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CYCLOTOMIC GAUDIN MODELS:
CONSTRUCTION AND BETHE ANSATZ

BENOIT VICEDO AND CHARLES YOUNG

ABSTRACT. To any finite-dimensional simple Lie algebra g and automorphism o : g — g we asso-
ciate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of U(g)®" generated
by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special
case o = id.

We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic
Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules.
To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin
involving vertex algebras and the Wakimoto construction. As part of this construction, we make
use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper.

As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for

the weight function.
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1. INTRODUCTION AND OVERVIEW
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Let w € C* be a root of unity of order T' € Z>1, and fix a collection of N € Z>1 non-zero points

z; € C* whose orbits, under the multiplicative action of w, are pairwise disjoint: z; # wkzj for

elements of U(g)®":

-1 N T1a0p1.()

190 gr1y)
=1,...,N
T D) DR R BTN
p: ]:1 p:l
J#

1

all k € Zp = 7Z/TZ and all i # j. Let g be a finite-dimensional simple Lie algebra over C and o
an automorphism of g whose order divides T'. In this paper we consider the following family of N

(1.1)
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where {1} is a basis of g, {I,} is its dual basis with respect to a non-degenerate invariant inner
product on g, and for any A € U(g) we use the standard notation A®) := 190-1 @ 4 @ 19N-),
We refer to the elements H; € U(g)®N of (1.1) as quadratic cyclotomic Gaudin Hamiltonians.
A direct calculation reveals that they commute amongst themselves. In the special case o = id,
T = 1, the H; reduce to the quadratic Hamiltonians of the celebrated Gaudin model [Gau76, Gau83]

associated to the Lie algebra g, namely

) N Ia(z)](])
HiGaUdmZ E 7“7 i=1,...,N. (1.2)
= Zi — Zj
J#

If one assigns to each marked point z; a g-module V; then the Gaudin Hamiltonians are represented
by a collection of mutually-commuting linear operators in End (®fi 1 Vi>. Physically, one thinks of
these Hamiltonians as describing the dynamics of a “long-range spin-chain” consisting of N “spins”
whose pairwise interactions depend rationally on the marked points z; in the complex plane. In
this language, the Hamiltonians (1.1) describe a generalization of the model in which each spin
interacts not only with the other spins but also with their images under the multiplicative action of
w (and in which there is a self-interaction between each spin and its own images). Observe that the
kinematics of the model are unaltered: the algebra of observables remains U(g)®" and the space
of states remains @2, V;.

In the study of the Gaudin model, the central problem is the spectral problem: one wishes to
find joint eigenvalues and eigenvectors of the mutually commuting Hamiltonians. When the V; are
irreducible representations of g (and actually also when they are Verma modules) this problem has
been solved using various forms of the Bethe ansatz. At the most concrete level, the content of the

present paper is to do the same for the cyclotomic Gaudin Hamiltonians of (1.1).

The Gaudin model has deep connections to (among others): the KZ equations and conformal
field theory [FFR94, RV95]; the geometric Langlands program [Fre07]; and, via the Bethe ansatz,
Schubert calculus [MTV09]. Because of this central role in the theory of quantum integrable
systems, generalizations of the Gaudin model are of great interest — and in fact a wealth of different
generalizations exist. To fit the Hamiltonians of (1.1) into the picture, let us recall the possibilities.
First, one can consider, in place of the finite-dimensional simple Lie algebra g, a Lie algebra of
affine type [FF07] or a Lie superalgebra [MVY15]. Another possibility is to keep the Lie algebra
g but modify the kinematics [FFT10, FFRb10]. In a different direction, keeping both g and the
kinematics fixed, a Gaudin model can be associated to any skew-symmetric solution r(u,v) of the
classical Yang-Baxter equation on g ® g with spectral parameter [Gau83]. Such solutions fall, by
the Belavin-Drinfeld [BD98] classification, into three classes — rational, trigonometric and elliptic
— and the Hamiltonians (1.2) correspond to the rational solution r(u,v) = I* ® I,/(u — v). (By
replacing the Riemann sphere CP!, in which the marked points z; lie, by a more general Riemann
surface, one arrives at quantized Hitchen systems [BD96, ER96].) From this point of view, the
quadratic Hamiltonians (1.1) turn out to correspond to certain non-skew-symmetric solutions to
the classical Yang-Baxter equation, and viewed this way they were introduced by T. Skrypnyk in
[Skr06]. We comment more on this interpretation below. Another way to understand the origin of
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the Hamiltonians (1.1) is to recall that the usual Gaudin Hamiltonians (1.2) are extracted from the
poles of a Lax matrix which encodes the tensor product of evaluation representations of a half-loop
algebra g ® C[[t]]. By replacing g ® C|[[t]] by a twisted half-loop algebra (g @ C[[t]])?, some special
cases of the Hamiltonians (1.1) were introduced in [CY07].

In order to solve the spectral problem for the cyclotomic Gaudin Hamiltonians in (1.1), we adopt
the approach of B. Feigin, E. Frenkel and N. Reshetikhin in [FFR94]. In fact much of the motivation
for the present work can best be understood in terms of the details of this approach — so let us
review these details (in outline; cf. §2 below).

A central role is played by the vacuum Verma module at critical level, V, hv, over the untwisted
affine Lie algebra g. Recall that g is the extension of the loop algebra g@C((t)) by a one-dimensional
centre CK and that by definition V L (9) ®u(gecgeck) Cvo is the g-module induced from a
vacuum vector vg that is annihilated by all non-negative modes A[k] := A® t* € g @ C[[t]], k > 0,
and on which the central charge K takes the critical value. (This critical value is —h" when we
work with respect to the normalization of the invariant inner product on g in which long roots have
square length 2, where h" is the dual Coxeter number of g.) At this critical value of the central

charge, the vector
1
S = ila[—l}la[—l]vo, (1.3)

where I,[—1] := I, ® t~!, becomes singular, meaning that like the vacuum it too is annihilated by
all non-negative modes: A[k].S =0 for all A € g and all £ > 0.

To go from this singular vector S € V " o the quadratic Gaudin Hamiltonians (1.2), one needs
the next key idea from [FFR94|, which is the interplay of “local” and “global” objects. We think
of the tensor factors V; of the Gaudin spin chain ®f\;1 V; as being local data, each V; assigned to
its point z; € C. The V;’s are by definition g-modules, but they become g ® C[[t]]-modules if we
specify that strictly positive modes act as zero. More precisely, each V; becomes a module over the
Lie algebra g ® C[[t — z;]] of g-valued Taylor series in a local coordinate ¢ — z; near the point z;.
Let now u € C be another point, distinct from the z;, and assign the g-module V " to it: that
is, regard g as a central extension of the Lie algebra g ® C((t — u)) of g-valued Laurent series in
the local coordinate near u. These are the “local” objects. The “global” objects will be rational
functions of the complex plane that vanish at infinity and that have poles at most at finitely many
specified points. In fact, let g, be the Lie algebra of g-valued rational functions that vanish at
infinity and have poles at most at the point u to which Vg W s assigned. A function f(t) € g, acts
on Vg hv, via its Laurent expansion about u. But it also acts on each V; via its Taylor expansion
about z;. Thus f(t) acts on the tensor product ®f\;1 Vi®Vy M. The quotient by this action,
(®fi Vi® Vg hv) / gu, is called the space of coinvariants with respect to g,. Each equivalence
class can be shown to contain a unique representative in ®f\;1 Vi ® Cvp, and in this way the space
of coinvariants is identified as a vector space with ®f\; 1 Vi @ Cvg =¢ ®fi 1 Vi. For every vector
X e Vahv we then have a linear map X (u) € End(®£\;1 Vi) which sends v € ®f\;1 Vi to the class
of v ® X. This map X (u) depends rationally on u, with potential poles at the points z;.
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In particular, to the singular vector S € Vahv of (1.3) is associated a map S(u) € End(®fi1 Vi)
depending rationally on u, with poles at the z;. The residue of this map at the point z; is precisely
the representative in End(@f\;l V;) of the Hamiltonian #{2udin,

Thus far the fact that S € V; h g singular has not been used. But the real merit of the above
construction is that, given any two singular vectors Zi,Z> € Vi hv, the linear operators Zi(u)
and Z3(v) may be shown to commute (where we now introduce two copies of V h | assigned to
distinct points u and v in the complex plane). The space of singular vectors of the vacuum Verma
module at critical level is known to be very large [FF92].! The image of this space of singular
vectors is then a large commutative subalgebra of End(@f\;l Vi), the Gaudin algebra® for the data
(:V1,..., VN 21,...,2n). It is generated by the quadratic Gaudin Hamiltonians (1.2) together,
when rank(g) > 2, with a hierarchy of higher Gaudin Hamiltonians.

One would now like to obtain the cyclotomic Hamiltonians (1.1) by suitably generalizing this
procedure. Some or all of the above objects should be appropriately twisted by the automorphism
0 :g— g, and the question is, which ones?

At first sight it is perhaps tempting to think that the affine algebra g should be replaced by a
twisted affine algebra g7, and the g-module Vg " with a module over §°. This turns out to be
the wrong approach, however. The cyclic group Z7 acts on g by powers of the automorphism o
and on the complex plane by rotations about the origin through multiplication by powers of w.
But g and V "' are local data assigned to the point w and, since the construction above relies
on u being suitably generic, we should suppose that u is not the origin. So we do not naturally
obtain the projector ;7 . w kot g ® C((t)) — (g ® C((t)))? onto the twisted loop algebra,
(g@C((2)))? :={X(t) € g C((t)) : X(wt) = cX(t)}. What is more, it is a good idea to avoid
twisting g and Vg Wit possible, because the structure of these objects is so key in the construction
of [FFR94].

In fact — and this is the main theme of the present paper — the appropriate objects to twist are
the “global” ones, not the “local” ones. Thus, we replace g, by the algebra of rational functions
f(t) that vanish at infinity, that have poles at most at u and its image points w*u, and that obey
the equivariance condition

Flwt) = o f (). (1.4)
The content of §2 below is to show that the construction of a large commutative subalgebra of
U(g)®N goes through with such twist-equivariant global objects. We call the resulting algebra the
cyclotomic Gaudin algebra. See Theorem 2.7, which is the main result of the first half of the paper.

This cyclotomic Gaudin algebra contains the quadratic Hamiltonians (1.1) and also (again, when
rank(g) > 2) a hierarchy of higher cyclotomic Gaudin Hamiltonians. Let us comment on the
latter. The change to the allowed rational functions f(t) is apparently minor, so one might suspect
that the resulting Hamiltonians would all be correspondingly minor alterations of their untwisted

counterparts, much as the first term on the right in (1.1) is nothing but the usual Hamiltonian

ln type A, an explicit formula for a generating set of singular vectors was given by A. Chervov and A. Molev in
[CMO8], based on earlier work by D. Talalaev [Ta04]. See also [Mo13] for analogous formulae in types B, C and D.
2Here we follow [Fre05] in calling this commutative subalgebra a Gaudin algebra. In [MTVO06] the same object is
referred to as a Bethe algebra.
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(1.2) suitably “decorated” with o’s and w’s. But this is not at all the case. The “leading terms”
are always of this form, but there is in general a long tail of intricate “correction” terms, which in
a certain sense arise from “self-interaction” due to the twisting. See Remark 2.5 below. (Let us
note in passing that this feature is closely linked to the difference between the simple closed form
that exists for the normal-ordered product of fields for modules over vertex algebras and the much
more complicated [Doy06] and/or implicit [Li06a, Li06b] form of the normal-ordered product for
fields in twisted- and quasi-modules over vertex algebras.)

Having defined the cyclotomic Gaudin algebra, the next and larger task is to address the spectral
problem using a Bethe Ansatz. Sections 3—4 are devoted to this in the case where the representations
V; are Verma modules with highest weights A; € h*. Let us begin by summarizing the results. We
construct joint eigenvectors — called Bethe vectors — of the cyclotomic Gaudin Hamiltonians. Each
such vector is labelled by a collection of m € Z>( pairs (w;, c(i)), 1 < i < m, where w; € C* is a
Bethe root and where ¢(i) € I is a node of the Dynkin diagram of g which one thinks of as labelling

a lowering operation Fi;) in the direction of the simple root a. ;). The explicit form of these Bethe

vectors is
N ki ki Kt ki

. G 1(Fc(n§))a 2(Fc(né)) & P (Fc(n;rl))a bi (Fc(n;i))vAI

¢F = (_1) Z ® k k - k i k_;
ne€Py, Ny i=1 (w "W, — W ”2wnz> .(w Piclw, —w "Pzw i )(w ”Pzw i = zz)
(klv ,km)EZ$ 1 2 p;—1 pz Pz
(1.5)

where the sum n € P, y is over ordered partitions of the labels {1,...,m} into N parts, and

where 7(X) := wo(X). (For details see §4.6.) This formula is a natural cyclotomic analog of the
Schechtmann-Varchenko formula, [SV91, BF94].
The Bethe roots w; are required to obey a collection of cyclotomic Bethe equations:

():T_liv:@Z o L Tzli (@), Lyrey) | 1 Tz—lwmcm)ﬂa o) | (1.6)
—0 i—1 - Wr 0k wj — W' wg wj =1 wr—1 R |
r=0 i= = .

foreach j € {1,...,m}. Here L, is the induced action of o on weight space, h*, given by L,(\)(h) =
A(c71h). The second main result of the paper, Theorem 4.7, is that provided these cyclotomic Bethe
equations are satisfied then the corresponding Bethe vector ¢r is a simultaneous eigenvector of the

full hierarchy of cyclotomic Gaudin Hamiltonians (with eigenvalues as defined in §4.7).

Let us discuss the form of the equations (1.6). The first two terms are the natural cyclotomic
analogs of the corresponding terms in the Bethe equations for the usual Gaudin model (for which see
[FFR94]). Then there are two terms in 1/w;. The first of these, E;:F:_11<ozc(j), Lyaey) /(Wi wj —wj),
can be regarded as a “self-interaction” between the Bethe root w; and its twist-images w"wj.

However, the final term in (1.6), namely (a;), Ao) /w;, is a more subtle new feature of the cyclotomic
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case. The weight \g is given, we find, by

T-1 T-1 r—1

dp)
Ao(h) = Z trnlo-_ wa;n h Zl 1 — " Z Tgpl(a) Oé(h),

r=1 acAt p=0
o"(a)=a

where g = n~ $hPnis a Cartan decomposition of g; see §4.4. This definition depends on the data
(g,0,T) but not, for example, on the marked points z; or the choice of g-modules assigned to them.
From the present perspective, this term originates in the need to preserve a crucial property of
the Wakimoto construction when the global objects (the rational functions) are twist-equivariant.
Namely, we need that any linear functional invariant under twist-equivariant rational functions
valued in a certain Heisenberg Lie algebra is also, automatically, invariant under twist-equivariant
rational functions valued in g. See §4.2 below, and also a companion paper [VY] in which we
discuss cyclotomic coinvariants in the more general framework of vertex Lie algebras. In [VY] we
establish in particular a result (Theorem 4.1, below) that will be needed here. The upshot is that
it is necessary to assign, to the origin, a certain carefully chosen one-dimensional module over the
twisted loop algebra (h ® C((¢)))?, and this gives rise to the final term in (1.6).

This paper is structured as follows. The construction of the cyclotomic Gaudin algebra by means
of coinvariants is given in §2.

In §3 we recall the Wakimoto construction (or free-field realization) for Vg hv, which is a homo-
morphism of vertex algebras p : V LN Wy to a Heisenberg vertex algebra Wy, and check that
this homomorphism is equivariant with respect to o, for a natural definition of o on Wj.

In §4 we recall the definition of Wakimoto modules and then go on to use them to construct the
Bethe vectors and prove (Theorem 4.7) that they are simultaneous eigenvectors of the hierarchy of
cyclotomic Gaudin Hamiltonains provided the cyclotomic Bethe equations are satisfied.

In §5 we discuss some implications and special cases of Theorem 4.7. In particular we extract
the explicit form of the eigenvalues of the quadratic cyclotomic Gaudin Hamiltonians (1.1). In the
special case when g is of type A, B or C, ¢ is an inner automorphism of order 2, and the V; are
vector representations, these eigenvalues were obtained by T. Skrypnyk [Skr13], who also found
Bethe equations in agreement with (1.6).

Appendix A contains the statement and proof of a I'-equivariant version of the Strong Residue
Theorem. In Appendix B we carry out diagrammatic calculations similar in spirit to those of [SV91]
in order to establish the cyclotomic analog of the Schechtmann-Varchenko formula, given above,
for the Bethe vector.

We close this introduction by noting some open questions.

The first concerns symmetries of the cyclotomic Gaudin model and the issue of completeness of
the Bethe ansatz. The Gaudin algebra commutes with the copy AVg of g in U(g)®" and, when the
V; are Verma modules, Bethe vectors ¢ € ®f\;1 V; are singular (where singular now means singular
for g, i.e. n.yp = 0). The Bethe ansatz is said to be complete, for a given collection of marked
points z; and representations V;, if the Bethe vectors form a basis of the space of singular vectors of

®f\i 1 Vi. Completeness is known to hold in many cases, but not in all [MV07]. Now, the cyclotomic
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Gaudin algebra commutes only with stable subalgebra g7 := {X € g: 0 X = X}. We expect, but
have not proved here, that the cyclotomic Bethe vectors are singular for g°. Assuming this is so,
the interesting question is then whether they form a basis of such singular vectors in ®Z]\; Vi If
they do then the system of cyclotomic Bethe equations would then provide a new way to study the
decomposition of tensor products of g-modules into their irreducible components with respect to
g?. In particular in the one-point case N = 1, one has a new approach to the branching rules from
g to g?. Moreover, usually the bases provided by Bethe vectors have additional meaning — they
are for example related in certain limits to crystal bases [Var95] — and there should be analogous
statements in the cyclotomic case.

As previously noted, one can regard the Gaudin Hamiltonians (1.1) as being associated to certain
non-skew-symmetric solutions of the classical Yang-Baxter equation. To see why that is, recall first
the construction of the generalised Gaudin Hamiltonians associated to skew-symmetric solutions
of the classical Yang-Baxter equation. Let r(u,v) be a (g ® g)-valued function depending on two
complex parameters u,v € C such that ria(u,v) = —ra(v,u) and satisfying the classical Yang-
Baxter equation

[r12(21, 22), 113(21, 23) | + [r12(21, 22), 723(22, 23)| + [r32(23, 22), 713(21, 23)] = 0. (1.7)

One may associate to this classical r-matrix the following family of N elements in U(g)®":

N
’H: = eri(zj, Z,’).

j=1

J#i
In particular, the fact that these Hamiltonians are mutually commuting is a direct consequence of
the classical Yang-Baxter equation (1.7). More generally, Gaudin models can also be associated
to non-skew-symmetric r-matrices; that is, to (g ® g)-valued functions r(u,v) satisfying the clas-
sical Yang-Baxter equation but not the skew-symmetry condition r12(u,v) = —ra1(v,u) [Skr06].
We expect the cyclotomic Gaudin Hamiltonians (1.1) to be associated to the following non-skew-
symmetric r-matrix

T-1 T-1

PIe® I 1*"® 1,
r(u,v) = Z 0 @la @ + 79 (u,v), where r%(u,v) = Z

wPu—wv Uu—"v
p=0 p=1

oPI*® 1,
wPy—v’

The appearance of this non-skew-symmetric r-matrix in our construction stems from the particular
choice we made of complementary subalgebra to @f\; 19 ® C[[t — z]]. Indeed, the above r-matrix
corresponds to this decomposition of @f\; 18 ® C((t — 2;)) under the Adler-Kostant-Symes scheme
[AKS].

The quadratic cyclotomic Gaudin Hamiltonians are closely related to a system of cyclotomic KZ
equations. For inner automorphisms o at least, such systems have been introduced and studied in
[Brol10]. It would be very interesting to see whether the cyclotomic Schechtman-Varchenko formula

(1.5) can be used in to construction solutions to these equations, generalizing the usual case.

Finally, while we work in the present paper with the (relatively) concrete formulation given in

[FFR94], the solution to the Gaudin model by Bethe ansatz has since been recast in the geometrical
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language of opers and Miura opers — for a review see [Fre05] — and it would be interesting to

understand the cyclotomic Bethe ansatz above in this language.

Acknowledgements. We would like to thank P. Etingof and A. Varchenko for helpful suggestions

and comments. We are grateful to E. Mukhin for interesting discussions.

2. THE cYCLOTOMIC GAUDIN MODEL
Fix a T € Z>; and pick a primitive T'th root of unity w € C*. Let
= {l,w,w. .. o},

which is a copy of the cyclic group Zp = Z/TZ of order T. T acts on C by multiplication,
(w, z) — wz. We choose a collection z = {z1,...,2n5} of N € Z>1 non-zero points in the complex

plane whose I'-orbits are pairwise disjoint:
I'ziNTzj=0 foralll<i#j<N. (2.1)

Note that the condition z; # 0 is equivalent to the demand that I act freely on I'z;.

Let g be a finite-dimensional simple Lie algebra over C, and (-,-) the non-degenerate invariant
inner product on g with respect to which the square of the length of the long roots is 2.

In this section we construct the Hamiltonians of cyclotomic Gaudin models. These Hamiltonians
generate a large commutative subalgebra 2 of U(g)®V. In the special case I' = {1} we recover
the Gaudin algebra 2, as in e.g. [Fre05].

2.1. Notation: Formal variables and series expansions. We work over C. Let ¢ be a formal
variable. We write C[t] for the ring of polynomials in ¢, C[[t]] for the ring of formal power series,
and C((t)) for the field of formal Laurent series. Let C(t) denote the field of fractions of C[t], i.e.
the field of rational functions of ¢ with complex coefficients.

Given a finite set @ = {x1,...,2,} of p € Z>; pairwise distinct points in the complex plane,
we write Cg(t) C C(t) for the localization of C[t] by the multiplicative subset generated by ¢ — x;,
1 <4 < p. The elements of C,(t) are rational functions of ¢ that have poles at most at the points ;.
They form, in particular, a C-algebra. Let C3°(¢) be the subalgebra consisting of rational functions
of t that, in addition, vanish at co. That is,

Cx(t) = {];Eg :p(t),q(t) € C[t], degp < deggq, q(z) # 0 for all z € C\ cc} . (2.2)

For any complex number z, define
t—z : C(t) = C((t — 2)) (2.3)

to be the map that returns the formal Laurent expansion about the point z. Given f(t) € C(t),
ti—»f(t) is by definition computed by replacing every occurrence of ¢ by (t — z) + z and then
expanding in powers of (¢ — z), which one is to regard as a new formal variable, the “formal local
coordinate at ¢t = z”. (If z is not a pole of f(t) then the result is actually in C[[t — z]].)
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The residue map res;—, : C((t — z)) — C is defined by

oo

res;_ . Z ap(t —2)F =a_y. (2.4)

k=—K
(For brevity we shall sometimes write the map res;—, ot;—, from C(t) — C just as res;_,.)

We write f’ for the derivative of an element f of C((t—z)), or C(t), with respect to its argument.

2.2. The algebra gy. Consider any one of the points z;, i = 1,..., N. Let ﬁ(i) denote the copy
of the affine algebra g obtained by taking the extension of g ® C((t — 2;)), by a one-dimensional
centre CK;, defined by the co-cycle

Qi(fziagzi) = restfzi<fzmg;i>Kia fziagzi cg® C((t - Zz)) (2'5)
Concretely, given a € g and n € Z, we shall write a ® (t — )" € g ® C((t — %)) as a[n]®, or just
a[n] when there is no risk of ambiguity. Then the commutation relations of g(;) are

[a[n], b[m]] = [a,b][n + m] + nla, b)dnimoKi,  [Ki, 8] =0. (2.6)

Next, let gy denote the extension of the direct sum @2, g ® C((t — 2;)), by a one-dimensional
centre CK, defined by the cocycle

N
Q(f.g) = Zrest—2i<fzivglzi>K' (2.7)
=1

where f = (f.,)1<i<ny and g = (g, )1<i<n are in @N ;g @ C((t — z)). In other words, gy is the
quotient of the direct sum @Z]\; 1 ﬁ(i) by the ideal spanned by K; —K;, 1 <i < j < N, so that all the
central generators K; are identified to a single one which we then call K. Thus, the commutation

relations of gy are, explicitly,
aln]® )] = 5 ([a. B+ m]® 4 nla,DoramoK) . [KEN=0.  (28)
2.3. Induced gy-modules. Let now M ;) be a g-module, for each i =1,..., N, and define
My =My @ -+ @ M. (2.9)

We think of M;) as being assigned to the point z;, and we turn M; into a module M’(“i) over
g®Cl[t —2]] ®CK; by declaring that g® (t — z;)C[[t — z;]] acts trivially and K; acts by multiplication
by k € C. Then we define Ml(“), the induced representation of ﬁ(i) of level k, as follows:

ko 70500 ko 77(a k
MGy = Ind gz eck, My = UB0) @u@eci-=lock,) M) (2.10)
Similarly, the tensor product Mﬂ“v = ./\/lfl) Q& M?N) is a module over the Lie subalgebra
N
av =EPeeC[t- ] ©CK (2.11)
i=1

of gy, and we have the induced gy-module

MK, = Indgg M5 = U(@n) Oty MK (2.12)
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There is an isomorphism of gxy-modules
E o nik k
My = M) @ - - - @ M. (2.13)

2.4. Complements of ﬁj\r, in gy. The following lemma relates the induced module I\\/JII]‘/’V back to

ME,.

Lemma 2.1. Suppose p is any Lie algebra for which there is an embedding p — gn of Lie algebras

such that gy =¢ ﬁf\, @ p as vector spaces. Then there is an isomorphism of vector spaces
M% /p 2c My, (2.14)

where
MK, /p = M’fv/ (p.M’;fV) (2.15)

is called the space of coinvariants with respect to p.

Proof. By virtue of the decomposition gy =¢ ﬁfv @ p, we have the isomorphism of vector spaces
U(gn) 2c U(p) ®c U(gy) (see for instance [Di74, Proposition 2.2.9]) so that, as a p-module, M%; is
isomorphic to the free module U (p) @c M¥%; generated by M¥%;. Hence Mﬁ,/p ~c MK 2 My, O

It is clear that one possible choice of p is the Lie subalgebra gy, := BN g2 (t—2)'Cl(t—2)"1.
However, it turns out to be more interesting to consider, instead, choices of p that are “global”.

To indicate roughly what is meant by “global”, let us first recall the strong residue theorem in the
present language (cf. [FB04, §9.2.9]).

2.5. Local and global data, and the strong residue theorem. A rational function in C3°(¢),
§2.1, is to be thought of as a “global” object, while an element of C((t — z;)) is “local” data
associated to the point z;. There is a map

N
L CE() = DT = =) S = (s f(8), s tmay f(2) (2.16)
=1

that associates to the global object f(t) a tuple of local data: its Laurent-expansions. It is clear
that ker. = {0} € C(¢), so this map is an injection. One can ask which tuples of local data can
be “globalized”, i.e. which ones lie in the image in the image of t. The strong residue theorem

answers this question.

Lemma 2.2 (Strong residue theorem). An element (f1,..., fn) € @, C((t — z)) is in L(CX (1))

if and only if
N

0="> resi 2, fit=(g)
i=1
for every g € CF(t).

Proof. For the “only if” direction, we must check that

N
0= Z resi s, tt—z, f(t)g(t) (2.17)
i=1
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for all f(t),g(t) € C(t). To see this, consider writing f(¢)g(t) in its partial fraction decomposition
and then taking the large-t expansion. The coefficient of ¢t~! is the sum in (2.17), and it must
vanish because f,g € C2(t) implies f,g ~ O(1/t) and hence fg ~ O(1/t?) for large t.3

For the “if” direction, first observe that

N N
Pt - =) =cucze) e Pl - =l (2.18)
i=1 i=1
Indeed, let f;” € (t — 2;)7*C[(t — 2;) 7] denote the pole part of f; € C((t — 2;)); then (f1,..., fn)
splits uniquely as the direct sum of the function f(t) := SN | f7(t — z;) € CZ(t) and the tuple
(fi—tiesn [y s N —ti—ap f) € @1111 C[[t — zi]]. Now from (2.17) we have that
N N

> vesi s, fitt—z(9) = > _restz (fi — tt—zif) tt-29- (2.19)
i=1 i=1
Since f; — 14—, f € C[[t — 2]] one sees, by considering g = 1/(t — z;)¥ € CX(t) for every 1 <i < N
and every k € Zq, that this vanishes only if f; — 1;—,, f = 0 for each ¢, as required. O

Note that (2.18) says that any tuple of Laurent series can be split uniquely into a “global” part,
living in C$°(¢), and a residual tuple of Taylor series.

Now it follows from Lemma 2.2 that the cocycle (2.7) vanishes on restriction to the image of the
embedding id ® ¢ : g ® CP(t) — @fil g ® C((t — 2;)). Consequently id ® ¢ lifts to an embedding

g®(C2°(t)‘—>ﬁN,

and moreover, given (2.18), the image of this map is a complementary subspace to ’g\ﬁ in gn. This
choice, p = g ® C3°(t), was the choice of complementary subspace p made in [FFR94].

In the present paper, we again choose a complementary subspace consisting of “global” objects;
but in place of g ® C(¢), the global objects we use will be I'-equivariant, as follows.

2.6. I'-equivariant global data. Let now ¢ : g — g be an automorphism whose order divides T'.
Define

0" = {f € g CRL(t) : o f(t) = w™ " f(wt)} (2:20)
and in particular
oo’ =g = (@ CRL(1)" - (2.21)
That is, gL is the Lie algebra of g-valued rational functions f in the formal variable ¢ that vanish
at infinity, that have poles at most at the points {w*z : 1 <k < T, 1 <4 < N}, and that obey the
condition o f(t) = f(wt).

There is an injection

N
L gg’k — @g RC((t—2)); f@)— (btmzy f(@), ooy tt—zy f(T)). (2.22)

=1

3We choose to work with a formal variable t. To connect the weak (i.e. “only if’) direction with the usual
complex-analytic residue theorem, note that if f(¢),g(t) € C°(t) are viewed as meromorphic functions of a com-
plex variable t then f(t)g(t)dt is a one-form on CP! with no pole at oo (since f(t)g(t) has a double zero there). So
0= Zfil res;—z; ti—z; f(t)g(t) is indeed the statement that the sum of all residues of this meromorphic one-form,
f(t)g(t)dt, on CP' is zero.
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Note that the “local” data is the same as before: we still merely take the Laurent expansions at

the marked points z;. We then have the following analog of Lemma 2.2.

Lemma 2.3. An element (f1,...,fn) € @f\;lg ® C((t — 2;)) is in L(gg’k) if and only if
N

0 - Z reSt—zi <fla Lt—Zi (g)>
i=1
for every g € gg’fkfl.
Proof. See Appendix A, where a generalization of this lemma is proved. O

Corollary 2.4. There is an embedding of Lie algebras gt — @n such that gy =c ﬁfv@gg as vector

spaces.

Proof. Note that if g € gL then d;g € 957‘1. Hence, by the “only if” direction of Lemma 2.3, the
cocycle (2.7) vanishes identically when restricted to the image of the embedding gl «—— @f\i 19®
C((t — z;)). Therefore this embedding lifts to an embedding gL < gn. It is straightforward to
check that gy ¢ g4 @ gL (compare (A.7) in Appendix A below). O

Combining this corollary with Lemma 2.1, we can regard My as the space of coinvariants of
M’]‘“V under the action of the Lie algebra g.:

MY /oL = My. (2.23)

2.7. The cyclotomic swapping procedure. We are now in a position to define the Hamiltonians
of the cyclotomic Gaudin model. To the points z1, ..., zy we add a further non-zero marked point,
say u € C*. We treat u as though it were an additional z; in the above construction, in the sense
that we require the points z1,...,zn,u to have pairwise disjoint ['-orbits and we assign to the
point u a copy of g — say ﬁ(u), with central generator K(,) — and alter accordingly the definition
of gy. However, whereas the g-modules M ;) assigned to the points z; are thus far unspecified,
to the point u we assign the trivial one-dimensional g-module Cvy generated by a vector vy with
g.vo = 0. By declaring that (g ® C[[t — u]]).vo = 0 and K(,).v0 = kvo we make Cvg into a module
over g ® C[[t — u]] ® CK(,. The induced g(,) module,

V= IdyS ujeck,, €0 = UBw) Bueci-ujeck,) Cvo, (2.24)
is called the vacuum Verma module at level k.

We now have the Lie algebra g;u =(g® (Ciiozupu(t))r, and isomorphisms of vector spaces

(M ® V) /% e My @ Cug =¢ My. (2.25)
That is, the space of coinvariants is again M. This allows one to construct from any X € V’g an
endomorphism
X(u) : My — Mp, (2.26)
as follows:

X(u) : My — Mk s My ® Vi — (My ® V§) /gt , =c My, (2.27)
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where My — Mﬂ“v is the natural embedding. This map has the property that
(X (u).z) ®vo] =[x ® X]. (2.28)

where we write [ - | for the equivalence class.
To understand how, given X € VE  the endomorphism X (u) € End(My) is actually to be

computed, let A € g and consider the I'-equivariant rational function

— ok A I
f6y=>" @ S (2:29)
k=0

This function (2.29) is regular at z; and its expansion there reads

1 an_l T—-1 oo

wk i
T 2 2 R gt 0 P €@l i)

/’t—zif(t> - =

where, recall, A[p]® = AW @ (t — z;)? € g@C((t — 2)). On the other hand, the expansion of (2.29)
at v has a singular term:

n—1 I'—1 oo kn
@) = Al — e 3 2 i (@ Ale] € 3@ C(( =)
k=1 p=

where Alp] = A® (t —u)? € g@ C((t — u)). For all Y € M%; and all X € V& we have by definition
[f.(Y ® X)] =0 or, equivalently but more explicitly,

1 on—1 T-1 o wk ) ;
¥ ® Al=nlX] = | o5 gt N G APy ® X
k=0 p=0
on—1 T-1 kn
k
+|Y® (n '811," ZZ _1 n-&-pup-&-l( A)[p]X
k=1 :o

In particular, for all z € My — M¥,,

1 ol R (kA

[z ® A[-n].X] = T G Z:: vt © X (2.30)
1 on—1 T-1 wkn L
Tre (n — 1)! dun—1 >0 (WF — 1)nFpup+l (" A)lp]- X
k=1 p=0

The space V’g is spanned by vectors of the form
Al[—nl]Ag[—’l’Lg] S Ak[—nk]vo, A; € g, n; € Z~g, 1 <1 < k. (2.31)

and there is a natural Z-gradation on V& in which the vector (2.31) has grade — Zle n;. In the
identity (2.30), which we shall call the cyclotomic swapping identity, both X and (¢ A)[p]X, p > 0,
have grades strictly lower than A[—n]X. Thus, by applying (2.30) a finite number of times, any
class [t ® X can be expressed as a linear combination of classes of the form [z’ ®vp], which amounts

to computing the map X (u). Call this procedure the cyclotomic swapping procedure.
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Remark 2.5. The first term on the right-hand side of (2.30) is the obvious analog of the result of
swapping the generator A[—n| over to the spin chain My in the usual case, cf. equation (3.5) in
[FFR94|. A more subtle new feature of the cyclotomic case is the presence of the extra terms on the

T—1y,. To stress

right-hand side coming from the “self-interactions” between the poles at u, wu, ..., w
the point: since these terms are all of the form o*A[p]X with p > 0, they are of lower grade than
the initial term A[—n]|X, and hence by a procedure of repeatedly rewriting these terms in canonical
form (2.31) using the commutation relations of fj(u) and then “swapping off” the outermost factor,
a finite number of iterations always suffices to reach the vacuum state vy. But, in general, doing

so produces many (apparently intricate) correction terms to the naive result.

2.8. Singular vectors, 3(g), and commuting Hamiltonians. A vector X € V¥ is said to be

singular (or more fully, a singular vector of imaginary weight) if
AX =0 forall AegxC[t. (2.32)

The singular vectors form a linear subspace of V& denoted 3(g). The crucial thing to check is that
the argument given in [FFR94, Proposition 2] to show the commutativity of all maps My — My
associated to singular vectors still goes through in the cyclotomic set-up given above.

Proposition 2.6. Let Z1,Zs € 3(g). Then for any pair of non-zero complex numbers u and v such
that the points z1,...,zN,u,v have pairwise disjoint I'-orbits, the corresponding linear operators
Z1(u) and Zz(v) on My commute.

Proof. Assign to each of the points v and v a copy of V'g. Then
(MF, ® Vi @ VE) /0L . Zc My ® Cug ® Cug ¢ My (2.33)
Hence, to any X,Y € VE we can associate an endomorphism (X,Y)(u,v) : My — My defined by
(X,Y)(u,v) : My — M — My ® Vi @ V§ - (M§ ® Vi ® VE) /gL 40 Zc My, (2.34)
This map has the property that
[(X,Y) (u,v) . 2) Qo @up] = [z @ X ®Y]. (2.35)

We now claim that if X and Y are both singular, then (X, Y)(u,v) = X (u)Y (v) and (X,Y)(u,v) =
Y (v) X (u), and hence [X (u),Y (v)] = 0 as required.

Indeed, consider starting with [z ® X ® Y], writing X as a linear combination of terms of the
form (2.31), and then “swapping” the factors of X as discussed in §2.7. In addition to the terms
on the right of (2.30), “swapping” A[—n] now also produces the following term acting on the copy
of V’g assigned to the point v:

1 an_l T-1 oo

U.}k
(n = 1) un-T >0 W(U’“A)[p] v, (2.36)
k=0 p=0

But, by definition of a singular vector, Y is annihilated by this term if Y is singular. In this way

ERXQY]=[X(u).xueY]=[Y(v)X(u).x® v v,
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where in the second step we swap from the point v as usual (noting that the state vy is of course a
singular vector). m

It is known (see [FFR94|) that the space of singular vectors 3(g) becomes very large when k
takes the value —h", where h" is the dual Coxeter number of g. This value is called the critical
level and Vghv the vacuum Verma module at the critical level. In the remainder of the paper we
always take k = —hV.4

2.9. The cyclotomic Gaudin algebra. Thus far the modules M,; assigned to the points 2;
have been left unspecified. If we now take each M to be a copy of U(g), regarded as a left
U(g)-module, then to each X € V§ we have a linear map X (u) : U(g)®" — U(g)®" and, cf. §2.7,
this map is constructed using the left action of U(g®") =2 U(g)®" on itself. But U(g) is not merely
a left U(g)-module but a U(g)-bimodule, i.e. U(g) acts on itself from the left and from the right
and these actions commute. Therefore the maps X (u) commute with the right action of U(g)®V

on itself. It follows that X (u) must act by left multiplication by a fixed element of U(g)®", which

X(u
by abuse of notation we also call X (u). (For indeed, if 18V RGNS (u) then, multiplying on the

b's
right by any a € U(g)®", we have a X, (u)a.) By construction, for any choices of the modules

My, 1 <i < N, the map X(u) : My — My of (2.26) agrees with the left action of this element
X(u) € U(g)®N on My.
For each X € V|, WX (u) is a meromorphic U(g)®V-valued function of the complex variable w.
Let 2} (g,0) denote the span, in U(g)®", of all the coefficients of singular terms of Laurent
expansions of the operators Z(u) as Z varies in the space of singular vectors 3(g) C Vg WAt this
stage, we have established the following.

Theorem 2.7. Z[(g,0) is a commutative subalgebra of U(g)®™. O

Let us call 27 (g,0) the cyclotomic Gaudin algebra. Tt depends on the choice of marked points
z={z1,...,2n}, the cyclic group I' = Z/T7Z, and the automorphism o : g — g. In the special case
I' = {1} one recovers the Gaudin algebra 2 (g) of [Fre05].

2.10. The quadratic Hamiltonians. Let I, € g, a = 1,...,dim(g), be a basis of g and I* € g a

dual basis with respect to (-,-). The non-trivial singular vector of smallest degree in V M s
1 v
S = S I [=1]I[~1]vy € Vo, (2.37)

corresponding to the quadratic Casimir element C := 1191, € Z(U(g)). (For brevity, we shall

always employ summation convention for the index a.) Applying the above reasoning to S yields

N T-1 ok a)()
EEREEIARE [(Z e ) ® ;Ia[—uvo]
i=1 k=0 ¢
T—1 WP T-1 WP
"2 Rl 2 T b @ ATl (259

4Recall that (-,-) = o () where (+,)k is the Killing form (X,Y)x = trgadxady [Kac90]. So if one works
throughout with respect to (-,-)x then the critical level is —% for all simple g.
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The first term on the right is ready for applying the next “swapping” and produces
T-1 N 0 T-1 N

PDPPISESEES 3 Pl 8

k=0 =1 k=0 1=1

where C(") = %I a(i)Ic(li) (which is invariant under the automorphism o) and H; denotes the “naive”
cyclotomic quadratic Hamiltonians given explicitly by

. LRy IO P A e § LIONPES O I
i'_ZZzi—w pzj—i_i 1—wpzz.
p=0 j=1 p=1
J#i

Here [a, b]+ := ab+ba denotes the anti-commutator of two elements a,b € U(g). Further “swapping”
also needs to be applied to the last two terms on the right-hand side of (2.38). This will in principle
generate correction terms to the above result. The second term on the right-hand side of (2.38)
can be rewritten as

;z:: 1—wP) @ [o"1% Lo][=1]vo],

which, after applying the swapping procedure as in (2.30), gives

T-1 N T-1

! 1
2 pIa(z) () L@
322 2 T o (i) ] ® vo)
T—1 N T-1
1 ; : ! a(t i
=5 Z (1 —w=P)z <U—wkz-_u> [wkak[apl()’lé)]x@)vo]‘
k=0 i=1 p=1 i -

Here, the simple pole at © = w™*z; leads to a correction in the Hamiltonians, namely

. 1 Ia('L) pI( )
Moy 3
=1 (1 —wP)z
1 N ra(i (G T-1 a(i) 7(%)
TP pra(i)
-y Iy ST 239)
— L z; — WPz — (1 —w™P)z
p=0 j=1 p=1
J#i

while the apparent simple pole at v = 0 is actually vanishing, as follows. For any k € Zp, o*1, is
a basis of g, with dual basis o*I®. And [0PI%, I,] is an element of g dependent on p but not on the
choice of basis I,. Thus for all k € Z7, o*[oP1%,1,] = [oP(c*1%), (c¥1,)] = [0PI%, I,]. Hence in the
1/u term we have a factor Y, w*. This factor is zero for all T' > 1. When T" = 1 the pole term
in u is not present at all, because the sum Z ,1 is then empty.
The final term in the right-hand side of (2.38) may be written as
T—1 T-1

wP “ 1 wP(oPI 1,)k
2 a0 @ MO Tkl =50 o e 9wl
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which has a double pole at u = 0. Putting all of the above together, the element S(u) € U(g)®V
corresponding to the vector S = lIa[—l}la[—l]vo is

N T-1 N T-1

' wPoPH,; wp apI“ k
i=1 p:O i=1 p=0
which has second order poles at u =w *z;, i =1,...,N, k=1,...,T — 1 as well as at u = 0.

Proposition 2.6 states in particular that [S(u),S(v)] = 0. Therefore the (complex-analytic)
residue of [S(u),S(v)] at u = z;, v = z; vanishes. That is, the Hamiltonians H; € U(g)®V
i=1,...,N, are mutually commuting.

3. AUTOMORPHISM EQUIVARIANCE IN THE WAKIMOTO CONSTRUCTION

In the preceding section we constructed the cyclotomic Gaudin algebra 2 (g, o), a commutative
subalgebra of U(g)®"V. In the remainder of the paper we specialize to spin chains whose Hilbert
spaces are tensor products of Verma modules M)y over g. Let us first recall the definition of M)
and its contragredient dual My.

3.1. Verma and contragredient Verma modules. Introduce a Cartan decomposition of g,
g=n_obhdn (3.1)

Let AT C b* be the set positive roots of g, and {a;}ic;r C AT a set of simple roots, where i runs
over the nodes I :={1,2,...,rank(g)} of the Dynkin diagram. For each a € AT, let E, € n (resp.
F, € n_) be a root vector of weight o (resp. —a) and H, = o := [E,, F,| the coroot, with
normalizations chosen such that a(a¥) = 2. As usual we identify b with h* by means of the inner
product (-,-) and then o = 2a/(a,a). By abuse of notation we write H; = H,, for the simple
coroots. Then

{Ea) Fa}aen+ U{Hi}tier (3.2)
is a convenient choice of Cartan-Weyl basis of g.

The Verma module My, \ € h*, over g is by definition the induced g-module

My = Indg@n Cuy = U(g) ®U(b@n) Cuy (33)

where Cuv), is the one-dimensional module over h & n generated by a vector vy with n.vy = 0 and
h.vy = A(h)vy for all h € h. Recall that every Verma module is a weight module whose weight spaces
e (M) with (M), :={v € My : hw = p(h)v for all h € b},
dim(M)), < oco. Given any weight module M whose weight spaces are finite-dimensional, its

are finite-dimensional, i.e. My = &

restricted dual is the vector space MY = @4« (M,)*. There is an anti-involution ¢ : g — g,

called the Cartan anti-involution of g, given by
©(Eo) = Fo, @(Fy) =E,, a€A",  ©(H)=H,;, i€l (3.4a)
By means of ¢, MY becomes a left g-module called the contragredient dual of M:

(X.k)(v) :== k(e(X).v), (3.4b)
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for all k € MY, v € M and X € g. The module MV is also a weight module whose weight spaces
are finite-dimensional (indeed, dim /\/lx = dim M) and there is an isomorphism of g-modules
(MY)Y =5 M. The contragredient dual of a Verma module M) is called a contragredient Verma
module and is, by convention, denoted M.

(The Verma module My over g should of course not be confused with the Verma module V& over

g introduced previously.)

3.2. Contragredient action of Hamiltonians. We pick weights A1,..., Ay € bh*. We shall

consider Gaudin models whose Hilbert space is the tensor product of Verma modules
M()‘) = M)\1®"'®M)\N. (3.5)

Commuting Hamiltonians on M(y) can be constructed directly by taking M; = M), in §2. However,
in order to construct simultaneous eigenvectors of the Hamiltonians we in fact begin by taking
M; = M5, so that rather than My) we have the tensor product of contragredient Verma modules

My =My, ® - @ My

The restricted dual of M (*A) is M), and this is how My is to be thought of in what follows. In

particular, the eigenvectors we construct will be linear maps
n: M n —C

lying in this restricted dual. In this perspective, the action of X (u), X € V{ hv, on a general
element 7 € My is via the contragredient dual: i.e. X(u).n is given by

(X (u).n)(v) := n(p(X (u)).v)

for all v € M(*)\).

To indicate the reason for this indirect approach, let us sketch in outline the construction below.
What distinguishes the contragredient Verma module My is that it arises as the grade-zero com-
ponent of a Wakimoto module W), where A(t) = A®@t~! 4+ O(t"). Wakimoto modules are defined
initially as Z-graded modules over the Lie algebra H(g) ®h ® C((t)), where H(g) is the Heisenberg
Lie algebra associated to g. By means of the Wakimoto construction/free field realization, Waki-
moto modules become also Z-graded modules over g. The merit of the Lie algebra H(g) ©h®C((t))
in comparison with g is that it is commutative modulo central elements. This simpler structure
allows one to construct eigenvectors of the Gaudin Hamiltonians and to find explicit expressions
for their eigenvalues.

We now recall the necessary details of the Wakimoto construction. The starting point is the
finite-dimensional setting.

3.3. Realization of g by differential operators on N,. Consider the unital associative algebra
generated by {Zq,0n}aca+ subject to the relations

[l’a,xﬁ} =0, [aa,l‘g] = 6aﬁly [804785] =0,, Oé,B € AT,
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Call this Weyl(g), the Weyl algebra of g. There is an injective homomorphism of algebras p :
U(g) — Weyl(g) given by

p(Ea)= Y Pl@)ds,  pH)=— Y B(H)zs05  plFa)= Y Qa@)ds  (3.6)

BeA+ BeAt BeAt
for certain polynomials PS (z), Q5 (z) € Clz4]yea+ such that
deg Pg =f—a and deg Qg =B+ a, (3.7)

with respect to the gradation of C[x,],ca+ by g-weights in which deg 2, = . This homomorphism
p may be understood in two (equivalent) ways.

For the geometrical perspective, let G denote the connected, simply-connected Lie group asso-
ciated to g, N3 C G the unipotent subgroup with Lie algebra n, and B_ the Borel subgroup
with Lie algebra b_ := n_ & h. The flag manifold associated to these data is the homoge-
neous space B,\G. There is an open, dense subset U C B,\G called the big cell, defined by
U :={[B_]Jn € B.\G : n € Ni}. The big cell U is isomorphic to Ny. The right action of the
group G on B,\G gives rise to a left action of G on functions on B,\G and hence, infinitesimally,
an embedding of g into the Lie algebra Vect(B_\G) of vector fields on B_\G. ® Since the big cell
is open, this in turn gives rise to embeddings g < Vect(U) and, hence, g < Vect(Ny). If we let
(Za)aen+ be a set of homogeneous coordinates on N, and think of Vect(N,) C Weyl(g), then this
embedding is p.

For a more representation-theoretic viewpoint, one starts with the contragredient Verma module
M over g. In §3.1 this was defined as the contragredient dual of the Verma module My, but it
may also be regarded as a coinduced module:

M =24 Coindyy(?) | Co == Hom{55, (U(g), Co)- (3.8)

(
Here U(g) is considered as a left U(b_)-module, and Cy is the left U(b_)-module on which b_ acts
as zero. So Homyy,_)(U(g), Co) is the space of maps n € U(g)* such that n(bx) = bn(x) = 0 for all
beb_,z e U(g). By the PBW theorem, U(g) =¢c U(b_) ® U(n) as vector spaces, and in this way
we identify U(g)* Zc U(n)*®@U(b_)*. The “res” indicates we consider only those elements of U(g)*
that belong to U(n)¥ @ U(b_)*. Note that if _ ®z; € U(b_) ®@U(n) then n(z_z4) = e(z_)n(z4),
where € : U(b_) — C is the counit. In this way M =¢ U(n)Y. The left U(g)-module structure on
My is the coinduced one, which is to say that

(g-m)(z) = n(xg) (3.9)

5To X € g is associated the vector field £x which sends the function f : [B_]g — f([B_]g) to the func-
tion (éxf) : [B-lg = Zf([B-]ge™)| _,- Then given X,Y € g, (x(&vf))(9) = (& H(B-lge™)|._, =

%a% ([B,]geexe”y) oo’ From this one verifies that x (§y f) — &y (§x f) = &x, v f-
e=0,n=
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for all g,x € U(g) and n € M§.6 Now, M also has the structure of a commutative algebra, the

product - coming from the co-commutative co-algebra structure on U(g),

(n-n')(x) :=-(nen)(Az) (3.10)

(where on the right-hand side, - is multiplication in C). Since elements X € g C U(g) are algebra-
like, i.e. AX = X ®1+1® X, we have that the action of the Lie algebra g on Mg is by derivations
with respect to this product, i.e. X.(n-n') = (X.n)-n'+n-(X.n). So we have a homomorphism of Lie
algebras g — Der(M}). If we now take (z4)qnen+ to be a set of homogeneous (i.e. H.xq = o(H)zy)
generators of M then we have an identification M{§ = Clzo],ea+ as commutative algebras; and p
is the map specifying the action of g on the latter by derivations.

(The two perspectives above are identified by noting that Mj = C[N4], the algebra of regular
functions on N, and Der(M{) = Vect(N4) is the Lie algebra of derivations on this algebra.)

Further details on realizations of Lie algebras by differential operators can be found in e.g.

[Dra05] and references therein, in particular [Bla69].

3.4. Equivariance, and equivariant coordinates on N,. It is always possible to pick the
Cartan decomposition (3.1) in a manner compatible with the automorphism o : g — g, i.e. we can
assume that
ocn)=n, ol)=bh, on_)=n_. (3.11)
Then in fact [Kac90, §8.1]
0(Ea) = TaEy(a), o(H;) = Hy(iy, 0(Fa) =75 Fy(a), (3.12)

where, by a slight overloading of notation, o : AT — AT is a symmetry of the root system, coming
in turn from a symmetry o : I — I of the Dynkin diagram, and where the 7., o € AT, are certain
elements of T'.
Given any complex vector space A equipped with an action of I'; we introduce an induced action
of T on maps n: A — C as’
Len:=noo L. (3.13)

This defines in particular a map L, : M — Mg, 8 and the homomorphism p of (3.6) is equivariant

with respect to o in the sense that

F((X)) 0 Ly = Ly o p(X); (3.14)

6T0 see the isomorphism (3.8), note that an element € Mg is in particular a map 7 : U(g) — C such that n(gX) = 0
for all X € by :=bh @ n. There is a bijection n — 70 ¢ from Mg to Homy(, (U(g), Co) where the action of U(b-)
on U(g) is from the left, for if n(¢gX) = 0 for all X € by then (1o ¢)(Xg) = n(e(g9)p(X)) = 0 for all X € b_.
Next, the contragredient action of a Y € g on n € Mg is (Y.n)(g) = n(¢(Y)g). This defines an action on elements
(n o) € Homyg, ) (U(g), Co) given by (Yi(n0¢))(g) := (Yen)(¢(9)) = n((Y)e(9)) = n(p(gY)) = (00 »)(gY), ie.
multiplication of the argument on the right by Y, which agrees with the coinduced module structure of (3.9).
"Note that the action of T' on a € A" defined through (3.12) agrees with the action (3.13) of I" on « viewed as an
element of h*. Indeed, applying o to the relation [0~ ' (H), Eo] = a(oc™ ' (H))Eqs we find [H, E, ()] = (Loa)(H)Ey(a),
from which it follows that L,a = o(«).

8Indeed, if n € Mg and b € U(b_) then n(bx) = 0 so (L,n)(bz) = n(c ' (bx)) = n(c~*(b)o~'(x)) = 0 which says that
Lon € Mg. But note that for the general contragredient Verma module of g, the map is M3 — M} ).
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for indeed, the following diagram commutes
g My —— My
on| n

g M) —— Mg

because, on the one hand (X,n) — (X.n) = Ly(X.n) where (L,(X.n))(z) = (X.n)(c712) =
n((c~'z)X), while on the other hand (X, n) — (60X, Lyn) — (6X).(Lyn) where ((6X).(Lyn))(z) =
(Lon)(z0X) = n(o~(z0 X)) = n((c™2) X).

Example 3.1. Suppose g = sl3. We use the notation Ei1s = Eu,, F13 = Eotay, F23 = Ea,
and similarly for Fis, etc. In the defining representation, elements of N, are unipotent upper-
triangular 3 x 3 matrices. For each value of a parameter v there is a system of homogeneous
coordinate functions {12,213, 223} on Ny given in terms of the matrix elements in the defining
representation as follows:

I 212 ®i3+ yx12723

0 1 To3 . (3.15)

0 O 1

In particular, the values vy =0, v = % and v = 1 correspond respectively to the parameterizations

ro3Fo3 w13E13 ,r12E12

e e e ’ e$12E12+$13E13+$23E23’

em12E12e£B13E13e£B23E23 (3.16)

of N;. One finds by direct computation that the explicit form of the homomorphism p of (3.6) is

p(—FE12) = 012 + (1 — 7)23013

p(—E13) = 013

p(—E23) = 023 — 212013

p(—Fi2) = —x75012 + (13 + y212223)023 + (—yx12213 — V(7 — 1)2{9223)013

p(=Fi3) = (—z12a13 + (1 = 7)2iaw3) 02 + (—a¥5 + (v — 1)yatywds)dis + (—213223 — Y212233) 003
p(—Faz) = (—a13 + (1 = 7)z1273) 012 + (v — Vw1323 + (v — 1)y12233) 013 — w53003.

Now let o be the (involutive) diagram automorphism, i.e. 0 FE19 = Fa3, 0FEo3 = F12, 0 E13 = —Ei3.

If we write, for brevity,
0

ilg = Lgflilg and 812 = 0F
12 1%13,803

=Ls,00150 L;l etc.,
then

Tio = x93, Tog =12, Tiz = —x13+ (1 —27)z12223 (3.17a)

and hence, by the chain rule,

1o = o3+ (1 — 27)w12013, Ooz = D1g + (1 — 27)x93013, 013 = —013. (3.17b)
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One can then check the equivariance of p explicitly: for example

p(—0E12) = p(—Es3) = O3 — 7212013
= 19 + (1 — ) To3dh3 = Ly 0 p(—Fra) o L !

as required.

While the equivariance property (3.14) of p holds independently of any choice of homogeneous
coordinates on N, it is very natural to make the choice z, : Ny — C;n — x,(n) given by the

parameterization

n = exp Z za(n)Eq | - (3.18)
acAT
(In the example above this is the choice v = %) Observe that these coordinates (z4)qea+ have the
property that they themselves, and hence also their Weyl conjugates, behave equivariantly under
o. That is,
Ly(zq) = Tojlxg(a), (3.19a)

in view of (3.12), and hence

0
e = Ta0g(a)- (3.19b)
8(La$a) Lozg:f#a
Homogeneous coordinates are not equivariant in this sense in general, as (3.17) shows.
g g
From the representation-theoretic perspective, these equivariant generators x,, are constructed as

1 is some choice of complementary subspace to n in the vector space U (n).

follows. First, suppose n
Let 7 be the corresponding projection U(n) — n. Then (E} o m),ca+ are a set of homogeneous
generators of My, where (E}),ca+ denotes the dual basis to the basis (Eq)qaea+ of n. These
generators are equivariant if and only if nt is stable under the action of ¢, i.e. if and only if com =

moo. Such a stable complement is defined by the usual vector space isomorphism U(g) =¢ S(g).

3.5. Wakimoto construction. The Heisenberg Lie algebra H(g) is by definition the Lie algebra

n], « € At n € Z, and central generator 1, obeying the relations

with generators aq[n], a|

*

[aa[n],ag[m]] =0, [aa[n], aj[m]] = dapdn,—m1, [ay[n],ag[m]] =0, a,B €AY n,meZ.
(3.20)
Define M to be the induced representation of H(g) generated by a vector wg obeying the conditions
1wy = wo,
ao[mjwy =0, m € Z>o, aymlwy =0, m € Z>;. (3.21)
for all « € AT,

Let b;[n] := Hy, ®@t", i € I, n € Z, be a basis of a copy of the commutative Lie algebra h @ C((t)),
and let my ~ C[b;[n]]jcr,n<—1 be the induced representation of h @ C((¢)) in which b;[n] acts as 0
for all ¢ € I and all n € Z>g.

Now define

W := M ® o, (3.22)
which is an induced representation of H(g) @ h @ C((t)). There is a Z-grading on W defined by
degwp = 0 and degay[n] = degal [n] = degb;[n] = n.
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Recall, for example from [Kac98, FB04], that a vertez algebra is a vector space V over C with a
distinguished vector |0) € V' called the vacuum and equipped with a linear map, referred to as the

state-field correspondence or vertex operator map,
Y (-, x): V — Hom(V,V((x))) C End V[[x,a:_l]],

A Y(A2) =Y Ama ™, Ay €EndV, (3.23)
nez

obeying certain axioms. In the present paper we choose to avoid a detailed discussion of vertex
algebras, reserving these aspects for a companion paper [VY]. In the remainder of this section we
merely summarize the results we require. (It should be emphasized, however, that vertex algebras
play a central role in the proof given in [VY] of Theorem 4.1 below, which in turn is crucial in the

construction of eigenvectors of the cyclotomic Gaudin Hamiltonians.)
First, both V M and Wy have natural vertex algebra structures. In V; "’ the vacuum state is

taken to be the highest weight vector vy and the state-field correspondence is defined for states of

the form A[—1]vg, A € g as
Y( 1)0, ZA x " 1

nez
so that (A[—1]vo)(n) = Aln]. In Wq the vacuum vector is wp and one defines

Y (aq[—1|wo, z Zaa 2= Y (ak 0wy, x Za - (3.24a)
nez nez
for all « € AT, and
Y (bi[-1]wo, x) := Y by[n)a~ " (3.24b)
nez
for all ¢ € I. By means of the reconstruction theorem — see e.g. [FB04, §2.3.11 and §4.4.1] —

these assignments, together with the specification of the translation operator T, suffice to define
the vertex algebra map Y on the whole of V " and on the whole of Wo.

Next, there is a notion of a homomorphism between vertex algebras, and, in particular, of
an automorphism of a vertex algebra. The map A[—1Jvy & (0A)[~1]vy extends to a unique
automorphism of Vg " as a vertex algebra. There is a unique automorphism (which we also call
o) of the vertex algebra W defined by

oay[n] == T(;laz,(a) [n], 0aa[n] = Taly(q)[n], (3.25a)
cf. (3.19), and
obi[n] = by [n]. (3.25b)

Given any polynomial p(z) € Clzg]|aea+, denote by p(a*[0]) the polynomial in Cla}[0]],ca+
obtained by the replacement =, — a[0]. Let Poi. and Qgi be the polynomials appearing in (3.6).
It was shown by B. Feigin and E. Frenkel, [FF90], following [Wa86], that there is an injective
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homomorphism of vertex algebras p : Vg LN Wy defined by

p(Eo;|=1vo) = Y Pl (a*[0])ag[~1]w (3.26a)
BeAt
p(Ho,[-1]vo) = — Y B(Ha,)a[0lag[—1]wo + bi[—1]wg (3.26b)
BeAt
p(Fa,[~1Jwo) = Y Q5 (a*[0])ag[—1Jwo + cial, [~1]wo — af, [0]bi[~1]wp. (3.26¢)
BeAt

for certain constants ¢;, ¢ € I. This homomorphism p has the property that 3(g), cf. §2.8, is
mapped into 7.

Moreover, it was shown by M. Szczesny in [Sz02] that if the polynomials Pgi and Q'gl in (3.6) are
defined with respect to a set of generators {zq, 04 }aeca+ obeying (3.19), then this homomorphism
p is equivariant, i.e.

plo(v)) = op(v) (3.27)
for all v € Vahv, where the action of o in Wy is as given in (3.25) .

In Theorem 2 of [Sz02] the choice of homogeneous coordinates on N, is what we call the equi-
variant one, (3.18). Equivariance of p on E,,[—1]vg and H,,[—1]vg is then immediate; what has to
be checked is that ¢; = ¢,(;), which ensures equivariance for Fy,[—~1]vg. In [Sz02] o was taken to
be a diagram automorphism (i.e. 7,, = 1 for each simple root «;) but by inspection one finds that

the proof goes through in general.

Remark 3.2. Changes of homogeneous coordinates on N} naturally induce automorphisms of Wy.
Thus, once (3.27) is established for this system of homogeneous coordinates, it follows for all others
(but of course the definition of o on Wy in the new coordinates will be more involved, since one
must take (3.25) and conjugate it by the change-of-coordinate automorphism, which need not be

linear).

A smooth module over H(g) @ h ® C((t)) is any module M such that for all v € M there is an
n € Zxo such that for all m > n, 0 = ag[m]v = a’[m]v = b[m]v for all « € AT and all ¢ € I. Tt
follows from the existence of the homomorphism p that

every smooth H(g) & h ® C((t))-module has the structure of a g-module (3.28)
in which K acts as —h".

Remark 3.3. Let us recall in outline the reason for this; for details see [FB04]. To every vertex
algebra V' is associated a Lie algebra U(V), the “big” Lie algebra of V, spanned by all formal
modes of all vertex operators in V. There is a homomorphism of Lie algebras g — U(V, hv) defined
by K — (=hYvg)[_1) and A[n] — (A[-1]vo)p, for A € g, n € Z. The homomorphism p induces
a homomorphism U (V| hv) — U(Wy) between the big Lie algebras. It follows that every U(Wy)-
module pulls back to a g-module in which K acts as —h". Finally, every smooth module over
H(g) @ h® C((t)) has a canonical U(Wy)-module structure.

3.6. The right action of n on M{, and the generators G;. The coinduced left U(g)-module
Mg of §3.3 is also a right U(n)-module, the action coming from the left action of U(n) on itself.
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That is, given n € M and n € U(n), the right action is defined by (n.n)(z_z+) = e(z_)n(nz4),
where z_ ® x4 € U(b_) ® U(n) and we extend by linearity to the whole of U(g) ¢ U(b_) @ U(n).
(Here € : U(b_) — C is the counit.) This action commutes with the left action of U(n) C U(g). By
the same argument as in §3.3, any X € n then defines a derivation of M when the latter is viewed
as a commutative algebra. However, because the action of U(n) on M is from the right, the map
n — Der(M) so defined is an anti-homomorphism of Lie algebras. By introducing an overall sign,
it becomes a homomorphism. After making the identification Mg =¢ Clzq]qaea+, the generators

E,, of n are mapped under this homomorphism to differential operators G; of the form

Gi= Y R/(x)9 (3.29)
BeAT

for certain homogeneous polynomials in the z,, o € AT, with deg Rf = [ — «a;. One can check
that
—1=Pli(z) = —Rj"(x) (3.30)
where the P2 are those of (3.6).
Let N be the vacuum Verma module of n ® C((t)):

N:= Indzgg[([(tﬁ})) Cup=Un®C((t))) QU meC[[H)) Cug (3.31)

where v is a nonzero vector such that n[tjug = 0. With the natural vertex algebra structure on
N (in which Y (A[-1]vo, z) = 3, c; Aln]Jz™""! for all A € n), there is an injective homomorphism
N — M C Wy of vertex algebras defined by

Eo,[-1Jvo = Gi[~1wo :== > R} (a*[0])ag[—1]wo. (3.32)
BeEAT
Provided the polynomials Riﬁ are defined with respect to a set of generators {xq, Ja }aca+ Obeying
(3.19), this homomorphism is o-equivariant.
The existence of this homomorphism means that, in addition to (3.28), every smooth module
over H(g) ®@h®C((t)) is endowed also with the structure of a module over this “right” copy, call it

e,y ® C((1)),

of n® C((t)). The elements G;[—1]Jwg € M play an important role in what follows.

4. CYCLOTOMIC COINVARIANTS OF H(g) ® bh ® C((t))-MODULES

The next step is, roughly speaking, to repeat much of §2 but with the role of g replaced by the
Lie algebra H(g) ® h ® C((t)) introduced in §3.5.

To the points z = {z1,...,2n8}, 2z; € C*, 1 <i < N, we add additional non-zero marked points
w = {wi,...,wn}, wj € C*, 1 < j <m. The points z; will continue to correspond to the sites of
the Gaudin spin chain, while the points w; will play the role of the Bethe roots. For convenience,
let us write * = {z1,...,zp} with (z1,...,2p) = (21,...,2n8,w1,...,wy) and p = N + m. We
require that

F'e;NTz; =0 foralll<i#j<p. (4.1)
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In addition, it will also be necessary to introduce a certain carefully chosen module assigned to the
point 0. This is one of the new features of the cyclotomic construction.

Let nc (resp. ng) denote the vector space n (resp. n*) endowed with the structure of a com-
mutative Lie algebra. On the commutative Lie algebra nc @ ng there is a non-degenerate bilinear

skew-symmetric form (-, -) defined by

(X, V) = Yo (X[n) = Xlor (Va) (4.2)
and an action (trivially by automorphisms) of the group I' given by
) (4.3)

Given any z € C, observe that the Heisenberg Lie algebra H(g) of §3.5 is isomorphic to the central

wX :=0(X|n) ® Ls(X

extension of the commutative Lie algebra (nc ® nf) ® C((t — x)), by a one-dimensional centre C1,
defined by the cocycle res;_,(f, g). The identification of generators is

agln] = Eo @ (t —2)", alin]=Ef® (t—a)" ! (4.4)

with E* € n*, a € AT the dual basis of E, € n, « € A*. In this way we associate a copy of H(g),
call it H(;), to each of the points z;, 1 =1,2,...,p.

4.1. The algebras H, ® h, and H}(t) ® hL. Let H, be the Lie algebra obtained by extending

the commutative Lie algebra

P
Dinc @) @ C((t - 1)) (45)
i=1

by a one-dimensional centre C1, defined by the cocycle

P
QH(fly ceey fp7 gi,--- 7gp) = Zrest—$i <f’La g’L> (46)
i=1

Equivalently, H,, is the quotient of @le H ;) by the ideal spanned by 10 —10), 1 << 7 <np.
Concretely, H, is the Lie algebra generated by a’[n]®, aa[n]®, 1 <i <p, a € AT, n € Z, and

central element 1, with commutation relations

(a0, agfm] @) =0, [aa[n), a5lm)] = 5950500, 1, @)D, axfm] ] =0, (47)
for a, 8 € At n,m € Z, cf. (3.20). The identification of generators is
aa[n)? = By ® (t — )", ain]® = BX @ (t — ;)" (4.8)
Next we define HL to be the commutative Lie algebra

Hy = (ne © Co,(1))"" @ (nf @ CR(8) " (4.9)

cf. (A.1). Here the action of the generator w of I on n is given by w.X = ¢ X, and its action on n*

by w.n := Lyn = noo~!. There is then an embedding of commutative Lie algebras

L: Hg(t) — é(n@ @ng) @ C((t — i) (4.10)
i=1
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as in (A.2). By the I'-equivariant residue theorem — see Appendix A — the restriction of the cocycle
(4.6) to the image of this embedding vanishes, and therefore the embedding lifts to an embedding
of Lie algebras

HY «— H,. (4.11)

At the same time we also have commutative Lie algebras

by =@ OOC((t —2:), and by :={f €hOCR(1) : 0f(t) = f(wi)}, (4.12)

i=1
and an embedding
by, — by (4.13)
Note that in contrast to Hy, and gy, b, is not centrally extended so there is no need to worry about
whether this embedding lifts.

4.2. “Big” versus “little” swapping. At this stage we have the Lie algebra H, @ b,, which is
the direct sum, with central charges identified, of the “local” copies H ;) &b ® C((t —z;)) of the Lie
algebra H(g) ©h®C((t)), and embedded within H,® b, we have the “global” Lie algebra HL @ pL.

Suppose now that M;), 1 <i < p, are smooth H(g) © h @ C((t))-modules on which 1 acts as 1.
Then

p
Mp = ® M(z)
=1

is a module over the Lie algebra HL @ hL via the latter’s embedding into Hy, ®by. The M; are
also g-modules, as in (3.28), and hence M, is a module over gl via its embedding into g,. One
then has two spaces of coinvariants, with respect to these two different “global” Lie algebras:

M,/g,  and M,/ (HL @pL). (4.14)

If the Heisenberg algebra and free-field construction are to be of use in solving the model introduced
in §2, it is necessary to relate these two spaces.
In the usual case where I' = {1} it turns out (for details see [FB04, §14.1.3]) that there is a
well-defined linear map
Mp/gw - Mp/ (Hy @ bg) (4.15)

which sends the class of any v € M, in Mp/gm to its class in Mp/ (Hg @ by). That is, the following

diagram commutes:

M,

| \

My/ge —— M,/ (Hz @ ba).

Intuitively speaking, in M), / (Hg @ by) one is by definition allowed to “swap”, cf. §2.7, using

rational functions of the form ¥

m, n e Zzl, (416)
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where X is one of aq, a’,, and b;, and what (4.15) asserts is that in fact one is also allowed to “swap”
using functions with X = E,, F,, or H,,. It should be stressed that this is not a trivial statement:
the Lie algebra g, does not embed into Hy & b, or into its universal envelope, for example. Call
the former “little” swapping and the latter “big” swapping (cf. Remark 3.3).

The cyclotomic case turns out to have subtleties of its own, details of which can be found in a
companion paper, [VY]. Here we merely sketch the situation before quoting, from [VY], the specific
result we need. First, the statement (4.15) is not in general true when g, and Hy @ b are replaced
by their ['-equivariant counterparts gL, and HL @ hL. To gain insight into why it fails, consider the
linear isomorphism

(M, @ Wo) / (Hg,, ® bg,,) =c My/ (Hg @ bg) (4.17)
where W is assigned to a point u € C. Via this isomorphism, given some m ® X € M, ® Wy we
obtain an element of Mp/ (H£ & f)g), call it F'(u), which depends rationally on w.

When I' = {1}, F(u) has poles at most at the points x;, 1 < i < p and (one can show that)
the statement of swapping using (4.16) is nothing but the statement of the residue theorem for the
rational function F(u)/(u — x;)™. If X is an “elementary” state like ao[—1]wy € Wy, one recovers
the “little” swapping that holds in M, / (Hg @ by) by definition. But for other states — and in
particular for states like p(Fy[—1]vg) € Wy — one obtains “big” swapping.

However, when I' # {1} it can happen that F(u) has, in addition to the poles at the points w¥z;,
wF €T, 1<i<p,apolealso at u = 0. This is not unnatural, since the origin is singled out by
being the fixed point of the action of I', but it is nonetheless striking since no module is assigned
there. One must include this extra pole in the sum over residues, and then the vanishing of this
sum is in general no longer the correct statement of “big” swapping.

To cure this problem, we are led to introduce a module assigned to the origin, judiciously chosen to
eliminate this extra, unwanted, singularity. Thus, instead of (H£ &) f)g) we consider (H:'E,O P b£,0)7
i.e. we allow rational functions with poles at the origin. The Laurent expansion at the origin of an
element of (H£,0 @ hg,o) belongs to H(g)" @ (h ® C((t)))', where H(g)" is the subalgebra of H(g)
given by

H(g)" =c (nc @ C((1))™" @ (ng @ C((1))" " @ C1. (4.18)
If we then define Hj, o to be the quotient of @@Y_; H; @® H(g)" by the ideal spanned by 1) —71(0)
1 <1 < p, then we have an embedding of Lie algebras

0 (4.19)

(using part (2) of the lemma of Appendix A). We can assign to the origin any smooth module M
over H(g)" @ (h ® C((t)))' on which T1(9) acts as 1, and form the space of coinvariants

(M, ® M)/ (Hy o @ bl ) - (4.20)

Theorem 4.1 ([VY]). Suppose that there exists a non-zero vector my € My with the property that,
in the space of coinvariants (Wo @ My @ Mo)/ (H}, 4.0 ® Dy 0)>

Ly [p(A[—1]vg) ® M ® my)
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is a Taylor series in u, for all A € g and m € M,. Then there is a well-defined linear map
Mp/gg — (M, ® My) / (H£,0 D hg,o) (4.21)

which sends the class of v € M, in M, /gy, to the class of v&myg in (M, @ Mo) / (Hzo @ beo) . O

If a is a Lie algebra and M an a-module, a linear functional 7 : M — C on M is said to be

a-invariant if T7(a.x) =0 for all @ € a and all z € M.

Corollary 4.2. Suppose Cmy is as in Theorem 4.1. If 7 : Mp,®@Cmg — C is an H;OEBf)g’O—invariant

linear functional, then the linear functional 7(- ® mg) on M, is gy -invariant.

Proof. By definition, 7(-®rmny) is a linear map M, — C that factors through (M, ® Cmyg) / (Hy, o @ bl.)-

Theorem 4.1 asserts that any such map can also be factored through M, / gL, i.e. is gL-invariant. [

At the same time, smooth H(g) ® h ® C((t))-modules are also modules over the copy of n/,) ®
C((t)) of §3.6. With the obvious modifications, Theorem 4.1 and its corollary also hold with g
replaced by n(g,y @ C((¢)). That is, if mg € My is such that in the space of coinvariants (Wo® M, ®
Mo)/ (qu;,m,(] @ hg,m,O) we have that ¢, [Gi[—1]wy ® m ® myg] is a Taylor series in u for all m € M,

and i € I, then for every HJ , & bl o-invariant linear functional 7 : M, ® My — C, 7(- ® my) is

r

invariant under (n(q,))q-

4.3. Wakimoto modules. The discussion of §4.2 applies to any smooth H(g)®hRC((t))-modules
M_; of equal levels assigned to points ;. In addition to copies of Wy, the other class of such modules
we need are the Wakimoto modules, whose definition we now recall. Given any x € h* ® C((¢)), let

Cuv,, denote the one-dimensional h ® C((t))-module with
foy = vy resy x(f). (4.22)
Then the Wakimoto module W, is by definition the H(g) ® b ® C((¢))-module
Wy :== M ® Cu,, (4.23)
where M is the induced module over H(g) defined by (3.21), or, equivalently, by

— Inq/1®
M i=Ind, & ocipgecs Co (4.24)

with Cwyg is the trivial one-dimensional module over (nc @ ng) ® C[[t]] @ C1.

(The module W, should be compared to Wy := M ® mg, (3.22), which is induced in both sum-
mands, H(g) and h ® C((1)).)

Observe that a Wakimoto module W, x € h*®C((t)), is a smooth module over H(g)®hRC(()).
So by (3.28), W, is also a module over g. We shall need two facts concerning the structure of W,
as a g-module. First, recall the definition of G;[—1]wy € M from §3.6. The following was proved in
[FFR94]. Suppose

« - n)em n *
MI*TkﬁLZM( e epr, (4.25)
n=0

for some simple root ay; then Gi[—1jwg ® v, € W), is a singular vector of imaginary weight (cf.
§2.8) if and only if (ag, u(?) = 0.
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Second, the Wakimoto module W, inherits the grading of M. In particular the subspace of grade
0 — call it W, — is generated from the vacuum wq by the operators a’[0], « € AT. This subspace
is stable under the action of the Lie subalgebra g of g, and is isomorphic as a g-module to the

contragredient Verma module, §3.1, of highest weight res;(x) € h*:
Wy g My, - (4.26)

rest

(See [FFR94] and also [FB04], §11.2.6. Also cf. Proposition 4.4 below.)
We now assign to each of the points z;, 1 < ¢ < p, a Wakimoto module

WXi = Mi ® (CUXi (4.27)

over the local copy H; ® h ® C((t — z;)) of the Lie algebra H(g) © h ® C((t)).
To the origin we ass1gn a module W} defined as follows. Given xo € (h* ® C((t)))""! let Cuy,
denote the one-dimensional (h ® C((¢)))"-module defined by

1
f(t).vy, = Uxo 7 TSt xo(f)- (4.28)
Let MU be the induced H(g)"-module

r._ H(g)" r
M™ = Ind  Sepaprosmsscir-1ec: %o (4.29)

with Cw{ the one-dimensional module over (n¢ ® C[[t]])!"? & (n& @ C[[t]])">~! & C1 on which 1 acts
as % and the first two summands act as zero. Then

Wy, =M@ Coy,. (4.30)

Now @7, M; ® MT is an induced module over Hp o and, cf. Lemma 2.1, we have that the space

of coinvariants with respect to H;; o is of dimension one:

®M ®MF/ HL o =¢ Cug? ® Cuwf = C. (4.31)
Meanwhile, we have the embedding of Lie algebras

(Lt—:vla ey Lt—mpa Lt—O) : hg,o — hp @ (b ® C((t>))r (432)

— where we now, cf. (4.13), take also the Taylor expansion at the origin — and in this way vy ® vy,

generates a one-dimensional L o-module:

p

F(8)-(ox @ vy) = (vx ® vy) (Z rest—z,; Xi(tt—z, f(t)) + % rest—o XO(Ltof(t)))> (4.33)

=1
cf. (4.28).
Now, with L, as in (3.13), let

0376 = (0" © Ciuy (1)

Proposition 4.3. The space of coinvariants Cvy ® (Cvxo/hg,o is one-dimensional if and only if

,—

={f €0 @ CX (1) : f(wt) = Lo f(1)}. (4.34)

there exists a x(t) € b;’g such that x; = te—g,X(t) for each i, 0 < i < p. Otherwise it is zero-

dimensional.
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Proof. Certainly either b£,0~ (Cvy ® Cuy,y) = Cvy ® Cuy,, in which case the space of coinvariants
is zero-dimensional, or b 4. (Cuy ® Cuy,) = {0} and the space of coinvariants is of full dimension,
i.e. dimension one. But h;o. (Cuy ® Cuy,) = {0} means (4.33) vanishes for all f(t) € 6570. By the
lemma in Appendix A (with A = bh*, B = b, (-, -) the canonical pairing between them, and w acting

as L, on h* and as o on b) this occurs precisely when such a x(t) € h;’g exists. O

4.4. The weight A9 and the g’-module structure of W;O We now need to show that the
module W};O at the origin can in fact be chosen so that the conditions of Theorem 4.1 are met. For

any h € b we let

T-1 T-1 r—1

Z trn o~ adh z:l — Z To'pl(a) a(h), (4.35)

r=1 acAT p=0
o (a)=a

where ady, : n — n; X +— [h, X] is the adjoint action of h on n. This defines a weight Ao € h*. In
fact, moreover,
Ao = Ao o I (4.36)

where Iy, k € Zr, are the projectors Il := 7 Zm 0 w™ kg™ : g — g, which obey EkeZT I, = id.
To see (4.36), note that [IIxh, ] C Iy gn, o(Ilyn) = Iyn, and hence for all nonzero r, k € Zp,
tra(o"adm,n) = > gz, trmm(o"adms) = 0.

Note that the definition of Ay depends solely on the choice of g, o and T

Now recall from Remark 3.3 that smooth modules over H(g) & h ® C((t)) become modules over
a “big” Lie algebra U(Wj) spanned by the formal modes of all states in Wy, and that g embeds
in U(Wy). There is also a I'-equivariant version of this construction [VY, §5.2]. Namely, smooth
modules over H(g)' @ (h® C((¢)))", such as W;O, become modules over the subalgebra U(W)! of
equivariant elements of U(Wy), and the twisted affine algebra gl embeds in U(W)!. The action
of U(Wg)" on W;O is specified by a quasi-module map Yy (-,u) : Wo — Hom (WL VVF ((w))),?

X0°?
—. AW ufnfl
>_ Al

nez

and this map Yy can in fact be defined by the relation

WX @m @] = [wy @ m e Y (X, u)v]. (4.37)
Explicitly, the action of the formal mode A[n] € U(Wq)'', n € Z of some state A € Wy on v € W};O
is given by A[nJv = A AE/V) — for details see [VY].

In this way, W{O is a module over gl'. In particular, its grade 0 subspace WXO, cf. (4.26), is a
module over g7 := Ilyg.

Proposition 4.4. There is an isomorphism of g°-modules

WL =0 MY
x0 =87 L (resy (x0)~Ao)

where M;’U denotes the contragredient Verma module over g° of highest weight A\ € h*.

9Quasi—modules over vertex algebras were introduced by Li, [Li06a, Li06b]. They are closely related to twisted
modules.



32 BENOIT VICEDO AND CHARLES YOUNG

Proof. First, for all v € wr

X0’
resy Ly [p (Ea[—1]vo) ® m @ v] = resy Z PP (a*[0])ag[~ 1wy @ m @ v
BeAt
T—1
= res, Lu Z P’B 0))wo ® m & Zalag[O]v
BeA+ =0
T—1
= |wo®m® Z PP (ZO’ ]) Zalag[O]v . (4.38)
peAt =0
The first equality here is by “swapping”, cf. §2.7, the operator ag[—1] using the rational function
k
—— € H,. 4.39
Z wkt — u ( )

Note that the “self-interaction” term vanishes because (3.7) ensures that a3[0] cannot occur in the
polynomial Pﬁ . For the second equality we repeatedly first “swap” using a function of the form

k ,k

ZkeZT % € H! and then note that the result can be re-written as the result of “swapping”

using a function of the form ZT ! % = Zk 0 ok a’, keeping only the leading term in u at
each step because we are computing the r651due.

Now, cf. Remark 3.2, we can choose to work in coordinates on N, adapted to o. Namely, we
can pick a basis {E(j4): 1 <i<T—-1,a € AT} of n, where for each i, E; ) € II;n and a runs
over the set AT of g7-weights of II;n. (The Lie algebra g” acts on Il;g by the adjoint action. The
E(; «) are not all root vectors of g unless o is inner.) Let T(ia)yand O oy, 1 <i<T—1,a € Af, be
homogeneous coordinates and derivatives such that Lyx(; o) = wi:z:(m) and L(,-oa(i’a)OL;1 = w"@(i7a).
(For example, define z(; 4)(n), n € Ny, by n = exp(3 ZaeAj T(i,0)E(i,a)).) Then (4.38) gives

in particular

resy Ly [p (E(o,0)[—1v0) @ m@v] = [wp@m ® Z P(O’ﬁ < aloe )[0]) Ta,p)[0]v (4.40)
BeAT

for these are the only terms that survive the projections - Zk -0 o® on the right of (4.38). That
is, cf. (4.37),

1 w 0, *
(P(E(0.00[=1]v0)) [0]0 = 7 (p (B0 [=1]v0)) gy v = > P((o,f)) (Ta(o,.) [0]) aq,p[0]v.  (4.41)
BeAr
By definition W = Claj, afg,o[0 1] we+Uxos Which is naturally identified as a vector space with the
0

polynomial algebra C[x(o,a)]ae INE with vy, identified with 1. As in §3.3 we have the realization of
the Lie algebra g in terms of first-order differential operators acting on this polynomial algebra. In
particular Fq ) is realized as Z,BEA(T P((gf)) (7(0,0))9(0,8)- Recall that the generator 1 acts on W};O
as %, so that we have a homomorphism of Weyl algebras (g ) Ta?(],a) [0] and Og,a) = @(0,a)[0]-
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Thus, what (4.41) shows is that the identification W;O = Clr(0,0)]pe A is an isomorphism of n?-
modules.

Recall that, as a module over n?, the contragredient Verma module M :\k’a is co-free on one co-
generator.'? There is an identification of (C[x(O,a)]aeAaL with M;’U as g?-modules, given by modifying
the realization of g° by differential operators on N{ by a cocycle specified by the weight A; see e.g.
[FB04, §11.2.6]. This modification does not alter the action of n”. So W};O = C[$(0,a)]aeAg is also
co-free as a module over n?.

1

Next we should compute (p(Hy,[~1]vo)) [0lvy, = 7 (p(Hai[—l]vo))gg) Vy,- Consider therefore

ty [p (Ho, [—1]vg) @ m ® vy, ]. By swapping using the rational function

wrotag .
%, € 4.42
> o, € H (4.42)
keZr
cf. (4.8) and (4.9), the first term gives
= Y B(Ha)ah0las[~1)wo © m @ vy,
BeAT
T-1 1 k—1
= amome 2 | Hmaley | AU (@5 g Masl=1wo ©m @ v, | + OW)
k=1 BeA+ \p=0

| —

= [wo @ M @ vy, ] Ao(Ha,) + O(u),
with Mg as in (4.35) and where O(u") denotes terms in non-negative powers of u. The other term

in 1, [p (Ha, [~ 1]o0) © m © v,] is

1
talbil=1wo ©® M @ vy| = |wo @M ® — > (07b)[0Jvy, | + OO
relr

—_

1
= fwo®m e ] 7 S (resixo) (0 Ha) + O(u)
relr

IS

1
== [wo ® M & vy, ] (rese xo) (HoHay,) + (’)(uo),

in view of (4.28) and (4.36).

Thus, W;O is a g7-module containing a non-zero vector, v,,, such that

1
n%.vy, =0, h.vy, = Uxof(rest(xo) — o) (h).

Since M7¢ is a coinduced g?-module, it follows by the universal property of coinduced
T(TBSt(Xo)*Ao)

modules that there is a homomorphism of g7-modules W;O - M7

7 (rest(x0)—Ao)
. We need to show it is a bijection. But it is in particular

sending v,, to the
*,0

%(rest(XO)f)\o)
a homomorphism of two co-free n?-modules which identifies their co-generators, so it must be an

highest weight vector in M

isomorphism of n?-modules. Hence it is indeed bijective. O

103nd this module structure is independent of the g”-weight A; indeed, M%7 20 Homg®(U(n%),C) =: U(n°)".
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Now we have the following, cf. Theorem 4.1.

Proposition 4.5. Suppose xo = A\o/t+O(t°) € (haC((t)))" L. Then, in the space of coinvariants
(Wo @ My @ W)/ (Hy, 40 ® b)), for any m € M, we have that

ty [p(A[=1]vg) ® M @ vy, ], for all A€ g,

and
L [Gi[—1wo @ M @ vy, ], foralliel,

are Taylor series in u.

Proof. Let A € g. By inspection, ¢, [p (A[—1]vg) ® m ® v,,] has at most a simple pole at u. We
must show that this pole vanishes, i.e. that (p (A[—l]v[)))}/g) Uy, = 0. The symmetries of Yi — see
[VY, Lemma 5.4] - imply that (p (A[—1]vo)){t) vxe = (p (ToA[~1]v0)){h) vy, Thus, what has to be
checked is that the g”-submodule through v, is the trivial module. By the preceeding proposition,
if xo = Ao/t + O(t°) then W};O >0 M7, 1t is a standard fact about M|, easily verified, that the
submodule through its highest weight vector is indeed the trivial module.

It remains to consider ¢, [G;[—1]Jwy ® M ® v,,]. For this one sees directly, by an argument just
as for E, in the preceeding proof, that there is no pole term (again, there are no non-zero “self-

interaction” terms because deg Rf =0 — ). O

4.5. Bethe equations. Now we pick a tuple (¢(1),...,c(m)) € I" of nodes of the Dynkin diagram
of g, and consider the element

N

At) = Zt_wr Z Ato € b2o- (4.43)

relr =1 7=1

Here the weights \1,..., Ay € b* are those of (3.5) and L,\ := Moo~ ! as in (3.13).
Let

(XTs-ees XNy By -+ fms X0) = t(A(2)). (4.44)
For each j, 1 <5 <m,
T-1 N T-1 m T -
Ote(j) LA ) 1 + Lpa)
P= — - — Ao Ot —w;).
Hj t_w._'_zzw._wrzi Zzw._wrwk—i_w. Zwr 1+ + ( w])
J r=0 i=1 J r=0 g;l J J r=1
j

Hence, cf. (4.25), we have that for each j, 1 < j < m, the vector G.;)[—1]wo € W, is singular if

and only if
T-1 N T-1 m T-1
(Qe(s) LgAi) (i) Lpoery) 1 1 .
= Wy 2 wj — W wg, " w; \ 2 > _lae(g)s Lpaey)) + (aeiys do) | -
r=0 i=1 r=0 k=1 r=1
k7
(4.45)
Here we have used the fact that Zf:_f W = Z;:F:_f w in order to rewrite the
first term in brackets as — Efz_ll W Let us call these equations (4.45), for 1 < j < m,

the cyclotomic Bethe equations. For each fixed choice of tuple (¢(1),...,¢(m)) € I™, they form a

set of equations on the points wy, ..., Wn,.
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4.6. The cyclotomic weight function and Schechtmann-Varchenko formula. We now spe-
cialize to considering the tensor product ®Z]\L1 Wy, ® QJLy Wy, cf. (4.44), of Wakimoto modules
assigned to the points 21, ..., 25, w1,...,Wn,. From (4.31) and Proposition 4.3, we have

N m
QR Wy, @ QW,, @ Wy, / Hao®hyo=cC. (4.462)
i=1 j=1

There is therefore a unique, up to normalization, H 0@ h$ o-invariant linear functional
N m
Q) Wy, @ Q W, ® Wy, — C. (4.46D)

To fix the normalization we may, cf. (4.31), set mr(wg? ® wh) = 1, where wi? ® w) is the
vacuum state in M® @ MT e ®f\;1 Wy, ® ®;n:1 Wﬂj Y W)Eo' Hence, for each choice of the tuple
(c(1),...,¢(m)) € I'™, we have a linear functional

TF(-, Gc(l) [—1]w0, - ,Gc(m)[ ’wo, wo ® WXZ — C. (4.47)

Now define the cyclotomic weight function,
N
dr =r(c(l),... e(m)iwi, ..., wn) 1 Q) Mf, = C (4.48)

to be the restriction of the functional (4.47) to the subspace ®fi1 WXi =N ®f\il My, cf. (4.26)
and (4.44). A more explicit expression for ¢r is given by the following proposition.

An ordered partition of {1,...,m} into N parts is a composition p; + p2 + -+ + py = m,
(p1,-..,PN) € ZJZVO, of m into N parts, together with an N-tuple

1 1.,2 2 N N
LN TP S 15 P s S (TN
whose elements are a permutation of (1,2,...,m). Let P, v be the set of all such ordered partitions.
We shall often say n € P, n, leaving the composition (p1,...,py) implicit.

Given \ € h*, let vy € M) be a highest weight vector normalized by v)(wy) = 1. Here we regard
M), as the contragredient dual of M7, cf. §3.1, and note that wog € Wygs-1,040) =4 My is a highest
weight vector.

As a convenient shorthand, we write

g(x) :=wo(x), for z€g.

Proposition 4.6. The cyclotomic weight function yr is an element of My = ®f\;1 My, and is
given explicitly by

w1 Y @

k ; ki ki k i
neP, y =1 (w "1w ni T W "2w lw Pz—lw i =W Piwy | (w Piw,: — %
(k1,...,km)EZ¥L D P;

ki = nt ~ ”i., <t
1(Fc(nll))o- 2(Fc(n§))0 bi 1(Fc(n;_7l))0 pl(Fc(ni_))VAi
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Proof. Let v € ®f\;1 sz-' For each s, 1 < s < m, and for all X; € ny,), the map 7 is invariant
under, in particular, the rational function

oF X, r

k€l

(See the comment following Corollary 4.2.) Consequently we have, for all Xi,..., X € nig,), the

identity
(v, X1[—1wo, . . ., Xs—1[—1wo, Xs[—1]wo, wo, . . ., wo, wg)

N k(X,) [0 Do, X1[—1 Xoq[~1 r
_Z Z TF(J ( S)[ ] v, 1[ ]wOa"'a S—l[ ]UJO,’LUO,QU(],...,’U}O,'LUO)
- _ o=k,

= we —w Rz

s—1 1
+Z Z mTP(U,Xl[—l]wo,...,Xjfl[—l]wo,

7=1 keZr
(0% (X)), Xj-1][—1]wo,
Xj1[—1wo, ..., Xs—1[—1]wo, wo, wo, . .., wo, wg)

using o*(X;)[0Jwy = 0 and o*(X;)[0]X;[~1]wo = [0¥(X;), Xj][~1wo. We are then effectively in
the setting of Corollary B.2 of Appendix B. Applying this corollary gives

(v, Gey[=1wo, - -+, Gegmy [—1wo, wg) = (T, wo, . . ., wo, W) (4.50)

where

pi—1 P;

ki Lk ki K (2)
& " (Geni))[0]6 "2 (G i) )[0] ... 6 "7 (Gogi — ))[0]6 i (G ))[O]>

. n L n, X .1 X _ ny. . nt . o .
neP, n =1 (w LW, —w 2wnz> (w Pi=l, i w "Piw, )(w Pi i zz>
(k1 ook ) EZI 1 2 pi—1 Pi Pi
Now note that
* 3 T
mr(a[0]Dw, wy, . . ., wo, wh) = 0, (4.51)

foralli,1 <i< N, and all @« € AT and w € ®f\i 1 Wxi. This follows from the invariance of
under the I'-equivariant rational function

(4.52)

the leading term of whose expansion at z; is Eff @ (t — x;)~" = a£[0]®, cf. (4.8) and (4.9). (All
terms in the expansions at other points z;j, j # ¢, and the subleading terms with j = 4, are of
the form o*E} ® (t — 2;)P = o*a?[p + 1]Y) with p € Z>¢ and therefore annihilate w and wy.)
Consequently for all w € ®f\i1 w. . = Y, Mg,

TF(’[U,’U)O,-H,'WO,W(I;) :V)\(’UJ) (453)
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where vy 1= ®fi1 vy, € M. In view of (3.30), and noting that V)\(xg)w) =0 for all B € AT, we
have vy, (Eq-) = —vy,(Go-). Because the two actions of U(n) commute, we therefore have

NG, Ghe - Gom) = —A(E,0) G - - G )

= (G - Gow Bywy) = -+ = (=) 0r(Eyw - - By Eqy)
for any roots (M), ..., a®) € AT, Hence, by definition of the contragredient dual, one has
oA (GG o2 - Gomy) = (=DF(E, ) Foo) - .. Fymvn) (2). (4.54)
The result follows. O

4.7. Eigenvectors of the cyclotomic Gaudin Hamiltonians. Recall from §3.5 the induced
representation g of the commutative Lie algebra h @ C((¢)). This representation has the structure
of a commutative algebra, my >~ C[b;[—n|]icr,nez-,, and there is a derivation 0 : my — my defined
by 0b;[—n]| = nb;[—n —1]. We also have the commutative algebra C°,(u) of functions in a variable
u (which we may treat as formal) that vanish at infinity and have poles at most at the points w¥z;,
k€ Zr,1<i<p=N+m. The derivative 9, = 9/0u acts as a derivation on C{,(u) and there is

then a homomorphism of differential algebras
rr : (mo,0) — (CPo,(w), Oy) (4.55)
given by, cf. (4.43),

rr(bs[—1]) = Au) (Hy) = 222! AO’ + ) Z 5_Aw,f‘ -y Z — ”’ . (4.56)

k€Zy i=1 keZr j=1

That is, explicitly,

Mo o\t
rr(bs, [—n1] . . bsy, [—nag]) = k[:[l o <au) Au)(Hs,). (4.57)

Theorem 4.7. If the w;, 1 < j < m satisfy the cyclotomic Bethe equations (4.45) then for
all Z € 3(g), the cyclotomic weight function Yr = r(c(l),...,c(m);w,...,wy) € Mx is an
eigenvector of p(Z(u)) with eigenvalue (rr o p)(Z(u)).

Proof. As in §2.7, we introduce an additional non-zero point u whose I'-orbit is disjoint from those
of the z;, 1 < ¢ < p. To the point u we assign a copy of the H(g) ® h ® C((t — u))-module
Wo =M ® 7, cf. §3.5. There is a unique H%;u @ bg’u—invariant linear functional

N m
7R Wy, @ QW @ Wo @ W), —C (4.58)

normalized such that T(w?(N+m+1) ®@wy) =1, cf. (4.46).
Recall the embedding p : V M Wy from (3.26) and consider

(U G c(1 )[ ]U)Oa”'aGc(m)[_l]MO’p(Z)vwg)' (459)

This quantity can be evaluated in two ways.
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First, by Corollary 4.2, the functional 7 is ggu—invariant. We can therefore “swap” from w in
the same manner as in §2.7. Now if the w;, 1 < j < m, satisfy the cyclotomic Bethe equations
(4.45) then for each j, 1 < j < m, the vector G¢;)[—1]wy € W),; is singular for the action of g(,,).
Therefore

T(U>Gc(1)[_1]w0¢"'7Gc(m)[_1]w07p(z>7wg) = T( ( ) v,
=1 (Z(u).v, Gy~ ]wo,...,Gc(m)[—l]wo,wg)
= ¢r(Z(u).v) = (p(Z(u))¢Yr) (v). (4.60)

But at the same time, it is known [FFR94] that p(3(g)) C 7. That means p(Z) can be written as
a linear combination of terms of the form bg, [—n1]...bs,, [—nan], S1,...,50m € I, ny, ... ,np € Z>q.

G c(1 )[ ]wo,...,Gc(m)[—l]wo,wo,wg)
G

By using the f)g,u invariance of 7 and “swapping” using the functions of the form

1 o\ o"bs r
(n—1)! (8u> Z ot —u D2 (4.61)

relr
one has, by definition of the Wakimoto modules W, and W, §4.3, that

T(U, Gc(l) [—l]wo, s Gc(m) [—1]’[1)0, bs[_n]wv w(l;)
= Tl"(bs[—n])T(’U, Gc(l)[_l]w()a sy Gc(m) [_l]wOa w, wg)
The result follows. 0

5. EXAMPLES AND SPECIAL CASES

5.1. Eigenvalues of the cyclotomic quadratic Hamiltonians. Recall the quadratic Casimir
C = 1I%1, € Z(U(g)) and corresponding singular vector S € 3(g) from (2.37). We must express
these in terms of the Cartan-Weyl basis of (3.2). The dual basis is

Fa _ <Oé,Oé>F Fa _ <a,Oé>
Q) -

EY — —
(Eq, Fy) 2 2

E,, and H'= Z(wi,wj>Hj, (5.1)
Jel
where {w;}ier C b* = b are the fundamental weights of g. To see these, note that (H,, H) =
([Fa, Fol,H) = a(H)(Fa, E,), by invariance of (-,-), so that (E,, F,) = (Ha, Hg)/a(Hg) =
(v, BY){a, BY) = 2/{a, ). And <wi,wj> is the inverse matrix to (H;, H;) = 7 traadg,adp,: in-
deed, by definition 6;; = (wj, o/); hence o = > wi(ay, ) and s0 65 = Yo p(wj, wi) (o), o).
Recall the singular vector S € 3(g) from (2.37). It is known that (see, e.g., [Fre07, §8.1.4])

p(S) = % Z <w5awt>bs[_1]bt[_1]w0 - Z <C¥;lOé> ba[—2]w0.

s,tel acAt

Hence, with rr as in (4.57), we have

(o )(8) =+ 3 (wn M) al)Mw)a) — 3 Ly,
s,;tel acAt
- §<A<u>,x<u>> ~ (N(u), 0} (52)
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In view of (4.43) we therefore find the following expression for the eigenvalue E; of the cyclotomic
quadratic Gaudin Hamiltonians H; defined in (2.39):

(’Hl—Ez) wr(c(l),...,c(m);wl,...,wm) :0 (5.3)
N T-1 m T— 1 T—1
(Niy LEN) )\ngO‘c(j)) 1
= —_— (Niy o) + = iy Lo A4
DI S R ((EURE WK 5.
j=1 s=0 j=1 s5=0 s=1
J#i
The second term in brackets originates from an expression of the form Zzz_ll % which can
be rewritten as Z % and hence simplifies to 27 o1 M
We also find certaln identities, by comparing the double pole terms in S(u).

k2 we find the correct value A();) of the quadratic Casimir

First, at the double pole at u = w
C = %I ®I, on the Verma module M), — which one recognises from, for example, the Freudenthal
multiplicity formula —

AR = £ M)+ (o), (5.5)

(note that A(N;) = F(LEN;, LEN,) + (LEN;, 0) for all k € Zr).
More non-trivially, from the double pole at © = 0, we find the identity
R P 3 AR
LS ) 2 o)+ (o) (56)

12
2 = (W —1)

Here the right-hand side is the value A(\g) of C on the Verma module M), .

5.2. Inner automorphisms (and in particular ¢ = id). Suppose the automorphism o : g — g
is inner. Then it fixes, pointwise, our choice of Cartan subalgebra, cf. (3.12). For each positive

root a € AT there is a unique number y, € {0,1,...,7 — 1} such that
To = wXe. (5.7)

(Note, in particular, that o = id corresponds to x, = 0 for all & € A™.)
We have the identities

- 1 T-1 = 1 7w
Zl—uﬂ"_ 2 Zw—w’”z_wT—zT. (58)
r=1 r=0

In view of these, the Bethe equations (4.45) then become, with Z; := zZT and w; = wiT,

N m T—1
(Qre(j)s Ai) (@) Qery) 11 1 o
:Z Wi — % _Z W — 10y, +f~7. W' —1 (o c(4) C(J) Z wX Qe(y), ¢ o)
i=1 J 1}2;; J J r=1 acAt

for j =1,...,m. Recalling that o = %ZaeA+ a =) .c;w;, one has

D (o) = 2D Wk acg) = (o) Qo)) D Whs ) = (@) Q)

acAt kel kel
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Therefore if in fact 0 = id then the term in 1/@; actually vanishes and the Bethe equations become

N ey M) s () Qo))
0=>) - : (5.10)

P Wy — % P W; — W,
k#j
for 5 = 1,...,m. These are nothing but the Bethe equations for the usual Gaudin model with

Verma modules M), assigned to the points Z;, with Bethe roots w;. More generally, the Bethe

equations when o is purely inner are

0= iv: (Qe(j)s Ai) 3 i (Qe()s Ce(r)) 1 Z [Xal (o, ) (5.11)
T - g Wy — T el S ‘
i=1 J k=1 J J aEAT
=
where [k] := k mod T € {0,1,...,T — 1} for any k € Z and we note that 37 w;f:l = [k].

These again can be interpreted as the Bethe equations for an ordinary Gaudin model, but now with
an additional Verma module assigned to the origin.

Let us turn to the cyclotomic weight function ¥r of Proposition 4.6. When ¢ is inner, ¢r is a
g-weight vector. Indeed,

et (e g (1 g oty (e ) Fotni)Feny) - - Fetny )V

c(n%)

N 1
= Y ®

. nt knl k”i 1 kni . knz .
neP, N i=1 W Wy —wW 2Wpi | .. (W PITIW, —Ww PiWpi W PiwWpi — 2
(k1 yeeskim ) EZI E 2 Pi—1 Pi Pi

and by repeatedly applying the identity,

Z wfrk TUTflf[T]u[r}
wkuy — v ul —oT 7
k€Zr
one has
N f(w i Wi X Xea . )
nt» » Wm0 < ac( iy ) O‘c(nl,)
_ mm Pq i . .
Yr=(=D"T" Yy Q) (0 — ) (@, s ) (@ _5)Fc(ng)F(ng)~--Fc(nzl_)vm
neEP,, y i=1 ny ngy pi—1 p Mp;
where
a1 [ T
. — o ba- T—1=[x14-Axs—1—1+x1+Fxs—1] | ,T—1=[x1+-+xp—1
flwi,...,wp, 23X1, -+ -5 Xp) = WY st bat4xs—1=1l+bat+xs =1l | bat+xp=1],
s=2

In particular if ¢ = id then

S 1 al FoiyFomiy - - Feqni, )V,
Yr = (=D)"T™(wy ... wp) Z ® - - o A

P it (P = Ong) o (g =y ) (0, = %)

which is the usual Schechtman-Varchenko expression for the weight function in the variables w;,

1<j<mand Z, 1<i<N, up to the constant overall factor 7" (w; ... wm)Tfl.
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For the eigenvalues (5.4), one finds by use of the same identities that

N m
- (Ais Aj) (Ais acgj)) 1 T-1 T-1
Bi= Tl | 3P oy S e~ | S (S = Tl ) e ) ()
j;l, T g= b \aea+
JFT

In particular, when o = id, i.e. [xo] = 0 for all @ € A this reduces to

N m
_ Ai )\> <)‘i’ac(')> T-1
B—rer | S Q) g R | T
j; 2y — Zj ; Zi — wj Z
J#

where ¢();) is defined in (5.5). The expression in brackets is precisely the eigenvalue of the Gaudin
Hamiltonian of the usual Gaudin model with Verma modules M), assigned to the point Z;, where
the Bethe roots w; satisfy the usual Bethe equations (5.10). This corresponds to the fact that when

o = id, the expression (2.39) can be resumed to yield

N i) ()
190 ] T—11 0
T E a 7o) 1)
Hi =1z o5 o 2 e
j=1 J
J#
which is nothing but a linear combination of the Hamiltonian for the usual Gaudin model and the

quadratic Casimir C(.

5.3. An example of a diagram automorphism. The opposite extreme to the situation of the
preceding subsection is when 7, = 1 for all simple roots «;, i € I in (3.12) and ¢ # id is a
non-trivial diagram automorphism. Suppose that we are in this situation, and moreover that ¢ has

order 2 (which follows necessarily unless we are in type Dy). Then the Bethe equations are

N N m m
0= {ae(); >\'¢> oy (Qo(e(> M) 3 (e, o)) 5 (Qo(c(4))s Xe(i)

= Wiz = Witz o Wi Wk = Wit wk
i iZj
1 1
+ w —5 {0 Ao (ei) T {@e()s Ao) |

where now A\g reduces to

)\0:% Z . ta.

aeAT
ola)=a

We shall consider one simple example of this type. Let g be as and o its unique diagram
automorphism. Suppose there are N = 2 sites, to both of which we assign the 3-dimensional
defining representation L, of sl3 = az. Recall that L, is the irreducible quotient of the Verma
module M, . The Hamiltonian #; defined in (2.39) is then a 9 x 9 matrix whose eigenvalues and

eigenvectors can be found by direct computation. Its eigenvalues are

2B+ 2z 4227 23 —brize — 427 23 + 102120 — T2} (5.12)

)

323 — 32123 323 — 32123 323 — 32123
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with multiplicities respectively 5, 3, 1. These multiplicities agree with the decomposition of L, ®
L, into irreducible representations of the sly subalgebra stabilized by o, which is linearly generated
by

E:=FEis+ Ey3, F:=EFEy+ FE3, H:=][EF] (5.13)

(the notation Ejs etc. is that of Example 3.1) and whose positive root is o := 3(aq + as):
a2

®

®

° \(@/ °
a1 g5[2
7

[ ]
The 5 dimensional representation of sls is the irreducible representation through the vacuum
vector v @ v.
With m = 1 and ¢(1) = 1 (i.e. one lowering operation, in the direction of the simple root 1)

the Bethe equation (4.45) and its unique solution are

1 1 z
0= + — W1 = Lt 22.
w1 — 21 w1 — 29 2
Note here that —%(al,aa(1)> = —3(—1) = L is cancelled by (a1, Ao) = —5{a1, a1 + ag) = -2 =
—3 so that in total there is no pole at wy. With m =1 and ¢(1) = 2 one has
1 1 21 + 2
0= + — wy =21 i 2,
w1+ 21 wp+ 22 2
which is the same equation with w; replaced by its twist-image ww; = —w;. The cyclotomic weight

functions for these solutions are the actually proportional, as one expects since there is only one
sly singular vector at this sly weight!!. Indeed, when ¢(1) = 1 one has
Ervv —FEprvev v®FEar v (—FE3v
21 n 32 i 210 (—E32v)
w1 — 21 —w1 — 21 w1 — 29 —w1 — 29

Yr =

2
= (E21v @ v — v ® Eg10)
z9 — 21

on substituting the solution to the Bethe equation and noting that Esav = 0, while when ¢(1) = 2,

_ Exv®uv N —Eyv®@wv n v @ E3pv n v ® (—E91v)

Yr
w1 — 21 —w1 — 21 w1 — %9 —w1 — 29
2
= — (E211)®’U—U®E21U).
22— 2
With m = 2, (¢(1),¢(2)) = (1, 2) the cyclotomic Bethe equations (4.45) are
1 1 2 -1 1 1 2 -1
O — + — — s 0 = + — — . (5.14)
wp —21 W] — 22 Wt wy wp— w2 w2 +22 wo+2z1 Wt wr w2 —w

11By analogy with the familiar untwisted case, one expects that the cyclotomic weight function evaluated at any
solution to the cyclotomic Bethe equations yields a singular vector for the subalgebra of g stablized by . We have
not proved this here.
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From these, the equations for (¢(1),¢(2)) = (1,1) are obtained by replacing ws by its twist-image
—ws. For (¢(1),¢(2)) = (2,2) one must send w; — —w;. For (¢(1),¢(2)) = (2,1) one must send
wy — —wy and wy — —wo; this yields the same set of equations but with w; and ws exchanged,

as it should. Up to one choice of branch in the square roots there is a unique solution to (5.14),

namely
T + 29 — /(22 — 521) (522 — 21) wy = A + 20 + /(22 — 521) (522 — 21)
1 6 5 2 6 .
The non-zero terms in the weight function ¢r € L,, ® L, are
P E3Fv® ( ! + ! )
= VRV
b (wg — wy) (w1 — 21) | (—wy + wa)(—wa — 21)
1 1
+ v ® E3aFEv < + )
PERT\ (wa —wi)(wr — 22) | (—wy + wy)(—wg — 23)
-1 -1
+ Eo1v ® Fojv +
e ((m —a)(cur—z) | (wz—2)(wi - m)
and on substituting the solution above one finds eventually
9
= ——— — (F39FE0v®v+vQ® E3FE2v — Fyv® Egv). 5.15
Yr 1 + )2 (E32E91 32021 21 210) ( )

This again is singular for the sly of (5.13), as expected. It is a straightforward check to verify that
the eigenvalues (5.4) computed from the Bethe ansatz agree with the result (5.12) of the direct
computation.

APPENDIX A. THE I'-EQUIVARIANT STRONG RESIDUE THEOREM

Suppose A and B are complex vector spaces equipped with a non-degenerate bilinear pairing
(-,-) : Ax B — C. (This covers, of course, the special case when A = B and (-, -) is a non-degenerate
bilinear form on A.)

As in the main text, let T be the cyclic group {1,w,w?,...,w’ =1} € C* acting on C by multi-

plication, and let = (z1,...,zp) be a collection of non-zero complex numbers whose I'-orbits are
disjoint. Suppose I' acts on A and B and (w.a,w.b) = (a,b) for all a € A,b € B. Define
ALF = {f e AR CX (1) : flwt) = wF(w.f)(t)} (A.1)
for each k € Zr, and likewise Bg’k. There is an injection
P
v ADKE @ AQC((t —zi));  f(t) > (te—ay J(E), - ti—a, [(1)). (A.2)
i=1

We also allow the possibility of a pole at the point zero, which is special because it is the fixed
point of the map C — C; z +— wz. Thus, let

ADE = {f € AR TR0 () ¢ Flwt) = Wb (w.f)(BO} (A.3)

Note that the image of ¢;_¢ is in (A ®@ C((t))"" == {f € AR C((t)) : flwt) = wF(w.f)(t)}.

Lemma A.1 (I-equivariant residue theorem).
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(1) An element (f1,..., fp) € Bl A@ C((t — x;)) is in L(ALFY if and only if

p

0= Z TeSt—g; <fla li—g; (g)>
i=1

for every g € Bgﬁk*l.

(2) An element (f1,..., fp, fo) € P ARC((t—2;)) B (A® C((t)))r’k is in (¢, Lt)(AZZIS) if and

only if
P

1
0= ET‘?Stzi(fi, t—z;(9)) + T res¢( fo, te(9))
1=
I,—k—1
x,0 .

for every g € B

Proof. Consider part (1). For the “only if” direction, let f € AR and g€ Bg’(_k_l). In particular
feA®CY,(t) and g € B® C,(t) so that, just as in the proof of Lemma 2.2,

P P
Z Z rest—az; (tt—az; [ li—az; 9) = Z Z res; oz (f,9) =0 (A.4)

i=1 a€l i=1 a€l
(since this is the sum over all residues). Now by the invariance of (-,-), we have that (f,g) €
% (t)1'~1 where

% 1)k = {h e C(t) : h(t) = w Fh(wt)}. (A.5)

For any h € C22 (t), res;—g, h(t) = wl res;_wy, h(w™'t) . Hence if h € C22,(t)1F then res;_, h(t) =
wl-k res;—wz; h(t). In this way one has that for all o € T,

resi—ax; (f, 9) = resi—q, (f, 9). (A.6)

Thus in fact 0 =T Y P resi—g, (tt—g, s ti—z,9) as required.
Turning to the “if” direction, let us first establish that for all k € Zp,

PAscC(t-u) = L(Ag’k(t)> o @A C[t - ). (A7)
=1 =1

Indeed, let f; € A® (t — z;) "'C[(t — 2;)~1] denote the pole part of f; € A® C((t — z;)) and set
f=3r > eraf(afi) et —a;) € AL®. Then (fi,..., fp) splits uniquely as the direct sum
of the function f and the tuple (fi — ty—a, f,- -, fp — ti—z, f) € BY_1 AR CI[t — 2;]]. Now using the
“only if” part we have that

p p

> resia (fisti-w9) = Y _resi u ((fi = t-aif) s t—a,9). (A.8)
i=1 i=1
Note fi — tt—s,f € A® CJ[[t — x;]]. Suppose for a contradiction that f; — t;—,,f i non-zero
and let a ® (t —z;)" be the leading term, with a € A, a # 0, and n € Z>(,. By picking
g = Yaer@ " Hab) /(a7 — ap)" T € BL 7" one sees that the vanishing of (A.8) implies
that (a,b) = 0 for all b € B; and thus, since (-,-) is non-degenerate, that a = 0: a contradiction.

Hence in fact f; = 14—y, f for each i, as required. The proof of part (2) is similar. O
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APPENDIX B. CYCLOTOMIC SCHECHTMAN-VARCHENKO FORMULA

The key identity used in this section is what, following [SV91], we will call the circle lemma: for

any n € Zso, if x; are pairwise distinct complex numbers with ¢ running over Z,, (so zp4; = ;)

then
o= 1l .—+

i€Ln, J GZn
JFi

—Tjp1

For example, the case n = 3 is
1 1 1
- + .
(k1 —x2)(x2 —x3)  (x2—a3)(x3 —x1) (x3—21)(T1 — 22)
—1

0=

There is a useful graphical representation of such identities, in which (x; — x;)™" is represented by
a directed edge from a vertex labelled j to a vertex labelled i: ix<—xj . Products of such factors
are then represented by directed graphs, with one vertex for each variable that appears and one

directed edge for each factor. In this way, the circle lemma becomes

’ x

= Z .' . (B.1)

As in the main text, let w be a primitive T'th root of unity, T € Z>1. Let 21,..., 2N, w1, ..., Wy
(N € Z>1, m € Z>p) be nonzero complex numbers whose orbits under the multiplicative action of
w are pairwise disjoint.

We shall use three types of nodes in order to distinguish between different types of points and

their images under multiplication by w. Namely, we write
io = w;, ion= z;; (B.2)

and also
10 = wkiwi, (B3)
where k;, 1 < i < m, are elements of Zr.

Thus, for example,

/ - 1

/ C(Whwy — wk2wg) (wk2we — 21)

and

1
V C(Whwy — whiwy) (wktwy — wkws) (WF2we — w3) (w3 — wkiwy)’
le
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Recall from §4.6 the set P, y of all ordered partitions of {1,...,m} into N parts. Let n' denote
the ith part of an element n € P, y, i.e.

n=n4in?. . n)= (n},...,nél;n%,...,né;...;njlv,...,n]]?VN). (B.4)

Let A be an associative unital algebra, o : A — A an automorphism whose order divides T', and

V a left A-module. As in the main text, it is convenient to write &(z) := wo(z).

Proposition B.1. Suppose we are given a linear map 7 : VEN @ A®™ — C such that for all s,
1 < s <m, we have

T(xl,...,xN;yl,...yS,l,...l) (B5)

N .
:Z Z T(x1,y ooy i1, 07 (Ys ) Tiy Tt 1y e ooy TN YLy -+ 5 Ys—15 1y eeny 1)
T
i=1 jE€Zr Ws =W 72
+SZ: Z T(xlv"'a'rN;yla"'7yi7170](y8)yi *yio-](ys)ayiJrl""7y57171a'"51)
we — wJw;

i=1 jeZp
forallzy,...,xxy €V and all y1,...,ys € A. Then for any x1,...,xy € V and ay,...,a, € A we
have
T(T1y ooy NG AL, ey Q) = Z T(i?l(nl), canmN), . 1) (B.6)
nEPm,N
where formn = (n1,...,np), withny,...,ny, € {1,...,m} all distinct, we denote kn, := (kn,, ..., kn,)
and define
g
O
Zin):= > | 16" (an,):. (B.7)
kin €72, £n2 t=1
l
e

Proof. We prove a slightly more general result. Consider the set P,,_; n425 of ordered partitions of

{1,...,m—s} into N +2s parts, for 0 < s < m. It is convenient to write an element n € Py,_s n42s
n=n. . e el )
1 1 N N g1 1.1 1
= (N1, sy ey Gl ST TRy 5 T ST TRy, (B.8)
where (p1,...,pN, L1, R1,..., Ls, Rs) is an (N +2s)-composition of m —s. In terms of this notation,

we claim that for any 0 < s < m we have
T(T1, . XN AL, .oy Q)

= Z r(Z1(nt), .. anmY ), g, 1, 1) (B.9)

nepmfs,N+25
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where Z;(n) is as in (B.7) and for l = (I3,...,ly) and = (r1,...,7rR), with l1,...,l,r1,..., TR €
{1,...,m — s} all distinct we set
:
/N — —
lL? :TR L R
gtr)=> | 1+ |T[o" () ai [T6"(an) (B.10)
ki eZL i« ; t=1 u=1
krEZ’% 12\1' Tr2
1o o7

for 1 <14 <'s. The statement of the proposition corresponds to the particular case when s = 0.

We proceed to show (B.9) by induction on s (starting at s = m and working downwards). When
s = m the statement (B.9) is empty. So suppose it holds for some 0 < s < m. Applying (B.5)
to each term in the sum on the right hand side and abbreviating 7;(n’) and 7; (1%, 7%) as #; and §;
respectively, we have

> (@ EN s L)

n€P7nfs,N+25

N 5 (i) 5
-y ¥ T<gz1,...,:z~,~_1,zU(y‘*)x’,@H,...,@N;gjl,...,g}s_l,1,...,1>

: S wiws — 2
=1 n€EPy, s N+2s JELT

s—1 si(~ \r.
+5 Y T<£1,...,5N;g1,...,g“,zJ(ys)yl,gi+1,...,gsl,1,...,1>

: — wiws — w;
i=1 nEmes,N+2s ]eZT
s—1 ~ i~
~ - i 5io? (Js) i
+§ E 7'<3317-~,35N§y17--~7yi—17 E 7’7yi+17"‘7y8—1717"'71 . (Bll)
° ; w; — wlwg
=1 n€Py,_s N+2s JEZLT

In the first line of the right-hand side of (B.11), consider the ith term in the sum. Given an
ordered partition n € P,,—s Ny2s, let

- -1 _ N7l =1 7s—1, zs—1
n=(n;...;n 07 0TS TT) € Prosyi Nt2s—2 (B.12)

be the ordered partition whose ith part is

— (7l =1\ . (]S s s 5 1 i
n' = (0,05 ) =], 18 TRy TN ey T,

(so p; = pi + 14 Ls + Rs) and whose remaining parts are unaltered:
=10 1<t<s-—1,

Fli=pl, 1<t<s—1.
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One can show from definitions (B.7) and (B.10) that

S 1
e ————0
7, & N i i
v g~ ~ - 3 P2
g7 (ys(ls,rs))xi(nl) L% 2TMp 42 * 15, -
> -— ¥ o . 5% (0. )
wiws = z; Lo : ng/
JE€ZT s i k.. c7Pi Y ' i v =1
i 4T nye eny .p *N} R 13
S i
n1® ®NL.4+R.+1 *NL.+R.+2

Now, the ordered partition n belongs to the set of those elements of P11 n42s—2 for which s

belongs to the ¢th part. Call this subset ani)_S_H Nios—2 C P —s41,N4+25—2. The map

Pm—s,N+23 — ]5(1) n—n

mfs+1,N+2372;

is not injective, and indeed summing over the pre-images of a fixed n amounts to summing over
pairs (Rs,p;) with Rs + p; is fixed. When one performs this sum on the expression above and
applies the circle lemma (B.1), one finds

.

S
°

[m]
o IN 1o -
"t RMLer2 Y [ P ,
~ N - =~ 1
> o I ¢ " (agy)Ti = Ti(0')
- 1 1 1
; . ! t=1
kai€Zt | fiie e M
) \:
nllo ec——eo

Putting all this together, one has that the first line on the right hand side of (B.11) is

N
S @@ @) ), e L)),
=1 ﬁ'eP'r(rf)fs+l,N+2572

These are some of the required terms; it remains to show that the second and third lines on the
right of (B.11) yield the remaining terms in the sum over n € P,,_s_1 n42s—2, i.e. those in which
s belongs to one of the last 2s — 2 parts.

Consider the ith term of the sum on the second line on the right of (B.11). This time, given an
ordered partition n € Py, n42s, We now let

A= (nY. . n TR TR € P Naoso
be the ordered partition with
I = (Ni,...,ﬁii) =15, sk, L)
(so Li=L;+1+L,+ R;) and with the remaining parts unaltered:
nl =n’ 1<57<N,
=1, 1<t<s—1,t#i,

Flo=rt 1<t<s—1.
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Using the definition (B.10) one can show that

S )
[ ] o
=3 (75 (15 5))77.(]t o ZZL °‘/,\.~lL +2 .ll/zﬂ- \.7:3% L; R;
Za(ys(l,r))yi(l,r) 3 or Ak P e & (a H »
- = — T
wws — w; _ Lo : :
JEZT L; ~ v v~ ) t=1 u=1
ki €L5" lte @] o/t ol
»==T 2 Ls+R; L;+R.+3 2
cLot Ly
lie *lp ir.41 nLS+R +2°71

Arguing as before, when one sums this expression over those ordered partitions n that yield a given
7 and applies the circle lemma (B.1), one indeed finds

S )
[ ] o
R VA N = -
lLsf Steo+2 %', TR L; . R; .
) ! o o1 (ag )i [ [ 6™ (ary) = ml@, 7). (B.13)
= J 1 1 | - -
= B TR o em |7 =t
pl% I<—£ Iﬂl

Similar reasoning applies to the sum in the last line of (B.11), and we obtain finally
T(T1y ooy ENG ALy ey Q)
— Z T(@(n), .. an N ) ), e T T, L),
NEPy, _s11,N+2s—2

which concludes the proof of the inductive step. O

Corollary B.2. Let a be a Lie algebra, o : a — a an automorphism of a whose order divides T,

and V an a-module. Suppose 7 : VEN @ (a @ C)®™ — C is a linear map such that for each s,
1<s<m,

N
_ 71’1.. , Ti—1 Ly Litlye TN YLy - _1,1,...,1
T($17"'a$N7y1a'--y87 yrt ZZ : . <y8) ljwzt;j—jz. L ol o : )
i=1 j€Zr ?
(B.14)
+ xlv”'aw]\ﬁyla"wyi—l;[Uj(ys)vyi]ayi-‘rlv"'7y8—1717"'71)
ws — wIw;
i=1 jEZ1

forallzy,...,zny € V and allyy,...,ys € a. Then formula (B.6) holds for T, for all z1,...,zy € V
and all ay,...,a, € a.

Proof. Any such 7 extends to a map 7 : VEN ® U(a)®™ — C satisfying (B.5). Indeed, one may
set 7(x1,...,xn;1,...,1) :=T(x1,...,2N;1,...,1) and then use the relations (B.5) recursively to
define amap 7 : VEN @ U(a)®™ — C. By definition of the universal envelope U(a) the restriction
of 7 to VN @ (a @ C)®™ coincides with 7. The result follows. O
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