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2Mondelēz International – R&D, Nutrition Department, 91400 Saclay, France
3Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK
4Formerly ILSI Europe a.i.s.b.l., Avenue E. Mounier 83, Box 6, B-1200 Brussels, Belgium
5Nutrigenomics Research Group, UCD Institute of Food and Health and UCD Conway Institute, Belfield, University College

Dublin, Dublin 4, Republic of Ireland
6Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach,

San Michele all’Adige, 38010 Trento, Italy
7Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton

SO16 6YD, UK
8Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University,

Maastricht, The Netherlands
9Nutrigenomics and Neurodegenerative Disease Prevention, Preventative Health Flagship, CSIRO, Animal, Food and Health

Sciences, Adelaide, Australia
10Microbiology and Systems Biology, TNO, Zeist, 3704 HE, The Netherlands
11Newtricious R&D B.V., Oirlo, 5808 AL, The Netherlands
12School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
13Department of Internal Medicine, University of Perugia, Perugia, Italy
14Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading,

Reading RG6 6AP, UK
15Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
16NIHR Southampton Biomedical Research Centre, Southampton University Hospital NHS Foundation Trust and

University of Southampton, Southampton SO16 6YD, UK

(Submitted 29 July 2014 – Final revision received 7 January 2015 – Accepted 18 May 2015)

Abstract

The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unre-

solved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the

most recent in a series produced by the International Life Sciences Institute’s European Branch (ILSI Europe). It is co-authored by the

speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge:

biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic,

gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations.

The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention

* Corresponding author: ILSI Europe a.i.s.b.l., Avenue E. Mounier 83, Box 6, 1200 Brussels, Belgium, fax þ32 2 762 00 44, email publications@ilsieurope.be

Abbreviations: CNS, central nervous system; ILSI, International Life Sciences Institute; LPS, lipopolysaccharide; MetS, metabolic syndrome; NAFLD,

non-alcoholic fatty liver disease; RCT, randomised controlled trial; T2DM, type 2 diabetes mellitus.

British Journal of Nutrition, page 1 of 14 doi:10.1017/S0007114515002093
q ILSI Europe 2015. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

B
ri

ti
sh

Jo
u
rn

al
o
f

N
u
tr

it
io

n

http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114515002093&domain=pdf


data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting

state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated

approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating

means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide

the much needed evidence to develop research portfolios that will inform new product development and associated health claims.

Key words: Low-grade inflammation: Biomarkers: Chronic diseases: Health claims

Introduction and overview of the focus of the
position paper

Inflammation is a central component of innate (non-specific)

immunity. In generic terms, inflammation is a local response

to cellular injury that is marked by increased blood flow,

capillary dilatation, leucocyte infiltration, and the localised

production of a host of chemical mediators, which serves to

initiate the elimination of toxic agents and the repair of

damaged tissue(1). It is now clear that the termination (alter-

natively known as resolution) of inflammation is an active

process involving cytokines and other anti-inflammatory

mediators, particularly lipids, rather than simply being the

switching off of pro-inflammatory pathways(2,3).

Inflammation acts as both a ‘friend and foe’: it is an essential

component of immunosurveillance and host defence, yet a

chronic low-grade inflammatory state is a pathological feature

of a wide range of chronic conditions, such as the metabolic

syndrome (MetS), non-alcoholic fatty liver disease (NAFLD),

type 2 diabetes mellitus (T2DM) and CVD(4,5). Although the

association between inflammation and chronic conditions is

widely recognised, the issue of causality and the degree to

which inflammation contributes and serves as a risk factor

for the development of disease remain unresolved. As will

be discussed, part of this uncertainty is due to a general lack

of sensitive and specific biomarkers of low-grade chronic

inflammation that can be used in human trials(1).

The present article results from an International Life

Sciences Institute (ILSI) Europe Workshop held in September

2013 in Granada, Spain entitled ‘Low-grade inflammation a

high grade challenge: biomarkers and modulation by dietary

strategies’, and aims to serve as an update to existing reviews

in the area of inflammation and health and its assessment and

modulation(1,6,7). In particular, the present article will focus on

the latest research findings in the areas of inflammation and

cardiometabolic, cognitive and gut health, and how early-life

nutrition and the macronutrient and plant bioactive compo-

sition of the adult diet influence inflammatory processes. It

will discuss existing and emerging methods used to quantify

inflammatory status in humans. Importantly, the article will

identify knowledge gaps and methodological limitations that

need to be addressed.

Exploring the role of inflammation in health and
chronic diseases

Low-grade inflammation in cardiometabolic disease

The role of inflammation in the early-stage pathophysiology

of atherothrombotic events has been recognised for over

20 years. Leucocyte recruitment into the sub-endothelial

compartment of damaged arteries initiates a cascade of

events mediated by leucocyte-derived inflammatory medi-

ators. In particular, chemokines and cytokines propagate

atherosclerosis via (1) increased chemokine production and

expression of endothelial adhesion molecules, stimulating

further leucocyte recruitment, (2) promoting lipid-laden

foam-cell formation, (3) initiating smooth muscle cell prolifer-

ation, and (4) inducing plaque instability and eventual

rupture(8,9). The ensuing thrombosis is also in large part

dependent on the inflammatory status of the ruptured plaque.

In addition to a direct role on events within the arterial wall,

inflammation is an important determinant of the multi-organ

cardiometabolic dysfunction, and the increased risk of

T2DM, NAFLD and CVD associated with obesity(10). Adipose

tissue hypertrophy is associated with immune cell infiltration,

in particular that of macrophages and T cells, and a local pro-

inflammatory milieu wherein key cytokines including TNF-a,

IL-6 and IL-1b impede the insulin signalling cascade to

induce insulin resistance(11,12). This ultimately leads to a dys-

regulation of glucose and lipid metabolism in adipose tissue,

skeletal muscle and liver. However, up to 30 % of obese indi-

viduals are considered metabolically healthy (MHO)(13), and

there is evidence to suggest that a lack of the typical elevation

in the inflammatory profile associated with obesity may

underlie this ‘protected’ MHO phenotype. For example, in

morbidly obese individuals, Barbarroja and co-workers

observed mean homeostatic model assessment for insulin

resistance (HOMA-IR) scores (insulin sensitivity index) of

3·31 and 11·48 in subjects with MHO (BMI 55 kg/m2) or who

were metabolically unhealthy obese (BMI 56 kg/m2), respect-

ively, which was associated with a 2- to 4-fold greater adipose

expression of inflammatory cytokines (TNF-a, IL-1b and IL-6)

between the two obese groups(14).

Inflammation plays a direct role in the progression of

NAFLD, the most common liver disorder in Western countries.

NAFLD comprises a spectrum of conditions ranging from

benign steatosis to non-alcoholic steatohepatitis characterised

by hepatocyte injury (hepatocyte ballooning and Mallory

bodies) and necroinflammation, and potentially to progressive

fibrosis that can lead to cirrhosis(15,16). The pathological

progression of NAFLD is considered to have a two-hit basis

(Fig. 1). The first hit, hepatocyte accumulation of fat, is

thought to arise due to an increased delivery of fatty acids

to the hepatocyte, an increase in hepatocyte fatty acid and

TAG synthesis, and decreased fatty acid oxidation. The resul-

tant excess of fat may result in lipotoxicity and a pro-inflam-

matory and pro-oxidative state (the second hit), which

ultimately induces cellular senescence, which, if unchecked,
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leads to fibrosis and cirrhosis. Hepatic inflammation is

mediated via the activation of local macrophages called

Kupffer cells. Currently, no medication or surgical procedure

has been approved for treating NAFLD or non-alcoholic

steatohepatitis with confidence. Considering the overall lack

of success in curbing global trends in the prevalence of

excess body weight, inflammatory processes are emerging as

a strong therapeutic target to reduce the risk of T2DM, CVD

and NAFLD in obese individuals.

Gut–systemic inflammatory associations

With recent significant advances in the ability to characterise

the gut microbiota in increasing detail, comes the recognition

of the importance of the microbiota not only in gastrointestinal

health, but also in systemic metabolism and cardiometabolic

health, with the immune system and inflammatory processes

central to gut–systemic tissue ‘cross-talk’. The human intestine

contains 1 £ 1013 to 1 £ 1014 bacterial cells, which outnumber

human cells by a factor of 10 to 1 and contain approximately

150 times as many genes as the human genome(17). Increasing

evidence indicates that the microbiota is significantly altered

through the ageing process(18,19) and in obesity(18), with

a deleterious decline in microbiota ‘richness’ and gene

expression diversity evident in both situations(18).

Gastrointestinal tract–microbiota interactions influence host

health, and in particular immune function, by promoting the

development and maintenance of the mucosal immune

system, protecting against pathogen invasion and maintaining

gastrointestinal tract barrier integrity(20). Gut permeability to

bacterial lipopolysaccharides (LPS), a potent inflammatory

stimulant, appears to be an important trigger for low-grade

systemic inflammation. LPS are found on the outer

membrane of Gram-negative bacteria such as Proteobacteria

(e.g. Escherichia coli), and serve as an endotoxin. In the

elderly, a higher count of LPS-producing bacteria in the

colon, along with a lower abundance of bifidobacteria(21,22),

a combination which is thought to promote increased gut

permeability(21), is likely to lead to higher plasma levels

of LPS (termed metabolic endotoxaemia). Through the

interaction with Toll-like receptor 4 on mononuclear cells,

microbiota-derived LPS may be an important trigger in the

development of inflammation and metabolic diseases(23). In

a recent dietary intervention study in male C57Bl/6 mice, the

alteration in microbiota profiles as a result of a high-fat diet

was strongly associated with gut permeability, endotoxaemia

and adipose tissue inflammation(24).

In addition to its role in low-grade inflammatory cardiome-

tabolic conditions, emerging evidence is suggesting that the

gut microbiota can influence the risk of high-grade auto-

immune inflammatory conditions such as type 1 diabetes

mellitus, coeliac disease, inflammatory bowel disease and

rheumatoid arthritis(25–27), the incidence of which has risen

dramatically since the 1940s. These conditions are now

thought to affect 5–10 % of those in Western societies(28).

Certain members of the gut microbiota have been shown to

induce mimics of human antigens and trigger the production

of autoantibodies responsible for aberrant immune responses

to normal human proteins and hormones including leptin,

peptide YY and ghrelin(29). It is not unreasonable to speculate

that the adverse impact of the energy-dense, nutrient-poor

Western-style diet on human gut microbiota and immune

system, which have both been finely tuned and honed

by high-fibre, high-polyphenol traditional diets over the

millennia, may therefore be an important contributor to the

environmental stimuli that trigger and progress autoimmune

conditions(30). A possible starting point when discussing the

underlying mechanisms by which diets rich in whole plant

foods or fermentable fibres can have an impact on immune

function and tolerance may be the recent demonstration that

butyrate, an important fermentation end product produced

by the gut microbiota from fibre, controls human dendritic

cell maturation, a key process in immune homeostasis, since

dendritic cells are considered as ‘gate keepers’ of the immune

system(31,32). In addition, butyrate induces murine peripheral

regulatory T-cell generation(33), acetate affects neutrophil

chemotaxis and oxidative burst, butyrate inhibits adipocyte–

macrophage inflammatory interactions(34), and propionate

reduces the inflammatory output of adipose tissue(35). Probio-

tic, fibre or polyphenol up-regulation of microbial activities

that control both the quantity and profile of bile acids returning

to the liver via the enterohepatic circulation with their sub-

sequent regulation of farnesoid X receptor and TGR5 is also

emerging as an important pathway linking the gut microbiota

with extra-intestinal physiological/immune function(33,36,37).

Low-grade systemic inflammation and neuroinflammation

Communication between the systemic immune system and the

central nervous system (CNS) is a critical but often overlooked

component of the inflammatory response to tissue injury,

Obesity Insulin resistance

Type 2 diabetes

Steatosis
(fatty liver)

Steato-
hepatitis/
cirrhosis

Inflammation
Oxidative stress
Necrosis
Fibrosis

1st hit

2nd hit

Fig. 1. Two-hit model of non-alcoholic fatty liver disease.
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disease or infection. Activation of highly conserved neuronal

and hormonal communication pathways in mammals drives

diverse CNS-regulated components of the inflammatory

response, including fever, neurogenic inflammation, descend-

ing anti-inflammatory mechanisms and a coordinated set of

metabolic and behavioural changes, including fatigue, anhe-

donia, depression and mild cognitive impairment. These

behavioural changes are collectively referred to as ‘sickness

behaviour’(38–40). Experimental studies have provided evi-

dence that activation of microglia, the macrophages of the

CNS, as well as the cerebral vasculature, plays a key role in

the development of these behavioural changes, by inducing

pro-inflammatory mediators, such as IL-1b, TNF-a and PGE2

in the CNS(38,41,42).

Much of what we know is derived from studies using

mimetics of bacterial and viral infection. Depending on the

stimulus used, these mimetics induce a transient response in

otherwise healthy subjects; for example, administration of

LPS results in enhanced production of IL-6 (approximately

80-fold) and IL-1b (approximately 4-fold), peaking at 3 h

after a challenge and returning to baseline at 24 h(32). CNS

responses to (patho)physiological stimuli, such as genuine

infections or low-grade inflammation as a result of the MetS,

are less well described.

Development of sickness behaviour in response to an infec-

tion is part of the normal response to fighting infection, and

can occur during low-grade sub-pyrogenic inflammation(41);

however, these adaptive responses are not always harmless.

Microglia have a very low turnover, and it has been suggested

that these long-lived cells have an innate memory, resulting in

a prolonged and heightened response under neuroinflamma-

tory conditions(43). A normal part of the homeostatic signalling

from the periphery to the brain, therefore, has the potential

to have a profound impact on brain disease initiation or

progression(44,45). In a recent prospective clinical study,

Alzheimer’s disease patients were followed for 6 months and

assessed for the presence of circulating cytokines, episodes

of microbial infection and cognitive decline. Patients with

both high levels of TNF-a (.4·2 pg/ml) at baseline and

microbial infection during the assessment period showed a

4-fold greater cognitive decline, relative to patients with low

levels of TNF-a (,2·4 ng/ml) at baseline and no infections(46).

Raised serum levels of TNF-a and IL-6, but not CRP,

are also associated with increased frequency of other

common neuropsychiatric symptoms observed in Alzheimer’s

disease patients, including apathy, anxiety, depression and

agitation(47).

Recently, the effects of LPS and a real infection (Salmonella

typhimurium) on cerebral endothelial and microglial acti-

vation were compared. While LPS administration resulted in

a robust but transient neuroinflammatory response, a genuine

infection induced a prolonged pro-inflammatory cytokine

response in the CNS, leading to microglial priming(48).

A detailed consideration of the impact and mechanistic basis

for the association between neuroinflammation and neuronal

and overall CNS function, cognition and the risk of age-related

cognitive decline and dementia is outside the scope of the

present review, and has been the topic of many recent

expert review articles(49–54).

Collectively, these data highlight inflammatory pathways as

important targets for strategies promoting healthy brain ageing

and reducing the risk of age-related cognitive decline.

Dietary modulation of low-grade inflammation

There is a substantial amount of evidence to suggest that many

foods, nutrients and non-nutrient food components modulate

inflammation both acutely and chronically(1,6). However, diet-

ary studies have been typically limited to measuring a small

number of blood markers of inflammation, often in the fasting

state, and these may not necessarily reflect inflammation in

tissue compartments or what happens in response to inflam-

matory challenges. This presents a significant limitation to

our understanding of diet/nutrient–inflammation interactions.

Previous ILSI Europe activities have dealt extensively with the

food/nutrition–inflammation interaction(6,7), and it is beyond

the scope of the present review to provide a systematic or

extensive coverage of this area. Instead, some specific

examples will be discussed.

Dietary fats and inflammation

Dietary fatty acids may affect inflammatory processes through

effects on body weight and adipose tissue mass and via an

impact on membrane and lipid raft composition and function.

Within the cell, membrane-derived fatty acids and their deriva-

tives can influence inflammation by serving as modulators of

NF-kB and PPAR-a/g transcription factor pathways(55), and

as precursors for a host of eicosanoid and docosanoid

oxidation products produced via the action of epoxygenases,

lipoxygenases and cyclo-oxygenases(56). Also, recent advances

in the field have uncovered NLRP3 (NACHT, LRR and PYD

domains-containing protein 3) inflammasome activation and

IL-1b signalling as a key sensor of SFA-mediated metabolic

stress in obesity and T2DM(57) and EPA- and DHA-derived

resolvins and protectins that actively ameliorate a pro-inflam-

matory state(58). Obesity significantly reduced DHA-derived

17-hydroxydocosahexaenoic acid, a resolvin D1 precursor,

and protectin D1 in adipose tissue, which may in turn have

pro-inflammatory consequences(59). Also, dietary EPA/DHA

supplementation within an obesogenic dietary challenge

restored endogenous adipose resolvin and protectin bio-

synthesis, concomitant with attenuated adipose inflammation

and insulin resistance(59). An elegant human study showed

that a relatively high dose of LC n-3 PUFA augmented anti-

inflammatory eicosanoid secretion and attenuated inflamma-

tory gene expression in the subcutaneous adipose tissue of

severely obese non-diabetic patients(60). Thus, there is much

recent information on novel mechanisms of action by which

dietary fatty acids of different classes influence inflammatory

processes, some acting in pro-inflammatory and others in

anti-inflammatory or inflammation-resolving ways.

There is some evidence, albeit not always consistent, for

pro-inflammatory effects of dietary SFA(1). Much of this evi-

dence comes from either in vitro or cross-sectional studies,

A. M. Minihane et al.4
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and there are limited randomised controlled trial (RCT) exam-

ining changes in SFA intake and inflammation in humans. The

LIPGENE RCT investigated the effects of substituting dietary

SFA with MUFA or as part of a low-fat diet, with or without

LC n-3 PUFA supplementation, in subjects with the MetS(61).

While a low-fat n-3 PUFA-enriched diet significantly reduced

the risk of the MetS(62), modifying dietary fat had no significant

effect on key biomarkers of cardiometabolic risk including

insulin sensitivity and the plasma inflammatory markers

assessed(63). However, there was clear modulation of

NF-kB-mediated inflammation and oxidative stress in the

postprandial state according to lipid composition(64,65). This

lack of impact of LC n-3 PUFA on the fasting plasma inflam-

masome in humans(66) is in line with previous human

studies(63,67), but contradicts the effects observed in a wide

variety of cell and animal models. However, as will be dis-

cussed in the section ‘Translating research into public health

benefit and novel products’, it is difficult to know whether

the output from these RCT truly demonstrates a lack of effi-

cacy or reflects insufficient dose and/or duration or poor

selection of fasting plasma biomarkers of inflammation,

which are insensitive to physiologically meaningful changes

occurring in key metabolic tissues such as the liver and

adipose tissue.

As with other common phenotypes, there is evidence emer-

ging that the associations between dietary fat composition and

inflammation are influenced by common gene variants(68). In

the LIPGENE study, SNP in the genes encoding the anti-

inflammatory peptide adiponectin (ADIPOQ) and its receptor

(ADIPOR1) have been shown to interact with SFA to modulate

the effect of dietary fat modification on insulin resistance(69),

and using a case–control approach, it was observed that a

common SNP of the C3 gene was related to the risk of the

MetS, but more importantly, the impact of this was greatly

accentuated by high plasma levels of SFA(70). Also, the combi-

nation of polymorphisms in genes encoding IL-6, lymphotoxin

a (LTA) and TNF-a had an additive effect, which interacted

with plasma fatty acid status to modulate the risk of the

MetS(71). Grimble et al.(72) demonstrated that the ability of

LC n-3 PUFA to decrease TNF-a production is influenced by

inherent TNF-a production and by polymorphisms in the

TNF-a and LTA genes.

Inflammation in the postprandial state is likely to contribute

to the pathological impact of exaggerated postprandial

lipaemia(73). Although there has been some investigation of

the impact of meal fatty acid composition on non-fasting

inflammatory biomarkers, the data thus far remain inconsist-

ent(73). It has been reported that in overweight men, plasma

IL-6, TNF-a and soluble vascular adhesion molecule-1 concen-

trations decreased after an n-6 PUFA-rich meal, while markers

were increased after a SFA-rich meal(74). In contrast, Manning

et al.(75) showed that high-fat meals increased IL-6, indepen-

dent of the type of fatty acid, and had no impact on IL-8

and TNF-a concentrations.

Dietary carbohydrates and inflammation

Besides postprandial lipaemia, postprandial glucose is

an independent predictor of diabetes and CVD, an effect

which may be mediated through oxidative stress and

inflammation(76). Importantly, there appears to be no

glycaemic threshold for reduction of either microvascular or

macrovascular complications. The progressive relationship

between plasma glucose and the risk of CVD extends well

below the diabetic threshold(77,78).

Acute glucose variations from peaks to nadirs include

postprandial glucose excursions that can be described

by two components. The first component, which is the

duration of the postprandial glucose increment, is a major

contributor to chronic sustained hyperglycaemia, while the

second component, which is the magnitude of the post-

prandial rise, is more often a reflection of glucose variability.

It is difficult to discriminate between the contributions of

these two components of dysglycaemia. It seems that

both contribute to the two main mechanisms that lead to

diabetic and cardiovascular complications, namely excessive

protein glycation and activation of oxidative stress and

inflammation.

Although mechanistic evidence indicates a positive corre-

lation between the glycaemic index and load of the diet and

low-grade inflammation, intervention studies, to date, do not

convincingly support this. Hu et al.(79) observed a stepwise

relationship between dietary glycaemic index and oxidative

stress markers in healthy adults. Furthermore, high-glycaemic

index carbohydrates increase NF-kB activation and NF-kB

binding in mononuclear cells of young, lean healthy

subjects(80). Diets low in glycaemic load and high in whole

grains may have a protective effect against systemic

inflammation in diabetic patients, as reviewed elsewhere(81).

Consistent with this, epidemiological studies have shown an

inverse relationship between dietary fibre and CRP levels.

Both the DASH diet (naturally high in fibre, i.e. 30 g fibre/d)

and a fibre-supplemented usual diet (30 g psyllium fibre/d)

decreased CRP concentrations in lean normotensive

subjects(82). In contrast, a high-carbohydrate, low-fat diet

with a relatively high dietary fibre and complex carbohydrate

content, within the context of a lifestyle intervention

programme, has been shown to reduce diabetes incidence

in the long term by 50 %(83). The prominent role of the type

of carbohydrate has also been illustrated in studies showing

that dietary carbohydrate modification, i.e. an oat/wheat/

potato diet, up-regulated sixty-two genes related to stress,

cytokine–chemokine-mediated immunity and IL pathways

compared with a rye–pasta diet(84). These differences in the

inflammatory response have been ascribed to differences in

the early insulin response and the resultant late hypogly-

caemia in the oat/wheat/potato group.

Taken together, studies have suggested that healthy eating

patterns characterised by reduced postprandial glycaemia

and lipaemia are associated with reduced concentrations of

markers of low-grade inflammation.
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Plant bioactive compounds and inflammation

Recent prospective cohort data suggest that improved

cognitive function and a reduced risk of age-related neuro-

degenerative diseases, associated with increased fruit and

vegetable intake(85–87), may be in large part attributable to

intake of specific flavonoids(87), and may involve an effect

on inflammatory processes (Table 1). In particular, increased

consumption of total flavonoids was positively associated

with episodic memory in middle-aged adults(88) and with a

reduced rate of cognitive decline in adults aged 70 years

and over(89). The anthocyanin group of flavonoids, with cer-

tain soft fruits providing the most significant dietary source,

has emerged as being particularly potent. In the Nurses’

Health Cohort, greater intakes of blueberries and strawberries

were associated with slower rates of cognitive decline, with a

high intake of soft fruits estimated to delay cognitive ageing by

up to 2·5 years(90). Furthermore, a large cross-sectional study

has also indicated that total flavonoid intake is inversely corre-

lated with serum CRP concentrations(91). In support of this

association, a number of dietary intervention studies have

provided evidence that dietary flavonoids are capable of

modulating inflammatory cytokines (e.g. TNF-a) and CRP

production(91–94). However, there are relatively few human

RCT investigating the anti-inflammatory and cognitive effects

of flavonoids (Table 1).

Although the effects of flavonoids were originally ascribed

to an antioxidant action, it is now clear that levels achieved

in biological tissues may not be sufficient to act in this way.

Evidence indicates that flavonoids are capable of acting in

a number of other ways that may result in their targeting

of inflammation, including (1) the modulation of intracellular

signalling cascades that control neuronal survival, death and

differentiation; (2) an impact on gene expression and (3) inter-

acting with the mitochondria(95–98). In particular, emerging

evidence suggests that dietary flavonoids may exert neuro-

protective effects by suppressing the activation of microglia,

which mediate inflammatory processes in the CNS (see the

earlier section). Although rather complex, the main anti-

inflammatory properties of flavonoids include (1) an

inhibitory role in the release of cytokines, such as IL-1b and

TNF-a, from activated microglia; (2) an inhibitory action

against inducible NO synthase induction and subsequent NO

production in response to glial activation; (3) an ability to

inhibit the activation of NADPH oxidase and subsequent

generation of reactive oxygen species in activated glia;

and (4) a capacity to down-regulate the activity of pro-inflam-

matory transcription factors, such as NF-kB, through their

influences on a number of glial and neuronal signalling

pathways(99,100). However, almost all mechanistic studies

have been carried out in vitro at rather supraphysiological

concentrations, with limited research on animal models and

scarce data from human RCT.

Early-life nutrition and inflammation

During development, the human embryo and fetus undergo

an enormously complex series of changes in both cell type T
a
b

le
1
.

D
ie

ta
ry

fl
a
v
o
n
o
id

s
a
n
d

in
fl
a
m

m
a
ti
o
n
:

e
v
id

e
n
c
e

fr
o
m

e
p
id

e
m

io
lo

g
ic

a
l
a
n
d

in
te

rv
e
n
ti
o
n

s
tu

d
ie

s

R
e
fe

re
n
c
e

S
u
b
je

c
t

d
e
s
c
ri
p
ti
o
n

P
ro

d
u
c
t

D
o
s
a
g
e
/d

u
ra

ti
o
n

o
f

in
ta

k
e

R
e
s
u
lt
s

C
h
u
n

e
t

a
l.

(9
1
)

8
3
3
5

m
e
n

a
n
d

w
o
m

e
n
,

a
g
e

1
9

y
e
a
rs

a
n
d

o
v
e
r

T
o
ta

l
fl
a
v
o
n
o
id

D
ie

ta
ry

in
ta

k
e

R
e
d
u
c
e
d

p
la

s
m

a
c
o
n
c
e
n
tr

a
ti
o
n
s

o
f

C
R

P
(2

5
–

3
0

%
)

in
fl
a
v
o
n
o
id

c
o
n
s
u
m

e
rs

v
.

n
o
n
-c

o
n
s
u
m

e
rs

L
a
n
d
b
e
rg

e
t

a
l.

(1
3
9
)

1
1
9
4

–
1
5
9
8

w
o
m

e
n

F
la

v
o
n
o
id

-r
ic

h
fo

o
d
s

D
ie

ta
ry

in
ta

k
e

R
e
d
u
c
e
d

p
la

s
m

a
c
o
n
c
e
n
tr

a
ti
o
n
s

o
f

C
R

P
(2

1
%

),
IL

-1
8

(2
0

%
)

a
n
d

T
N

F
-R

2
(8

%
)

fo
r

$
1

s
e
rv

in
g
s
/d

v
.

,
1

s
e
rv

in
g
/m

o
n
th

E
d
ir
is

in
g
h
e

e
t

a
l.

(1
4
0
)

T
w

e
n
ty

-f
o
u
r

o
v
e
rw

e
ig

h
t

m
e
n

a
n
d

w
o
m

e
n

S
tr

a
w

b
e
rr

y
a
n
th

o
c
y
a
n
in

s
S

in
g
le

d
o
s
e
/6

h
R

e
d
u
c
e
d

c
o
n
c
e
n
tr

a
ti
o
n
s

o
f

C
R

P
(1

3
%

)
a
n
d

IL
-6

(1
6

%
),

6
h

fo
llo

w
in

g
a

h
ig

h
-c

a
rb

o
h
y
d
ra

te
,

m
o
d
e
ra

te
-f

a
t

m
e
a
l,

b
u
t

n
o

re
s
u
lt
s

o
b
s
e
rv

e
d

fo
r

T
N

F
-a

a
n
d

IL
-1
b

S
te

p
to

e
e
t

a
l.

(1
4
1
)

T
h
ir
ty

-s
e
v
e
n

n
o
n
-s

m
o
k
in

g
m

e
n
,

a
g
e

1
8

–
5
5

y
e
a
rs

B
la

c
k

te
a

1
0
5
0

m
g

te
a

e
x
tr

a
c
t/

6
w

e
e
k
s

D
e
c
re

a
s
e
d

p
la

te
le

t
a
c
ti
v
a
ti
o
n

(m
e
a
n

5
·8

4
v
.

6
·6

0
%

)
a
n
d

p
la

s
m

a
C

R
P

c
o
n
c
e
n
tr

a
ti
o
n
s

(m
e
a
n

0
·7

6
v.

0
·9

7
m

g
/l
)

in
th

e
tr

e
a
tm

e
n
t

g
ro

u
p

v
.

p
la

c
e
b
o

g
ro

u
p

K
a
rl
s
e
n

e
t

a
l.

(1
4
2
)

1
2
0

m
e
n

a
n
d

w
o
m

e
n
,

a
g
e

4
0

–
7
4

y
e
a
rs

A
n
th

o
c
y
a
n
in

e
x
tr

a
c
t

fr
o
m

b
ilb

e
rr

ie
s

a
n
d

b
la

c
k
c
u
rr

a
n
t

3
0
0

m
g
/d

fo
r

3
w

e
e
k
s

D
e
c
re

a
s
e
d

p
la

s
m

a
c
o
n
c
e
n
tr

a
ti
o
n
s

o
f

IL
-8

(2
5

%
),

IF
N

-a
(1

5
%

)
a
n
d

R
A

N
T

E
S

(1
5

%
)

in
th

e
tr

e
a
tm

e
n
t

g
ro

u
p

v
.

p
la

c
e
b
o

g
ro

u
p
,

b
u
t

n
o

re
s
u
lt
s

o
b
s
e
rv

e
d

fo
r

C
R

P
O

y
a
m

a
e
t

a
l.

(9
2
)

T
h
ir
ty

h
e
a
lt
h
y

s
m

o
k
e
rs

,
m

e
a
n

a
g
e

3
7

y
e
a
rs

G
re

e
n

te
a

c
a
te

c
h
in

s
C

o
n
tr

o
l
d
o
s
e

0
m

g
,

m
id

d
le

d
o
s
e

8
0

m
g

a
n
d

h
ig

h
d
o
s
e

5
8
0

m
g
;

2
-w

e
e
k

in
te

rv
e
n
ti
o
n

D
e
c
re

a
s
e
d

c
o
n
c
e
n
tr

a
ti
o
n
s

o
f

8
-O

H
d
G

(2
0

%
),

IL
-6

(4
2

%
)

a
n
d

s
o
lu

b
le

F
a
s

(2
5

%
)

in
th

e
h
ig

h
-d

o
s
e

g
ro

u
p

v
.

c
a
te

c
h
in

-f
re

e
g
ro

u
p

a
t

d
a
y

1
4
,

b
u
t

n
o

re
s
u
lt
s

o
b
s
e
rv

e
d

fo
r

IL
-1
b

W
id

la
n
s
k
y

e
t

a
l.

(1
4
3
)

S
ix

ty
-s

ix
m

e
n

a
n
d

w
o
m

e
n
,

a
v
e
ra

g
e

a
g
e

5
4

y
e
a
rs

B
la

c
k

te
a

9
0
0

m
l/
d

fo
r

4
w

e
e
k
s

N
o

e
ff

e
c
ts

o
b
s
e
rv

e
d

fo
r

p
la

s
m

a
C

R
P

a
n
d

u
ri
n
a
ry

8
-O

H
d
G

c
o
n
c
e
n
tr

a
ti
o
n
s

M
e
lle

n
e
t

a
l.

(1
4
4
)

F
if
ty

m
e
n

a
n
d

w
o
m

e
n

w
it
h

c
o
ro

n
a
ry

d
is

e
a
s
e
,

m
e
a
n

a
g
e

5
8

y
e
a
rs

M
u
s
c
a
d
in

e
g
ra

p
e

s
e
e
d
s

1
3
0
0

m
g
/d

fo
r

4
w

e
e
k
s

N
o

e
ff

e
c
ts

o
b
s
e
rv

e
d

fo
r

p
la

s
m

a
C

R
P

a
n
d

IL
-6

c
o
n
c
e
n
tr

a
ti
o
n
s

H
e
in

z
e
t

a
l.

(1
4
5
)

1
2
0

w
o
m

e
n
,

a
g
e

3
0

–
7
9

y
e
a
rs

Q
u
e
rc

e
ti
n

5
0
0

–
1
0
0
0

m
g
/d

fo
r

1
2

w
e
e
k
s

N
o

e
ff

e
c
ts

o
b
s
e
rv

e
d

fo
r

p
la

s
m

a
IL

-6
o
r

T
N

F
-a

c
o
n
c
e
n
tr

a
ti
o
n
s

C
R

P
,

C
-r

e
a
c
ti
v
e

p
ro

te
in

;
T

N
F

-R
2
,

T
N

F
re

c
e
p
to

r
2
;

IF
N

-a
,

in
te

rf
e
ro

n
-a

;
R

A
N

T
E

S
,

re
g
u
la

te
d

o
n

a
c
ti
v
a
ti
o
n
,

n
o
rm

a
l
T

-c
e
ll

e
x
p
re

s
s
e
d

a
n
d

s
e
c
re

te
d
;

8
-O

H
d
G

,
8
-h

y
d
ro

x
y
d
e
o
xy

g
u
a
n
o
s
in

e
.

A. M. Minihane et al.6

B
ri

ti
sh

Jo
u
rn

al
o
f

N
u
tr

it
io

n



and cell number. Each of these changes takes place in a strictly

choreographed series, and disruption of the process can lead

to dramatic and long-lasting consequences. There are

many recent summaries of the processes involved(101). In

humans, this was most clearly demonstrated in the Second

World War, when Dutch women were placed under famine

conditions following a railway workers’ strike (the Dutch

Hunger Winter)(102,103). Studies on the offspring of women

who were pregnant at this time have shown clearly that

women who were pregnant in the first trimester gave birth

to babies who would go on to develop a much wider spec-

trum of health problems than babies born to women who

were in the second or third trimester, though these offspring

still would continue to show health problems(104).

Factors other than undernutrition can also have both short-

and long-term consequences. Of particular relevance, obese

women give birth to babies with a higher risk of both small

for gestational age and large for gestational age, of compli-

cations at birth and of developing the MetS(105,106). All these

cannot be explained by postnatal events, and are at least

partly explained by the phenomenon known as ‘fetal

programming’ or ‘developmental programming’(107,108). This

hypothesis states that nutrition-related exposures in utero

‘programme’ the baby to expect a postnatal nutritional

environment, and if a different one is experienced, then

there is a risk of the development of metabolic complications.

There have been refinements to the basic hypothesis and to

our understanding of the mechanisms involved(109–112); how-

ever, the fundamental observations remain unchanged and

unchallenged. How these associations are mediated is not

yet clearly demonstrated, but several hypotheses are being

tested. There is substantial support for nutrition altering the

epigenetic profile of the offspring, including hypermethylation

of cytokine receptors. Evidence indicates that low Fe status at

birth, which is associated with impaired lung function in chil-

dren, can result in reduced nephron number and decreased

levels of cell-cycle enzymes(113), suggesting that nutritional

deficiency during a critical phase of development can inhibit

organ growth. This fits with data showing that thymus

growth is reduced, and that this leads to changes in the

cytokine profile.

Maternal obesity also has dramatic effects on pregnancy

outcome. Again, there are many detailed reviews dealing

with this topic(107). The mechanisms seem to involve inflam-

matory responses, and increased cytokine levels have been

reported in the placenta and cord blood of babies born to

obese mothers. Whether, in humans, the placenta alone is

responsible is not clear, and it is quite likely that adipose

tissue itself, which becomes infiltrated with macrophages,

will produce increased amounts of pro-inflammatory cyto-

kines(114). The situation becomes more complex in obesity,

because in addition to the cytokines, or possibly because of

the cytokines, inflammation results in changes in Fe metab-

olism(115), and there is abundant evidence to show that

decreased Fe status during pregnancy has adverse effects on

the offspring(116–119). Obesity results in increased hepcidin

production(120,121). Hepcidin is a negative regulator of Fe

absorption(122), and lower Fe status in the mother before

birth is associated with an increased risk of wheezing in the

children (W Bright, G Devereux, HJ McArdle, unpublished

results). Thus, decreased Fe status may be an additional risk

factor in obese mothers.

Translating research into public health benefit and
novel products

Biomarkers of inflammation in human nutrition studies

As explained previously, inflammation is a normal process,

and there are a large number of cells and mediators involved;

measurement of these is often used as a ‘biomarker’ of inflam-

mation, i.e. an indicator that inflammation is occurring. These

cells and mediators are largely involved in, or are produced as

a result of, the inflammatory process, irrespective of the trigger

or its location in the body, and are common to all inflamma-

tory situations(1). To monitor inflammation in a meaningful

way, the markers used must be valid: they must reflect the

inflammatory process under study and must be predictive of

future health status. The range of potential biomarkers of

inflammation was considered by an Expert Group of ILSI

Europe, with the aim of identifying robust and predictive mar-

kers, or patterns or clusters of markers, which can be used to

assess inflammation in human nutrition studies in the general

population; markers indicative of a specific inflammatory

pathology (e.g. rheumatoid arthritis) and/or in less accessible

tissue sites (e.g. in lung lavage fluid or in intestinal biopsy

material) were not considered to be relevant to more healthy

populations(7). Currently, there is no consensus as to which

markers best represent low-grade inflammation(6), or differen-

tiate between acute and chronic inflammation or between the

various phases of inflammatory responses(7). Therefore, a

range of blood cellular markers (e.g. total leucocytes, granulo-

cytes and activated monocytes) and soluble mediators (cyto-

kines and chemokines (TNF, IL-1, IL-6, IL-8, CC chemokine

ligand 2 (CCL2), CCL3, CCL5), adhesion molecules (vascular

cell adhesion molecule-1, intercellular adhesion molecule-1,

E-selectin), adipokines (adiponectin) and acute-phase

proteins (CRP, serum amyloid A, fibrinogen)) are frequently

measured. Some of these are associated with future risk of

CVD and with cardiometabolic health(1,6,7). However, there

are several key issues concerning the use of these markers

as determinants of low-grade inflammation. First, they are

non-specific acute-phase response and pro-inflammatory

response markers, and, by themselves, do not represent

metabolic low-grade inflammation. Second, even in healthy

individuals, there is wide variation in the measurements

made. This is because there are a number of modifying factors

that affect the concentration of an inflammatory marker at a

given time. These modifying factors include age, diet, body

fatness, physical fitness and genetics, among others(1).

One can question whether static measurements of single or

complex biomarkers are truly informative about health status,

reasoning from the concept that health is defined by the ability

to adequately adapt to everyday challenges(123). Measuring the

concentration of inflammatory markers in the bloodstream

under basal conditions is probably less informative and
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relatively insensitive compared with measurements of the

concentration change in response to a challenge. A number

of inflammatory challenges have been described. These

include an oral glucose load(80), an oral fat load(124,125),

acute exercise, administration of bacterial LPS(126), exposure

to UV irradiation(127,128) and vaccination. Although each of

these challenges has been used in nutritional studies, many

are poorly standardised, limiting the comparisons that can

be made. Most often, the markers measured in response to

challenges are those mentioned earlier in the context of

static basal measurements. Currently, a number of large

European consortia, i.e. PhenFlex (http://www.nugo.org/

everyone/42 701/7/0/30), NutriTech (http://www.nugo.org/

nutritech) and BioClaims (http://bioclaims.uib.es), are devel-

oping and validating the metabolic challenge test concept

for application in the assessment of health status, including

the study of inflammatory process markers(129).

The past decade has seen huge growth in innovation

in ‘omics’ technologies that provide enormous opportunities

for high-throughput biological sample characterisation, with

patterns and clusters of markers (signatures or fingerprints)

emerging as robust biomarkers of inflammation(89,130). The

enormous challenge in this era of big data is making biological

sense of different levels of data, including the transcriptome,

proteome, metabolome and clinical chemistry data. Novel

data analysis methodologies, such as machine learning,

offer large potential for identifying relevant data for specific

biological outcomes based on complex multidimensional

datasets(131). In addition, bioinformatic tools have been devel-

oped to interpret these complex data in the context of existing

biological knowledge in the literature and databases, also

termed network biology(132,133). These technologies will be

instrumental to the discovery of relevant biomarker signatures

that reflect ‘low-grade inflammation’ based on inflammatory

response networks connected to organ-specific metabolic

derailment.

With the coming of age of the ‘omics’ technologies and

bioinformatic tools, a large increase in the number, specificity

and sensitivity of candidate biomarkers of inflammation can

be expected in the next decade(134). A screening of the ‘Thom-

son Reuters IntegritySM Biomarker Database’ reveals that as of

May 2014, 945 candidate biomarkers of inflammation have

been described, of which only seventeen, including CRP,

TNF-a, serotransferrin and erythrocyte sedimentation rate,

have been developed into biomarker assays approved and

recommended by regulatory bodies for use in clinical studies.

This represents the classical biomarker gap: many candidate

biomarkers are identified based on preclinical and clinical

studies; however, due to relatively limited efforts in validation

and assay development, these are subsequently not further

developed(135). To accelerate biomarker development, a para-

digm shift in this area is needed; instead of single companies

developing a single biomarker assay, pre-competitive collab-

orations between different industrial, academic, and research

and technology organisations have the advantage of a more

efficient development process time- and cost-wise, by com-

bining a wide diversity of expertise, in the development of

a harmonised, standardised and accepted assay. In these

consortia, ideally, companies from nutrition, pharma and

diagnostics join forces in a pre-competitive way.

A major concerted effort should comprise (1) the discovery

of context-based biomarker signatures for the assessment of

the status of low-grade inflammation, (2) the development

of challenge tests that determine the inflammatory response

functionality in the context of metabolic stress-induced

low-grade inflammation, and (3) the development of the

identified biomarkers towards application in a clinically

accepted assay, with normative data.

Low-grade inflammation and health claims

The European Food Safety Authority (EFSA) guidance docu-

ment on scientific requirements for health claims related to

gut and immune function(136) specifically states that chronic

inflammation is associated with the development of a

number of diseases, and that ‘altering levels of markers of

inflammation might indicate a beneficial effect in the context

of “a reduction of disease risk claim”, if it can be demonstrated

that altering the levels of inflammatory markers is

accompanied by a reduced incidence of a disease for a

specific dietary intervention’. No additional specificity is

added for chronic low-grade inflammation. At present, the

European Union health claim register (http://ec.europa.eu/

nuhclaims) does not contain any authorised or non-authorised

health claims that specifically address the health benefit area

of suppression or control of low-grade inflammation.

To build strong health claims on nutrition for improving

inflammation control in the future, one of the key focus

areas should be the need for clinically relevant prognostic

marker(s) or marker signatures that reflect the inflammatory

state in a context-specific manner, which have been well vali-

dated and for which a robust standardised assay is available.

The lack of health claims is probably attributable to the fact

that, although numerous biologically plausible mechanisms

have been established to explain inflammation–disease

associations, no single biomarker or cluster of biomarkers

of inflammation has yet been robustly demonstrated to be

sufficiently predictive of future disease. Based on the EFSA

guidance on this topic(136) and the classification of candidate

biomarkers as described by the expert group of ILSI

Europe(137), the suggested strategy for building a EFSA

health claim dossier (Fig. 2) comprises (1) a definition of the

composition of the product; (2) a well-founded selection of

the target population; (3) the selection of a clinically relevant

composite biomarker panel representing inflammation as well

as the selected health benefit (or disease risk) endpoints; and

(4) a number of sufficiently powered and well-controlled

human studies assessing the effect of the test material (nutri-

ent, food, product) on the relevant biomarkers in the relevant

target population.

Summary and suggestions for the way forward

Inflammation is a normal component of host defence;

however, elevated unresolved chronic inflammation is a core

perturbation in a range of chronic diseases and is an important
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determinant of the pathological impact of excess adiposity.

Cell, animal and human epidemiological studies have

identified a number of potential diet derived anti- and

pro-inflammatory components, some of which have been dis-

cussed here; this topic has been dealt with more extensively

elsewhere(1,6,7). Available human RCT evidence is more

limited and sometimes conflicting or inconsistent, in part

attributable to under-powered studies where inflammation

was not specified as a primary study outcome. Furthermore,

research tends to take a reductionist approach and examine

the impact of individual dietary components in isolation,

despite the identification of numerous potential diet-derived

anti-inflammatory and inflammation-resolving bioactive com-

pounds, with likely additive or synergistic effects. There is a

need to take a more holistic approach and consider the

impact of combinations of components of foods and dietary

patterns, with a likely greater overall benefit than each

single component might have on its own. Moreover, although

it is evident that the inflammatory response is highly variable,

a full understanding of the source of heterogeneity is distinctly

lacking. More extensive profiling of participants in human

studies and consideration of potential key variables such as

age, sex, genotype and lifestyle factors in statistical models

is needed in order to help understand the aetiology of the

variation in both inflammation itself and in its response to diet-

ary change. This approach will also allow for the identification

of population subgroups that may particularly benefit from

interventions that target inflammation.

Product

Target population

Biomarkers

Study design

Clinically relevant (surrogate)
health endpoint (group B) 

Definition of relevant biomarkers

Significant modulation of markers
by a specified nutritional

component in multiple studies

Study design of studies included in
the dossier: RCT, cross-over, males

and females fitting the target
population

Definition of the composition
of the nutritional component

Inflammation markers associated
with clinical relevance, or

mechanistic markers (group C/D)

Inflammation marker with
clinical relevance (group A)

Susceptible population
Reduction of disease claim 14·1

Functional claim for the general
population

Functional claim 13·1/13·5

Evidence of a strong correlation of
inflammation biomarker with

disease (risk) based on public data

Quality of study design of studies
included in the dossier: design fit to

purpose, power, statistical
evaluation

EFSA health claim

Definition of the target population

Assessment of
safety

Fig. 2. Schematic of topics to be addressed when building a dossier for a European Food Safety Authority (EFSA) health claim on control of chronic low-grade

inflammation. The blue boxes indicate the main topics to be addressed; the white boxes state the actual content topics. Building a strong EFSA health claim

dossier requires (1) a definition of the composition of the nutritional component including manufacturing procedures in scope and out of scope for the claim, (2) a

clear definition of the target population, being the general population or a specific subpopulations at risk, including the defining parameters, (3) a definition of bio-

markers measured to assess the health effects of the nutritional component, including a description of the proof of clinical relevance, or the clinical validity of the

combination of inflammation biomarkers and related clinically relevant biomarkers for health benefit endpoints associated with the health claim, and (4) a full

description of clinical study design for all studies included in the dossier, including statistical power analysis and safety evaluation. The red arrow indicates the

primary hurdle for functional health claims in the area of chronic low-grade inflammation, which is the lack of (combinations of) inflammation biomarkers with estab-

lished and therefore accepted clinical relevance. This is primarily the consequence of inflammatory responses being non-specific normal physiological responses to

tissue damage, and discrimination between normal and abnormal levels or combinations has not been well established in relation to chronic low-grade inflammation.

The description of the classification of clinical relevance of biomarkers (categories A–D) was adapted from Albers et al.(137). RCT, randomised controlled trial.

Low-grade inflammation, diet and health 9

B
ri

ti
sh

Jo
u
rn

al
o
f

N
u
tr

it
io

n



Establishing and quantifying reliable, precise diet–

inflammation–health associations is reliant on the availability

of approved, standardised biomarkers with normative data

for use in human observation studies and RCT. Biomarker

research is a highly active area with significant advances to

be expected in the coming years(138). Rather than rely on a

limited number of generic markers common to both acute

and low-grade chronic inflammation, future inflammation

‘testing’ is likely to involve quantifying clusters or signatures

of markers with some tissue specificity. Such biomarkers

should generally be measured in the challenged state(1),

with the choice of the physiological stressor dependent on

the tissue, and research question of interest. The biomarkers

assessed are likely to include those already typically

measured (cytokines, chemokines, soluble adhesion

molecules, etc.), but are also likely to include tissue-specific

markers and fingerprints based on gene expression profiles

(e.g. in blood mononuclear cells), cell or plasma proteomics,

and microRNA.

The research focus on the establishment of a robust

diet–inflammation–health association is justifiable, consider-

ing the substantial role of low-grade inflammation in the path-

ology of numerous chronic diseases, thereby making it a key

future preventative and therapeutic target.
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