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Abstract—In this paper the novel generic cognitive robot 

control architecture CORBYS is presented. The objective of the 

CORBYS architecture is the integration of high-level cognitive 

modules to support robot functioning in dynamic environments 

including interacting with humans. This paper presents the 

preliminary integration of the CORBYS architecture to sup-

port a robotic follower. Experimental results on high-level 

empowerment-based trajectory planning have demonstrated 

the effectiveness of ROS-based communication between dis-

tributed modules developed in a multi-site research environ-

ment as typical for distributed collaborative projects such as 

CORBYS. 

I. INTRODUCTION 

NCREASING demands for robots whose purpose is to work 

effectively with humans have raised the need for devel-

opment of robot control architectures that enable integration 

of advanced robot functionalities. The objective of the Inte-

grated Project CORBYS funded by the European Commis-

sion under the 7th Framework Program [1] is to design and 

implement a robot control architecture that allows the inte-

gration of high-level cognitive control modules, a semanti-

cally-driven self-awareness module and a cognitive frame-

work for anticipation of, and synergy with, human behaviour 

based on biologically-inspired information-theoretic princi-

ples. CORBYS will provide a generic control architecture to 

benefit a wide range of applications where robots work in 

synergy with humans, ranging from mobile robots such as 

robotic followers to gait rehabilitation robots. 

In this paper, a preliminary realisation of the CORBYS 

control architecture for a robot following a human co-worker 

is presented. The presented preliminary realisation does not 

include complete high-level cognitive modules which will be 

integrated in the CORBYS architecture within future devel-

opments, but includes novel high-level empowerment-based 

trajectory planning providing inputs for low-level robot con-

trol. The integrated cognitive module uses empowerment 

[7], a generic, task-independent, information-theoretic 
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measure, to provide an intrinsic motivation to the agent, 

enabling the robotic follower to modify its task-based trajec-

tory (following the human) with the additional intrinsic mo-

tivation of maintaining the robot’s mobility and ability to 

influence the world, i.e., an incentive to not get stuck. The 

focus of the presented preliminary realisation of the 

CORBYS architecture is also on robot safety functionality 

through the implementation of a functionality supervisor 

module as well as a reflexive module. However, the main 

goal of this paper is to describe the different layers of the 

robot control architecture and communication across the 

various layers.  

The rest of the paper is organised as follows. Section 2 

presents related work on cognitive robot control architec-

tures. The innovative CORBYS architecture is presented in 

Section 3. The ROS-based communication in the CORBYS 

architecture is presented in Section 4. The robotic follower is 

presented in Section 5 which also includes experimental 

results on cognitive empowerment-based trajectory plan-

ning.  

II. ARCHITECTURES FOR COGNITIVE CONTROL 

OF ROBOTIC SYSTEMS 

Robots capable of working in dynamic environments 

alongside humans need to meet new levels of cognitive ca-

pabilities such as reasoning, decision making, adaptation, 

goal setting, problem solving and learning in complex envi-

ronments and in real-time. A growing number of robotics 

researchers have realised that cognitive robotic architectures 

are a natural way to achieve this goal of designing a robot 

with such general capabilities [2]. Recent research has been 

mainly dedicated to the use of hybrid architectures which 

could overcome the problems of both purely deliberative so-

called Sense-Plan-Act (SPA) architectures and purely reac-

tive architectures. SPA architectures failed to perform well 

because the level of cognitive tasks attempted was too com-

plex to cope with in a real-world environment while purely 

reactive architectures had the drawback that while immedi-

ate reactive actions could be performed, complex tasks could 

not, as the necessary cognitive functions were not supported 

[3]. Hence, the development of hybrid architectures compris-

ing both reactive and deliberative components was a natural 

progression in the design of robot control architectures. 

Hybrid cognitive architectures are mainly characterised by 

a layering of capabilities where low-level layers provide 

reactive capabilities, whereas high-level layers provide the 
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more computationally intensive deliberative capabilities. A 

key problem in such architectures is what kind of control 

framework to embed, to manage the interactions across the 

various layers. 

In this paper, the layered architecture for robot control en-

titled CORBYS is presented. It aims at integration of high-

level cognitive modules that support human-robot symbiotic 

relationships. CORBYS follows a trend of using features of 

ROS (Robot Operating System) [4] for developing generic 

architectures with effective communication between the 

modules. ROS simplifies software development for robots 

by providing a modular, scalable, and easily extendable 

system. A novelty of CORBYS is the standardisation of 

software modules through the so-called CORBYS ROS 

Node Template. This standardisation is of high importance 

in distributed multi-site development within collaborative 

research projects such as CORBYS. 

III. CORBYS ARCHITECTURE FOR ROBOT CONTROL 

As illustrated in Fig. 1, the CORBYS architecture is com-

prised of four layers: cognitive, executive, control and phys-

ical layer. 

 

 
Fig. 1.  Layout of layered CORBYS robot control architecture. 

 

The Cognitive layer contains the high-level cognitive 

modules that enable the robot to understand the current state 

of the system and environment including the human operator 

so as to generate adequate high-level commands for the spe-

cific robotic application to be communicated to the low-level 

control system. These modules are supported with a multi-

sensor system to facilitate dynamic environment perception. 

The Control layer is in direct connection with the physical 

layer where it reads sensors data and provides direct com-

mands to the actuators. The Sensor Data Server (SDS) is 

responsible for providing sensor data (either as raw or pro-

cessed sensor data) to the Cognitive layer while the Real-

Time Control (RTC) receives high-level commands from the 

Cognitive layer and translates them into commands that are 

directly executable by the actuators. 

The Reflexive module (RM) is also included in the Control 

layer in order to allow fast reflex-like behaviour in critical 

situations. This module detects dangerous situations and can 

independently take action without the need to wait for a 

command from the software-based Cognitive layer. The 

hardware-based reflex capability in the CORBYS frame-

work is composed of an implementation of invariant system 

reflexes, e.g. stopping the robot moving forward in the case 

that an obstacle is detected in dangerously close proximity, 

or for any other situations requiring immediate risk-aversive 

control. 

The Executive layer is the core of the CORBYS architec-

ture as it is responsible for enabling the communication be-

tween the Control layer and the Cognitive layer, as well as 

for coordinating and supervising the overall system func-

tionality. This layer comprises two modules: Task Manager 

(TM) and Functionality Supervisor (FS). 

The TM coordinates the overall system functionality. One 

of the main tasks of the TM module is to respond to instruc-

tions from the human co-worker in terms of enabling specif-

ic working modes such as starting a desired operational 

mode after system start-up. The TM is based on a state ma-

chine where each working mode is a state and the transitions 

depend on the user input, on the current working mode as 

well as on the state of each required module. Therefore, in 

order to put the system into a specific working mode, the 

TM first checks whether all pre-conditions are met and then 

determines the configuration parameters for each module 

based on the specific working mode. Next, the TM informs 

the modules about the desired change in the working mode 

and then remains on stand-by until all modules have com-

pleted their configuration and are ready to start. Finally, the 

TM enables the desired working mode. 

The FS monitors the state of all modules through heart-

beat messages that are sent by the modules to FS at regular 

time intervals. In this way the FS keeps track of the health 

status of each module, as these heart-beats include status 

information, so that each module can signal whether it is 

functioning properly, or if some error is encountered. If a 

module fails to send a heart-beat within the given time inter-

val, the FS assumes that the module malfunctions and in-

forms the TM about the encountered problem. At the same 

time, if the malfunctioning module is critical for the safe 

functioning of the system, the FS sends a signal to the Robot 

Safety Controller (RSC) to trigger the emergency stop. The 

RSC then immediately cuts the power to the actuators. 

The Physical layer consists of sensors and actuators that 

are application and robotic system specific. In the CORBYS 

robotic follower, this layer is composed of mobile robot 

sensors and actuators. These will be presented in detail in the 

following sections together with other specific aspects of the 

cognitive control architecture for the robotic follower. 

IV. ROS-BASED COMMUNICATION IN THE CORBYS 

ARCHITECTURE 

Considering the fact that multiple modules running on dif-

ferent computers need to communicate with each other, and 

that this communication has to be reliable and easy to im-
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plement, the ROS (Robot Operating System) [4] was chosen 

in CORBYS as the communication framework, due to the 

advantages that it brings. Hereby CORBYS follows a trend 

of using features of ROS for developing generic architec-

tures with effective communication between the modules. 

ROS simplifies software development for robots by provid-

ing a modular, scalable and easily extendable system. ROS 

facilitates communication between different modules (so-

called nodes) regardless of whether they run on the same or 

on different computers. This allows for flexible adaptation of 

the robot control architecture to specific hardware layouts. 

The communication between the modules is carried over 

topics, which are virtual “one-to-many” communication 

channels used for data sharing. This communication protocol 

has been chosen for the CORBYS layered architecture as it 

enables asynchronous communication between the cognitive 

modules, which run more slowly due to the complex delib-

erative processes, and, the control modules that run consid-

erably faster. 

Besides communication over topics, several other ROS 

utilities were used in the CORBYS architecture for module 

configuration and data logging. One of them is the parameter 

server, which is a shared multivariate dictionary that is used 

by the CORBYS TM to store configuration data for all mod-

ules. The significant advantage of this approach is that all 

the parameters of the various modules are stored centrally, 

thus facilitating the changing of the robot working mode 

(e.g. at system initialisation or system startup), where multi-

ple modules need to be reconfigured at the same time. Data 

logging is enabled via the so-called ROS bags, which are 

data files that can store messages sent to specified topics. 

When these files are played back, the original message data 

flow is simulated. In this way modules can be developed and 

tested off-line using the recorded data so that later they can 

be tested with online data without any changes to the mod-

ules’ functionality. This approach enabled CORBYS devel-

opers to develop the modules of the presented robotic fol-

lower remotely without need to have the physical system on 

site – a critical enabler in distributed multi-site development. 

The off-line tests using ROS bags are followed by remote 

on-line tests over OpenVPN, which creates a so-called “Vir-

tual Private Network”. This approach enables modules lo-

cated at different sites to communicate with each other as if 

they were parts of the same local network. 

A. CORBYS standardisation of software modules 

All the software modules of the CORBYS architecture are 

standardised using the novel CORBYS ROS Node Tem-

plate. The benefit of module standardisation is that the struc-

ture of the software module is predefined. As illustrated in 

Fig.1, a CORBYS module, for example, Cognitive Module 1 

(COG 1), according to the CORBYS ROS Node Template 

contains three sections: module logic (depicted in light blue), 

libraries for communication with the FS and TM (depicted in 

red and dark blue respectively) and libraries for communica-

tion with other modules (depicted in green). Out of these 

three sections only the module logic is individually imple-

mented by module developers according to the specific 

module functionality. The other two sections are common to 

all modules.  

The section with libraries for communication with other 

modules is based on ROS and represents a layer between the 

module developer and the actual ROS communication.  

B. ROS-based data messages 

The communication between CORBYS modules is done 

using messages that are defined using ROS. All defined 

messages contain a standard header that includes, among 

other fields, an automatically incremented sequence number 

and the time stamp of when the message was sent. Besides 

the header, the message contains the actual data field whose 

content depends on the communicating modules and on the 

used topic. The header data is used to perform automatic 

tests that are not part of the standard ROS communication. 

Based on the sequence number, a sequence number check is 

automatically performed for determining whether messages 

were missed during transmission. Additionally the transmis-

sion times are automatically monitored based on the time 

stamps of the messages. These transmission times give valu-

able information about the network load. If either messages 

are lost or the transmission time is too long, a heart-beat 

containing the corresponding error code is automatically sent 

to the FS to inform about the encountered problem, who 

further informs the TM. In this way, the proper message 

delivery is automatically monitored and possible malfunc-

tions are detected. 

V. THE COGNITIVE ROBOTIC FOLLOWER. 

The layout of the considered robotic system is shown in 

Fig. 2. The system has two types of sensors for environment 

perception: a stereo camera system and a two dimensional 

(2D) laser scanner. The stereo images captured by the cam-

era system are processed by the vision module described in 

[5]. The processed data, in the form of a vector of human 

coordinates with respect to the camera coordinate system 

(XHC, YHC, ZHC), is made available to the Cognitive layer. 

The laser scanner perceives the distance to objects along a 

single horizontal line, where objects in the robot’s environ-

ment, other than the human, are considered as obstacles. In 

order to combine outputs from different sensors for the pur-

pose of robot trajectory planning it is necessary to transform 

these outputs to a common coordinate frame. In the system 

presented here, the common coordinate frame is the world 

frame that is aligned to the robot frame at the robot’s starting 

position. The robot’s coordinate frame {Xr, Yr, Zr} is illus-

trated in Fig. 2 together with the camera coordinate frame 

{XC, YC, ZC} and the horizontal perception line of the laser 

ZL. As the pose of the robot’s frame with respect to the 

world origin changes while the robot is moving through the 

world, it is estimated using odometry based on the data of 

the incremental encoders that are placed on the robot’s dif-

ferential two-wheel drive. The wheel slippage is compen-

sated using simultaneous localization and mapping (SLAM) 



  

based on laser data [6]. 

 

 
Fig. 2.  Schematic illustrating the robotic system for following the human 

co-worker. 

 

As illustrated in Fig. 2, the robotic follower has three 

computers: an on-board computer and two off-board com-

puters, the Sensor Data Server computer and the computer 

used for the high-level cognitive empowerment-based trajec-

tory planning. Besides the executive layer modules, FS and 

TM, parts of the Control layer are running on the on-board 

PC. These are the Real-Time Control and sub-modules of 

the Sensor Data Server (SDS) which capture the raw sensor 

data and send it for further processing to the SDS (vision-

based human tracking, odometry, SLAM). Such distributed 

computing is necessary to avoid blocking the control system 

by computationally intensive sensor processing and trajecto-

ry planning, and to ensure that control commands are sent at 

regular time intervals. 

The FS and TM modules run on the on-board computer, 

as they need to be able to quickly react and stop the robot in 

case of emergency even if a network problem occurs. In 

order to be robust against potential network failures, FS has 

a direct connection to the Robot Safety Controller via a digi-

tal line, while the TM can indirectly stop the robot by signal-

ing the emergency stop to the FS. 

The Reflexive Module (RM) realises the real-time reflex-

ive responses of the robotic follower by implementing low 

level reactive algorithms (e.g., obstacle detection) using 

FPGA (Digilent Spartan 3E-1600) [12]. The RM is directly 

connected to the robot, so that it can immediately stop the 

robot if an obstacle is detected within a dangerously close 

proximity. Laser scanner data from an artificial rectangular 

area in front of the robot is processed by the RM to detect 

obstacles in the path of the robotic follower and to ensure the 

safety of the robot by stopping immediately before hitting 

the obstacle. This is also applicable in other real-time safety 

protection contexts. 

At the heart of the RM lies the FPGA Reflexive Layer 

(FRL) Core module (Hardware), which provides the core 

reflexive behaviour functionality, as part of the embedded 

system within the FPGA. Major functional logic blocks in 

the RM (Micro-Blaze processor and peripherals) communi-

cate with each other via the on-chip Processor Local Bus 

(PLB). The major I/O of the FRL Core include the on-chip 

PLB, a network interface (TCP/IP) and a Heart-Beat inter-

face with the FS. Additional to the FS functionality of re-

ceiving heart-beats from all modules as explained in  Section 

3, the FS sends heart-beat signals to the RM for overall 

health status check monitoring. Similarly, a heart-beat is also 

sent as output from the RM to the FS in order to inform 

about the RM health status. If either of these two modules 

detects that the other has failed to send a heart-beat, an 

emergency stop is immediately triggered. 

There is a dedicated two line digital interface with the FS 

to monitor the health status and a dedicated digital signal to 

the robot safety controller that cuts the power to the wheels. 

There is also Linux OS running on the embedded Micro-

Blaze processor that manages non-time-critical tasks such as 

communication data for initialising and/or updating the FRL 

Core reflexive memory to include additional reflexes. 

Major functional blocks within the FRL-Core include on-

chip memory for storing reflexive behaviour definitions, a 

heart-beat monitor and an Obstacle Detection and Avoidance 

(ODA) module. The on-chip memory module stores thresh-

olds (values) related to the reflexive behaviour, for instance, 

the memory stores threshold values in order to create a rec-

tangular protection field in front of the robot for obstacle 

detection based on laser range finder data. The ODA module 

implements an algorithm for reactive collision avoidance 

based on comparison of live data with thresholds in real-

time. The X and Z coordinate values from the laser scanner 

are compared against pre-programmed threshold values (less 

than, greater than and equal to) in order to detect an obstacle 

within the artificial protection field. When an obstacle is 

detected, the ODA module sends a digital signal to the safety 

controller to cut the power supply to the robot wheels in 

order to stop the robot moving forward. 

A. High-level empowerment-based trajectory planning 

The high-level cognitive module receives sensor input 

from the SDS in the form of ROS data messages. The mes-

sages comprise vectors of human and robot position. In addi-

tion to this data, the cognitive module is aware of the ge-

ometry of the environment and of the position of obstacles 

obtained from the laser scanner. The cognitive module pro-

vides a trajectory to the RTC. The trajectory is a path which 

the robot follows. The path planning is calculated to realize a 

human following behavior, whilst maintaining controllabil-

ity and mobility of the robot. The means by which this be-

havior is generated is using an information-theoretic formal-

ism called empowerment [7].  

Empowerment [7] provides a universal, local, task inde-

pendent utility for each state the agent can be in (positions of 

the robot in the environment). It captures how much an agent 

is in control of its perceivable environment. Optimizing 

empowerment leads to a tendency to keep one's options 

open, and in the specific case presented in this paper it keeps 

the mobile robot from colliding with obstacles while follow-

ing the human, and also prefers the agent to be in a location 

where it can reach the other locations easily; both properties 

desirable for a robotic follower. 

Empowerment is measured in bits, and is formally defined 

as the amount of Shannon information an agent can "inject" 
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into its sensor, by way of action selection. More formally it 

is defined as the channel capacity between the agents actua-

tors and its sensors (for theoretical background refer to 

[7,8]). In this way, empowerment measures the effect of 

control actuation on the sensors, and by choosing actuation 

that has the maximal effect on the sensors, the robot can 

move in an ‘empowered’ way. The continuous nature of the 

robotic system requires computing empowerment in the 

continuous domain. Robust but time consuming approaches 

for this are discretization of the continuous domain via bin-

ning, or the approximation of the conditional probability 

between actuators and sensors as a multivariate Gaussian 

distribution [8]. Here, a faster approximation is used [9] that 

treats the relationship between actuators and sensors as mul-

tiple linear channels with added Gaussian noise. 

Empowerment relies on a local model that ‘knows’ how 

each action will affect the resulting sensor state distribution. 

In this way, by knowing what is the outcome of sending 

different wheel speed motor commands to the robot, em-

powerment needs to be able to calculate the resulting posi-

tion of the robot in the environment (without actually per-

forming these commands). This functionality is provided to 

empowerment by a Gaussian Process-based Model Learner 

(ML) sub-module of the cognitive module. 

Gaussian Processes (GP) regression is employed as GPs 

are a powerful tool that can provide predictive distributions. 

They are non-parametric, meaning that a GP is not restricted 

to a particular class of functions, but instead by employing 

the so-called kernel trick [11] can encompass all functions 

sharing the same degree of smoothness. The task of finding 

appropriate hyperparameters for multiple output GPs is 

computationally demanding, so for simplicity an ensemble 

of three multiple-input-single-output (MISO) GPs are em-

ployed in this work in a similar vein as in [8]. 

As illustrated by Fig. 4 there are three input (action) states 

S and three output (successor) states S'. The input states 

represent the left and right wheel speeds for the robotic fol-

lower and an additional state (used primarily for robustness 

of the model) which accounts for minor latencies in the re-

ceipt of the wheel speed data in the CORBYS architecture. 

Hence if minor latencies appear in the system, the model 

adapts to deal with them. More significant latencies in data 

communication are flagged to the FS in the CORBYS archi-

tecture via the regular heartbeat messages, triggering the 

RSC emergency stop procedure. The three outputs of each 

GP (S') are the change in X-coordinate, change in Z-

coordinate, and change in orientation of the robot respective-

ly. 

 
 

Fig. 4.  Illustration of a GP ensemble for learning state transition probabili-

ties by combining multiple univariate GPs. 

 

B. Integration results.  

The ML was trained offline using data collected directly 

from the robot in the form of ROS bags. The ROS bags con-

tained recordings of wheel speeds, latencies, and robot posi-

tion data. 950 data points were used for training and 706 

unseen data points were used for testing. Testing within C++ 

using the Eigen linear algebra library on a typical dual core 

computer occurs in less than 3 seconds. Another benefit of 

using a GP-based ML with empowerment is that empower-

ment can be calculated directly from the covariance matrix 

of the GP [10]. Empowerment was calculated offline for 

regular sampling of the testing room at a resolution of 60 

cm
2
. The obstacles identified by the RM from the laser scan-

ner data were included as constraints in the empowerment 

calculation. If during the offline virtual exploration for all 

possible paths the empowerment module attempts to move 

through an obstacle, the movement is blocked, since the 

reflexive module in online application would stop the robot, 

and the resulting state is then just the initial state. Hence this 

possible actuation is effectively ‘pruned’ from the resulting 

path planning. In this way, the obstacle directly affects the 

empowerment measurement of the state, since it limits the 

robot’s mobility. The result of this offline calculation of 

empowerment is a map of the room containing an assess-

ment of the utility (in bits) of the various positions of the 

room at the afore-mentioned resolution. Typically positions 

in open-space have higher utility (empowerment) than posi-

tions in corners and near obstacles. To incorporate the fol-

lowing behaviour the resulting empowerment map is then 

scaled by Euclidean distance to the human during runtime. 

The closer the human is to the robot the higher the scaling, 

except for a 1 meter `exclusion zone' around the human used 

for safety which is set to zero utility at all times, which 

makes being in that area undesirable for the robot. Generat-

ing a path towards the human, whilst avoiding obstacles, is 

achieved by successively finding from the robot’s current 

position, the next nearest highest empowered position using 

a simple grid search.  

Offline tests were later followed by online tests that were 

performed via the internet with the help of an OpenVPN 

connection that creates a Virtual Private Network, meaning 

that all CORBYS modules behave as if they were physically 

in the same local network. This allowed for rapid system 

development, requiring very little adjustment when all mod-

ules were actually put together and tested on-site. Fig. 5 

illustrates the robot’s chosen path around the obstacles when 

following the human and maximizing empowerment. Even 

though the empowered path is not immediately necessary for 

keeping a distance, the position at the end of the empowered 

path offers the same distance to the human as the position 

straight behind the human, but has higher empowerment, i.e. 

it offers more movement options to continue the following. 

 



  

 
 

Fig. 5.  ROS (rviz) visualisation of the empowerment-based trajectory 

planning. The blue cuboid represents the robot, the green cuboid is the 

human and, the other cuboids are obstacles. The scaled empowerment 

values are overlaid on the floor of the room, white means high em-

powerment and black means low empowerment. The empowered path is 

coloured in red. 

VI. CONCLUSIONS 

This paper presented the CORBYS architecture for con-

trol of robots functioning in dynamic environments along-

side humans. The architecture integrates high-level cognitive 

modules, execution, monitoring, a reflexive module and 

real-time control. An overall view of the architecture was 

given focusing on the ROS-based communication across the 

modules. The standardisation of the architecture software 

modules using the novel CORBYS ROS Node Template has 

been introduced; this represents the key integration aspects 

of such distributed architectures. The integration of the 

CORBYS architecture in a robot following a human co-

worker was presented. The high-level cognitive module of 

the presented CORBYS robotic follower uses empowerment 

maximization-based trajectory planning which enables the 

robot to maneuver into a more mobile position for following 

the human co-worker while avoiding bad terrain. The pre-

sented results of on-site tests demonstrate the effectiveness 

of the CORBYS approach to the integration of distributed 

modules. This approach comprises off-line development and 

testing of modules enabled by utilising ROS bags, and re-

mote integration of different modules via OpenVPN before 

on-site tests. The modular approach to design and testing 

used in the CORBYS project, and the performed remote 

integration of the modules using OpenVPN, led to the fact 

that only a relatively small amount of time was needed to 

adjust the modules for successful on-site use. Hence, the 

CORBYS approach can be usefully applied to other complex 

multi-partner and multi-site projects, where the ability to do 

successful remote integration can significantly accelerate the 

final integration.  
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