is automatically sent

to the FS to inform about the encountered problem, who

further informs the TM. In this way, the proper message

delivery is automatically monitored and possible malfunc-

tions are detected.

V. THE COGNITIVE ROBOTIC FOLLOWER.

The layout of the considered robotic system is shown in

Fig. 2. The system has two types of sensors for environment

perception: a stereo camera system and a two dimensional

(2D) laser scanner. The stereo images captured by the cam-

era system are processed by the vision module described in

[5]. The processed data, in the form of a vector of human

coordinates with respect to the camera coordinate system

(XHC, YHC, ZHC), is made available to the Cognitive layer.

The laser scanner perceives the distance to objects along a

single horizontal line, where objects in the robot’s environ-

ment, other than the human, are considered as obstacles. In

order to combine outputs from different sensors for the pur-

pose of robot trajectory planning it is necessary to transform

these outputs to a common coordinate frame. In the system

presented here, the common coordinate frame is the world

frame that is aligned to the robot frame at the robot’s starting

position. The robot’s coordinate frame {Xr, Yr, Zr} is illus-

trated in Fig. 2 together with the camera coordinate frame

{XC, YC, ZC} and the horizontal perception line of the laser

ZL. As the pose of the robot’s frame with respect to the

world origin changes while the robot is moving through the

world, it is estimated using odometry based on the data of

the incremental encoders that are placed on the robot’s dif-

ferential two-wheel drive. The wheel slippage is compen-

sated using simultaneous localization and mapping (SLAM)

based on laser data [6].

Fig. 2. Schematic illustrating the robotic system for following the human

co-worker.

As illustrated in Fig. 2, the robotic follower has three

computers: an on-board computer and two off-board com-

puters, the Sensor Data Server computer and the computer

used for the high-level cognitive empowerment-based trajec-

tory planning. Besides the executive layer modules, FS and

TM, parts of the Control layer are running on the on-board

PC. These are the Real-Time Control and sub-modules of

the Sensor Data Server (SDS) which capture the raw sensor

data and send it for further processing to the SDS (vision-

based human tracking, odometry, SLAM). Such distributed

computing is necessary to avoid blocking the control system

by computationally intensive sensor processing and trajecto-

ry planning, and to ensure that control commands are sent at

regular time intervals.

The FS and TM modules run on the on-board computer,

as they need to be able to quickly react and stop the robot in

case of emergency even if a network problem occurs. In

order to be robust against potential network failures, FS has

a direct connection to the Robot Safety Controller via a digi-

tal line, while the TM can indirectly stop the robot by signal-

ing the emergency stop to the FS.

The Reflexive Module (RM) realises the real-time reflex-

ive responses of the robotic follower by implementing low

level reactive algorithms (e.g., obstacle detection) using

FPGA (Digilent Spartan 3E-1600) [12]. The RM is directly

connected to the robot, so that it can immediately stop the

robot if an obstacle is detected within a dangerously close

proximity. Laser scanner data from an artificial rectangular

area in front of the robot is processed by the RM to detect

obstacles in the path of the robotic follower and to ensure the

safety of the robot by stopping immediately before hitting

the obstacle. This is also applicable in other real-time safety

protection contexts.

At the heart of the RM lies the FPGA Reflexive Layer

(FRL) Core module (Hardware), which provides the core

reflexive behaviour functionality, as part of the embedded

system within the FPGA. Major functional logic blocks in

the RM (Micro-Blaze processor and peripherals) communi-

cate with each other via the on-chip Processor Local Bus

(PLB). The major I/O of the FRL Core include the on-chip

PLB, a network interface (TCP/IP) and a Heart-Beat inter-

face with the FS. Additional to the FS functionality of re-

ceiving heart-beats from all modules as explained in Section

3, the FS sends heart-beat signals to the RM for overall

health status check monitoring. Similarly, a heart-beat is also

sent as output from the RM to the FS in order to inform

about the RM health status. If either of these two modules

detects that the other has failed to send a heart-beat, an

emergency stop is immediately triggered.

There is a dedicated two line digital interface with the FS

to monitor the health status and a dedicated digital signal to

the robot safety controller that cuts the power to the wheels.

There is also Linux OS running on the embedded Micro-

Blaze processor that manages non-time-critical tasks such as

communication data for initialising and/or updating the FRL

Core reflexive memory to include additional reflexes.

Major functional blocks within the FRL-Core include on-

chip memory for storing reflexive behaviour definitions, a

heart-beat monitor and an Obstacle Detection and Avoidance

(ODA) module. The on-chip memory module stores thresh-

olds (values) related to the reflexive behaviour, for instance,

the memory stores threshold values in order to create a rec-

tangular protection field in front of the robot for obstacle

detection based on laser range finder data. The ODA module

implements an algorithm for reactive collision avoidance

based on comparison of live data with thresholds in real-

time. The X and Z coordinate values from the laser scanner

are compared against pre-programmed threshold values (less

than, greater than and equal to) in order to detect an obstacle

within the artificial protection field. When an obstacle is

detected, the ODA module sends a digital signal to the safety

controller to cut the power supply to the robot wheels in

order to stop the robot moving forward.

A. High-level empowerment-based trajectory planning

The high-level cognitive module receives sensor input

from the SDS in the form of ROS data messages. The mes-

sages comprise vectors of human and robot position. In addi-

tion to this data, the cognitive module is aware of the ge-

ometry of the environment and of the position of obstacles

obtained from the laser scanner. The cognitive module pro-

vides a trajectory to the RTC. The trajectory is a path which

the robot follows. The path planning is calculated to realize a

human following behavior, whilst maintaining controllabil-

ity and mobility of the robot. The means by which this be-

havior is generated is using an information-theoretic formal-

ism called empowerment [7].

Empowerment [7] provides a universal, local, task inde-

pendent utility for each state the agent can be in (positions of

the robot in the environment). It captures how much an agent

is in control of its perceivable environment. Optimizing

empowerment leads to a tendency to keep one's options

open, and in the specific case presented in this paper it keeps

the mobile robot from colliding with obstacles while follow-

ing the human, and also prefers the agent to be in a location

where it can reach the other locations easily; both properties

desirable for a robotic follower.

Empowerment is measured in bits, and is formally defined

as the amount of Shannon information an agent can "inject"

Sensor

Data

Server

PC

Cog-

nitive

PC

 Refl. Module

Zr
Yr

Xr

ZL

 On-Board PC

Zc
Yc Xc

into its sensor, by way of action selection. More formally it

is defined as the channel capacity between the agents actua-

tors and its sensors (for theoretical background refer to

[7,8]). In this way, empowerment measures the effect of

control actuation on the sensors, and by choosing actuation

that has the maximal effect on the sensors, the robot can

move in an ‘empowered’ way. The continuous nature of the

robotic system requires computing empowerment in the

continuous domain. Robust but time consuming approaches

for this are discretization of the continuous domain via bin-

ning, or the approximation of the conditional probability

between actuators and sensors as a multivariate Gaussian

distribution [8]. Here, a faster approximation is used [9] that

treats the relationship between actuators and sensors as mul-

tiple linear channels with added Gaussian noise.

Empowerment relies on a local model that ‘knows’ how

each action will affect the resulting sensor state distribution.

In this way, by knowing what is the outcome of sending

different wheel speed motor commands to the robot, em-

powerment needs to be able to calculate the resulting posi-

tion of the robot in the environment (without actually per-

forming these commands). This functionality is provided to

empowerment by a Gaussian Process-based Model Learner

(ML) sub-module of the cognitive module.

Gaussian Processes (GP) regression is employed as GPs

are a powerful tool that can provide predictive distributions.

They are non-parametric, meaning that a GP is not restricted

to a particular class of functions, but instead by employing

the so-called kernel trick [11] can encompass all functions

sharing the same degree of smoothness. The task of finding

appropriate hyperparameters for multiple output GPs is

computationally demanding, so for simplicity an ensemble

of three multiple-input-single-output (MISO) GPs are em-

ployed in this work in a similar vein as in [8].

As illustrated by Fig. 4 there are three input (action) states

S and three output (successor) states S'. The input states

represent the left and right wheel speeds for the robotic fol-

lower and an additional state (used primarily for robustness

of the model) which accounts for minor latencies in the re-

ceipt of the wheel speed data in the CORBYS architecture.

Hence if minor latencies appear in the system, the model

adapts to deal with them. More significant latencies in data

communication are flagged to the FS in the CORBYS archi-

tecture via the regular heartbeat messages, triggering the

RSC emergency stop procedure. The three outputs of each

GP (S') are the change in X-coordinate, change in Z-

coordinate, and change in orientation of the robot respective-

ly.

Fig. 4. Illustration of a GP ensemble for learning state transition probabili-

ties by combining multiple univariate GPs.

B. Integration results.

The ML was trained offline using data collected directly

from the robot in the form of ROS bags. The ROS bags con-

tained recordings of wheel speeds, latencies, and robot posi-

tion data. 950 data points were used for training and 706

unseen data points were used for testing. Testing within C++

using the Eigen linear algebra library on a typical dual core

computer occurs in less than 3 seconds. Another benefit of

using a GP-based ML with empowerment is that empower-

ment can be calculated directly from the covariance matrix

of the GP [10]. Empowerment was calculated offline for

regular sampling of the testing room at a resolution of 60

cm
2
. The obstacles identified by the RM from the laser scan-

ner data were included as constraints in the empowerment

calculation. If during the offline virtual exploration for all

possible paths the empowerment module attempts to move

through an obstacle, the movement is blocked, since the

reflexive module in online application would stop the robot,

and the resulting state is then just the initial state. Hence this

possible actuation is effectively ‘pruned’ from the resulting

path planning. In this way, the obstacle directly affects the

empowerment measurement of the state, since it limits the

robot’s mobility. The result of this offline calculation of

empowerment is a map of the room containing an assess-

ment of the utility (in bits) of the various positions of the

room at the afore-mentioned resolution. Typically positions

in open-space have higher utility (empowerment) than posi-

tions in corners and near obstacles. To incorporate the fol-

lowing behaviour the resulting empowerment map is then

scaled by Euclidean distance to the human during runtime.

The closer the human is to the robot the higher the scaling,

except for a 1 meter `exclusion zone' around the human used

for safety which is set to zero utility at all times, which

makes being in that area undesirable for the robot. Generat-

ing a path towards the human, whilst avoiding obstacles, is

achieved by successively finding from the robot’s current

position, the next nearest highest empowered position using

a simple grid search.

Offline tests were later followed by online tests that were

performed via the internet with the help of an OpenVPN

connection that creates a Virtual Private Network, meaning

that all CORBYS modules behave as if they were physically

in the same local network. This allowed for rapid system

development, requiring very little adjustment when all mod-

ules were actually put together and tested on-site. Fig. 5

illustrates the robot’s chosen path around the obstacles when

following the human and maximizing empowerment. Even

though the empowered path is not immediately necessary for

keeping a distance, the position at the end of the empowered

path offers the same distance to the human as the position

straight behind the human, but has higher empowerment, i.e.

it offers more movement options to continue the following.

Fig. 5. ROS (rviz) visualisation of the empowerment-based trajectory

planning. The blue cuboid represents the robot, the green cuboid is the

human and, the other cuboids are obstacles. The scaled empowerment

values are overlaid on the floor of the room, white means high em-

powerment and black means low empowerment. The empowered path is

coloured in red.

VI. CONCLUSIONS

This paper presented the CORBYS architecture for con-

trol of robots functioning in dynamic environments along-

side humans. The architecture integrates high-level cognitive

modules, execution, monitoring, a reflexive module and

real-time control. An overall view of the architecture was

given focusing on the ROS-based communication across the

modules. The standardisation of the architecture software

modules using the novel CORBYS ROS Node Template has

been introduced; this represents the key integration aspects

of such distributed architectures. The integration of the

CORBYS architecture in a robot following a human co-

worker was presented. The high-level cognitive module of

the presented CORBYS robotic follower uses empowerment

maximization-based trajectory planning which enables the

robot to maneuver into a more mobile position for following

the human co-worker while avoiding bad terrain. The pre-

sented results of on-site tests demonstrate the effectiveness

of the CORBYS approach to the integration of distributed

modules. This approach comprises off-line development and

testing of modules enabled by utilising ROS bags, and re-

mote integration of different modules via OpenVPN before

on-site tests. The modular approach to design and testing

used in the CORBYS project, and the performed remote

integration of the modules using OpenVPN, led to the fact

that only a relatively small amount of time was needed to

adjust the modules for successful on-site use. Hence, the

CORBYS approach can be usefully applied to other complex

multi-partner and multi-site projects, where the ability to do

successful remote integration can significantly accelerate the

final integration.

REFERENCES

[1] CORBYS, Available: www.corbys.eu.

[2] D. Vernon, G. Metta and G. Sandini, “A Survey of Artificial Cogni-

tive Systems: Implications for the Autonomous Development of Men-

tal Capabilities in Computational Agents,” IEEE Transactions on Evo-

lutionary Computation, vol. 11, pp.151-180, 2007.
[3] R. Ross, TheSharC Cognitive Control Architecture, Technical report,

2004.

[4] S. Cousins, “Welcome to ROS Topics,” IEEE Robotics & Automation
Magazine, vol. 17(1), pp. 13-14, 2010.

[5] E. Petrović, A. Leu, D. Ristić-Durrant and V. Nikolić, V, “Stereo

Vision-Based Human Tracking for Robotic Follower,” International
Journal of Advanced Robotic Systems, 2013.

[6] A. Leu, D. Ristić-Durrant and S. J. Ul., “Sensor-based control of

robotic follower,” in Proc. the 2nd international conference Mechani-
cal Engineering in XXI Century, Serbia, 2013.

[7] A. Klyubin, D. Polani and C. Nehaniv, “All else being equal be

empowered,” Advances in Artifcial Life, pp. 744-753, 2005.
[8] T. Jung, D. Polani and P. Stone, “Empowerment for continuous agent-

environment systems,” Adaptive Behavior, 19(1):16, 2011.

[9] C. Salge, C. Glackin and D. Polani, “Approximation of empowerment
in the continuous domain,” Advances in Complex Systems, 16(1-2):1-

29, 2013.

[10] C. Salge, C. Glackin and D. Polani, “Empowerment and State-
dependent Noise -An Intrinsic Motivation for Avoiding Unpredictable

Agents,” in Proceedings of the 12th European Conference on Artifi-

cial Life 2013, to be published.
[11] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine

Learning. The MIT Press, 2005.

[12] V. Ayala-Ramirez, J. A. Gasca-Martinez, R. Lopez-Padilla and R. E.
Sanchez-Yanez, An Artificial Protection Field Approach For Reactive

Obstacle Avoidance in Mobile Robots. In: Barrera, A. (ed.) Mobile

Robots Navigation, 2010.

http://www.corbys.eu/

