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2. Abstract 

Background: Visceral hypersensitivity is a main characteristic of functional bowel disorders and is 

mediated by both peripheral and central factors. We investigated whether enhanced splanchnic 

afferent signaling in vitro is associated with visceral hypersensitivity in vivo in an acute and 

postinflammatory rat model of colitis. 

Methods: TNBS-colitis was monitored individually by colonoscopy to confimr colitis and follow 

convalescence and endoscopic healing in each rat. Experiments were performed in controls, rats with 

acute colitis and in post-colitis rats. Colonic afferent mechanosensitivity was assessed in vivo by 

quantifying visceromotor responses (VMRs), and by making extracellular afferent recordings from 

splanchnic nerve bundles in vitro. Multi-unit afferent activity was classified into single units identified 

as low threshold (LT), wide dynamic range (WDR), high threshold (HT) and mechanically insensitive 

afferents (MIA).  

Key results: During acute TNBS-colitis, VMRs were significantly increased and splanchnic nerve 

recordings showed proportionally less MIA and increased WDR and HT afferents. Acute colitis gave 

rise to an enhanced spontaneous activity of both LT and MIA and augmented afferent 

mechanosensitivity in LT, WDR and HT afferents. Post-colitis, VMRs remained significantly increased 

while splanchnic nerve recordings showed that the proportion of LT, WDR, HT and MIA had 

normalized to control values. However LT and MIA continued to show increased spontaneous activity 

and WDR and HT remained sensitized to colorectal distension. 

Conclusions & Inferences: Visceral hypersensitivity in vivo is associated with sensitized splanchnic 

afferent responses both during acute colitis and in the post-inflammatory phase. However splanchnic 

afferent subpopulations are affected differentially at both time points.  

 

Keywords: mechanosensitivity, afferent nerve signaling, visceral hypersensitivity, TNBS, colitis, 

splanchnic nerves 
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Key messages: 

• The role of splanchnic afferent nerves in visceral hypersensitivity remains unclear.  

• Visceral sensitivity during acute TNBS-colitis and in the post-inflammatory phase was 

assessed in vitro by recording splanchnic afferent nerve discharge and in vivo by recording 

visceromotor responses to colorectal distension.  

• Sensitization of splanchnic afferents in vitro is associated with visceral hypersensitivity in vivo 

both during acute colitis and in the post-inflammatory phase but the different 

subpopulations of afferent nerves are differentially affected in the acute versus the post-

inflammatory phase of colitis. 
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3. Introduction 

Visceral hypersensitivity is a main characteristic of bowel disorders such as inflammatory bowel 

disease (IBD) or irritable bowel syndrome (IBS) (1-4). It is involved in pain perception and is mediated 

by both peripheral and central factors. Growing evidence suggests that sensory nerve pathways play 

a key role in the peripheral pain transmission.  

Sensory information from colon and rectum is conveyed via thoracolumbar splanchnic nerves and 

lumbosacral pelvic nerves to the spinal cord that synapse onto second-order neurons in the spinal 

cord, which in turn transmit the sensory signal to the higher brain regions (5). Various studies have 

shown that lumbosacral pelvic nerves are the main signaling pathway for visceral sensory processing 

under physiological conditions including peristaltic movement of fecal contents into the rectum; in 

contrast, thoracolumbar splanchnic nerves convey primarily noxious signals derived from rapid gut 

distension and mesentery torsion (6-11). This pathway is less active under physiological conditions.   

Using different animal models, several studies corroborate the involvement of both pelvic and 

splanchnic afferents in mediating visceral hypersensitivity, however splanchnic afferents seem 

specifically equipped for noxious nerve signaling during inflammation (6, 9, 12-16). For instance, 

splanchnic afferents are more likely to respond to inflammatory mediators such as adenosine 5’-

triphospate (ATP) and bradykinin and more frequently increase their firing rate when exposed to 

capsaicin (8, 17). Moreover, silent nociceptors recruited by these mediators were exclusive to the 

splanchnic signaling pathway (8, 17). In addition, electrophysiological recordings in mice 

corroborated the predominant involvement of splanchnic afferents in acute trinitrobenzene 

sulphonic acid (TNBS)-colitis (6). In contrast, splanchnic afferent discharge in rats remained 

unaffected by dextran sulphate sodium (DSS)-colitis (18, 19). In addition, Chen et al. (20) recently 

demonstrated that sensitized responses of spinal afferents do not always result in visceral 

hypersensitivity in vivo as assessed using behavioral assays such as the visceromotor response (VMR) 

to colorectal distension. Besides, acute colitis can induce long-lasting visceral hypersensitivity which 

persists after the initial inflammatory insult itself has already fully subsided (21, 22). Whether and to 
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what extent altered splanchnic nerve signaling correlates with post-inflammatory hypersensitivity 

remains unclear. Therefore we studied rat splanchnic afferent nerve discharge in response to 

colorectal distension either in the acute phase of TNBS-colitis or in the post-inflammatory phase. In 

addition, we assessed whether sensitized responses were associated with visceral hypersensitivity in 

vivo by quantifying the VMRs to colorectal distension.  

Of note, part of this work was presented as an abstract at nEUROgastro 2015 (23).  

  

4. Material and methods 

Animals 

Adult male Sprague-Dawley rats (200-225g, Charles River, Lecco, Italy) were allowed to acclimatize to 

housing conditions for one week prior to experimentation and had free access to water and food. All 

experiments were approved by the Committee for Medical Ethics and the use of Experimental 

Animals at the University of Antwerp (file number 2010-18). 

 

Colitis 

Distal colitis was induced by the intrarectal instillation of 0.5 mL of 15 mg TNBS in 50% ethanol under 

pentobarbital anesthesia (60 mg.kg
-1

 ip). Control animals received a 0.5 mL saline enema. The 

relatively high concentration of ethanol relates to strain differences in susceptibility to TNBS-colitis as 

previously described (24).  

 

Colonoscopy 

Under pentobarbital anesthesia (45 mg.kg
-1

 ip), the lubricated tip of a baby gastroscope (Olympus 

Europa GmbH, Hamburg, Germany) was gently introduced into the distal colon and advanced under 

direct endoscopic vision up to 10 cm proximal to the anal verge. During withdrawal, mucosal damage 

was assessed using our previously published scoring system (25, 26). The colonoscopic score (total 0-

19) takes into account the degree of ulceration (0-6), the extent of  damage (0-10) and presence of 
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edema (0-1), active bleeding (0-1) and/or stenosis (0-1). We previously demonstrated that 

colonoscopic damage scores correlate highly with the traditional methods to assess TNBS-colitis, 

namely macroscopic and microscopic scoring systems and myeloperoxidase (MPO) activity (25). 

 

Post-mortem markers of inflammation 

At the end of the in vivo experiments, the distal colon was rapidly excised to evaluate macroscopic 

mucosal damage using a validated scoring system (score 0-10) (25, 27). A representative section was 

fixed in 4% formaldehyde for 24 h and embedded in paraffin for hematoxylin-eosin staining. 

Histological specimens (5 µm slices) were scored microscopically for the presence of an inflammatory 

infiltrate, the number of infiltrated layers, mucosal architectural distortion and edema (score 0-10) 

(25, 28). A second representative 1 cm segment was used to assay MPO activity according to our 

previously published methods (25). In brief, specimens were blotted dry and placed in a potassium 

phosphate buffer pH 6.0 containing 0.5% hexadecyltrimethylammonium bromide a rato of 5 g per 

100 mL buffer. The samples were arranged on ice, homogenized for 30 s and subjected to two 

sonication and freeze-thawing cycles. The suspension was centrifuged at 15 000 g for 15 min at 4 °C. 

Aliquots (100 µL) of the supernatant were added to 2.9 mL of o-dianisidine solution (16.7 mg of o-

dianisidine in 1 mL saline, 98 mL of 50 mmol potassium phosphate buffer, pH 6.0 and 1 mL of a 0.05 

% H2O2 solution as a substrate for MPO enzyme). The change in absorbance was read at 460 nm over 

60 s using a Spectronic Genesys 5 spectrophotometer (Milton Roy, Rochester, NY, USA). One unit of 

MPO activity was defined as the quantity able to convert 1 µmol H2O2 to H2O per min at 25 °C and 

was expressed as units per gram of tissue (U.g
-1

). 

 

Visceromotor responses to colorectal distension 

VMRs to colorectal distension were used as an objective measure of visceral sensitivity. This 

validated nociceptive reflex consists of the contraction of the abdominal musculature in response to 

noxious colorectal distension and integrates both peripheral and central processing (26, 28, 29). 
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Other reliable outcome parameters to assess visceral sensitivity in vivo include variations in heart 

rate and blood pressure or changes in colonic balloon pressure (29, 30).  

Three days prior to VMR assessment, two EMG electrodes were sutured into the oblique abdominal 

muscle and were exteriorized at the base of the neck for future access. On the day of VMR 

assessment, the electrodes were connected to a data acquisition system. A lubricated balloon (4 cm 

length) was gently introduced through the anus and inserted in the colorectum up to 0.5 cm passed 

the anal verge. The balloon catheter was secured to the base of the tail and connected to a barostat 

(Distender Series II™ Barostat, G&J Electronics, Willowdale, Ontario, Canada) for graded and 

pressure-controlled balloon distension (10-60 mmHg, 20 s duration, 4 min interval) as previously 

published (28). The abdominal EMG signal was recorded (NL100AK headstage), amplified (NL104), 

filtered (NL 125/126, Neurolog, Digitimer Ltd, bandpass 50–5000 Hz) and digitized (CED 1401, 

Cambridge Electronic Design, Cambridge, UK) to a PC for off-line analysis using Spike2 version 5.16 

for Windows (Cambridge Electronic Design). The analog EMG signal was rectified and integrated. To 

quantify the magnitude of the VMR at each distension pressure, the area under the curve (AUC) 

during distension (20 s) was corrected for the baseline activity (AUC pre-distension, 20 s). 

 

Colonic compliance 

Rats were anesthetized (pentobarbital 45 mg.kg
-1

) and graded volumes (0-2.5 mL) were applied to 

the balloon inserted in the colorectum while recording the corresponding intracolonic pressure (31). 

 

Splanchnic afferent nerve activity 

Under deep pentobarbital anesthesia (60 mg.kg
-1

), the distal colon with the mesenteric bundle in 

place was excised and transferred to a Sylgard-lined organ chamber. This chamber was maintained at 

34°C and continuously perfused with oxygenated Krebs solution (118 mM NaCl, 4.75 mM KCl, 1 mM 

NaH2PO4, 22 mM NaHCO3, 1.2 mM MgSO4, 2.5 mM CaCl2, 11 mM D-glucose, 3 µM indomethacin; 10 

mL.min
-1

). The proximal and distal end of the colon were secured to an in- and outflow port 
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respectively for intraluminal perfusion with Krebs solution which was maintained at a constant rate 

of 1 mL.min
-1

 via a perfusion syringe pump. Colorectal distension was induced by closure of the 

outflow while maintaining the inflow. The mesenteric bundle was pinned out at the base of the 

chamber and the splanchnic nerve was identified at the origin of the inferior mesenteric artery and 

dissected free. After transection, the myelin sheet was carefully peeled off and the bare nerve 

bundle was teased into fine strands. One of these was drawn into a suction electrode that was 

relayed to a data acquisition system to record action potential discharge as previously described (32, 

33).  

Multi-unit recordings contained action potentials of different amplitude, width and shape. Individual 

wavemarks were matched to spike templates by a computerized analysis, allowing single-unit 

discrimination. A signal-noise ratio of at least 2:1 was enforced before spike allocation. All action 

potential responses were expressed as impulses per second (imp.s
-1

, 10 s bin size). Afferent unit 

discharge to colorectal distension was quantified by deducting the spontaneous activity from the 

response to distension. This allowed us to differentiate the spontaneous activity from the actual 

response to colorectal distension. Based on the firing discharge profile during colorectal distension, 

units were categorized as low threshold (LT), wide dynamic range (WDR), high threshold (HT) and 

mechanically insensitive afferents (MIA) as previously published (34-36). First, the firing rate at 20 

mmHg distension is expressed as the percentage of the response at 60 mmHg. This parameter, 

referred to as LT%, reflects the relative firing at low compared to high distension pressures and was 

used to further characterize afferent responses based on their functional features as previously 

published (35). An LT% of 40% represents a linear increase in afferent discharge. An LT% of >55%, 

indicates the main increase in afferent firing occurs during limited colorectal distension which is 

characteristic for LT. An LT% of <15% is characteristic for HT as this implies a disproportionate 

increase in afferent firing during noxious distension. WDR have an LT% between 15 and 55. Finally, 

MIA are defined as afferent fibers displaying spontaneous activity that does not increase during 

colonic distension. 
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Experimental design 

Two experimental set-ups were performed (Figure 1).  

In set-up 1 (acute colitis), rats were randomized to receive saline (control) or TNBS enema. VMRs or 

splanchnic afferent nerve signaling were evaluated 3 days later during the acute inflammatory phase. 

In addition, colonoscopy was performed in both TNBS and saline treated rats to confirm the presence 

of colitis in addition to macroscopic and microscopic evaluation of the tissue and an MPO activity 

assay. Set-up 2 (post-colitis) focused on visceral sensitivity in the post-inflammatory phase. Rats were 

administered saline (control) or TNBS (colitis) and the extent of inflammation was verified 

colonoscopically on day 3 in all rats, similar to set-up 1. However, from day 10 onwards, 

convalescence was monitored individually by repeated colonoscopy that was performed every 4 days 

as described previously (28). If at any time point colonoscopy still showed signs of mucosal 

inflammation, the animal was allowed to recover further and colonoscopy was repeated every 4 

days. If colonoscopy showed complete mucosal healing, the EMG electrodes were implanted and 

VMR or splanchnic afferent nerve firing were recorded 3 days later. In addition, the post-

inflammatory status was confirmed using colonoscopic, macroscopic and microscopic evaluation of 

the colonic tissue in addition to the MPO activity assay. 

 

Data presentation and statistical analysis 

Data are presented as mean ± sem for N, the number of animals and n, the number of units. 

Preliminary analysis indicated that afferent signaling was similar in control rats of the acute set-up 

and control rats of the post-inflammatory set-up (data not shown). Therefore data from splanchnic 

nerve firing in controls from the acute and post-inflammatory set-ups were pooled to reduce the 

number of animals needed. Variables were analyzed using unpaired Student’s t-test and generalized 

estimating equations (GEE) followed by least significant difference (LSD) post-hoc test when 

appropriate. Frequency distributions to compare the proportion of the different afferent fibers was 

performed using a Chi-square test. Statistical significance was set at p<0.05 for all tests.  
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5. Results 

VMRs and splanchnic afferent nerve signaling during acute TNBS-colitis 

Intrarectal instillation of TNBS resulted in acute colitis on day 3 post-induction characterized by the 

presence of multiple serpinginous ulcerations in the distal colon and an increased colonoscopic 

damage score (7.3 ± 0.3 for TNBS vs 0.0 ± 0.0 for control; N=17-22; p<0.001). In addition, acute colitis 

was further confirmed by the macroscopic damage scores (7.0 ± 1.3 vs 0.0 ± 0.0 for control; p<0.001), 

the microscopic damage scores (6.0 ± 0.6 vs 0.0 ± 0.0 for control; p<0.001) and the MPO activity (16.3 

± 4.3 U.g
-1

 vs 0.0 ± 0.0 for control; p<0.001). 

VMRs to colorectal distension increased in a pressure-dependent manner (Figure 2A). During acute 

TNBS-colitis, VMRs were significantly increased compared to controls for the full range of distension 

pressures, indicating the presence of marked visceral hypersensitivity.  

Distending the balloon in the colorectum with fixed volumes of water heightened the intracolonic 

pressure in a volume-dependent manner, reflecting colonic compliance. Intracolonic pressures 

increased more rapidly during acute TNBS-colitis, indicating reduced colonic compliance compared to 

controls  (Figure 2B). 

Splanchnic afferent nerves of both control and acute TNBS-colitis rats showed irregular spontaneous 

activity in the absence of colorectal distension (Figure 3A-C). Mechanosensitivity was assessed by 

performing ramp distension up to 60 mmHg, increasing afferent nerve discharge in a pressure-

dependent fashion (Figure 3A-C). Each nerve bundle contained in the suction electrode consisted of 

several different units that could be discriminated based on their spike waveform. In total, 57 single 

units were discriminated in the multi-unit recordings of 12 controls and 60 units were identified in 17 

rats with acute TNBS-colitis. On average, 5 ± 1 units were discriminated in each multi-unit recording 

in controls compared to 4 ± 1 units in those of rats with acute TNBS-colitis (N=12-17; ns). When 

afferent firing was normalized for the number of units in each recording, spontaneous activity was 

not significantly different between controls and acute colitis rats (0.8 ± 0.1 imp.s
-1

 for acute colitis vs 

0.5 ± 0.1 for controls; N=12-17; p=0.07). In contrast, afferent nerve discharge to colorectal distension 
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normalized for the number of units in each recording, was significantly increased during acute TNBS-

colitis compared to control from a distension pressure of 10 mmHg onwards, indicating the presence 

of sensitized afferent responses (Figure 3D).  

Based on their response to colorectal distension, the 57 units identified in control specimens were 

identified as 11 LT, 16 WDR, 13 HT and 17 MIA; the 60 units of TNBS-colitis rats were categorized as 

11 LT, 19 WDR, 22 HT and 8 MIA (Figure 4A). The proportion of these four fiber subtypes was 

significantly different for acute TNBS-colitis compared to control conditions (Chi-square test; p<0.05). 

Spontaneous activity of LT and MIA was significantly more vigorous in rats with acute TNBS-colitis 

compared to controls, whereas WDR and HT units displayed similar spontaneous firing rates in both 

groups (Table 1). Each of the four different unit subtypes elicited a characteristic response to ramp 

distension as described previously (Figure 4B-E) (36). LT disproportionally enhanced their firing rate 

to limited increases in intraluminal pressure and their discharge rapidly saturated at relatively low 

distension levels (approximately 20 mmHg) reaching a plateau. In contrast, WDR responded linearly 

to increasing distension pressures: these fibers were activated by low levels of distension and 

afferent discharge continued to rise as the intraluminal pressure increased further. HT typically 

displayed little activity to low distension levels but responded vigorously to noxious distension. 

Finally, MIA were unresponsive to ramp distension. LT afferent discharge to colorectal distension in 

acute colitis rats was significantly more vigorous at the plateau phase (from 20 mmHg onwards; 

Figures 4A). LT, WDR and HT units from rats with acute TNBS-colitis displayed markedly enhanced 

afferent firing in response to colorectal distension compared to their control counterparts (Figure 4B-

D). Of note, all afferent responses to colorectal distension were corrected for spontaneous activity.  

 

 

Splanchnic afferent nerve signaling and VMRs after the resolution of TNBS-colitis 

Three days after the induction of TNBS-colitis, ulcerations were present in all TNBS-instilled rats 

(colonoscopic score 5.6 ± 0.4 for TNBS vs 0.0 ± 0.0 for control; N=20-23; p<0.001). During 
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colonoscopic follow-up, TNBS-colitis resolved spontaneously and colonoscopic resolution was 

present after a median of 14 days (range 10-22 days). Resolution of TNBS-colitis was confirmed by 

macroscopic (0.0 ± 0.0 for TNBS vs 0.0 ± 0.0 for control) and microscopic evaluation of the colonic 

tissue (0.0 ± 0.0 vs 0.0 ± 0.0 for control) in addition to similar MPO activity in both groups at the end 

of the experiment (0.8 ± 0.3 vs 1.1 ± 0.3 for control). 

After colonoscopically-proven resolution of colitis, VMRs to colorectal distension remained markedly 

increased in post-colitis rats compared to controls from 20 to 60 mmHg of distension, indicating the 

presence of post-inflammatory visceral hypersensitivity (Figure 5A). Colonic compliance was similar 

in both groups (Figure 5B). 

In total, 57 single units were discriminated in the recordings from 12 controls (mean 5 ± 1 unit per 

recording) and 56 units were identified in the recordings from 13 rats with colonoscopically-proven 

resolution of TNBS-colitis (mean 4 ± 1 unit per recording; ns). Spontaneous activity, normalized for 

the number of units in each recording, tended to be higher in the post-colitis group (0.8 ± 0.1 imp.s
-1 

for post-colitis vs 0.4 ± 0.1 for controls; N=12-13; p=0.06) (Figure 6B-C). Afferent nerve discharge to 

colorectal distension, normalized for the number of units in each recording, was significantly 

increased in rats that had recovered from colitis from a distension pressure of 15 mmHg onwards, 

indicating sensitized afferent nerve responses (Figure 6D). 

The 57 single units from control specimens were identified as 11 LT, 16 WDR, 13 HT and 17 MIA, 

whereas the 56 units from post-colitis rats were categorized as 10 LT, 18 WDR, 17 HT and 11 MIA 

(Figure 7A). Although numerically there were less MIA in the preparations of post-colitis rats, in favor 

of an increased presence of WDR and HT, the proportions were not significantly different between 

control and post-colitis groups (p=0.2). Spontaneous afferent nerve discharge of LT and MIA was 

more vigorous in post-colitis rats, whereas spontaneous activity of WDR and HT was similar in both 

groups (table 2). The afferent response to colorectal distension was significantly increased in WDR 

and HT fibers of rats that had recovered from TNBS-colitis compared to controls (Figure 7B-E).  
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6. Discussion  

In this study we studied whether enhanced splanchnic afferent signaling in vitro is associated with 

visceral hypersensitivity in vivo during acute TNBS-colitis and in the postinflammatory phase. Based 

on their discharge profile during colorectal distension, afferent units were categorized as LT, WDR, 

HT and MIA. During acute TNBS-colitis, spontaneous afferent discharge was significantly increased in 

LT and MIA, sensitization of LT, WDR and HT was evident as a leftward shift of the afferent response 

to colorectal distension and VMRs to colorectal distension were increased. In post-colitis rats, 

hypersensitivity to mechanical gut distension was mainly mediated by WDR and HT with little effect 

on LT. In addition, LT and MIA continued to display enhanced spontaneous activity after the 

resolution of TNBS-colitis. Also VMRs remained significantly increased in het post-inflammatory 

phase. 

The characteristic features of visceral nociceptor sensitization include i) increased spontaneous 

afferent discharge, ii) enhanced response to suprathreshold stimulation, iii) activation by 

subthreshold stimuli and/or iv) recruitment of silent nociceptors  (37). Several of these features were 

present in our experiments. Firstly, both LT and MIA demonstrated increased afferent discharge in 

the absence of colorectal distension. These LT most likely correspond to mucosal and muscular-

mucosal afferents that signal sensory information in the physiological range, for instance on the 

presence and/or propulsion of fecal matter. Therefore sensitization of LT as evidenced by their 

enhanced spontaneous discharge (in addition to greater responses to limited levels of distension) 

could contribute to symptom generation and spontaneous abdominal pain in IBS patients. Also MIA 

displayed enhanced spontaneous activity. This class of afferent fibers is insensitive to colorectal 

distension per definition, and therefore does not contribute to the increased mechanosensitivity 

observed in vivo. Although we cannot fully exclude that some of these fibers may originate from 

other structures (such as the bladder for example), the enhanced spontaneous activity of these MIA 

most likely represent thermo- and chemosensitive signaling afferents. Considering the reports of 

increased spontaneous release of inflammatory and pro-nociceptive mediators in the colonic mucosa 
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of patients with IBD and IBS, increased activity of such MIA could contribute to symptoms of 

abdominal pain.  

Secondly, enhanced responses to suprathreshold stimulation were evident for LT, WDR and HT fibers 

during acute TNBS-colitis and sensitization of WDR and HT persisted in the post-inflammatory phase. 

These findings are in agreement with a previous report of Hughes et al. (6). Using a different set-up 

in which colonic segments were opened longitudinally and pinned out flat in a recording chamber, 

Hughes et al. demonstrated predominant involvement of serosal and mesenteric fibers both during 

acute TNBS-colitis and in the post-inflammatory phase of colitis in C57BL/6 mice (6). Serosal and 

mesenteric afferents constitute the main fiber types of mouse splanchnic nerves and their peripheral 

endings are located near the mesenteric attachment (7). They respond to distortion of the outer 

layers of the colonic wall and levels of stretch into the noxious range (6, 38) and therefore most likely 

correspond to the WDR and HT population in our experiments. In addition, we found evidence of 

sensitization towards mechanical distension of LT. The data regarding the sensitization of LT fibers 

are difficult to interpret as during acute TNBS-colitis LT responses were not significantly increased at 

the lower levels of distension, reaching significance only for the plateau phase (20 mmHg onwards). 

In the post-inflammatory phase of colitis, LT responses were only more vigorous at 40 to 45 mmHg of 

distension, indicating that this subtype of splanchnic afferents most likely does not contribute 

significantly to visceral hypersensitivity in the post-colitis rats. Previously, LT slowly-adapting fibers 

were reported to display enhanced responses to circumferential stretch during acute TNBS-colitis in 

the guinea pig (39). Similarly to our findings, LT responses recovered to normal once the 

inflammation resolved. Finally, sensitization of afferent neurons can manifest as a lowering of the 

activation threshold or through recruitment of silent nociceptors (37). Both would result in a shift of 

the afferent functional phenotype. During acute TNBS-colitis, we found less MIA in splanchnic 

afferent recordings in favor of mainly HT and also WDR whereas the proportion of LT remained 

constant. In the post-inflammatory phase of colitis however, the fiber proportions were no longer 

significantly different compared to control. Therefore our findings suggest that silent nociceptors, 
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most likely MIA, are recruited during acute TNBS-colitis and may revert back into their silent 

phenotype after the inflammation has subsided. This hypothesis coincides with previous reports that 

MIA can be sensitized by local exposure to inflammatory mediators and can acquire a 

mechanosensitivite phenotype (40), however this was not supported by all studies (8, 17).  

 

Both during acute TNBS-colitis as in the post-colitis phase, sensitized afferent responses were 

associated with enhanced VMRs to colorectal distension in vivo. Changes were more pronounced 

during acute colitis than after the resolution of colitis in both the in vitro and in vivo set-ups. Several 

reasons may underlie this difference. First, colonic compliance was reduced during acute TNBS-colitis 

but returned to baseline values after resolution of colitis. Colonic compliance has been shown to 

account for approximately 25% of visceral sensations in healthy subjects (41) and therefore may have 

altered the response profile during acute colitis. However by opting for a pressure-controlled 

distension of the colon, lower volumes will have been administered to the colon in the acute colitis 

group versus the control and post-colitis animals to achieve the same distension pressure. 

Nevertheless, reduced colonic compliance and altered connective tissue matrix and muscle tone will 

have influenced how colon is distended, which in turn can affect visceral sensation (42). Secondly, 

during acute colitis excessive amounts of cytokines and mediators among which ATP, protons and 

bradykinin are released that can act on sensory receptors located at the afferent nerve endings in the 

wall thus contributing to visceral hypersensitivity (5, 43, 44). While sensitizing effects can persist long 

after this ‘inflammatory soup’ has resolved, it is not surprising that this post-inflammatory visceral 

hypersensitivity might be of a lesser degree compared to the acute inflammation-induced 

hypersensitivity. 

 

Of note, in our study, we assessed the splanchnic mechanosensory signaling in relation of visceral 

hypersensitivity during acute colitis and in the post-inflammatory phase. However, sensory 

information from the distal colon is conveyed by both the splanchnic and pelvic nerve pathways. 
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Although traditionally the pelvic nerve is thought to be tuned more towards the transmission of 

colonic sensations within the physiological range, our group as well as others have demonstrated 

altered pelvic mechanosensory function in different models of visceral hypersensitivity (6, 9, 12-16, 

45). With our study we do not wish to refute or contest the pelvic contribution to visceral 

hypersensitivity but mainly aimed to highlight the additional importance of splanchnic afferent nerve 

signaling (6, 8, 17, 46, 47).   

We have standardized the stimulus in both the in vitro and in vivo set-ups, namely mechanical 

distension which is the most commonly used stimulus to assess visceral sensory function in human 

experimental designs (48). In contrast to the flat-sheet preparation, our intact colonic segments do 

not allow us to identify the location of the afferent ending in the colonic wall (mucosal, muscular, 

serosal or mesenteric). Nevertheless, segmental distension is a physiological relevant way of 

demonstrating that these afferents are activated using an integrated stimulus and that sensitized 

responses contribute toward increased afferent discharge when the gut is distended. In addition we 

used the same methods and equipment in order to relate our in vitro to in vivo outcomes. Doing so, 

we demonstrate a good correlation between in vitro electrophysiological recordings and in vivo 

behavioral assays. 

 

In conclusion, we demonstrated that sensitization of splanchnic primary afferent neurons contributes 

significantly to visceral hypersensitivity during acute TNBS-colitis and in the post-inflammatory phase 

of colitis. Spontaneous afferent nerve discharge was increased in LT and MIA and could be associated 

with increased chemosensitivity. Sensitization to mechanical distension was a prominent feature of 

LT, WDR and HT fibers during acute colitis and the enhanced afferent discharge of WDR and HT 

persisted in the post-inflammatory phase. Importantly, we demonstrated that this enhanced afferent 

discharge to colorectal distension in vitro was correlated with visceral hypersensitivity in vivo as 

assessed by the VMRs. Although not indicative of a causative relationship, these findings may suggest 
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that sensitization of splanchnic afferent nerves is an important factor in the pathogenesis of 

mechanical visceral hypersensitivity in the TNBS-colitis model.  
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9. Abbreviations 

 

AUC area under the curve 

DSS dextran sulphate sodium 

GEE generalized estimating equations 

HT high threshold 

IBD inflammatory bowel disease 

IBS irritable bowel syndrome 

LSD least significant difference 

LT low threshold 

MIA mechanically insensitive afferent 

MPO myeloperoxidase 

TNBS trinitrobenzene sulphonic acid 

VMR visceromotor response 

WDR wide dynamic range 
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10. Tables 

 

Table 1. Spontaneous firing rate of single units in controls and rats with 

acute TNBS-colitis. 

 

Control  

(imp.s
-1

) 

Colitis 

(imp.s
-1

) 

LT 0.3 ± 0.1 1.2 ± 0.3 * 

WDR 0.6 ± 0.2 0.9 ± 0.1 

HT 0.6 ± 0.2 0.6 ± 0.2 

MIA 0.4 ± 0.1 1.1 ± 0.1 ** 

Results expressed as impulses per second and presented as mean ± sem 

n=8-22. LT, low threshold; WDR, wide dynamic range; HT, high 

threshold; MIA, mechanically insensitive afferents. Unpaired Student's t-

test; * p<0.05, ** p<0.01, significantly different from control. 
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Table 2. Spontaneous firing rate of single units in controls and rats that 

had recovered from TNBS-colitis. 

 

Control 

(imp.s
-1

) 

Post-colitis 

(imp.s
-1

) 

LT 0.3 ± 0.1 0.8 ± 0.3 * 

WDR 0.6 ± 0.2 0.8 ± 0.2 

HT 0.6 ± 0.2 0.4 ± 0.1 

MIA 0.4 ± 0.1 1.0 ± 0.2 * 

Results expressed as impulses per second and presented as mean ± sem 

for N=12-13 and n=10-18. LT, low threshold; WDR, wide dynamic range; 

HT, high threshold; MIA, mechanically insensitive afferents. Unpaired 

Student's t-test; * p<0.05, significantly different from control. 
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Figures legends 

Figure 1. Schematic diagram of the experimental design. In set-up 1 (acute colitis), rats were treated 

with TNBS (colitis) or saline (control) and visceral sensitivity was assessed 3 days later by quantifying 

VMRs and splanchnic afferent nerve discharge to colorectal distension. In set-up 2, rats were treated 

with TNBS or saline and the extent and healing process of colitis was monitored individually by 

repeated colonoscopy: first on day 3 to confirm the presence of colitis and thereafter, starting from 

day 10, every 4 days until complete mucosal healing (score = 0) had occurred. Visceral sensitivity was 

evaluated 3 days after colonoscopic mucosal healing by quantifying VMRs and splanchnic afferent 

nerve discharge to colorectal distension. In both set-up 1 and set-up 2, the inflammatory status was 

assessed by colonoscopic, macroscopic and microscopic evaluation of the colonic tissue in addition to 

a myeloperoxidase activity assay. TNBS, trinitrobenzene sulphonic acid; VMR, visceromotor response. 

 

Figure 2. The effect of acute TNBS-colitis (filled squares) compared to controls (open triangles) on 

visceromotor responses (VMRs) to colorectal distension (A) and colonic compliance (B). Generalized 

estimating equations, LSD post-hoc test; N=5/group; * p<0.05, ** p<0.01, *** p<0.001, significantly 

different compared to controls (open triangles).  

 

Figure 3. The effect of acute TNBS-colitis on spontaneous and distension-induced splanchnic afferent 

nerve firing. Closure of the segmental outflow while maintaining the inflow resulted in colonic  ramp 

distension (A). Representative tracings of spontaneous and distension-induced afferent discharge are 

shown in B and C respectively. Afferent firing during colorectal distension (D) was corrected for 

spontaneous activity, normalized to the number of units in each recording and expressed as impulses 

per second (imp/s). Generalized estimating equations, LSD post-hoc test; N=12-17/group; * p<0.05, 

** p<0.01, *** p<0.001, significantly different compared to controls.  
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Figure 4.  The proportion of LT, WDR, HT and MIA in recordings from 12 control rats and 17 rats with 

acute TNBS-colitis. Chi-square test for n=57-60; * p<0.05, proportions significantly different 

compared to controls (A). Afferent firing to colorectal distension for LT, WDR, HT and MIA are shown 

in B, C, D and E respectively. Afferent firing was corrected for spontaneous activity. Generalized 

estimating equations, LSD post-hoc test; n=10-22/group; * p<0.05, ** p<0.01, *** p<0.001, 

significantly different compared to controls. LT, low threshold; WDR, wide dynamic range; HT, high 

threshold; MIA, mechanically insensitive afferents. 

 

Figure 5. Visceromotor responses (VMRs) to colorectal distension (A) and colonic compliance (B) in 

control rats (open triangles) and rats with colonoscopically-proven resolution of TNBS-colitis (filled 

circles). Generalized estimating equations, LSD post-hoc test; N=5-10/group; * p<0.05, ** p<0.01, *** 

p<0.001, significantly different compared to controls.  

 

Figure 6. Spontaneous and distension-induced splanchnic afferent nerve firing in control rats and rats 

with colonoscopically-proven resolution of TNBS-colitis. Closure of the segmental outflow while 

maintaining the inflow resulted in colonic  ramp distension (A). Representative tracings of 

spontaneous and distension-induced afferent discharge are shown in B and C respectively. Afferent 

firing during colorectal distension (D) was corrected for spontaneous activity, normalized to the 

number of units in each recording and expressed as impulses per second (imp/s). Generalized 

estimating equations, LSD post-hoc test; N=12-13/group; * p<0.05, ** p<0.01, *** p<0.001, 

significantly different compared to controls.  

 

Figure 7. The proportion of LT, WDR, HT and MIA in recordings from 12 control rats and 13 rats with 

colonoscopically-proven resolution of TNBS-colitis. Chi-square test for n=56-57; no significant 

difference (A). Afferent firing to colorectal distension for LT, WDR, HT and MIA are shown in B, C, D 

and E respectively. Afferent firing was corrected for spontaneous activity. Generalized estimating 
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equations, LSD post-hoc test; n=10-18; * p<0.05, ** p<0.01, *** p<0.001, significantly different 

compared to controls. LT, low threshold; WDR, wide dynamic range; HT, high threshold; MIA, 

mechanically insensitive afferents. 

 

Page 30 of 42Neurogastroenterology and Motility

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 1. Schematic diagram of the experimental design. In set-up 1 (acute colitis), rats were treated with 
TNBS (colitis) or saline (control) and visceral sensitivity was assessed 3 days later by quantifying VMRs and 
splanchnic afferent nerve discharge to colorectal distension. In set-up 2, rats were treated with TNBS or 

saline and the extent and healing process of colitis was monitored individually by repeated colonoscopy: first 
on day 3 to confirm the presence of colitis and thereafter, starting from day 10, every 4 days until complete 

mucosal healing (score = 0) had occurred. Visceral sensitivity was evaluated 3 days after colonoscopic 
mucosal healing by quantifying VMRs and splanchnic afferent nerve discharge to colorectal distension. In 
both set-up 1 and set-up 2, the inflammatory status was assessed by colonoscopic, macroscopic and 
microscopic evaluation of the colonic tissue in addition to a myeloperoxidase activity assay. TNBS, 

trinitrobenzene sulphonic acid; VMR, visceromotor response.  
201x96mm (300 x 300 DPI)  
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Figure 2. The effect of acute TNBS-colitis (filled squares) compared to controls (open triangles) on 
visceromotor responses (VMRs) to colorectal distension (A) and colonic compliance (B). Generalized 

estimating equations, LSD post-hoc test; N=5/group; * p<0.05, ** p<0.01, *** p<0.001, significantly 

different compared to controls (open triangles).  
207x83mm (300 x 300 DPI)  
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Figure 3. The effect of acute TNBS-colitis on spontaneous and distension-induced splanchnic afferent nerve 
firing. Closure of the segmental outflow while maintaining the inflow resulted in colonic  ramp distension (A). 

Representative tracings of spontaneous and distension-induced afferent discharge are shown in B and C 

respectively. Afferent firing during colorectal distension (D) was corrected for spontaneous activity, 
normalized to the number of units in each recording and expressed as impulses per second (imp/s). 

Generalized estimating equations, LSD post-hoc test; N=12-17/group; * p<0.05, ** p<0.01, *** p<0.001, 
significantly different compared to controls.  

115x234mm (300 x 300 DPI)  

 
 

Page 33 of 42 Neurogastroenterology and Motility

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 4.  The proportion of LT, WDR, HT and MIA in recordings from 12 control rats and 17 rats with acute 
TNBS-colitis. Chi-square test for n=57-60; * p<0.05, proportions significantly different compared to controls 
(A). Afferent firing to colorectal distension for LT, WDR, HT and MIA are shown in B, C, D and E respectively. 

Afferent firing was corrected for spontaneous activity. Generalized estimating equations, LSD post-hoc test; 
n=10-22/group; * p<0.05, ** p<0.01, *** p<0.001, significantly different compared to controls. LT, low 

threshold; WDR, wide dynamic range; HT, high threshold; MIA, mechanically insensitive afferents.  
190x254mm (300 x 300 DPI)  
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Figure 5. Visceromotor responses (VMRs) to colorectal distension (A) and colonic compliance (B) in control 
rats (open triangles) and rats with colonoscopically-proven resolution of TNBS-colitis (filled circles). 

Generalized estimating equations, LSD post-hoc test; N=5-10/group; * p<0.05, ** p<0.01, *** p<0.001, 
significantly different compared to controls.  

209x81mm (300 x 300 DPI)  
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Figure 6. Spontaneous and distension-induced splanchnic afferent nerve firing in control rats and rats with 
colonoscopically-proven resolution of TNBS-colitis. Closure of the segmental outflow while maintaining the 
inflow resulted in colonic  ramp distension (A). Representative tracings of spontaneous and distension-

induced afferent discharge are shown in B and C respectively. Afferent firing during colorectal distension (D) 
was corrected for spontaneous activity, normalized to the number of units in each recording and expressed 
as impulses per second (imp/s). Generalized estimating equations, LSD post-hoc test; N=12-13/group; * 

p<0.05, ** p<0.01, *** p<0.001, significantly different compared to controls.  
115x234mm (300 x 300 DPI)  
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Figure 7. The proportion of LT, WDR, HT and MIA in recordings from 12 control rats and 13 rats with 
colonoscopically-proven resolution of TNBS-colitis. Chi-square test for n=56-57; no significant difference 

(A). Afferent firing to colorectal distension for LT, WDR, HT and MIA are shown in B, C, D and E respectively. 

Afferent firing was corrected for spontaneous activity. Generalized estimating equations, LSD post-hoc test; 
n=10-18; * p<0.05, ** p<0.01, *** p<0.001, significantly different compared to controls. LT, low 
threshold; WDR, wide dynamic range; HT, high threshold; MIA, mechanically insensitive afferents.  

190x254mm (300 x 300 DPI)  
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We are very pleased that the editorial board has shown interest in our manuscript entitled 

“Mechanisms contributing to visceral hypersensitivity: focus on splanchnic afferent nerve signaling”.  

We thank you and the two expert referees for the valuable and positive comments. In accord with 

their suggestions we have revised the manuscript to address their concerns. Please find below a 

detailed point-to-point reply to the comments that were raised. We hope we addressed the questions 

satisfactorily.  

 

Response to the editor  

Part of this work was presented at nEUROgastro 2015 [1], sponsored by the European 

Neurogastroenterology and Motility Society, as now stated at the end of the introduction, page 5 of the 

revised manuscript.  

 

Response to reviewer 1  

1. The authors need to explicitly describe in this submission how low threshold, WDR and HT 

afferents are characterized from one another. This is crucial as the authors are reporting changes in 

the proportion of these afferent subtypes in the colitis model.  

Based on the firing discharge profile during colorectal distension, units were categorized as low 

threshold (LT), wide dynamic range (WDR), high threshold (HT) and mechanically insensitive 

afferents (MIA) as previously published [2-4]. First, the firing rate at 20 mmHg distension is expressed 

as the percentage of the response at 60 mmHg. This parameter, referred to as LT%, reflects the 

relative firing at low compared to high distension pressures and was used to further characterize 

afferent responses based on their functional features as previously published [3]. An LT% of 40% 

represents a linear increase in afferent discharge. An LT% of >55%, indicates the main increase in 

afferent firing occurs during limited colorectal distension which is characteristic for LT. An LT% of 

<15% is characteristic for HT as this implies a disproportionate increase in afferent firing during 

noxious distension. WDR have an LT% between 15 and 55. Finally, MIA are defined as afferent fibers 

displaying spontaneous activity that does not increase during colonic distension.  

This is described in the revised manuscript on page 8.  

2. In addition, MIA afferents have been defined as ‘afferent fibers displaying spontaneous activity 

but do not increase during colonic distension’. However, depending on exactly where the recordings 

are performed from this firing is not necessarily indicative of an afferent innervating the colon. If the 

recording is the spinal side of the inferior mesenteric ganglion it could in fact be an afferent 

innervating another organ (bladder for example). This needs to be clarified by the authors.  

We agree with the reviewer that although we dissected the tissue in such a way that only the colon 

and a minimum of mesenteric tissue was present, we cannot exclude that some non-mechanosensitive 

afferent firing to relate to innervation of other tissue beside the colon.  

This is now included in the discussion of the revised manuscript on page 13-14.  

3. The authors should discuss why they used a relatively high concentration of ethanol (50%) in 

their TNBS studies when other studies have used lower ethanol concentrations. This may be a simply 

issue of comparing rats vs. mice but it warrants a comment for comparative purposes.  

Indeed, the concentration of ethanol is relatively high. However, we found this dose of TNBS (15 mg) 

in combination with 50% of ethanol optimal to induce a reproducible degree of colitis in our Sprague-

Dawley rats. This is higher compared to the dose and concentration we previously used in Wistar rats 

(7.5 mg of TNBS in 40% of ethanol) [5] and Swiss mice (10 mg of TNBS in 30% ethanol) [6] and most 

likely relates to species and strain differences in the susceptibility to TNBS-induced colitis as was 

previously discussed by others [7].  

A comment on this was inserted in the methods section of the revised manuscript on page 5.  

4. The authors have measured colonic compliance in the control, acute colitis and post-colitis 

animals. Notably, they show that compliance is only altered in acute colitis and not in the post-colitis 

animals. However, they make no point of comment in the discussion on how this may alter their 

findings. This should be addressed, as the altered compliance is likely to alter the response profiles in 

the acute colitis animals. Essentially there is a leftward shift in the pressure curve vs. volume and the 

Page 38 of 42Neurogastroenterology and Motility

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

authors will actually be administering higher pressures at any given volume in the acute colitis vs the 

control and post-colitis animals. This will have a direct effect on afferent sensitivity and may explain 

some of their alterations in afferent and VMR responses. This should be clarified and commented on 

in the discussion.  

Indeed, colonic compliance was reduced in the acute colitis setting compared to control and post-

colitis rats as evidenced by a leftward shift of the pressure-volume curve. In a volume-controlled 

setting this would indeed mean that higher pressures are administered at any given volume in the 

acute colitis vs the control and post-colitis animals. However, as we have opted for a pressure-

controlled system, this means that to achieve the same distension pressures lower volumes will be 

administered in the acute colitis versus the control and post-colitis animals. Nevertheless, reduced 

colonic compliance and altered connective tissue matrix and muscle tone will have influenced how 

colon is distended, which in turn can affect visceral sensation [8]. This paragraph is now included in 

the discussion of the revised manuscript (page 15-16).  

5. Discussion. Page 14 Line 18. The authors statement starting with “However it remains 

uncertain whether distending a segment to 60mmHg is a large enough stimulus to activated these 

mesenteric/serosal afferents”…. and continues until line 34. The authors should read “Selective Role 

for TRPV4 Ion Channels in Visceral Sensory Pathways” by Brierley et al., 2008 Gastroenterology and 

adjust their conclusion accordingly. This paper compares distension in intact preparations, vs. flat 

sheet von frey hair and stretch responses. This would suggest that that these afferents are indeed 

activated by the various stimuli at quite specific mechanical stimulation intensities in the noxious 

range. If the authors accordingly altered their comments based on these finding, it would actually help 

to explain their own results.  

We thank the reviewer for the suggestion. In the paper of Brierley et al, it was shown that colonic 

mechanoreceptors with receptive fields on serosa and mesentery responded to high intensities of 

mechanical stimulation with von Frey hairs (>50% above 400 mg). This was correlated with a high 

threshold to distention of the intact colon by balloon (45 ± 3.2 mmHg) or circumferential stretch of 

the preparation as a flat sheet (10.6 ± 0.3 g) indicating that indeed 60 mmHg is a large enough 

stimulus to activate mesenteric/serosal afferents.  

The paragraph was adjusted accordingly (page 14 of the revised manuscript).  

 

Response to reviewer 2  

1. This paper represents a solid piece of work from a solid group with a good reputation in their 

field. The methods are well-established and the interpretation is spot on up to a point. The point at 

which interpretation becomes too speculative is unfortunately the whole point of the study, which is 

to determine the importance of the splanchnic pathway in visceral pain. What the authors do is to 

correlate changes in splanchnic afferent fiber mechanosensitivity with changes in behavioral 

responses to mechanical stimuli. It is commendable that they have standardized the stimulus in both 

cases, which has not been done before. The problem is they have done nothing to prove that the 

splanchnic pathway actually mediates the behavioral response. To do this they would have to lesion 

the nerves somehow and measure VMR before and after. If they can do this and add it to the paper it 

would make a massive difference to its impact.  

It is clear in several species that the splanchnic afferent innervation extends as far as the distal colon, 

whereupon the pelvic pathway takes over, with a small area of overlap of the two. The group of NJ 

Spencer has shown that the VMR to rectal distension is abolished by rectal nerve section (which are 

branches of the pelvic nerve). This is not at all surprising. Similarly I would expect that responses to 

distension of the distal colon would be abolished by section of the lumbar colonic or splanchnic 

nerves. It is all a simple matter of anatomy. What is the important question is the pathway of pain in 

the clinic and/or the pathway of pain in response to a particular type of stimulus. To this end it is 

critical to know where is the balloon relative to the two sources of innervation.  

I think the authors need to either do the extra experiments to determine the contribution of the 

splanchnic nerve, or change their conclusions substantially to make it clear that they are seeing a 

correlation, not a causative relationship, between splanchnic afferent activation and VMR.  
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The paper is largely in agreement with others on effects of inflammation on sensory pathways. Thus 

its uniqueness in its current form is performing VMR and afferent studies using the same methods and 

equipment, which makes it easier to correlate the two. This needs to be better advertised instead of 

the current conclusions which are too bold.  

We agree with the reviewer that we might have been too bold in drawing conclusions from our data as 

it is indeed a correlation or association that we see between the afferent recordings and the 

visceromotor responses, which by itself does not suggest a causative relationship.  

The idea of leasioning the splanchnic nerve in vivo followed by VMR assessment is intriguing. Indeed, 

in the paper of Nick Spencer’s group, referred to by the reviewer, transection of the rectal nerves 

abolished VMRs to rectal distension [9]. In the same paper, the authors described that similarly 

leasioning the lumbar nerves did not affect VMRs to rectal distension in healthy control mice under 

general anesthesia. It would be interesting to evaluate the effect of splanchnic afferent nerve 

transection on the VMRs in our model to determine the exact contribution of this sensory pathway to 

the visceral hypersensitivity.  

However, there are some difficulties in performing these experiments. First, the surgery is quite 

challenging as the splanchnic afferents are located deep in the abdomen close to the aorta, however 

this is only a matter of practice. Nevertheless, to perform these experiments in sufficient number of 

rats in the three experimental conditions (control, acute colitis and post-colitis) is almost a completely 

new project by itself. Secondly, a major difference between the methodology of the Spencer group and 

our approach is that we assess VMRs in non-sedated, fully awake rats, as anesthetics are known to 

significantly alter or even abolish VMRs [10]. This makes it nearly impossible to transect the 

splanchnic nerve in vivo and afterwards perform VMR assessments as effects due to the surgery itself 

such as post -operative ileus and other motility dysfunctions due to severing the efferent pathways 

will undoubtedly impede correct interpretation of the results [11]. Also, transecting the splanchnic 

nerve will impact bladder function, which due to the crosstalk between bladder and colon might also 

affect colonic sensitivity as previously published [12]. Finally, there is the aspect of postoperative pain 

as you open the abdominal muscles and go deep into the abdominal cavity which could affect afferent 

function.  

Therefore, although we agree that these experiments would be highly interesting, we decided to 

follow the reviewer’s advice of revising our conclusions as currently we have insufficient evidence to 

demonstrate a causative relationship and instead focus on the correlation between splanchnic 

afferent activation and VMR.  

This is now altered in the abstract and throughout the discussion.  

Regarding the comment of the reviewer on where the balloon is relative to the splanchnic and pelvic 

innervation we believe that with our balloon distension in vivo we stimulate both nervous pathways 

as the balloon covers the segment of the colon that is dissected for the in vitro electrophysiological 

recordings as can been seen in the picture below. However, we fully acknowledge that this is purely 

speculative.  

 

 

2. It is important to note that the VMR has some major weaknesses when it comes to correlation 

with pain. How much is an effort to expel the balloon and how much is a wincing response to pain is 

very difficult to say. The fact that the response can be evoked by low intensity stimuli suggests it is not 

all pain-related. The group led by Larsson investigated this a few years ago, showing that blood 

pressure and heart rate are much better indices of pain perception. Just because VMR has been used 

extensively in this field does not mean it is the gold standard. It would be good to see discussion of 

these aspects.  

It is true that although the VMR remains the most commonly used method to assess visceral 

hypersensitivity to colorectal distension in vivo other techniques are available such as using telemetry 

to monitor heart rate and blood pressure during distensions. Both the cardiovascular and 

visceromotor responses act via brainstem loops and are reduced or abolished by classis analgesics 

among which morphine [10]. There are few papers that compared VMRs and cardiovascular 
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responses head-to-head. As the reviewer already mentioned, the group of Larsson published several 

papers evaluating the antinoceptive potential of among others baclofen and pregabalin on visceral 

pain looking at VMR, blood pressure and heart rate simultaneously [13,14]. However, in their 

discussion they state that ‘the VMR is most sensitive [to inhibition] when compared to cardiovascular 

responses’. They hypothesize that this ‘might point toward the VMR being more tightly controlled by 

nociceptive input, with cardiovascular responses to colorectal distension being affected by other 

factors such as emotional state’ [13]. Therefore, we are not sure which paper of the group of Larsson 

the reviewer refers to. Nevertheless, we fully acknowledge that the VMR is not the only technique to 

assess visceral sensitivity, nor did we intend to claim that it is the gold standard. However, as a 

discussion on the different methods to assess visceral hypersensitivity is beyond the scope of our 

manuscript, we hope we comply to the concern of the referee by referring to alternative techniques to 

assess visceral hypersensitivity in vivo in the methods section on page 7.  

3. The discussion of the paper is too long, and strays often from the subject onto matters 

unrelated to this study.  

The discussion has been extensively reworked to address the reviewer’s remark.  
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