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Abstract. We present measurements acquired by the world’sl Introduction
first airborne 3 backscatteg) + 2 extinction ¢) High Spec-
tral Resolution Lidar (HSRL-2). HSRL-2 measures particle \we developed an automated, unsupervised inversion algo-
backscatter coefficients at 355, 532, and 1064 nm, and pakithm. We tested the performance of the algorithm for the
ticle extinction coefficients at 355 and 532nm. The instru-first time with data acquired with the world’s first airborne
ment has been developed by the NASA Langley Researchy packscatterf) + 2 extinction () multiwavelength High
Center. The instrument was operated during Phase 1 of thSpectraI Resolution Lidar (HSRL-2). The instrument ac-
Department of Energy (DOE) Two-Column Aerosol Project quired data during the first intensive observation period (7—
(TCAP) in July 2012. We observed pollution outflow from 30 July 2012) of the Department of Energy (DOE) Two-
the northeastern coast of the US out over the western Atcolumn Aerosol Project (TCAPBrg et al, 2014.
|antiC Ocean. Lidar I’atiOS were 50-60 sr at 355nm and 60— TCAP goa's included quantifying aerosol properties and
70 sr at 532 nm. Extinction-related Angstrom exponents wergadiation and cloud characteristics at a location subject to
on average 1.2-1.7, indicating comparably small particlespoth clear and cloudy conditions, and both clean and polluted
Our novel automated, unsupervised data inversion algorithmgonditions. HSRL-2 is the successor of HSRL-1, which has
retrieved pal‘ticle effective radii of apprOXimately 0.2 p.m, been Operating in Various f|e|d Campaigns Since zmr(
which is in agreement with the large Angstrém exponents.gt al, 2008. Like HSRL-1, HSRL-2 measures backscat-
We find good agreement with particle size parameters obter, extinction, and depolarization at 532 nm and backscat-
tained from coincident in situ measurements carried out withyer and depolarization at 1064 nm. In addition, HSRL-2 also
the DOE Gulfstream-1 aircraft. measures extinction, backscattering, and depolarization at
355nm.

Raman lidar and high spectral resolution lidar provide
high-quality backscatter and extinction coefficients. Mul-
tiwavelength lidar (MWL) allows, e.g., for aerosol typ-
ing (Burton et al, 2012. Aerosols of specific types show
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3488 D. Miller et al.: HSRL-2 measurements during TCAP 2012

characteristic values of extinction-related and/or backscatternext couple of years and . These lidar missions however do
related Angstrom exponents and extinction-to-backscattenot provide the necessary number of measurement channels
(lidar) ratios and particle depolarization ratios. Aerosol typ- in order to carry out detailed investigations of particle mi-
ing information provides the climate modeling community crophysical properties. Multiwavelength HSRL is needed for
with information on aerosol properties. Aerosol types can beproviding high-quality microphysical data products. NASA
related to their aerosol microphysical properties. Pure aerosdlangley Research Center has developed two such systems,
types possess a limited parameter range (particle size disdubbed HSRL-1HKair et al, 2008 and HSRL-2.

tribution, complex refractive index). Recently, attempts have HSRL-2 is the first airborne system capable of providing
been made to split mixtures of different aerosol types into38+ 2« data. This contribution aims at showing the results of
pure types Tesche et a).2009 Burton et al, 2014 Noh, microphysical particle properties that can be obtained from
2014, which can then be processed individually by inversion this instrument. The inversion method used for the retrievals
algorithms as described in the following. is based on the concepts presentedviiller et al. (19993

The 3 + 2« lidar techniques are the basis for micro- andVeselovskii et al(2002). It has however been modified in
physical retrieval algorithms, e.g., inversion with regular- order to allow for fast, unsupervised, automated data process-
ization Qing et al, 1989 Miuller et al, 1999a Veselovskii  ing. Details on the inversion methodology will be presented
et al, 2002 Bockmann et a).2005, singular-value decom- in the aforementioned contributions that are in preparation.
position, linear estimation, and principal component analysis These first results of HSRL-283+ 2o measurements show
techniques@onovan and Carswell997 Veselovskii et al. pollution that was transported from the US and Canada out
2012 de Graaf et a).2013, and the latest development, overthe western Atlantic Ocean during TCAP. Our prototype
dubbed the “Arrange & Average Algorithm” (Chemyakin et software delivered profiles of particle microphysical parame-
al., 2014). These algorithms allow for inverting the mea- ters in near-real time from the inversion of the optical profiles
sured optical quantities into microphysical properties, suchmeasured by HSRL-2 aboard the NASA B-200 King Air air-
as particle size distribution or their integral properties andcraft. We show a comparison of our results to coincident in
the complex refractive index. First successful applications ofsitu measurements of particle size parameters acquired by the
the method of inversion with regularization can be found in DOE (Department of Energy) Gulfstream-1 (G-1) aircraft.
Miiller et al.(1999, Veselovskii et al(2002, andBockmann  Section 2 summarizes the methodologies. Section 3 presents
et al.(2005. measurement examples. Section 4 closes with a summary.

In the case of inversion with regularization, the retrieved
particle size distributions and the complex refractive index
can be used to compute single-scattering albedo (scattering  Methodology
to-extinction ratio), which is one of the most important pa-
rameters in climate forcing studieB¢nd et al, 2013. Re-  The DOE G-1 aircraft was equipped to measure particle size
cently, simulation studies were carried out with the goal of distributions, chemical composition, and optical properties
investigating how accurately absorption and scattering coef{Berg et al, 2014. The NASA King Air was equipped
ficients can be inferred from the microphysical parameterswith HSRL-2 (ttp://abstractsearch.agu.org/meetings/2012/
The results of these simulation studies will be presented irFM/sections/A/sessions/A13K/abstracts/A13K-0336.html
two contribution that are in preparation (Muller et al., 2014a, HSRL-2 is the second-generation airborne HSRL de-
b). veloped at the NASA Langley Research Center. It

With regard to multiwavelength Raman lidar the technol-is an airborne prototype for the lidar on the future
ogy has matured to the point that ground based systems cafierosol-Cloud-Ecosystem (ACE) mission recommended
be operated in a reliable manner at nighttime. EARLINET for implementation by NASA in the National Re-
successfully operates a network of Raman lidars. Several ofearch Council's Decadal Survey for Earth Science
these systems are multiwavelength systems, which allow fo(http://science.nasa.gov/earth-science/decadal-sujveys/
detailed aerosol studies over Europe. Regardless of this céuilds on the heritage of the HSRL-1 systehta(r et al,
pability, investigations of aerosol properties on the global 2008 that has flown on more than 20 field campaigns since
scale cannot be done with ground-based systems. Comparg2006.
bly long signal-averaging times make these systems unsuit-
able for operation aboard fast-flying platforms, e.g., aircraft2.1 HSRL-2
and satellites.

Thus, HSRL is the method of choice for airborne and HSRL-2 operates at laser wavelengths of 355, 532, and
space-borne applications in order to retrieve aerosol micro1064 nm. HSRL-2 measures profiles of particle backscat-
physical properties. Space missions of HSRL systems will beter coefficients and linear particle depolarization ratios at
launched by NASAIfttp://www.nasa-usa.de/mission_pages/ 355, 532, and 1064 nm, and particle volume extinction co-
station/research/experiments/1037.Wtamid ESA Gtoffelen  efficients at 355 and 532 nm. The extinction and backscatter
etal, 2005 Ansmann et aJ2007 Flamant et a].2008 in the coefficients at 355 and 532 nm are derived using the HSRL
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technique Grund and Elorantal991). An iodine-vapor fil-  groups since 1997 (e.dMiller et al, 1998 2001, Murayama
ter is used for the extinction-coefficient measurements atet al, 2004 Balis et al, 2010 Alados-Arboledas et al.
532 nm. The backscatter coefficient at 1064 nm is measure@01% Noh et al, 2011 Navas-Guzman et al2013 Nico-
using the standard backscatter technidterifald 1984, but lae et al, 2013. The equations that connect the measured
with the benefit of transfer of calibration using the 532 nm backscatter and extinction coefficients to the underlying mi-
HSRL retrievals in clear-air regions of the profitégr et al, crophysical particle properties, i.e., the particle size distribu-
2008. The measurements presented in this contribution didion and complex refractive index, are solved by the use of
not indicate the presence of a significant amount of depolareight triangular-shaped basis functions that are logarithmic-
izing aerosol particles. The channels used for the depolarizaequidistantly distributed in an inversion windowA{ller
tion measurements will be described in a separate publicaet al, 19993 b). In this study we set the minimum particle
tion. radius of the inversion window to 30 nm and the maximum
The uncertainties of the data are governed by various facvalue to 8 um. This size range was sulfficient for the data an-
tors, like hardware and its calibration, signal calibration, alyzed in this study.
signal-to-noise ratio, and signal averaging in time and space. We use the data ofB+ 2« systems in the way described
A detailed description of calibration techniques and sourcesdy Miiller et al. (2001 and Veselovskii et al.(2002. We
of error for the 532 and 1064 nm channels are given bysolve the equations by determining weight factors for the
Hair et al.(2008. The new feature of HSRL-2 compared to base functions (triangles), which then allow us to reconstruct
HSRL-1 is that it measures the particle volume extinction approximations of the particle size distributions. The posi-
coefficient not only at 532 nm, but also at 355 nm, using antion of the triangles on the radius scale and their geometrical
interferometric technique. width is varied, such that we have several hundred different
Data were sampled at 100 m horizontal and 15 m verticalinversion windows within which the eight basis functions are
resolutions and averaged to achieve the desired level of rardistributed. An example that shows this distribution of trian-
dom uncertainty. For standard products, this is typically 1 kmgle functions is shown in Fig. 1 iMller et al.(19993. We
horizontally and 30 m vertically for backscatter and depolar-solve the equations for 91 inversion windows and for each in-
ization and 1 km horizontally and 150 m vertically for aerosol version window the inversion is carried out for a grid of com-
extinction. However, for the input to the microphysics re- plex refractive indices. The real part varies between 1.325
trieval for this study, data were averaged to 5 minutes andand 1.8. The step size is 0.025. The imaginary part varies
150 m vertically to make the random error insignificant (0.1- between 0 and 0.1. The step size is 0.003.
3%); studies are underway with regard to quantifying sys- We apply parallelization in the computations, which in-
tematic errors. Thus we had had optimum conditions forcreases data processing speed. For eg@ch 20 data set,
this first test of the automated software as these errors aree run the algorithm for the error-free data, and we carry
more than adequate for trustworthy microphysical retrievalsout eight runs in which the data are distorted by a ran-
(Muller et al, 1999h Veselovskii et al. 2002 Béckmann  dom noise of 15%; see alséeselovskii et al.(2002 and

et al, 2005. Sawamura et a(2014). Details on error analysis will be pre-
sented by Miller et al. (2014a).
2.2 Automated, unsupervised inversion algorithm In the manual version of the algorithm we used to aver-

age all individual solutions that fell within a prescribed value

HSRL-2 is the motivation for developing the next genera- (threshold value) of the discrepancy, as describetiiler
tion of inversion methodology that allows us to process aet al.(19990 andVeselovskii et al(2002. This discrepancy
high volume of data in an unsupervised, automated manner ithreshold was determined from simulation studies. We opti-
real time with significantly enhanced accuracy of the inver- mized the automated scheme, compared to the manual ver-
sion data products. Our ultimate goal is to develop softwaresion, using simulation studies. We found that using the 500
for application with a space-borne version of the multiwave- solutions with the lowest discrepancies provide us with bet-
length HSRL. ter inversions results. Details will be presented by Miiller et

The automated, unsupervised inversion software has beeal. (2014a).
used for the analysis of the measurements. Details of the soft- All in all, 573 300 individual solutions were generated for
ware package and results of simulations studies including uneach data point on 17 July 2012 (see Fig. 4). The data pro-
certainty analysis will be presented in two contributions thatcessing time was 22 s for each optical data point, i.e., the
are in preparation (Muller et al., 2014a, b). In the following error-free and eight error runs combined with each of the 91
we summarize the algorithm and some results of the simulainversion windows and the grid of 700 complex refractive
tion studies. indices. These results were used to produce the profiles of

The mathematical equations that are used for solving thanicrophysical properties shown in Fig. 4. We obtain mean
inverse ill-posed problem are the same used for the manvalues and uncertainties that are defined in terms of 1 stan-
ual version of the inversion algorithm. The manual versiondard deviation.
has been applied in a multitude of studies by different lidar
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Simulation studies were carried out for the automated ver- —20120700 | )"

sion to test the performance. A sensitivity analysis was done edimiid ‘
for two different error model in order to test the robustness of 20120715 |
the automated software from the mathematical point of view44 N [~2012077 &g
and for testing if the knowledge of the error models that de- —20120721 [

==20120722

scribes the measurement errors of the optical input data i It
==20120725

significant. One error model is based on extreme error simu
lations in which each measurement channel is given the max ws
imum value of an assumed measurement error, e.g., 5, 1(. .
15, or 20 %. This kind of sensitivity analysis with respect to 42 N
measurement errors had previously been done for the mar
ual inversion algorithm. In the automated version, we usec
the same measurement error scenarios, but we introduced
Gauss error-distribution model in addition. This means that,
for example, for a measurement error of 15% in a measuregg® N
ment channel, this 15 % measurement error has a Gauss-lik
probability distribution. A weighting of the measurement er-
ror is thus introduced. o o ° o
To give an impression on the simulation results, we sum- 72 W 70 W 68 W 66 W
marize a few numbers. We tested 2880 optical data sets thadig e 1. Flight tracks of B-200 King Air during TCAP 2012.
are representative of 48 mono-modal particle size distribu-|ight days are given in the legend. Each flight took approximately
tions: mean radii are between 20 and 300 nm. Geometricag.5—4 h.
standard deviation (mode width) was 1.5, 1.7, 1.9, 2.1, 2.3,
2.5. Effective radii were between 30nm and 2.44 um. Weand space, errors introduced by the inversion methodology,
tested real parts of 1.4, 1.5, 1.6, and 1.7 and we will includeand constraints/assumptions used in the data inversion, as for
1.3 in the next round of simulations. Imaginary parts wereexample the fact that we cannot retrieve the exact shape of
0, 0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.015, 0.0Zhe particle size distribution. The main question is if there is
0.025, 0.03, 0.035, 0.04, 0.045, and 0.05. We tested measurerpattern in the uncertainties of the imaginary part, e.g., a pat-
ment errors in which each channel of th&-82« system has  tern in which specific combinations of large/small Angstrom
5, 10, 15, and 20 % error. We tested the extreme error modeéxponents, high/low lidar ratios, and ratios of lidar ratios
(Mdller et al, 19999 and the model in which the errors have show these high errors in the imaginary part.
a Gauss-like probability distribution. We also tested four er-
ror scenarios in which measurement uncertainties differ be-
tween the different measurement channels.
The preliminary analysis shows the following results. Ef- 3 Results and discussion
fective radius can on average be retrieved to 30% uncer-
tainty. Uncertainty in the volume concentration can reachThe first phase of TCAP was characterized by outflow of pol-
50 %, but in most cases stays within 30 %. An exact quan{ution out over the western Atlantic Ocean. Smoke from fires
tification of the meaning of “most cases” will be given in that occurred in Canada may have episodically contributed to
our future contributions. Surface-area concentration can behis outflow. A description of the air circulation pattern in the
retrieved to 30 % or better. Number concentration shows arperiod from 9 to 25 July 2012 is given IBerg et al.(2014).
uncertainty of 70 % or less in approximately 50 % of the sim-  Figure 1 shows the flight tracks of the aircraft missions,
ulations. Most of the simulations stay within 100 % uncer- see also Fig. 2 iBBerg et al.(2014. HSRL-2 acquired data
tainty, but we find outliers. The real part can be retrieved toon 11 days between 7 and 30 July 2012, which includes the
0.05 in approximately 50—70 % of the cases. The main chaliransit flights between NASA Langley Research Center, VA,
lenge is the imaginary part. It is less than 50 % in 50 % of theand Barnstable Airport (41.6N, 70.29 W), MA. The B-
simulations. The other 50 % of simulated cases shows uncer200 flew approximately 3—-3.5h during each of the research
tainties that can reach several 100 % uncertainty. We are cuiflights. In this contribution we focus on the measurements
rently analyzing these cases. We also look into difference otcarried out on 17, 22 and 25 July 2012.
retrieval errors with regard to the use of the two error models Optical depths measured with the AERONET Sun pho-
applied to the optical input data. tometer at Barnstable Airport varied between 0.06 and 0.6 at
We assume that we will not be able to retrieve the imag-500 nm (level 2.0 data). Maximum daily-mean optical depth
inary part to better than 0.005We believe than any better was 0.46 on 18 July and 0.33 on 17 July 2012. Another
accuracy is unrealistic in view of the limited optical data set AERONET Sun photometer was operated at a coastal station
of 38+ 2« data, measurement errors, data averaging in timeat 41.3 N, 70.55% W. Optical depth varied between 0.046

J
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Backscatter Angstrom
Exponent (5327355)
162 163 154 155

Aerosol Extinction (5632 nm) Lidar Ratio (632 nm) Lidar Ratio (355 nm)
152 153 154 155

Angstrom Exponent (5632/355)
152 153 154 155

Time 162 153 154 155

152 153 154 155

Altitude (km)

ifRes 0
km) 26 64 101 137

26 64 101 137

Figure 2. Curtain plot of the HSRL-2 measurement on 17 July 2012, 15:12-15:55UTC. The time axis is in decimal hours. The distance
flown during this time is shown on the bottamaxis. Shown are the mean values of the profileg¢apfthe extinction coefficient at 532,

the lidar ratios afb) 532 and(c) 355 nm,(d) the extinction-related an@) the backscatter-related Angstrém exponent a/333 nm. Each

profile is based on a 10 s signal sampling rate. The vertical resolution is 150 m.

and 0.5 (at 500 nm). Daily-mean optical depth was 0.39 on  Time 16.00 16.02 1604 16.06 16.08
18 July and 0.24 on 17 July 2012; level 1.5 data. 5 T T T

The mean height of the pollution layers did not exceed
4 kma.s.l. with few exceptions in some portions of the flight 4
tracks. The G-1 flew inside the pollution layers at various
flight levels, and also carried out spirals from near sea level
to the top of the pollution layers on several occasions. Details
of the flight patterns are described Bgrg et al(2014. The
B-200 flew at 8-9km a.s.l., and thus always stayed above
the pollution layers. For our comparison we selected only
those flight segments during which the G-1 carried out spi-
rals during or shortly after overflights by the B-200 aircratft.
The maximum allowed distance from the HSRL profile to the
approximate center of the spiral was 35 km. The time differ-
ence to the beginning or end of the spiral of the G-1 was at
most 22 min. The spiral took about 11-12min to complete,Figure 3. Curtain plot of aerosol typing of measurements from
and covered about 8 km on 17 July. In this way we obtained16:00 to 16:05UTC on 17 July 2012. Aerosol typing was carried
the best possible data from the G-1 for our comparison studyout according to the scheme described Byrton et al, 2012.

Figure 2 shows the example of the HSRL-2 measurement
on 17 July 2012. Most of the aerosol particles were below
3kma.s.l. A plume reaching heights up to 5 km was encoun

tgr_ed during a short segment of the flight. Extinction cqef- tern on 17 July 2012 and determined the most likely origin
ficients remained comparably stable throughout the fI|ght.of the air mass. For this work the authors used the Weather

Optical depth over the ocean generally varied between 0'§esearch and Forecasting (WRF) modggmarock et al.
and 0.45 at 355nm and between 0.2 and 0.25 at 532nm 05008. Two nested domains were used. The outer domain

17 July 2012.
The extinction-related Angstrém exponent was on averag

-

Pure
Dust
Dus
MixTy

- Marine

Polluted
Marine

-Urbcn

Fresh
Smoke

-Smoke

‘et al.(2014 carried out a detailed analysis of the air flow pat-

contained most of North America and the inner domain con-
12-17 Th h-lik ¢ the back | ained the southeastern part of Canada and the northeastern
-2-1.7. The patch-like structure of the backscatter-relateq,, ot the US, The WRF model results were used as input

Angstrom exponent shows an inhomogeneous structure wit or back-trajectory computations with the FLEXPART model
values varying between 1 and 2.5. The lidar ratios at 355 an(EStohI et al, 1998 Brioude et al, 2013. The air-mass anal-

532nm varied on average between 50 and 70sr in the pOlluy'/sis shows that on 17 July 2012, the airflow was from west-

tion layers. The lidar ratio at 355 nm was gim_ilfar or slightly ern Canada across the Great Lakes to the Atlantic Ocean.
lowerto the o.r.1e ats532nm. There was no s!gmﬂcant decreas%atellite images point to the presence of smoke particles. We
of the An_gst.rom exponent gnd the I.|dar ratios near th? 0C€aNssume that the smoke mixed with the urban haze over the
surface, indicating that marine particles did not significantly northeastern US before it was transported out over the North
contribute to the total aerosol load in the marine boundaryAtlantic

IayFe_r. 3 sh its of th | . di Berg et al.(2014 analyzed in detail the optical properties

rl]gure hSd OIWS rzsu ts_bo dtbe aeroso t?’ggg ac_ﬁ?r 'NYand the chemical composition of the pollution particles mea-

tol the met ° odog3f/ e;)scrlhe Bt((rjton etha, ¢ 2. The sured aboard the G-1 aircraft on 17 July 2014. The authors
plume consisted of urban haze and patches of sy find that organics accounted for 73 % of the mass fraction of
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Lidar Ratio (355 nm) Angstrom Exponent (532/355) BCE’%Z%%‘%?'(&E %gg{n
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Time16.00 16.02 16.04 16.06 16.08 1600 1602 16.04 16.06 16.08
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Altitude (km)
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T

Figure 4. (Top) Curtain plots of an 5 min flight segment that was used for the data inversion. (Bottom) Microphysical parameters retrieved
from the inversion method (red) and from the G-1 in situ measurements (black) on 17 July 2012. The measurement time was 16:00—
16:05 UTC for the inversion results and 15:45-15:56 UTC for the in situ data. The lidar measurements were obtained 2 km from the approxi-
mate G-1 spiral center. The inversion results represent height intervals of 150 m. The in situ data were taken with considerably higher spatial
resolution. Error bars of the individual in situ data points are composed of two types, counting and sizing. The error bars denote 1 standard
deviation.

non-refractory particles. Sulfates accounted for 19 %. Am-We generated nearly 11.5 million individual solutions from
monium and nitrates contributed 6 and 3 % to the mass fracwhich 2000 solutions were accepted according to the math-
tion, see also Fig. 12 dBerg et al.(2014. The amount of ematical and physical constraints used in our algorithm. We
fresh and agedsoot particles, and biomass burning aerostthen produced the profiles of the microphysical particle pa-
particles was measured using the miniSPLAT single particlerameters from these 2000 solutions.

mass spectrometezélenyuk et al.2010. The authors found Figure 4 shows that effective radius does not significantly
an increased level of biomass burning particles and concludgary with height. It is approximately 0.2 um, which is char-
that the biomass burning smoke originated from long-rangeacteristic of urban aerosols and/or smoke, éfiiller et al.
transport from Canada. Seven-day back-trajectory analysi§2007), and references therein. The inversion results agree
and fire-spot detection showed that the particles most likelywithin error bars with the in situ measurements. The sam-
originated from wildfires in western Canada; see Fig. 13 inpling volume of the in situ probe is significantly smaller than
Berg et al.(2014). the sampling volume of the lidar. Small-scale variations in

We selected the measurement from 16:00 to 16:05 UT(particle effective radius cannot be resolved with our inversion
for the inversion of the optical data into microphysical par- methodology. Number, surface-area and volume concentra-
ticle parameters. Note: the times given in the text and in thetion obtained from data inversion and in situ measurements
plots are in decimal hours. are close to each other.

Figure 4 shows the curtain plots for this 5min flight seg- The analysis was carried out very carefully, considered
ment. We averaged the individual optical profiles in this cut-off effects of aircraft inlets, calibration curves from air-
5min time segment, and we split the profiles into height craft instruments, collection efficiency factors of the in situ
layers of 150 m geometrical depth. We obtained 20 sets ofnstruments, errors that might arrive from the inversion, as
38+ 2« coefficients, which then were processed with our well as humidity growth factors that need to be considered in
automated algorithm. The data processing including errotthe in situ measurements.
analysis for these 20 data points took approximately 6 min.
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In general, the size range within which in situ instruments
collect particles is different from the size range used in the
data inversion. If the lower radius is changed in the inver-
sion scheme, for example from a lower to a higher value, ef-
fective radius increases and number concentration decreases.
An example of how changing the lower radius limit can al-
ter particle size parameters is given in Table W&fndinger
et al. (2002. This effect of variable lower and upper limits
must be considered in any kind of study that compares data
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from remote sensing instruments, which use data inversion 015

methods, to data from in situ probes. In our study, we com-

pare approximately the same lower radius range; i.e., inver- 0050l lunaa il
sion results use as a lower limit approximately 54 nm, and 05 10 15 20 25
the in situ measurements start measuring at approximately ANGSTROM EXPONENT

50 nm radius. With regard to the upper threshold, we used a
radius of approximately 6 umfor the inversion, and a radiusFigure 5. Correlation of Angstréom exponents measured with
of 5.35 um for the in situ data. HSRL-2 versus the effective radius (in um) obtained from data in-
Figure 5 shows the correlation of the Angstrém expo- version (boxes) and versus the effective radius measured in situ
nent measured with HSRL-2 versus the effective radius de{open stars): 17 July (black), 22 July (red), and 25 July (blue).
termined with the inversion algorithm and with the in situ
instruments, respectively. Figure 6 shows the correlation of
the effective radius, number, surface area, and volume coneéxponents measured with HSRL-2 (Fig. 5) may also explain
centration obtained from the lidar-data inversion and the inthe weaker correlation of the data products shown in Fig. 6.
situ measurements. We averaged the in situ data across 150 mMean values of the effective radius from data inversion
height intervals for this comparison; 17-56 data points weredre on average lower than the effective radius from the in
averaged in each of the height bins. The plots also show théitu measurements; see Fig. 6. The same holds true for num-
results for the measurements on 22 and 25 July 2012; oier concentration. We find the opposite behavior for surface
these two days spiral flights of the G-1 were carried out. Thearea and volume concentration. In view of the fact that this
number of data points that can be used for the comparison i& the first test of our automated software with experimen-
significantly smaller on these two days. tal data, and in view of the various error sources involved in
The correlation shown in Fig. 5 is comparably high for ef- both methods, we consider this comparison satisfactory. A
fective radius obtained with our inversion algorithm. Figure 6 more detailed comparison study will include data from three
shows a larger scatter of the correlation of effective radiusmore field campaigns that took place in 2013 and 2014.
between the effective radius from the inversion method and We computed uncertainty bars for the data points available
from the in situ measurements. This result has to be expecteiom both methods (150 m height intervals). Uncertainties
despite the high quality of the data we used from both methin number concentration are 34445 % and 30 %k 13 %
ods. We compare data products from two different methodsfrom in situ and from data inversion, respectively. Uncer-
i.e., Angstrom exponents and effective radius from HSRL-2tainties in surface-area concentration are 38 % % and
and particle size from in situ measurements. Several reasonk4 %=+ 7% from in situ and data inversion. Uncertainties
can be the cause of the weaker correlation; e.g., (1) there i#) volume concentration are 52%20 % and 21 %7 %.
no perfect collocation in the measurement space and tim&ffective radius shows uncertainties of 3&945% and
of the two instruments, (2) in situ instruments dry the par- 12%=2%. The error bars for effective radius from the in-
ticles before a humidity correction is applied, even thoughVversion are propagated from surface and volume error bars
a humidity correction did not seem necessary in the presen@ssuming no correlation, which may lead to overestimates
case, (3) the in situ measurements were taken with considof the uncertainty. This is a very simplified presentation of
erably higher vertical resolution (spirals) than the Angstromthe uncertainties from both methods. We have only a few
exponents measured with HSRL-2, and subsequently aveidata points available, the errors distribution is not Gauss dis-
aged to the vertical resolution that was used in the data intributed, and there are some outliers.
version of the HSRL-2 measurements, and (4) the atmo-
spheric volume observed by the lidar is considerably larger
than the measurement volume of the in situ instruments, and Conclusions
thus averaging effects of the observed air volume may play
a role, too. The weaker correlation between the effective ra\We presented the first results of aerosol measurements with
dius measured with the in situ instruments and the AngstronNASA Langley Research Center's High Spectral Resolu-
tion Lidar, HSRL-2. We used HSRL-2 data to test the
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Figure 6. Correlation between inversion results and in situ results for effective radius, number concentration (1/cm), surface-area concentra-
tion (um? cm—3), and volume concentration (ffram=3) on 17 July (black), 22 July (red), and 25 July (blue). Error bars denote 1 standard
deviation and describe the variation of the data points in the 150 m thick layers that were used in the data inversion. Each data point has
its own uncertainties, and it follows from the measurement uncertainties (in situ) and data inversion errors. The average uncertainty of each
of the four data products is mentioned in the text. Effective radius uncertainties are propagated from volume and surface-area uncertainties
without taking potential correlation into account, and therefore may be overestimated. The three data points of the in situ measurements
shown in Fig. 5 (effective radius above 0.31 um) are not shown in this figure.

performance of our newly developed automated, unsuper- The lidar microphysical retrievals are not as detailed as
vised inversion algorithm with experimental data for the first those made in situ aboard the G-1 aircraft. However, the cur-
time. HSRL-2 and the inversion software are being used taains of horizontally and vertically resolved microphysical

investigate the possibility of operating a 3 backscatt@rex- information enable characterization of the aerosol properties
tinction HSRL in space. Such an instrument could be part ofabove and below the G-1 flight altitude, and hence character-
NASA's ACE (Aerosol-Cloud-Ecosystems) mission. ization of the entire column. In particular, the lidar curtains

We analyzed the measurements from 17, 22, andbfthese aerosol properties will be important for TCAP radia-
25 July 2012 that were made during the first intensive ob-tive closure studies. The data from HSRL-2 can be used for
servation period (7—30 July 2012) of the Department of En-studies of aerosol direct and indirect effects, investigations of
ergy (DOE) Two-Column Aerosol Project (TCAP). TCAP aerosol—cloud interactions, assessment of chemical transport
took place over the Atlantic Ocean off the coast of Cape Codmodels, and air quality studies.

MA. Particle effective radius and Angstrém exponents indi- We continue to investigate the quality of our inver-
cate that urban haze and/or biomass-burning smoke was olsion data products. Additional data are available from the
served Muller et al, 2007 Alados-Arboledas et gl201%; DISCOVER-AQ campaigns that took place in California in
Nicolae et al. 2013. Chemical analysis carried out aboard January—February 2013, in Texas in September 2013, and in
the G-1 aircraft and simulations with the WRF model and Colorado in July—August 2014. We will further improve the
back-trajectory analysis also point to the presence of urbamuality of other data products like the imaginary part of the
haze and smoke particleBérg et al, 2014. We find a sat- complex refractive index that allows us to compute profiles
isfactory correlation of our data products with in situ mea- of the absorption coefficient and the single-scattering albedo.
surements of particle size distributions measured aboard thé/e will study the accuracy of retrieving these optical param-
DOE G-1 aircraft. eters as wavelength-dependent quantities.
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