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ABSTRACT
We cross-correlate a cosmic microwave background (CMB) lensing map with the projected
space densities of quasars to measure the bias and halo masses of a quasar sample split into ob-
scured and unobscured populations, the first application ofthis method to distinct quasar sub-
classes. Several recent studies of the angular clustering of obscured quasars have shown that
these objects likely reside in higher-mass halos compared to their unobscured counterparts.
This has important implications for models of the structureand geometry of quasars, their
role in growing supermassive black holes, and mutual quasar/host galaxy evolution. However,
the magnitude and significance of this difference has variedfrom study to study. Using data
from Planck, WISE, and SDSS, we follow up on these results using the independent method
of CMB lensing cross-correlations. The region and sample are identical to that used for re-
cent angular clustering measurements, allowing for a direct comparison of the CMB-lensing
and angular clustering methods. Atz ∼ 1, we find that the bias of obscured quasars isbq =
2.57± 0.24, while that of unobscured quasars isbq = 1.89± 0.19. This corresponds to halo
masses oflog(Mh/M⊙h

−1) = 13.24+0.14
−0.15 (obscured) andlog(Mh/M⊙h

−1) = 12.71+0.15
−0.13

(unobscured). These results agree well with with those fromangular clustering (well within
1σ), and confirm that obscured quasars reside in host halos∼3 times as massive as halos host-
ing unobscured quasars. This implies that quasars spend a significant portion of their lifetime
in an obscured state, possibly more than one half of the entire active phase.

Key words: galaxies: active; galaxies: evolution; (galaxies:) quasars: general; galaxies:
haloes

1 INTRODUCTION

Photons from the cosmic microwave background (CMB) have trav-
eled from the surface of last scattering atz ≈ 1100, been deflected
by the gravitational potentials of massive structures, andmapped
over the whole sky by satellites such as theCosmic Background
Explorer (COBE; Boggess et al. 1992), theWilkinson Microwave
Anisotropy Probe(WMAP;Bennett et al. 2013), and most recently
the Planck mission (Collaboration et al. 2013) . Observationally,
this gravitational lensing by large scale structure smooths the CMB
temperature power spectrum and introduces correlations between
intrinsically independent Fourier modes.

With sufficient resolution and sensitivity, detection of this
non-Gaussian signature is now possible (e.g. Das et al. 2011;
van Engelen et al. 2012; Collaboration et al. 2013). This allows a
measurement of the projected mass along a given line-of-sight via
various estimators that separate the lensing signature from the in-
trinsic power spectrum (Seljak & Zaldarriaga 1999; Hu 2001). Be-
cause the weight of the lensing kernel peaks atz ∼1-2, the use of
CMB lensing maps has tremendous power for studying the growth

of supermassive black holes during periods of intense accretion,
as quasar activity also peaks near these redshifts (e.g. Croom et al.
2004; Richards et al. 2005; Fan et al. 2006).

Quasars are of extensive interest because their propertiesshed
light on how supermassive black holes grow, and on the interplay
between nuclear activity and host galaxy properties. Additionally,
their extreme luminosities make them ideal cosmological probes.
However, thecompletequasar population is not particularly well
studied because a significant fraction of quasar activity occurs be-
hind large columns of gas and dust (e.g. Setti & Woltjer 1989;
Comastri et al. 1995; Lacy et al. 2013). Large optical surveys ef-
ficiently identify “unobscured” or “type 1” quasars (e.g. the Sloan
Digital Sky Survey (SDSS); York et al. 2000), while “obscured” or
“type 2” quasars1 largely fall below the flux limits of these surveys
(e.g. Reyes et al. 2008; Zakamska et al. 2008).

1 Note that in this paper, the terms type 1 and type 2 do not referto spectral
classifications using broad and narrow emission lines, but classifications
based on optical-to-infrared colors, as described in section 2.1
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Various models for the cause of obscuration in luminous
quasars have been proposed. One example is pure orientation,
where type 1 and type 2 quasars are intrinsically the same but
appear different depending on our viewing angle relative tothe
accretion disk. This is similar to what is seen in low-luminosity,
low-redshift Seyfert galaxies (e.g. Antonucci 1993). Alternatively,
larger, galaxy-scale high covering fraction material (Goulding et al.
2012) could cause obscuration in some evolutionary phase. The
latter scenario is suggested by models of black hole and galaxy
co-evolution (e.g. Sanders et al. 1988; Hopkins et al. 2008;Croton
2009; Booth & Schaye 2010).

Studying the host dark matter (DM) halos of type 1 and type
2 quasars can shed light on the nature of obscuration, as simple
unified models (e.g. the orientation model) predict no difference
in DM halo mass. For statistically significant results, large num-
bers of objects are needed — these have been available for type
1 objects for many years (e.g. Richards et al. 2004, 2009), but only
recently have the sample sizes of type 2 objects become significant.
Applying techniques from combined infrared (IR), X-ray andradio
surveys (Lacy et al. 2004; Stern et al. 2005) to data from theWide-
field Infrared Survey Explorer(WISE; Wright et al. 2010) has led
to a dramatic increase in the number of obscured quasars available
for systematic statistical study (e.g. Stern et al. 2012; Mateos et al.
2012; Assef et al. 2013; Yan et al. 2013; Mateos et al. 2013). While
IR data alone allow identification of mixed type 1/2 samples (e.g.
Geach et al. 2013), combining IR and optical data provides a means
of separating obscured and unobscured populations (Hickoxet al.
2007).

Spatial clustering measurements are a powerful way to mea-
sure the typical DM halo mass for a population of objects. In cos-
mological models where the universe is dominated by DM, the
masses of halos in which galaxies and quasars are embedded drive
their clustering properties. By combining clustering measurements
with models for how DM halos collapse at different thresholds (e.g.
Sheth, Mo & Tormen 2001; Tinker et al. 2005; Tinker & Wetzel
2010), halo masses can be derived from the quasar bias (bq), which
relates the halo masses of quasars to the underlying DM halo dis-
tribution.

The clustering of type 1 objects has been studied extensively,
and multiple studies have found that these objects reside intyp-
ical halos of mass∼ 3 × 1012h−1 M⊙ at a wide range of
redshifts (0 < z < 5; e.g. Porciani, Magliocchetti & Norberg
2004; Croom et al. 2005; Coil et al. 2007; Myers et al. 2007;
da Ângela et al. 2008; Padmanabhan et al. 2009; Ross et al. 2009;
Krumpe, Miyaji & Coil 2010; Shen et al. 2013).

Recently, clustering measurements have been made for ob-
scured quasars for the first time. The first of these studies,
Hickox et al. (2011), leveraged the power of a cross-correlation
with a large galaxy sample to measure the clustering ofSpitzer-
selected quasars in the Boötes field. The quasar sample was small
(in the hundreds), but they found that type 2 quasars clusterat least
as strongly as type 1s, and possibly reside in more massive ha-
los. Donoso et al. (2014) usedWISE to build a much larger sam-
ple (in the hundreds of thousands) overlapping SDSS and mea-
sured the angular autocorrelation of type 1 and type 2 objects
using the method of Myers et al. (2006, 2007). They found that
type 2 quasars reside in halos up to 10 times as massive as those
that host type 1 quasars. However, DiPompeo et al. (2014) showed
that modifications to the angular mask (i.e., the description of the
distribution of objects on the sky, with holes due to bright stars,
bad/contaminated data, etc.) applied to theWISEdata in the same
region significantly reduced this difference in clusteringamplitude

and thus halo mass. The results of DiPompeo et al. (2014) still
showed that halo masses for type 2 objects are around three times
greater when compared to type 1s.

Several effects make the clustering measurements of obscured
quasars difficult to interpret. The role of the angular mask has a
two fold-effect on clustering measurements, because it is used to
both properly weight the random catalog for normalization (which
can have a large effect on clustering results; Ross et al. 2011;
Leistedt et al. 2013), as well as remove regions of low quality data
or artifacts (which can also have a large effect on clustering results;
DiPompeo et al. 2014). With CMB lensing cross-correlations, only
the latter role of the mask is important, reducing the impactof sub-
tle changes. Additionally, the type 1 and 2 populations are not pure
because they are photometrically classified. One significant source
of contamination is from low redshift star-forming galaxies (at a
level of∼10-15%; Hickox et al. 2007, Hainline et al. 2014). There
is also some confusion at low redshift between obscured and un-
obscured objects where the host galaxy’s light becomes moreim-
portant and obscured quasars resemble low-luminosity quasars that
have a red component from host galaxy light. This is where CMB
lensing cross-correlations become a powerful tool — not only does
the measurement not depend heavily on the use of the quasars’an-
gular mask to develop a random catalog for normalization of the
clustering signal, but the shape of the lensing kernel also serves to
down-weight the redshifts at which contamination and confusion
are most significant. As stars do not correlate with the CMB lens-
ing, this method is also immune to stellar contamination.

Sherwin et al. (2012) showed the first significant detection of
a cross-correlation between the CMB lensing convergence (from
the Atacama Cosmology Telescope) and optically selected quasars
from SDSS, over a relatively small 320 deg2 region. Geach et al.
(2013) used the 2500 deg2 South Pole Telescope (SPT) CMB map
to measure the cross-correlation withWISEselected quasars — this
was amixed type 1/2 sample, as no complementary optical data
were available to split the samples. The quasar bias measured in
both cases was consistent with the results from clustering analyses.
In the latter study, the bias and halo masses of type 1 and 2 quasars
are quite similar, as the mixed sample did not show a significantly
higher bias compared to samples composed of only type 1 quasars.

In this work, we analyze the CMB lensing cross-correlation
of a uniformly IR-selected quasar sample, usingWISEandPlanck.
Critically, we study the CMB lensing in a region where we can
use optical imaging from the SDSS to split our quasar sample into
obscured and unobscured sources, which has not been done previ-
ously. This is a necessary and independent follow up to the recent
angular autocorrelation measurements of Donoso et al. (2014) and
DiPompeo et al. (2014).

We use a cosmology whereH0 = 71 km s−1 Mpc−1, ΩM =
0.27, ΩΛ = 0.73, Ωb = 0.045 andσ8 = 0.8 for all calculated
parameters (Komatsu et al. 2011). All magnitudes are given in the
AB system unless otherwise specified.

2 DATA

2.1 IR-Selected Quasars

The quasar sample utilized in this study is the same as that used
in DiPompeo et al. (2014). We refer the reader there for full details
of the sample and the angular mask applied to the data. Here we
briefly summarize the main points.

We start with all sources from theWISEall-sky catalog, which

c© 2014 RAS, MNRAS000, 1–10
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contains objects that have at least a 5σ detection in one of theWISE
bands (W 1, W 2, W 3, andW 4 at 3.4, 4.6, 12 and 22µm, re-
spectively), at least five observations, and are not flagged as spu-
rious in at least one band. The sources are limited to the range
135◦ < RA < 226◦ and1◦ < DEC< 54◦, a region that overlaps
SDSS optical imaging and is between the Galactic plane and the
ecliptic pole (where the depth ofWISEis less uniform due to more
coverage). We use the criteria of Stern et al. (2012) to select AGN
candidates:W 1AB −W 2AB > 0.16 andW 2AB < 18.32 (corre-
sponding toW 1Vega − W 2Vega > 0.8, W 2Vega < 15.05). After
applying the angular mask2, we have a sample of 177,709WISE-
selected AGN over an area of 3,297 deg2 (note that these numbers
are slightly reduced by an additional cut in the next section)

To split this sample into type 1 and 2 sources, we match the
WISEpositions to the imaging of SDSS using a radius of 2′′. Using
the extinction correctedr-band pipelinepsfMags, we split the type
1 and type 2 populations using a color cut atrAB −W 2AB = 3.1
(Hickox et al. 2007). Sources with no counterpart in SDSS are
placed in the type 2 sample. We performed tests to ensure these
objects are real and not artifacts inWISE, the most convincing
of which is that the angular clustering of the obscured sources is
nearly identical (and well within the uncertainties) when these ob-
jects are included or excluded from the sample.

We note that there are no strict definitions of “obscured” and
“unobscured” quasars based purely on photometric data, as there
are for spectroscopic samples. Hickox et al. (2007) identified a
clear bi-modality in the optical-IR colors of IR-selected quasars,
and used this to define a split in the population. This bi-modality is
present in this sample as well (DiPompeo et al. 2014). While there
is surely some overlap between the obscured and unobscured sub-
samples, it would only serve to reduce any differences in thede-
rived bias and halo masses. The samples are composed of 74,889
(42%) type 2 and 102,740 (58%) type 1 objects (again, these num-
bers are slightly reduced by an additional cut in the next section).

Because the quasar bias evolves with redshift, we must have
samples of type 1 and 2 quasars with similar redshift distributions
(dN/dz) in order to make fair comparisons. Also, measuring the
bias requires a model of the DM cross-correlation, which depends
on dN/dz. To estimate the redshift distributions of our samples
we apply our selection criteria and mask to the Boötes survey
field, which has extensive spectroscopy of AGN (Kochanek et al.
2012), as well as photometric redshift data fromSpitzer IRAC
(Brodwin et al. 2006; Hickox et al. 2011). Detailed discussion of
the redshift distributions are given in DiPompeo et al. (2014), and
shown here in Figure 1. An analysis of the effect of changes tothe
redshift distributions on our results is given in section 4.2.

2.2 Planck CMB Maps

Planck (Collaboration et al. 2011) mapped the entire sky several
times at nine frequencies, from 30 to 857 GHz, and released its
first full data set in March 2013, with an update in December 2013.
Planckhas produced the current state-of-the-art all-sky CMB map,
with sensitivities down toµK levels and a beam size of∼ 7′. This
allows Planck to accurately measure gravitational lensing deflec-
tions, typically on scales of a few arcminutes.

We start with one of the main data products ofPlanck, the

2 MANGLE polygon files marking the regions of data that have been re-
moved can be found athttp://faraday.uwyo.edu/~admyers/
wisemask2014/wisemask.html

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0

10

20

30

N

Obscured (r−W2 > 6)
Unobscured (r−W2 < 6)

Total

Figure 1. The redshift distribution of the total, obscured and unobscured
quasars, using identicalWISE-selection criteria and a mask generated in
the same way for objects in the Boötes field. Statistically, the obscured and
unobscureddN/dz is the same, allowing for accurate comparison of the
two samples.

all-sky lensing potential (ψ) map3 (Collaboration et al. 2013). Us-
ing spherical harmonic transform tools in HEALPIX4, this map is
converted into a lensing convergence (κ = 1

2
∇2ψ) map, shown

in Figure 2 (all sky) and Figure 3 (region used in this study).The
Planckmaps are in HEALPIX format, withnside = 2048, corre-
sponding to a pixel size of∼3 arcmin2.

In order to estimate the errors on our lensing cross-correlation,
we make use of the publicly availablePlanck simulated lensing
maps5 (Collaboration et al. 2013). These maps contain 100 realiza-
tions of the lensing potential maps that accurately reflect thePlanck
noise characteristics.

3 ANALYSIS & RESULTS

3.1 Quasar Density

Using the quasar sample described above, we generate a HEALPIX

density fluctuation map (withnside = 2048, to match thePlanck
map resolution) of the total IR-selected sample, as well as the type
1 and 2 samples:

δ =
ρ− 〈ρ〉

〈ρ〉
(1)

whereρ is the density in a given pixel and〈ρ〉 is the mean density in
each case (53, 22, and 31 deg−2 for total, obscured and unobscured
samples, respectively). ThePlanckmask (provided with the lensing
map) is combined with the mask applied to theWISEdata, only re-
taining the pixels that do not overlap any components of our mask.
While it is possible to estimate the area of fractional pixels where
there is overlap, this step has its own systematic errors that can then

3 http://irsa.ipac.caltech.edu/data/
Planck/release_1/all-sky-maps/previews/
COM_CompMap_Lensing_2048_R1.10/index.html
4 http://healpix.jpl.nasa.gov
5 Available at http://irsa.ipac.caltech.edu/data/
Planck/release_1/ancillary-data/HFI_Products.
html#hfisims
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Figure 2. The all-sky lensing convergence (κ) map fromPlanck, in equatorial coordinates. The map has been smoothed with a1◦ Gaussian for visualization,
but the analysis is performed with the un-smoothed map. The region used for the analysis here is shown by the black box.

carry through to the final bias measurement. Since the area lost by
removing these partial pixels is small (less than 200 deg2), remov-
ing them is the simplest approach. This step is analyzed further in
Section 4.2. Removing these partial pixels reduces the sample sizes
to 169,945 (total), 71,535 (obscured), and 98,209 (unobscured), re-
spectively. The quasar density map (smoothed with a 1◦ Gaussian
for visualization purposes) in the region of interest is shown as the
solid (δ > 0) and dashed (δ < 0) lines in Figure 3, overlaid on the
map ofκ in this region.

In fields of finite size, various effects can impact the mean
density calculations and thus the cross-correlations. Forexample,
there are known corrections to the mean density calculated in small
areas (the integral constraint; Groth & Peebles 1977). Given that
the integral constraint is inversely proportional to the square of
the area, and our region is over 3000 deg2, this correction is at a
sub-percent level. Other systematics, such as depth variations and
improper masking of the data, can also play a role. However, this
region was chosen in Donoso et al. (2014) precisely because it has
an even depth inWISE and is far from the stellar contamination
of the Galactic plane. Combined with the additional maskingof
DiPompeo et al. (2014), this sample is likely one of the cleanest
and uniform of its kind, and systematic errors in the densitycalcu-
lations should be minimal.

3.2 CMB Lensing Cross-Correlation

Quasars trace peaks in the matter density field and should be denser
in regions of enhanced lensing convergence. Qualitatively, it is im-
mediately clear in Figure 3 that this is the case. This is shown even
more clearly in Figure 4, in which we have smoothed both the den-
sity and convergence maps with a1◦ Gaussian, and found the pixels
in which the values ofδ fall in the bins marked with vertical gray
lines. We take the average value ofδ in each bin, and the average
value ofκ in the corresponding pixels, and plot these against each
other —κ andδ are strongly correlated for all of the samples. Note

−0.4 −0.2 0.0 0.2 0.4
δ

−0.01

 

0.00

 

0.01

 

0.02

κ

Figure 4. Binned values of the (1◦ Gaussian smoothed) quasar fractional
density for allWISE-selected quasars (gray points), the obscured sample
(red points), and the unobscured sample (blue points), versus the average
(1◦ Gaussian smoothed) lensing convergence in the corresponding pixels.
Bins in δ are marked with gray lines, and correspond to the bins used in
Figure 4 of Geach et al. (2013). The points are placed at the average value
of δ in each bin, and horizontal error bars indicate the scatter in δ within
each bin. Vertical error bars are from repeating the calculation with each of
the 100 simulated noise maps (each also smoothed with a1◦ Guassian) in
place of the actual convergence map.

that because thePlanckmaps are noise-dominated, these correla-
tions are only visually apparent when the maps are smoothed and/or
stacked.

To quantify this correlation, we follow the formalism of mea-
suring the CMB lensing cross-power spectrum presented fully in
Bleem et al. (2012) and Sherwin et al. (2012), and reviewed in
Geach et al. (2013) — we include a summary of the method here.

c© 2014 RAS, MNRAS000, 1–10
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Figure 3. The region used in this study (see DiPompeo et al. 2014). The CMB lensing convergenceκ from thePlancklensing potential maps is shown as the
colored contours, with blue indicating strong negative convergence and red indicating strong positive convergence (the convergence map has been smoothed
with a 1◦ Gaussian for visualization purposes). Overlaid is a contour map of the fractional density of allWISE-selected quasars, with solid lines indicating
over-densities and dashed lines indicating under-densities (also smoothed with a1◦ Gaussian for visualization). The two are clearly correlated, as shown
further in Figure 4.

The lensing convergence (κ) in comoving coordinates (χ)
along a line of sight̂n can be expressed as an integral over the
fractional over-density of matter (δ(r, z)) multiplied by the lensing
kernel (W κ):

κ(n̂) =

∫

dχW κ(χ)δ(χn̂, z(χ)). (2)

The lensing kernel is (Cooray & Hu 2000; Song et al. 2003):

W κ(χ) =
3

2
Ωm

(

H0

c

)2
χ

a(χ)

χCMB − χ

χCMB

, (3)

wherea(χ) = (1 + z(χ))−1 is the scale factor, andχCMB is the
co-moving distance to the CMB (13.98 Gpc in our cosmology).
Fluctuations in the quasar density can be expressed as:

q(n̂) =

∫

dχW q(χ)δ(χn̂, z(χ)), (4)

whereW q(χ) is the distribution kernel of quasar hosts:

W q(χ) =
dz

dχ

dN(z)

dz
bq(χ). (5)

Here,dN/dz is the normalized redshift distribution of the quasar

population, which has biasbq . The cross-power at a Fourier mode
l is

Cκq

l =

∫

dz
dχ

dz

1

χ2
W κ(χ)W q(χ)P

(

l

χ
, z

)

(6)

whereP (k = l/χ, z) is the matter power spectrum (e.g. Eisenstein
& Hu 1999) — we use the non-linear matter power spectrum from
CAMB6 (Lewis, Challinor & Lasenby 2000). Equation 6 gives us
the model cross-power spectrum for the underlying distribution of
DM (with a bias of 1), shown as the dashed lines in Figure 5 for
eachdN/dz.

The cross-powerCκq

l is measured for the data by taking the
Fourier transform of both the lensing convergence map (Mκ) and
the fractional density map (Mq) and multiplying them7:

Cκq

l = 〈Re(F(Mκ)F
∗(Mq))|l∈l〉 (7)

where l ∈ l describes the binning. We present our results with
5 bins in l per dex, with the edge of the first bin starting atl =
10. Uncertainties inCκq

l are derived by repeating the calculation

6 Code for Anisotropies in the Microwave Background(http://
lambda.gsfc.nasa.gov/toolbox/tb_camb_ov.cfm)
7 Using tools in the HEALPIX package.
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Figure 5. The top panel shows the cross-correlation results for the total,
type 2, and type 1 samples. The dashed lines show the model DM cross-
correlation (Equation 6) for each sample, using the correspondingdN/dz.
The dotted lines show the fits for each sample, used to measurethe bias.
The bottom panel shows the data divided by the model, anotherway of vi-
sualizing the bias. The horizontal lines mark the adopted bias values shown
in Table 1.

using the 100 simulated noise maps fromPlanck (see section 4.2
for an analysis of possible additional systematic errors).We derive
covariance matrices (C(li, lj) = Cij ):

Cij =
1

1−N

[

N
∑

k=1

(Cκq

li,k
− Cκq

li
)(Cκq

lj ,k
− Cκq

lj
)

]

, (8)

whereN is the number of simulation cross-correlations andCκq

l,k−
Cκq

l is the cross-correlation from each noise simulation. We adopt
the square root of the diagonal elements ofCij as the 1σ errors on
the cross-correlation. The cross-correlation results areshown for all
samples in Figure 5.

As an additional check that the detection of the cross-
correlation is real and the errors are reasonable, we also measure the
cross-correlation with multiple rotations of thePlanckconvergence
map. This preserves any systematic errors in the map, in addition
to the random instrument errors. We utilize a total of 34 rotations,
in 20◦ increments in Galactic longitude (17 rotations), and again
in 20◦ increments in Galactic longitude with an additional 180◦

rotation in Galactic latitude (17 rotations). We find that the mean
cross-correlation from the rotations is null on all scales,and the
standard deviation in each bin is nearly identical to the 1σ errors
from the covariance matrix. The consistency between the different
methods is shown in Figure 6.

3.3 Bias and Halo Masses

For a given cosmology and a well-constraineddN/dz, Equation 6
depends only on the quasar biasbq (see section 4.2 for analysis of
the effects of uncertainties in the cosmology anddN/dz). We fit
Equation 6 to the data using aχ2 minimization and the full covari-
ance matrix:

χ2 =
∑

i.j

(Cκq

li
− Cκq

li,model)C
−1
ij (Cκq

lj
− Cκq

lj ,model). (9)

10 100 1000
l

−0.2

−0.1

0.0

0.1

0.2

C
lκ 

q  ×
 1

06

Rotated Maps
Simulated Maps

Covariance Errors

Figure 6. A comparison of various methods of estimating the errors inCκq

l

(using the totalWISE-selected sample) — the simulated noise maps from
Planckand rotating the real convergence map. Points are placed at the mean
value from each simulation or rotation, and error bars indicate the 1σ scat-
ter. Points are offset slightly inl for clarity. The gray bars indicate the size
of the adopted error bars from the diagonal of the covariancematrix. The
cross-correlation is null for alll in both cases, and the error bars are consis-
tent.

Fits are performed over the range10 < l < 2000 — changing
this region shifts the results slightly, but always within the errors.
As there is only one free parameter, we derive 1σ errors onbq by
the range for which∆χ2 = 1. The results are listed in Table 1,
and shown along with other recent measurements in the left panel
of Figure 7. An analysis of various model assumptions and sys-
tematics that can impact the bias measurements is given in section
4.2.

We follow the same procedure as DiPompeo et al. (2014)
and Myers et al. (2007) to convert the bias to an average halo
mass (Mh). This method uses the ellipsoidal collapse model of
Sheth, Mo & Tormen (2001)8, and models the linear power spec-
trum including the effects of baryons from Eisenstein & Hu (1998).
The masses are calculated both at the mean redshift for each sam-
ple, which is very nearlyz ∼ 1 in all cases, as well as at the effec-
tive redshift considering the weight of the lensing kernel.The true
effective redshift is likely somewhere between these values (see
section 4.2 and Figure 9). The derived halo masses are listedin
Table 1 and shown in the right panel of Figure 7.

4 DISCUSSION

4.1 Comparison with previous results

Our CMB lensing cross-correlation results are nearly identical to
those using angular clustering, and agree very well with previous
measurements from other samples (Figure 7). We confirm that type
2 objects have a higher bias, and given the reasonable match in

8 We choose this model in order for more direct comparison withprevious
work by other authors. However, we point out that we are generally looking
for differences in halo masses, which is less sensitive to our model choice.
Using the Tinker et al. (2005) model changes the halo masses by ∼0.1 dex.
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Figure 7. A comparison of the quasar bias (left) and corresponding halo mass (right) found in this work with recent angular clustering results. Donoso et al.
(2014) and DiPompeo et al. (2014) analyze the same region as we do here — DiPompeo et al. (2014) analyzed the same sample (the DiPompeo et al. 2014,
results are shifted slightly inz for clarity). The results from this sample using clusteringand CMB lensing are nearly identical, with a very slight reduction in
bias and halo mass for both samples.

Table 1. Quasar bias and dark matter halo mass.

Sample 〈zeff〉 bq log(Mh/M⊙ h−1)

Total 1.02 2.33± 0.15 13.07+0.11
−0.07

Obscured 0.99 2.57± 0.24 13.24+0.15
−0.13

Unobscured 1.04 1.89± 0.19 12.71+0.14
−0.15

Total 1.50 2.33± 0.15 12.59+0.10
−0.09

Obscured 1.47 2.57± 0.24 12.77+0.17
−0.12

Unobscured 1.51 1.89± 0.19 12.21+0.15
−0.18

The top half of the table shows the conversion from bias to halo mass using
the the mean redshift of each sample, and the bottom half shows the
conversion using the mean redshift weighted by the lensing kernel (see
section 4.2 and Figure 9).

redshift distributions, higher halo masses. As in DiPompeoet al.
(2014), we find that type 2 objects have halo masses a factor of∼3
times greater than the halo masses of type 1 objects, a significant
reduction in the factor of∼10 found by Donoso et al. (2014).

Geach et al. (2013) measured the bias for a sample of simi-
larly WISE-selected type 1 & 2 quasars in the SPT field, finding
bq = 1.61 ± 0.22 assuming no evolution over the redshift range
of the sample (as is done here; see section 4.2), with consistency
between cross-correlations with the SPT and Planck lensingmaps.
This is lower than thebq = 2.33 ± 0.15 in this work; if we per-
form our analysis in the SPT region, applying the same mask to
the WISE data used in this work, we measurebq = 2.31 ± 0.22,
in agreement with what we find in the larger region studied here.
A possible explanation for the higher bias we measure forWISE-
selected quasars is the stricter masking we employ.

As discovered in DiPompeo et al. (2014), it is necessary to
discard objects in regions surrounding artifacts/contamination in
the WISE data when usingWISE to build quasar samples, as it
seems that theWISEflags may be too conservative. With our full
mask of theWISEdata, the area of the SPT field drops from 2500
deg2 to ∼2000 deg2. This is a difference of∼20%, and could ac-

count for some of the apparent inconsistency. If objects in these re-
gions are indeed artifacts, they should be completely uncorrelated
with the CMB and their inclusion should reduce the strength of
the cross-correlation. As a test, we do not fully mask the regions
aroundWISEflagged data, only discarding the flagged data them-
selves (the “partial” mask described in DiPompeo et al. 2014) in
the SPT field. Repeating the cross-correlation measurement, this
drops the bias in the SPT field tobq = 2.1± 0.2. If we go another
step further, and do not remove any regions of large galacticex-
tinction, low WISEmedian coverage, or Moon contamination, the
bias drops tobq = 2.0 ± 0.3. It is likely that the combination of
contamination and effective area explains the difference in results
between our measurement and those of Geach et al. (2013).

4.2 Caveats and additional sources of error

There is another possible interpretation of the differencein mea-
sured bias rather than a difference in typical halo mass — there
may be a difference in the shape of the halo occupation distribu-
tion (HOD) for obscured and unobscured quasars, or there maybe
an observational effect that causes us to sample different ranges of
the HOD in the two samples. It seems that a log-normal HOD is
an adequate description for unobscured quasars, and that there is
no clear dependence on other properties such as luminosity or red-
shift (e.g. White et al. 2012; Zheng et al. 2005; Zheng & Weinberg
2007; Chatterjee et al. 2013). While there is no observational ev-
idence to suggest that the HOD of obscured sources behaves dif-
ferently, if it does then this could cause the bias to appear differ-
ent while the average or typical halo mass is the same. Theoreti-
cally, this possibility might be tested via careful modeling of the
HOD of obscured quasars (as has been conducted for AGN and
for black holes in general, e.g. Degraf et al. 2011; Chatterjee et al.
2012). Observationally, progress is likely to only be made with full
redshift information for individual sources in the obscured sample.
Obtaining redshifts for obscured quasars in a wide-area survey is
likely to prove taxing, but it would allow further constraints on the
HOD of obscured sources through higher-order correlation func-
tions or direct measurements of the Mean Occupation Function of
obscured quasars (c.f. Chatterjee et al. 2013). Such measurements
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are far more sensitive to the shape and range of the HOD, partic-
ularly at the highest halo masses (e.g. Berlind & Weinberg 2002;
Zheng 2004).

Another important consideration for interpreting our results is
errors in the redshift distributions. There are several factors that can
biasdN/dz, particularly for the type 2 sources. For example, the
inclusion of objects that are undetected by SDSS may shift the ac-
tualdN/dz to a higher averagez. Based on analysis of the objects
detected in the Boötes field that fall below the SDSSr-band com-
pleteness limit, we argued in DiPompeo et al. (2014) that this will
at most shift the mean redshift by∼ 0.1. How much does this affect
the bias measured by the CMB lensing cross-correlation?

To quantify this, we generate mock Gaussian distributions of
z with various parameters, treat them as we do the real redshift dis-
tributions when generating our model DM cross-correlation, and
re-fit the bias to the totalWISE-selected sample. The mockz distri-
butions range from0.8 < 〈z〉 < 1.3 (in steps of 0.1 while holding
σz = 0.55, roughly the value of the actualz distribution), or in
width from 0.5 < σz < 1.0 (in steps of 0.05, holding〈z〉 = 1).
The effect of these changes is shown in Figure 8. The mean red-
shift has a larger effect than the width of the distribution.However,
unless the inferred redshift distributions for our sample are incor-
rect by a large amount, the effect on the measured bias is at most a
few percent. While this would serve to reduce the magnitude of the
difference between the bias of type 1 and 2 objects, it is unlikely to
explain it completely.

Not only can errors in the redshift distribution affect our re-
sults, but the conversion of the bias into a halo mass also depends
on the adopted effective redshift. In the simplest case, this is just
the mean redshift of the sample, which we have used in our analy-
sis. However, while this is the obvious choice when analyzing the
quasar autocorrelation function (where the effective redshift de-
pends on just the quasar distribution kernel asW 2

q ), the redshift
weighting for CMB lensing cross-correlations depends onWκWq

(see equation 6). Because the weight of the lensing kernel (Wκ)
peaks nearz ∼ 2, this will increase the effectivez. This effect
is illustrated in Figure 9 usingdN/dz for the totalWISE-selected
sample. The effective redshift changes fromz ∼ 1 to z ∼ 1.5.
However, this also assumes that all redshifts contribute tothe cross-
correlation signal equally. Without full redshift information to ana-
lyze the cross-correlation in bins of redshift, we cannot retrieve the
true effective redshift, and so we prefer the value with the fewest
assumptions — the mean redshifts of the samples. However, for
completeness we include in Table 1 halo mass conversions using
the larger effective redshift considering the weight of thelensing
kernel.

As noted in section 3.1, we only include HEALPIX pixels
that are unaffected by the mask applied to theWISEdata in our
analysis. As a way to quantify the effects of changing the overall
mask applied to the data, we repeat the cross-correlation and bias
measurements including the partial pixels that do overlap theWISE
mask. If we track the area of partial pixels (again, a step which has
its own errors associated with it), and include these pixelsin our
measurements, we find that the bias can vary by roughly 9% despite
the fact that only∼4% of pixels are affected. This highlights the
importance of subtle changes in the mask in bias measurements.

Finally, the analysis thus far has assumed a fixed cosmology,
when in reality the cosmological parameters used to generate the
model power spectra and thus calculate the bias have their own un-
certainties. We note however, that changes in cosmology will affect
all of the samples in a similar way, and thus will not change our
overall conclusions regarding the difference in halo mass between
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Figure 8. The effects of changing the meanz (top) or width ofdN/dz on
the measured bias. Changes are shown relative to the mean over all simu-
latedz distributions.

obscured and unobscured quasars. In terms of the absolute bias, if
for example we varyH0 by±2, slightly larger than the uncertainty
in Komatsu et al. (2011), we find that the bias changes by less than
10%, remaining roughly within the current error bars.

4.3 Quasar lifetimes

Comparing the number density of a quasar population to the
number density of halos at the typical halo mass can constrain
the length of the quasar duty cycle (abundance matching, e.g.
Colín et al. 1999; Kravtsov & Klypin 1999; Vale & Ostriker 2004;
Shankar et al. 2006; Guo et al. 2010). The median bolometric lu-
minosity of IR-selected quasars at this flux limit isLbol ∼ 1046 erg
s−1 (Hickox et al. 2011, Hainline et al. 2014, in press). Using the
bolometric luminosity function of Hopkins, Richards & Hernquist
(2007) atz ∼ 1, this gives a space density ofWISE-selected
quasars of2 × 10−5 Mpc−3, of which ∼60% are unobscured
and∼40% are obscured. For the typical halo masses determined
above and the mass function of Sheth, Mo & Tormen (2001), we
find space densities ofdn/d log(M) = (4.6+2.2

−1.4)× 10−4 Mpc−3

(unobscured) and(1.0+0.5
−0.4) × 10−4 Mpc−3 (obscured). Since the

majority of our sample is in the range0.5 < z < 1.5, which spans
about 4 Gyr of cosmic time, these abundances imply lifetimesof
123+56

−39 Myr for the unobscured phase and302+191
−99 Myr for the

obscured phase.
These results are consistent with previous quasar lifetimere-

sults, including DiPompeo et al. (2014). We confirm that the ob-
scured phase makes up a significant portion of the quasar dutycy-
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cle, and may in fact last more than twice as long as the unobscured
phase. This can provide constraints on models in which quasars
evolve from obscured to unobscured.

5 CONCLUSIONS

It has now been shown using two independent methods that there
is indeed a difference in bias and typical halo mass between type
2 (obscured) and type 1 (unobscured) quasars atz ∼ 1. Careful
removal of regions of poorWISE data is needed to build clean
quasar samples to accurately quantify this difference, as both CMB-
lensing cross correlations and angular clustering measurements
have illustrated. On average, type 2 objects are found in halos that
are∼3 times more massive than those of type 1 objects atz ∼ 1.
This suggests that the obscured phase is longer than the unobscured
phase in quasars, with both still on the order of∼1% of the Hubble
time.

Given thatWISE and Planck both cover the whole sky, the
next natural step is to provide the tightest possible constraints on
the IR-selected quasar bias using as much area as possible. In areas
where optical coverage also exists — over the rest of the SDSS
and the Dark Energy Survey field, for example — we can fur-
ther constrain the bias of obscured and unobscured quasars.As
CMB lensing cross-correlations are the most robust, directway to
measure the quasar bias, these measurements will provide the best
constraints on models of quasar and galaxy evolution. Additional
work by our group will also further constrain thedN/dz of WISE-
selected quasars (Hainline et al. 2014, in press), as well asimprove
photometric redshift estimation for those with optical counterparts,
allowing us to make the first measurements of the CMB-lensing
cross correlation as a function of redshift and study the cosmic evo-
lution of the IR-selected quasar bias.
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