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Abstract	

Estimating	 the	 distance	 of	 a	 gas	 source	 is	 important	 in	 many	 applications	 of	

chemical	sensing,	like	e.g.	environmental	monitoring,	or	chemically-guided	robot	

navigation.	 If	 an	 estimation	 of	 the	 gas	 concentration	 at	 the	 source	 is	 available,	

source	proximity	can	be	estimated	from	the	time-averaged	gas	concentration	at	

the	sensing	site.	However,	 in	turbulent	environments,	where	fast	concentration	

fluctuations	dominate,	comparably	long	measurements	are	required	to	obtain	a	

reliable	 estimate.	 A	 lesser	 known	 feature	 that	 can	 be	 exploited	 for	 distance	

estimation	 in	 a	 turbulent	 environment	 lies	 in	 the	 relationship	 between	 source	

proximity	and	the	temporal	variance	of	the	local	gas	concentration	–	the	farther	

the	 source,	 the	more	 intermittent	 are	 gas	 encounters.	However,	 exploiting	 this	

feature	requires	measurement	of	changes	in	gas	concentration	on	a	comparably	

fast	 time	scale,	 that	have	up	 to	now	only	been	achieved	using	photo-ionisation	

detectors.	Here,	we	demonstrate	 that	by	appropriate	signal	processing,	off-the-

shelf	metal-oxide	sensors	are	capable	of	extracting	rapidly	fluctuating	features	of	

gas	 plumes	 that	 strongly	 correlate	with	 source	 distance.	We	 show	 that	with	 a	

straightforward	 analysis	 method	 it	 is	 possible	 to	 decode	 events	 of	 large,	

consistent	 changes	 in	 the	measured	 signal,	 so-called	 ‘bouts’.	 The	 frequency	 of	

these	 bouts	 predicts	 the	 distance	 of	 a	 gas	 source	 in	 wind-tunnel	 experiments	

with	 good	 accuracy.	 In	 addition,	 we	 found	 that	 the	 variance	 of	 bout	 counts	

indicates	cross-wind	offset	to	the	centreline	of	the	gas	plume.	Our	results	offer	an	

alternative	 approach	 to	 estimating	 gas	 source	 proximity	 that	 is	 largely	

independent	 of	 gas	 concentration,	 using	 off-the-shelf	metal-oxide	 sensors.	 The	

analysis	method	we	employ	demands	very	 few	computational	 resources	and	 is	

suitable	for	low-power	microcontrollers.		
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1 Introduction	

Estimating	 the	 distance	 of	 a	 gas	 source	 is	 important	 in	 many	 scenarios.	 For	

example,	when	monitoring	environmental	concentrations	of	certain	gases	with	a	

stationary	sensor,	an	estimate	of	the	distance	to	the	source	of	gas	emission	will	

help	in	localising	the	emission	site.	Likewise,	the	success	of	a	robotic	agent	trying	

to	 localise	 the	 source	 of	 a	 hazardous	 gas	 leak	 will	 depend	 on	 the	 speed	 and	

accuracy	of	its	estimates	of	how	far	upwind	the	source	is.	In	the	biological	realm,	

gas-based	 navigation	 plays	 a	 crucial	 role	 in	 insects	 and	 mammals	 looking	 for	

food	and	mating	partners,	or	trying	to	avoid	predators.	

A	 prime	 clue	 to	 the	 distance	 of	 a	 gas	 source	 is	 the	 concentration	 of	 the	 gas.	

Downwind	from	the	source	the	gas	concentration	will	decrease	through	diffusion	

and	the	gas	plume	will	be	mixed	with	air	by	turbulent	(advective)	processes	[1].	

If	 the	 gas	 concentration	 at	 the	 source	 and	 the	 wind	 speed	 are	 known,	 the	

distance	to	the	source	can,	 in	theory,	be	estimated	from	the	amount	of	dilution	

that	has	taken	place	while	the	gas	filament	has	travelled	to	the	site	of	detection.	

But	this	estimation	method	contains	many	sources	of	error,	like	e.g.	an	unknown	

concentration	 at	 the	 source,	 as	 in	 field	 applications	 like	 the	 localisation	 of	 gas	

leaks	or	fires.	Moreover,	in	a	turbulent	environment	the	measured	concentration	

of	 a	 gas	 released	 at	 a	 remote	 upwind	 site	 highly	 intermittent	 [2].	 For	 reliable	

estimates	of	gas	concentration,	measurements	have	to	be	averaged	over	a	 time	

interval,	prolonging	the	procedure.	Experimental	evidence	even	suggests	that	in	

a	 turbulent,	uncontrolled	environment,	 the	average	concentration	 is	not	a	very	

good	estimator	of	source	distance,	and	that	the	variance	of	concentration	yields	

better	distance	estimates	[3].	

Interestingly,	 the	 intermittent	nature	of	a	gas	plume	itself	contains	 information	

about	 source	distance	 that	 is	 independent	of	 concentration.	 It	 has	been	 shown	

that	the	rate	of	concentration	fluctuation	in	a	turbulent	environment	correlates	

well	with	the	distance	to	the	gas	source	in	the	open	field	[2,4]	and	in	wind-tunnel	

experiments	 [5,6].	 Generally,	 fast	 fluctuations	 dominate	 the	 signal	 close	 to	 the	

source,	while	slower	components	become	more	prominent	further	away.		
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These	 experimental	 observations	 were	 made	 using	 photo-ionisation	 detectors	

(PIDs),	which	can	resolve	changes	in	gas	concentration	on	the	order	of	100	Hz	or	

more	 [4,6].	However,	 their	 high	 cost	 and	 complexity	prohibit	 their	 use	 in	 low-

cost,	 portable	 solutions	 for	 gas	 sensing.	 In	 addition,	 PIDs	 typically	 don’t	

differentiate	well	between	gas	species.	Hence,	PIDs	alone	will	not	be	sufficient	if	

one	 is	 interested	 not	 only	 in	 resolving	 gas	 concentration	 at	 a	 reasonable	

temporal	 resolution,	 but	 also	 in	 identifying	 gases.	 If	 gas	 identification	 is	

important,	 PIDs	 have	 to	 be	 supplemented	with	 another	 technology	 that	 better	

supports	gas	discrimination.		

Metal-Oxide	(MOX)	gas	sensors	provide	reasonable	accuracy	in	identifying	single	

gases	 [7]	 and	 mixtures	 [8].	 They	 can	 be	 obtained	 at	 low	 cost,	 are	 easily	

integrated	 into	 electronic	 circuits,	 and	 they	 draw	 comparably	 little	 power.	

However,	 MOX-type	 sensors	 suffer	 from	 limited	 resolution	 in	 the	 temporal	

domain.	While	the	 initial	response	has	been	found	to	be	quite	 fast	(with	a	time	

constant	of	1	 to	10	𝑠	depending	on	the	sensor	parameters,	 target	gas	and	other	

conditions),	 the	 recovery	 time	constant	 is	 comparably	 slow	(around	100	𝑠)	 [9].	

Due	to	their	fast	response	onset	and	slow	recovery,	MOX	sensors	effectively	act	

as	 “leaky	 integrators”	 of	 gas	 concentration.	 Therefore,	 in	 a	 turbulent	

environment	 where	 gas	 concentration	 is	 quickly	 fluctuating,	 the	 temporal	

resolution	of	MOX	sensors	is	likely	limited	by	the	component	of	the	signal	that	is	

caused	 by	 sensor	 recovery,	 which	 overshadows	 the	 fast	 transient	 initial	

response.		

This	 limitation	 can	 be	 mitigated	 by	 signal	 processing	 methods	 [10,11].	 The	

sensor	response	can	be	represented	by	a	simple	exponential	model,	that	allows	

to	predict	the	steady-state	response	from	the	transient	phase	of	the	MOX-sensor	

response	 [12,13].	 This	 approach	 essentially	 consists	 of	 applying	 a	 bandpass	

filter,	as	the	signal	is	first	differentiated	(high-pass)	and	then	convolved	with	an	

exponential	 kernel	 (“leaky	 integration”,	 low-pass).	 This	 method	 has	 also	 been	

used	to	improve	the	detection	of	change-points	in	gas	concentrations	in	a	open-

sampling	 environment	 [14].	 These	 studies	 indicate	 that	 in	 spite	 of	 their	

reputation	 of	 responding	 slowly	 to	 changes	 in	 gas	 concentration,	MOX-sensors	
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do	 indeed	provide	 information	 that	 is	encoded	on	comparably	 fast	 time	scales,	

which	can	be	extracted	by	appropriate	signal	processing.		

Our	 aim	 in	 this	 study	 was	 to	 analyse	 whether	 off-the-shelf	 MOX-sensors	 can	

reveal	 fluctuations	 in	 gas	 concentration	 that	 can	 be	 exploited	 to	 predict	 the	

distance	 of	 the	 sensor	 from	 the	 gas	 source.	We	 based	 our	 analysis	 on	 a	 large	

wind	tunnel	dataset	provided	by	Vergara	and	colleagues	[7].	We	first	show,	using	

a	 band-pass	 approach,	 that	 the	 sensor	 signal	 contains	 information	 about	 fast	

fluctuations	 that	 is	 sufficient	 to	 predict	 source	 distance.	 We	 then	 go	 on	 to	

increase	 the	 precision	 of	 distance	 estimation	 by	 more	 elaborate	 signal	

processing.	We	analyse	how	this	prediction	method	depends	on	the	gas	species,	

wind	speed,	 and	sensor	parameters.	Finally,	we	show	 that	 the	 fast	 fluctuations	

extracted	 by	 a	 straightforward	 cascading	 differentiation/integration	 approach	

are	 equivalent	 to	 de-filtering	 the	 signal	 by	 de-convolution	 with	 the	 sensor’s	

impulse	response.	

2 Materials	and	Methods	

2.1 Data	

This	study	is	based	on	a	public	dataset	recorded	by	Vergara	and	coworkers	[7],	

that	contains	recordings	from	MOX-type	sensors	in	a	wind-tunnel.	Sensor	boards	

were	 placed	 at	 one	 of	 six	 discrete	 distances	 from	 a	 gas	 outlet	 (0.25	𝑚,	0.5	𝑚,	

0.98	𝑚,	1.18	𝑚,	1.40	𝑚,	1.45	𝑚).	Figure	1	shows	a	 schematic	of	 the	wind	 tunnel	

and	the	positions	of	the	sensor	boards.	
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Fig.	1:	Schematic	of	the	wind	tunnel	set-up	(adapted	and	modified	from	[7]).	The	

position	of	the	sensor	boards	relative	to	the	gas	source	is	coded	in	the	grey	value	of	

the	board	symbols,	as	well	as	in	the	signal	traces	in	the	following	figures.	

Each	 individual	board	was	equipped	with	a	 total	of	8	 sensors	 from	Figaro	 Inc.,	

models	TGS	2600	(2x),	TGS	2602,	TGS	2610,	TGS	2611,	TGS	2612,	and	TGS	2620	

(2x).	Table	1	lists	the	mapping	between	sensor	models	and	columns	in	the	data	

set.		

Table	1:	Mapping	data	columns	to	sensor	models.	

Col.	no.	 Sensor	model	 		 	 Col.	no.	 Sensor	model	

1	 TGS	2611	 	 	 5	 TGS	2600	(a)	

2	 TGS	2612	 	 	 6	 TGS	2600	(b)	

3	 TGS	2610	 	 	 7	 TGS	2620	(a)	

4	 TGS	2602	 	 	 8	 TGS	2620	(b)	

	

Recordings	were	obtained	at	one	of	three	wind	speeds	(0.10	𝑚/𝑠,	0.21	𝑚/𝑠	and	

0.34	𝑚/𝑠),	 and	 at	 one	 of	 six	 voltages	 controlling	 the	 sensor’s	 heating	 element	

(between	4.0	and	6.0	V).	Unless	stated	otherwise,	we	used	the	signals	acquired	

along	the	centreline	of	the	wind-tunnel,	i.e.	from	board	no.	5.	

Sensor	 1	was	 excluded	 from	 the	 analysis	 since	 it	 often	 contained	 artefacts	 (at	

least	 on	 Board	 5),	 which	 could	 not	 be	 mitigated	 by	 post-processing	 (see	

supplemental	Fig.	S1	and	accompanying	text).	
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A	 total	 of	 10	 gases	 have	 been	 sampled:	 Acetaldehyde	 (2500	𝑝𝑝𝑚),	 Acetone	

(500	𝑝𝑝𝑚),	 Ammonia	 (10000	𝑝𝑝𝑚),	 Benzene	 (200	𝑝𝑝𝑚),	 Butanol	 (100	𝑝𝑝𝑚),	

Carbon	Monoxide	(CO,	1000	𝑝𝑝𝑚	and	4000	𝑝𝑝𝑚),	Ethylene	(500	𝑝𝑝𝑚),	Methane	

(1000	𝑝𝑝𝑚),	Methanol	(200	𝑝𝑝𝑚),	Toluene	(200	𝑝𝑝𝑚).	

The	full	setup,	including	a	detailed	description	of	signal	acquisition	and	an	initial	

analysis	are	described	in	the	original	publication	[7].	The	full	dataset	(approx.	8	

GB)	 is	 available	 at	

https://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling

+settings	.	

2.2 Bout	detection	algorithm	

We	used	 a	 cascaded	 filtering	 approach	 to	 enhance	 fast	 transients	 in	 the	 signal	

[12,13],	and	subsequently	detected	“bouts”	in	the	signal,	i.e.	portions	where	the	

amplitude	 of	 the	 filtered	 signal	 was	 consistently	 rising.	 The	 signal	𝑆	was	 first	

smoothed	 (i.e.,	 low-pass	 filtered)	 by	 convolution	 with	 a	 Gaussian	 kernel	 to	

remove	high-frequency	noise	(eq.	1),	

𝑆012234 = 𝑆 ∗ 𝐺8 	 	 	 	 	 	 (1)	

	We	 used	 a	 kernel	𝐺8 	with	𝜎:;<<=> = 0.3	s	for	 all	 signals,	 except	 in	 section	 3.7,	

where	we	explored	the	impact	of	changing	the	kernel	parameters.		

We	then	formed	the	derivative	of	the	signal	(difference	of	sequential	data	points,	

as	implemented	in	the	function	numpy.diff()	in	python),	as	in	equation	2:	

𝑥3 = 𝑠3 − 𝑠3BC	,		 	 	 	 	 	 (2)	

with	𝑠3	the	signal	at	time	𝑡.		

Finally,	 we	 performed	 “leaky”	 integration	 of	 the	 derivative	 by	 calculating	 the	

exponentially-weighted	moving	average	 (EWMA)	with	half-life	𝜏>FGH = 0.4	s	(i.e.,	

time	 of	 half-maximum).	 Note	 that	 this	 operation	 is	 equivalent	 to	 convolution	

with	an	exponential	kernel.	The	operation	that	yields	 the	 filtered	time	series	yt	

from	the	low-passed	sensor	signal	xt	can	be	expressed	as	in	equation	3:	

𝑦3 = 1 − 𝛼 ∙ 𝑦3BC + 𝛼(𝑥3 − 𝑥3BC)	 ,	 	 	 (3)	
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with		

𝛼 = 1 − 𝑒
G<P	( Q

R∙STUVW∙∆Y
)
,		 	 	 	 	 (4)	

where	∆𝑡	refers	to	the	length	of	the	time	step	used.	

On	 this	 filtered	 signal	 we	 searched	 for	 “bouts”	 of	 rising	 amplitude.	 We	 first	

computed	the	differential	of	𝑦3	as	in	eq.	5:		

𝑦′3 = 𝑦3 − 𝑦3BC	.	 	 	 	 	 	 (5)	

A	 bout	 is	 then	 characterised	 by	𝑦′3	being	 equal	 to	 or	 larger	 than	 zero.	We	 can	

define	 the	variable	bt	 that	 is	1	 if	a	bout	 is	present	at	 time	 t,	 and	0	 if	no	bout	 is	

present	(eq.	6)	

𝑏3 = 1	 if	𝑦′3 ≥ 0	
𝑏3 = 0 otherwise		.		 	 	 	 	 (6)	

A	bout	onset	is	detected	if	bt	flips	from	0	to	1,	and	the	bout	lasts	until	bt	flips	back	

to	0	again.	The	bout	amplitude	𝑎f<g=	is	defined	as		

𝑎f<g= = 𝑦3R −	𝑦3Q 		,	 	 	 	 	 	 (7)	

with	𝑡C	and	𝑡h 	the	 start	 and	 end	 time	 of	 the	 bout.	 Note	 that	 since	𝑦3 	is	

monotonously	 rising	between	𝑡C	and	𝑡h	(as	𝑦3i ≥ 0,	 eq.	6),	𝑦3Q 	and	𝑦3R 	correspond	

to	the	minimum	and	maximum	of	the	signal	within	the	bout.		

Putative	 false-positive	 bouts	 were	 filtered	 out	 using	 an	 amplitude	 threshold.	

Assuming	 that	 gas-induced	 bouts	 occur	 only	 during	 gas	 release,	 we	 consider	

bouts	 detected	 before	 gas	 release	 started	 as	 false-positive.	 We	 estimated	 the	

amplitude	threshold	using	a	three-sigma	criterion,		

𝜃F;k = 𝑎fGFlm + 3 ∙ 𝜎fGFlm	,		 	 	 	 (8)	

with	 𝑎fGFlm 	the	 average	 amplitude	 and	𝜎fGFlm	the	 standard	 deviation	 of	 the	

amplitude	of	events	during	the	blank	period	(usually	until	𝑡 = 50	𝑠),	in	all	trials	

that	were	available	 for	 the	specific	gas/sensor/board	combination	(usually	𝑛 =

20).	

2.3 Software	and	reproducibility	

We	used	the	pandas	package	to	parse,	clean	and	resample	the	original	data	files.	

Spectral	 decomposition	 and	 filtering	 was	 performed	 using	 the	 numpy.fft	
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(numpy.org,	 [15])	 and	 scipy.signal	 packages	 (scipy.org,	 [16]).	 All	 figures	

were	prepared	 from	raw	data	using	 the	matplotlib	package	 (matplotlib.org,	

[17]).	 The	 code	 for	 creating	 the	 figures	 was	 written	 in	 IPython/Jupyter	

notebooks	 (ipython.org,	 [18]).	 We	 used	 the	 packages	 within	 the	 Anaconda	

python	distribution	(Continuum	Analytics,	Austin,	TX,	USA,	continuum.io).		

All	 analysis	 code	 used	 in	 this	 study	 is	 freely	 available	 under	 an	 open	 source	

license	 at	 https://github.com/BioMachineLearning/exploiting_plume_structure.	

This	 repository	 also	 contains	 IPython	 Notebooks	 which	 allow	 the	 reader	 to	

completely	 reproduce	 the	 entire	 analysis,	 including	 recreation	 of	 all	 figures	 in	

this	study.		

3 Results	

3.1 Spectral	analysis	of	e-nose	recordings	

We	analysed	signals	 from	electronic	nose	sensors	recorded	 in	a	wind	tunnel	at	

varying	distance	from	the	gas	source.	With	increasing	distance	from	the	source,	

the	amplitude	of	the	signal	decreases,	but	the	fluctuations	also	became	less	rapid	

(Fig.	2).	This	observation	suggested	that	the	signal	contained	less	high-frequency	

components	when	it	was	recorded	further	away	from	the	source.		
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Fig.	2:	Responses	of	a	TGS2610	gas	sensor	to	Acetaldehyde	(500	ppm),	in	a	wind-

tunnel,	 at	 varying	 distance	 from	 the	 gas.	 While	 the	 signal	 amplitude	 clearly	

encodes	the	distance	to	the	source	(high	gas	concentration	close	to	the	source),	the	

speed	of	the	fluctuations	of	the	signal	apparently	correlates	to	distance	as	well.	

To	test	this	assumption,	we	extracted	the	frequency	band	that	contains	those	fast	

fluctuations.	We	 split	 the	 signal	 into	 three	 bands	 using	 a	 band-pass	 filter	 (2nd	

order	 Butterworth,	 critical	 frequencies:	 0.025	 Hz,	 0.5	 Hz).	 The	 low-frequency	

domain	contained	the	constant	offset	and	slowly	varying	parts	of	the	signal	that	

originated	 from	 the	 onset	 and	 offset	 of	 gas	 delivery	 (Fig.	 3A).	 The	 medium-

frequency	 domain	 encoded	 small,	 rapid	 fluctuations	 of	 the	 gas	 concentration,	

potentially	 due	 to	 the	 filamentous	 nature	 of	 gas	 distribution	 in	 the	 turbulent	

environment	of	the	wind	tunnel	(Fig.	3B).	The	high-pass	band	mainly	contained	

electronic	 noise	 of	 small	 amplitude	 (Fig.	 3C).	We	 further	 analysed	 the	middle	

band.	
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Fig.	 3:	 Splitting	 the	 signal	 recorded	 at	𝑑 = 0.25	𝑚	into	 low,	 middle,	 and	 high	

frequency	 components	 (critical	 frequencies:	 0.025	 Hz,	 0.5	 Hz).	 A)	 The	 low	

frequency	 component	 follows	 the	 onset/offset	 time	 scale.	 B)	 The	 band-passed	

signal	 carries	 information	 about	 fast	 concentration	 fluctuations.	 C)	 The	 high-

passed	signal	contains	mainly	noise.		

We	observed	that	fluctuations	in	this	band	vary	more	rapidly	in	those	recordings	

that	were	taken	close	to	the	source,	and	slower	at	a	larger	distance	(Fig.	4A).	This	

observation	 is	 also	 visible	 in	 the	 spectral	 decomposition	 of	 the	 band-passed	

signal	 (Fig.	 4B):	 The	 recordings	 closer	 to	 the	 source	 contain	 more	 power	 in	

higher	frequencies	relative	to	the	lower	frequency	band.	In	order	to	quantify	the	

relative	 amount	of	 power	 in	high	 frequencies,	we	devised	 the	 estimator	Prel	 as	

the	fraction	of	power	above	a	cut-off	frequency		fcrit	(eq.	9):	

𝑃qrG =
st

tuvwxyz{
t|}y{

st
t|}y{
~

		,	 	 	 	 (9)	

with	 fnyquist	 the	 Nyquist	 frequency	 of	 the	 signal.	 The	 cutoff	 frequency	 fcrit	 was	

estimated	as	the	average	maximum	frequency	of	the	six	spectra	(corresponding	

to	 the	 six	 distances).	 By	 linear	 regression	 we	 could	 identify	 a	 relationship	

between	Prel	 and	 source	 distance	 (Fig.	 4C).	 This	 relationship	 could	 be	 used	 to	
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provide	a	rough	prediction	of	source	distance	from	the	spectral	feature	Prel	with	

an	 average	 RMSE	 of	0.30	𝑚	 ± 	0.06	𝑚	(five-fold	 cross-validation	 over	 all	 20	

trials).	Thus,	we	concluded	that	source	distance	is	encoded	in	fast	fluctuations	of	

gas	 concentration,	 and	 that	 off-the-shelf	 MOX	 gas	 sensors	 provide	 sufficient	

temporal	resolution	to	exploit	this	information	for	distance	prediction.	

	

Fig.	4:	Spectral	analysis	of	band-passed	signal.	A)	Band-passed	signal	as	acquired	

at	various	distances	from	the	gas	source.	B)	Average	power	spectra	of	band-passed	

signals	 at	 all	 distances.	 Shades	 of	 grey	 encode	 source	 distance	 as	 in	 panel	 A.	

Average	 of	𝑛 = 20 	trials	 at	 each	 location.	 Spectra	 were	 normalised	 to	 unit	

maximum	 power.	 	 Dashed	 line:	𝑓���3
�2�	�0.4��4 ,	 cut-off	 frequency	 for	 relative	 power	

comparison.	C)	 Fraction	of	 total	power	below	𝑓���3
�2�	�0.4��4	vs.	 sensor	 location.	The	

farther	the	sensor,	the	more	power	is	contained	in	the	part	of	the	spectrum	below	

𝑓���3
�2�	�0.4��4	(eq.	9).	Large	grey	dots:	average	 from	20	 trials,	 small	dots:	 individual	

trials.	 Dashed	 line:	 regression	 on	 the	 average	 relative	 power	 values	 against	

distance	from	source.		

The	 potential	 cause	 for	 this	 effect	 lies	 in	 the	 fact	 that	 the	 number	 of	 plume	

filaments	 detected	 in	 a	 fixed	 time	 interval	 correlates	 with	 the	 distance	 to	 the	

source	[6]	(which	has	been	shown	using	photo-ionisation	detectors	which	yield	a	

much	higher	temporal	resolution	than	MOX-sensors).	We	next	analysed	whether	

we	could	identify	encounters	of	individual	plume	filaments	(“bouts”)	using	MOX-

sensors.	
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3.2 Decomposition	into	“bouts”	of	gas	detection	

The	 impulse	response	of	a	MOX	sensor	 is	 thought	 to	be	characterised	by	a	 fast	

initial	response,	which	is	however	dominated	by	a	slow	recovery,	caused	by	the	

slow	 reversal	 of	 the	 reaction	 of	 the	 volatile	with	 the	 sensing	 electrode.	Hence,	

when	 a	 plume	 filament	 hits	 a	 sensor,	 the	 signal	will	 rise	 quickly	 and	 taper	 off	

slowly	 afterwards.	 The	 slow	 decay	 of	 the	 signal	 tends	 to	 overshadow	 the	 fast	

rising	 flanks	 of	 the	 subsequent	 responses,	 leading	 to	 the	 perception	 that	

responses	of	MOX-sensors	are	“slow”,	when	in	fact,	they	are	mostly	only	slow	in	

recovery.	To	overcome	this	limitation,	we	adopted	a	filtering	approach	that	was	

previously	 used	 to	 accelerate	 sensor	 calibration	 [12],	 to	 evaluate	 the	 transient	

phase	 of	 a	 MOX-sensor	 signal	 for	 odour	 recognition	 [13],	 and	 for	 enhanced	

change-point	 detection	 in	 continuous	 gas	 stimulation	 [14].	 Briefly,	 we	 first	

applied	a	low-pass	filter	to	attenuate	high-frequency	electronic	noise.	Under	the	

assumption	that	the	initial	reaction	of	the	analyte	with	the	electrode	is	very	fast	

compared	 to	 its	 reversal,	 we	 eliminated	 the	 slow	 component	 by	 forming	 the	

differential.	The	resulting	signal	 is	subsequently	convolved	with	an	exponential	

kernel	(i.e.,	a	“leaky	integrator”,	eq.	3).		

Compared	to	band-passing	as	in	Fig.	3,	the	proposed	filter	was	more	efficient	in	

removing	 slow	 changes	 Fig.	 5A.	 Besides,	 the	 operation	 is	 computationally	

simpler	than	Butterworth	filtering:	both	differentiation	and	leaky	integration	are	

causal	operations,	i.e.	they	only	depend	on	precedent	values	of	the	signal	(see	eq.	

3),	 and	 only	 the	 value	 obtained	 in	 the	 previous	 time	 step	must	 be	 stored.	 The	

procedure	 thus	 lends	 itself	 to	 a	 straightforward	 implementation	with	minimal	

resources	for	computing	and	memory,	e.g.	on	a	low-spec	microcontroller.		

Our	next	aim	was	to	detect	gas	plume	encounters,	i.e.,	to	identify	portions	of	the	

signal	during	which	it	was	continuously	rising.	To	this	end,	we	isolated	portions	

where	 the	 derivative	 of	 the	 filtered	 signal	 is	 positive	 (eq.	 5	 and	 6).	 Fig.	 5A	

highlights	these	portions	of	the	signal,	which	in	the	following	we	will	refer	to	as	

“bouts”.		

3.3 Distance	prediction	with	bouts	

Previous	 studies	with	 photo-ionisation	 detectors	 indicated	 that	 the	 number	 of	

plume	 filament	encounters	decreases	with	 increasing	distance	 from	 the	 source	



	 14	

[2,6].	We	therefore	analysed	how	the	number	of	bouts	detected	in	the	response	

from	MOX-sensors	relates	 to	 their	distance	 from	the	gas	source.	We	 found	that	

the	number	of	bouts	is	indeed	a	strong	predictor	for	source	distance,	with	fewer	

bouts	 being	 encountered	 as	 the	 distance	 increases	 (Fig.	 5B).	 Note	 that	 the	

measurements	at	𝑑 = 1.45	𝑚	present	an	outlier	in	that	the	bout	count	increased	

slightly	 compared	 to	𝑑 = 1.40	𝑚 .	 This	 may	 be	 due	 to	 the	 fact	 that	 the	

measurements	at	d	=	1.45	m	have	been	acquired	very	close	to	the	outlet	of	 the	

wind	tunnel,	and	the	structure	of	the	turbulent	gas	plume	was	likely	distorted	by	

the	 imperfect	aerodynamics	 in	 this	area	 (this	circumstance	 is	also	discussed	 in	

the	original	reference	[7]).		

We	fitted	a	linear	model	relating	bout	counts	to	source	distance	and	assessed	its	

performance	 in	 cross-validation	 (5-fold)	 over	 20	 trials.	 The	 resulting	 models	

were	 able	 to	 predict	 source	 distance	with	 an	 average	RMSECV	 of	0.18 ± 0.03	𝑚	

(mean	 ±	 95%	 confidence	 interval).	 Most	 notably,	 the	 bout	 count	 feature	

predicted	 source	 distance	 with	 considerably	 higher	 precision	 and	 lower	 error	

than	 the	 spectral	 feature	used	 in	Fig.	 4	 (RMSE�� = 0.74 ± 0.12	𝑚).	We	wish	 to	

note	 that	 while	 it	 is	 unlikely	 that	 bout	 counts	 are	 linearly	 related	 to	 source	

distance,	a	linear	fit	is	the	most	robust	when	the	true	relationship	is	not	known	

(but	see	section	3.7	below	for	a	detailed	analysis	of	the	shape	of	the	bout	count-

to-distance	curve).		

	

Fig.	 5:	 Bout-based	 distance	 prediction.	 Acetaldehyde	 500	 ppm,	 sensor	 TGS2610,	

trial	number	10	(same	data	as	in	Fig.	2).	A)	MOX-sensor	signals	after	applying	the	
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three-step	 low-pass/derivative/EWMA-filter.	 “Bouts”	 in	 the	 signal	 are	 coloured	

red.	B)	Bout	counts	for	20	trials	vs.	distance	from	source.	Numbers	under	“mean”	

refer	 to	 a	 regression	 of	 the	 mean	 counts.	 R2	 and	 RMSE	 for	 cross-validated	

regression	(5-fold)	are	given	under	“CV”.	

We	 found	 that	 distance	 prediction	 is	 also	 possible	 at	 different	 wind	 speeds,	

although	we	found	that	for	optimal	results	the	wind	speed	should	make	part	of	

the	 regression	 variables	 (see	 supplemental	 Fig.	 S2	 and	 accompanying	 text).	

Moreover,	 we	 analysed	 the	 influence	 of	 the	 sensor	 voltage	 (i.e.,	 the	 heater	

temperature)	on	distance	prediction,	and	found	that	best	results	were	achieved	

with	 heater	 voltage	 between	 5V	 and	 6V	 (see	 supplemental	 Fig.	 S3	 and	

accompanying	text).	

3.4 Sensor	invariance	of	signal	bouts	

The	 examples	 above	 were	 obtained	 using	 one	 sensor,	 but	 we	 found	 that	 the	

detection	 of	 bouts	 is	 possible	 on	 all	 sensors	 that	 responded	 to	 the	 gas	 under	

scrutiny	(Fig.	6).	Even	for	those	sensors	where	the	raw	signals	show	hardly	any	

fast	fluctuations	dependent	on	gas	concentration	(e.g.	sensors	TGS	2602,	2600a,	

and	2600b	in	Fig.	6A),	the	filtering	procedure	revealed	the	bouts	(Fig.	6B).			

	

Fig.	6:	 Bout	 analysis	 of	 all	 sensors	 on	 one	 sensor	 board,	𝑑 = 1.18	𝑚,	 trial	 19.	A)	

Raw	 sensor	 response.	 Sensor	 3	 is	 scaled	 down	 by	 factor	 10.	 	 Sensor	 2	 did	 not	

respond	to	the	gas,	sensor	1	was	excluded	because	it	contained	sampling	artefacts.	

B)	Filtered	response	with	detected	bouts	highlighted	in	red	(cf.	Fig.	5A).		



	 16	

On	all	sensors	that	showed	a	response,	these	bouts	occurred	at	highly	correlated	

time	 points.	 This	was	 particularly	 visible	 in	 pairs	 of	 identical	 sensors,	 like	 the	

two	instances	of	TGS	2620,	for	which	the	onset	of	the	bouts	coincided	and	were	

of	 practically	 identical	 shape	 (Fig.	 7A).	 But	 also	 on	 sensors	 with	 markedly	

different	tuning,	bout	onset	times	were	strongly	correlated,	e.g.	for	TGS	2610	and	

2602	 (Fig.	 7B).	 We	 assessed	 the	 correlation	 between	 onset	 times	 across	 all	

sensors	using	 an	 approach	 from	 [19]	 (see	 supplemental	 figures	 S4	 and	S5	and	

accompanying	 text),	 and	 found	 it	 to	 be	 significantly	 higher	 than	 random.	 This	

observation	suggests	that	bouts	are	likely	caused	by	a	common	external	source,	

like	encounters	of	high-concentration	filament	of	the	gas	plume.	

	

Fig.	7:	Coincidence	of	bouts	on	A)	two	sensor	of	the	same	model,	B)	two	different	

sensor	models.	

3.5 Gas	dependence	of	bout-based	distance	prediction	

Next,	 we	 asked	 whether	 the	 relationship	 between	 bout	 frequency	 and	 source	

distance	 can	 also	be	 established	 for	 other	 gases,	 using	 the	 same	procedure	 for	

cross-validated	distance	prediction	as	in	Fig.	5.	Since	not	all	gases	were	equally	

well	 resolved	 by	 the	 one	 single	 sensor,	 we	 show	 the	 performance	 of	 cross-

validated	distance	prediction	 for	 all	 gases	 in	 the	data	 set,	 using	 the	 the	 sensor	
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that	 yielded	 the	 smallest	 RMSECV	 (Fig.	 8A-K).	 The	 distance	 prediction	 was	

possible	for	all	gases	using	single	sensors,	with	an	average	RMSE	of	0.17	𝑚.			

One	 gas,	 Carbon	 Monoxide	 (CO),	 was	 presented	 at	 two	 concentrations	 –	

1000	𝑝𝑝𝑚	(Fig.	8F)	and	4000	𝑝𝑝𝑚	(Fig.	8G).	Distance	prediction	worked	for	both	

concentrations,	 but	 the	 lower	 concentration	 yielded	 consistently	 fewer	 bout	

counts.	 In	 general,	 since	 bouts	 are	 a	 consequence	 of	 advective	 processes	 in	 a	

turbulent	 environment,	 we	 expect	 the	 bout	 count	 feature	 to	 be	 largely	

concentration	invariant.	However,	since	the	lower	concentration	also	comes	with	

a	 lower	 signal-to-noise	 ratio,	 some	 proportion	 of	 bouts	may	 have	 been	 falsely	

rejected	as	noise	due	to	their	small	amplitude,	 leading	to	seemingly	lower	bout	

counts.	

While	 a	 strong	 relationship	 between	 the	 number	 of	 detected	 bouts	 and	 the	

distance	 to	 the	 source	 is	 discernible	 for	 all	 gases,	 there	 is	 a	 comparably	 large	

variation	in	the	absolute	bout	counts	across	gases	at	each	position.	Moreover,	the	

slopes	of	 the	 fitted	curves	 in	Fig.	8A-K	differ	considerably	between	gas	species.	

There	is	a	weak	positive	correlation	between	the	slope	of	the	regression	line	and	

the	molecular	weight	of	the	gas	(Fig.	8L,	correlation	coefficient	𝑐𝑐krFq:<l = 0.54,	

𝑝 = 0.09).	Hence,	the	number	of	detected	bouts	falls	more	steeply	with	distance	

for	 lighter	gases.	This	observation	may	be	 related	 to	 the	buoyancy	of	 gases,	 as	

plumes	 of	 lighter	 gases	may	 tend	 to	 rise	 as	 they	 drift	 through	 the	 tunnel,	 and	

potentially	interact	less	with	the	sensors	that	are	mounted	on	the	bottom.		
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Fig.	8:	Relationship	of	bout	counts	to	distance	from	source	for	all	gases.	A-K)	Bout	

count	 vs.	 distance	 for	 each	 gas.	 Dashed	 line:	 linear	 regression	 of	 the	mean	 bout	

count	 over	 20	 trials.	 RMSE	 of	 5-fold	 cross-validation	 (CV)	 ±	 95%	 confidence	

interval	is	given	in	the	upper	right	of	the	panel.	For	each	gas	the	sensor	was	picked	

that	 yielded	 the	 best	 RMSE	 in	 CV.	 L)	 Slope	 of	 regression	 vs.	 molecular	 weight,	

correlation	coefficient	0.54,	𝑝 = 0.09.	

Since	 most	 sensors	 are	 capable	 of	 resolving	 bouts	 for	 several	 gases,	 we	 next	

explored	 whether	 multivariate	 regression	 with	 bout	 counts	 from	 all	 sensors	

would	improve	distance	prediction.	So	instead	of	training	the	regression	model	

separately	for	each	gas	and	sensor	and	selecting	the	best	model,	we	used	the	7-

dimensional	vector	of	bout	counts	from	all	sensors	(except	sensor	1),	and	test	its	

performance	in	cross-validation.	For	7	out	of	11	gas	species,	the	RMSE	obtained	

with	multivariate	 regression	was	 lower	 than	 the	 best	 single-sensor	RMSE	 (see	

Fig.	9).	For	the	remaining	4	species,	 the	multivariate	regression	still	performed	

well	 within	 two	 standard	 deviations	 of	 the	 cross-validation	 RMSE.	 Thus,	 on	

average,	using	bout	counts	from	several	receptors	improves	distance	prediction.	
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Fig.	9:	Multivariate	vs.	univariate	regression.		

3.6 Cross-wind	statistics	of	bout	counts		

So	far,	we	analysed	bout	count	statistics	only	straight	downwind	from	the	plume	

(i.e.,	along	the	centre	of	the	wind	tunnel,	using	board	no.	5).	We	next	investigated	

how	 bout	 statistics	 vary	 in	 a	 cross-wind	 fashion,	 i.e.,	 perpendicular	 to	 the	

downwind	axis.	At	the	measurement	position	closest	to	the	source	(𝑑 = 0.25	𝑚),	

bouts	were	detected	 almost	 exclusively	 at	 the	 central	 sensor	board,	 no.	 5	 (Fig.	

10A).	 At	 larger	 distances,	 considerable	 numbers	 of	 bouts	 were	 detected	 at	

positions	 lateral	 to	the	centreline,	 first	at	𝑑 = 0.5	𝑚	on	board	no.	4,	 then	at	𝑑 =

0.98	m	 on	 board	 no.	 6.	 When	 taking	 the	 location	 of	 first	 bout	 encounter	 as	 a	

reference,	 bout	 counts	 gradually	 decreased	 with	 increasing	 distance	 from	 the	

source.	 This	 suggests	 that	 average	 bout	 count	 is	 a	 viable	 proxy	 for	 source	

distance	 also	when	 the	measurement	 device	 is	 not	 located	 directly	 downwind	

from	the	source,	as	long	as	it	is	located	within	the	region	of	gas	plume	dispersal.	

Only	 small	numbers	of	bouts	were	detected	on	 the	 three	outermost	boards	on	

either	side	(no.	1,	2,	3	and	7,	8,	9).	This	observation	indicates	that	the	region	of	

plume	dispersal	was	mainly	 limited	 to	a	region	central	 to	 the	wind	tunnel	 (see	

also	[7]).		
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Interestingly,	 the	 standard	 deviation	 of	 average	 bout	 counts	 across	 repetitions	

was	low	along	the	centreline,	even	for	large	distances	(Fig.	10B).	In	contrast,	the	

variance	of	the	bout	counts	was	considerably	higher	for	detectors	located	away	

from	the	centreline.		

This	result	is	consistent	with	previous	observations	in	the	open	field	[2,4]	and	in	

wind	 tunnels	 [5,6],	 according	 to	 which	 the	 intermittency	 of	 gas	 encounters	

increases	 when	moving	 farther	 away	 from	 the	 centreline	 of	 the	 plume.	 These	

findings	suggest	that	the	variance	of	bout	counts	could	be	used	as	an	indicator	as	

to	whether	 the	 detector	 is	 located	 directly	 downwind	 of	 the	 source,	 or	 rather	

slightly	lateral	from	it.		

Notably,	 the	 function	𝑠𝑡𝑑(𝑛f<g=)/〈𝑛f<g=〉,	 i.e.,	 the	 standard	 deviation	 of	 bout	

counts	normalised	for	the	average	number	of	bouts	encountered,	has	an	absolute	

minimum	at	the	centreline	(Fig.	10C).	This	would	allow	a	mobile	agent	to	locate	

the	 centreline	 of	 the	 plume	 by	 trying	 to	 minimize	 bout	 count	 variance	 in	 its	

search	space.	
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Fig.	10:	Cross-wind	bout	count	statistics;	Acetaldehyde	500	ppm,	heater	voltage	6	

V,	fan	speed	1500	rpm.	A)	Average	bout	counts	〈𝑛f<g=〉	over	20	repetitions.	Board	

no.	5	is	the	central	board.	Distances	are	color-coded	as	indicated	in	the	legend.	B)	

Standard	 deviation	 of	 bout	 counts	𝑠𝑡𝑑(𝑛f<g=)	over	 20	 repetitions.	 C)	 Standard	

deviation	of	bout	counts	over	their	average	𝑠𝑡𝑑 𝑛f<g= 〈𝑛f<g=〉.	

3.7 Influence	of	kernel	parameters	on	bout	counts		

The	 analysis	 we	 present	 here	 has	 two	 free	 parameters:	 The	 width	 of	 the	

Gaussian	kernel	for	initial	low-pass	filtering	of	the	signal,	𝜎:;<<=> = 0.3	𝑠,	and	the	

halflife	 of	 the	 exponential	 kernel	𝜏>FGH = 0.4	𝑠	for	 “leaky”	 integration	 of	 the	

derivative	 of	 the	 signal.	We	 initially	 tuned	 these	 parameters	manually	 to	 yield	

good	results	with	data	set	at	hand.	But	the	choice	of	parameter	values	certainly	

influences	 the	 result	 of	 the	 filtering	 process,	 and	 hence	 the	 detection	 of	 gas	

bouts.	Therefore,	we	next	explored	the	effect	of	those	parameters.	
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Our	 filtering	 approach	 can	 be	 expressed	 in	 terms	 of	 subsequent,	 discrete	

convolution	 of	 the	 signal	 S	 by	 three	 kernels:	 A	 Gaussian	 kernel	 G	 with	 width	

𝜎:;<<=>	,	a	differentiating	kernel	D	which	is	of	the	form	[1,	-1]	and	an	exponential	

kernel	E	with	halflife	𝜏>FGH	.	Hence,	the	filtering	process	can	be	expressed	as	in	eq.	

10,	

𝑆H�G= = 𝑆 ∗ 𝐺 ∗ 𝐷 ∗ 𝐸	,			 	 	 	 	 	 (10)	

with	 the	 asterisk	 *	 denoting	 the	 convolution	 operator.	 Since	 convolution	 is	

associative,	eq.	10	is	equivalent	to	eq.	11,	

𝑆H�G= = 𝑆 ∗ 𝐹,										with					𝐹 = 𝐺 ∗ 𝐷 ∗ 𝐸	.		 	 	 	 (11)	

The	two	parameters	𝜎:;<<=>	and	𝜏>FGH	govern	the	shape	of	the	kernel	F	(Fig.	11A	

and	 C).	 Higher	 values	𝜎:;<<=>	and	𝜏>FGH	lead	 to	 a	 more	 elongated	 kernel	 shape		

(Fig.	11B	and	D).	The	frequency	response	of	F	corresponds	to	a	band-pass	filter,	

and	 more	 elongated	 kernels	 cause	 the	 frequency	 response	 of	 F	 to	 be	 shifted	

towards	lower	frequencies.	

	

Fig.	11:	Parameter	 influence	on	the	shape	of	 the	 filter	kernel	F	and	 its	 frequency	

response.	 A)	 Impulse	 response	 of	 the	 filter	 F	 when	 varying	𝜏>FGH	while	 keeping	

𝜎:;<<=> = 0.25	𝑠	constant.	B)	 Frequency	 response	 of	 F	 associated	 to	 the	 kernels	

shown	 in	 A).	 C)	 Impulse	 response	 when	 varying	𝜎:;<<=>	while	 keeping	𝜏>FGH =

0.25	𝑠	constant.	D)	Frequency	response	of	the	filter	in	C).	
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Next,	 we	 analysed	 how	𝜏>FGH	and	𝜎:;<<=>	influenced	 distance-dependent	 bout	

counts,	uncovering	rather	complex	relationships.	For	small	values	of	𝜎:;<<=>	and	

𝜏>FGH	,	 the	 shape	 of	 the	 bout	 count	 curve	was	 convex,	 similar	 to	 an	 exponential	

decay,	with	 higher	 bout	 counts	 detected	 close	 to	 the	 source,	 and	 few	 bouts	 at	

greater	 distance	 (Fig.	 12).	 Conversely,	 larger	 values	 of	𝜏>FGH	and	𝜎:;<<=>	yielded	

fewer	bout	counts	close	 to	 the	source,	but	with	a	weaker	decay	of	bout	counts	

towards	greater	distances.	Notably,	either	keeping	𝜎:;<<=>	constant	and	varying	

𝜏>FGH	(Fig.	 12A)	 or	 the	 other	 way	 round	 (Fig.	 12B)	 had	 the	 same	 effect	 on	 the	

shape	of	the	curve:	it	gradually	switched	from	convex	to	concave.		

	

Fig.	 12:	 Effect	 of	 filter	 parameters	 on	 bout	 count	 curves.	 A)	 Varying	𝜏>FGH	while	

keeping	𝜎:;<<=> = 0.1	s	constant.	 B)	 Varying	𝜎:;<<=>	while	 keeping	𝜏>FGH = 0.15	𝑠	

constant..	In	both	cases.	the	curve	shape	shifts	from	concave	to	convex.		

The	shape	of	these	curves	can	be	explained	by	the	expected	number	of	filaments	

in	a	model	of	plume	growth,	in	combination	with	the	band-pass	characteristics	of	

the	filters	we	employed.	Close	to	the	source,	 the	 individual	 filaments	of	 the	gas	

plume	are	comparably	small	 in	diameter,	 likely	 in	 the	range	of	 the	diameter	of	

the	 gas	 outlet.	 Further	 away	 from	 the	 source,	 the	 extent	 of	 the	 filaments	

increases	by	diffusion	and	advective	processes.	The	bout	length,	i.e.,	the	average	

amount	of	time	that	a	sensor	will	be	within	such	a	filament	will	hence	be	shorter	

close	 to	 the	 source	 (although	 long	 bouts	 will	 still	 occur,	 e.g.	 when	 a	 filament	

traverses	 the	 sensor	 longitudinally).	 Advective	 processes	move	 the	 plume	 and	
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stretch	 the	 filaments	as	 source	distance	 increases,	 leading	 to	 longer	bouts.	The	

short	 bouts	 encountered	 close	 to	 the	 source	 will	 be	 better	 resolved	 by	 filters	

tuned	to	higher	frequencies	(i.e.,	smaller	𝜏>FGH	and	𝜎:;<<=>),	but	perform	less	well	

in	 detecting	 longer	 bouts	 at	 larger	 distances.	 Likewise,	 filters	 tuned	 to	 lower	

frequencies	 may	 fail	 to	 resolve	 many	 of	 the	 sharp	 bouts	 in	 close	 source	

proximity,	but	instead	perform	better	on	the	long	bouts	that	occur	further	away	

from	the	source.		

We	wish	 to	 emphasise	 that	 any	 filter	 setting	 that	 we	 tested	 yielded	 the	 same	

general	relationship	between	bout	count	and	source	distance.	However,	the	fact	

that	 the	 shape	 of	 the	 bout-count-to-distance	 curve	 is	 strongly	 influenced	 by	

parameters	of	the	filter	indicates	that	a	general	assumption	about	the	nature	of	

the	non-linear	relationship	between	bout	counts	and	source	distance	cannot	be	

made	with	the	present	data.	Hence,	our	approach	to	predict	source	distance	with	

a	linear	model	appears	well	justified,	even	though	the	true	relationship	is	likely	

non-linear.	 The	 linear	 fit	 thus	 provides	 a	 lower	 bound	 for	 the	 accuracy	 of	 the	

estimation	of	source	distance.	

A	potential	 route	 to	extract	more	 information	 from	 the	 signals	 and	 to	 increase	

the	 accuracy	 of	 the	 distance	 estimate	 may	 lie	 in	 using	 several	 different	 filter	

settings	 in	parallel.	Our	observations	 in	Fig.	12	 indicate	 that	 the	 filter	 could	be	

tuned	to	provide	particularly	good	resolution	at	a	certain	distance	range,	e.g.	by	

adjusting	𝜏>FGH	and	𝜎:;<<=>	such	 that	 the	 slope	 of	 the	 bout-count-to-distance	

curve	is	maximal	in	the	region	of	interest.	Smaller	values	of	𝜏>FGH	and	𝜎:;<<=>	may	

be	preferred	if	the	expected	distance	is	short,	while	larger	values	may	be	better	

suited	 to	 resolve	 longer	 distances.	 A	 “filter	 bank”	 that	 implements	 a	 range	 of	

settings	 for	𝜏>FGH	and	𝜎:;<<=>	could	 be	 designed	 to	 cover	 different	 parts	 of	 the	

frequency	 spectrum	 and	 cover	 larger	 distance	 ranges	 in	 parallel.	 Such	 an	

approach	may	become	particularly	relevant	in	more	practical	scenarios,	such	as	

larger	wind	tunnels	or,	ultimately,	in	open	field	conditions.	

3.8 Comparison	of	the	filtering	approach	with	de-convolution	

As	stated	above,	it	can	be	assumed	that	the	impulse	response	of	a	MOX-sensor	is	

characterised	 by	 a	 fast	 onset	 and	 a	 slow	 decay.	 The	 time-dependent	 impulse	
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response	 r(t)	 of	 a	 MOX-sensor	 can	 thus	 be	 approximated	 by	 a	 bi-exponential	

function	of	the	form	(eq.	12),	

𝑟(𝑡) = B�
�B�

∙ 𝑒B
Y
� − 𝑒B

Y
� 	,	 	 	 	 	 	 (12)	

with	a	and	b	controlling	the	extent	of	the	decay-	and	rise-time,	respectively.		

Assuming	that	an	impulse	response	of	this	shape	is	sufficiently	close	to	the	true	

impulse	 response,	 it	 becomes	 possible	 to	 “de-filter”	 the	 sensor	 response	 to	

retrieve	 the	 original	 time	 course	 of	 the	 gas	 concentration.	 De-filtering	 can	

conveniently	 be	 achieved	 by	 division	 in	 frequency	 space,	 i.e.,	 de-convolution,	

according	to	eq.	13,	

𝐬�r�<l  = 𝐬
𝐫			,		 	 	 	 	 	 	 (13)	

with	𝐬	and	𝐫	the	 representation	 of	 the	 signal	 and	 the	 impulse	 response	 in	 the	

frequency	 domain	 (as	 obtained	 by	 discrete	 Fast	 Fourier	 Transform,	 FFT),	 and		

𝐬�r�<l 	the	de-convolved	signal	in	frequency	domain.	The	de-convolved	signal	in	

the	 time	 domain	 can	 be	 recovered	 from	𝐬�r�<l . 	by	 inverse	 FFT.	 Before	

transforming	 the	 signal	 to	 the	 frequency	 domain	 we	 removed	 high-frequency	

noise	 and	 constant	 offset	 by	 filtering	 it	 using	 a	 band-pass	 filter	 with	 critical	

frequencies	 0.0005	Hz	 and	 0.5	Hz.	We	marked	 portions	 of	 the	 signal	 that	 had	

positive	slope	as	“bouts”.	

We	 estimated	 the	 parameters	 of	 the	 bi-exponential	 model	 for	 the	 sensor’s	

impulse	response	according	to	two	criteria.	First,	since	gas	concentration	cannot	

be	 negative,	 the	 de-convolved	 signal	 should	 not	 fall	 below	 zero	 at	 any	 point	

during	the	measurement.	Second,	assuming	that	the	gas	concentration	dropped	

to	 non-detectable	 levels	 after	 the	 gas	 release	 stopped	 at	 around	𝑡 = 200	𝑠,	 we	

postulated	that	the	de-convolved	signal	should	approach	zero	towards	the	end	of	

the	 recording.	 Following	 these	 guidelines,	 we	 manually	 estimated	 the	

parameters	of	the	impulse	response	to	be	𝑎 = 0.1	𝑠	and	𝑏 = 10	𝑠.		

Fig.	 13A	 shows	 the	 de-convolved	 signal	 together	with	 the	 raw	 signal,	 and	 Fig.	

13B	shows	the	kernel	used	for	de-convolution.	Fig.	13A	also	shows	the	detected	

bouts,	marked	in	red.	For	comparison,	we	also	show	the	same	signal	treated	with	

the	filtering	and	bout	detection	approach	outlined	in	the	previous	sections	(Fig.	
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13C).	The	bout	 structure	 is	virtually	 identical	between	 the	de-convolved	 signal	

and	the	filtered	signal	(see	close-up	in	Fig.	13D).	

	

Fig.	13:	Bout	detection	by	de-convolution.	A)	The	raw	signal	and	 the	signal	after	

de-convolution	with	a	bi-exponential	kernel.	The	detected	bouts	are	marked	in	red.	

B)	The	bi-exponential	kernel	used	for	de-convolution.	C)	For	comparison,	the	same	

signal	as	in	A),	after	filtering	and	bout	detection	as	outlined	above.	D)	Close-up	on	

the	bouts	detected	by	either	method	in	the	interval	between	85	and	165	s.	

This	 observation	 indicates	 that	 if	 the	primary	 goal	 of	 the	 signal	 analysis	 is	 the	

detection	 of	 bouts,	 the	 cascaded	 filtering	 approach	 outlined	 in	 the	 previous	

sections	 is	 equivalent	 to	 model-based	 de-convolution	 of	 the	 signal.	 De-

convolution	 yields	 an	 accurate	 estimation	 of	 the	 time-dependent	 gas	

concentration	 at	 the	 sensor’s	 location	 (if	 the	 estimated	 impulse	 response	 is	

sufficiently	 close	 to	 the	 real	 impulse	 response).	The	advantage	of	 the	 cascaded	

filter	 model	 is	 that	 is	 computationally	 considerably	 less	 complex,	 not	 only	

because	 of	 the	 arithmetics	 involved	 in	 FFT,	 but	 also	 in	 terms	 of	 memory	

requirements.	 Moreover,	 for	 meaningful	 results,	 FFT	 must	 be	 applied	 on	 the	

whole	 signal,	 or	 at	 least	 on	 a	 temporal	 segment	 of	 significant	 size	 (as	 in	 a	

windowed	approach).	In	contrast,	the	cascaded	filtering	can	be	implemented	in	a	

fully	 streaming	mode	 that	 does	 not	 require	windowing.	 Taken	 together,	 these	
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observations	 emphasise	 the	 utility	 of	 the	 proposed	 approach	 on	 low-power,	

embedded	hardware	that	might	be	employed	in	energy-restricted	scenarios,	like	

e.g.	mobile	robotics.	

4 Discussion	

We	 have	 shown	 that	 it	 is	 possible,	 using	 MOX	 sensors,	 to	 decode	 temporal	

features	 of	 odour	 plumes	 that	 encode	 source	 distance	 in	 a	 turbulent	

environment.	To	 this	end,	 it	was	necessary	 to	 filter	 the	signal	using	a	cascaded	

filtering	 approach:	 After	 removing	 high-frequency	 noise,	 we	 first	 form	 the	

differential	of	the	signal	and	subsequently	perform	a	leaky	integration	using	an	

exponential	kernel.	Then	we	 identify	 “bouts”	 in	 the	 filtered	signal,	 i.e.,	portions	

with	 upward	 slope,	 that	 may	 correspond	 to	 the	 sensor	 encountering	 plume	

filaments	with	high	 gas	 concentration.	The	number	of	 such	bouts	decreases	 as	

the	 distance	 to	 the	 source	 increases.	 Since	 the	 “bout	 count”	 feature	 is	 largely	

independent	 of	 gas	 concentration,	 it	 complements	 concentration-based	

approaches	to	estimate	source	distance	in	turbulent	environments.		

While	 this	 observation	 is	 in	 line	with	 findings	 obtained	with	 PIDs	 [2,4–6],	 we	

wish	to	stress	that	this	study	is	the	first	to	demonstrate	that	this	effect	can	in	fact	

be	exploited	with	low-cost,	off-the-shelf	MOX	sensors.	The	fact	that	the	statistics	

of	concentration	fluctuation	can	be	decoded	from	MOX	sensors,	in	spite	the	time	

constants	of	their	gas	response	being	orders	of	magnitude	longer	than	PIDs,	may	

be	 a	 consequence	 of	 the	 self-similar	 organisation	 of	 turbulent	 plumes	 on	 the	

spatio-temporal	scale.	On	the	other	hand,	the	comparably	long	sensor	response	

time	 constants	 also	 entail	 longer	 measurements	 (compared	 to	 PIDs)	 until	 a	

robust	estimate	of	source	distance	can	be	obtained.	However,	recent	findings	on	

speeding	up	MOX	sensor	constants	by	modulating	the	temperature	of	the	heater	

element	 may	 allow	 to	 increase	 the	 temporal	 resolution	 of	 MOX	 sensors,	 and	

accelerate	the	decoding	of	distance-dependent	fluctuations	in	gas	concentration	

[20].	

The	signal	processing	algorithm	that	we	used	requires	only	minimal	resources	in	

terms	 of	 memory	 and	 computational	 capabilities.	 It	 is	 straightforward	 to	

implement	 on	 low-power	 microcontrollers,	 and	 could	 easily	 deployed	 in	
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environments	 that	 impose	 strong	 restrictions	 on	 power	 consumption,	 like	

mobile	robotics.	Indeed,	a	study	exploring	methods	to	estimate	the	proximity	of	

a	 gas	 source	 using	 MOX	 sensors	 in	 a	 turbulent	 environment	 found	 that	 the	

variance	of	the	gas	concentration	can	be	better	indicator	for	source	distance	than	

the	time-averaged	sensor	response	[3].	The	analysis	we	present	here	extends	the	

concept	 of	 variance	 detection	 by	 detecting	 events	 of	 high	 gas	 concentration,	

which	 significantly	 increased	 the	 accuracy	 of	 source	 distance	 estimation.	

Combining	 the	 proposed	 bout	 count	 feature	 with	 robotic	 navigation	 therefore	

may	present	an	interesting	remit	for	future	studies.		

Finally,	we	described	how	the	 two	parameters	of	 the	signal	processing	method	

can	be	used	to	tune	the	method	to	certain	ranges	of	gas	intermittency.	If	the	filter	

is	 tuned	 to	 higher	 frequencies,	 it	 will	 resolve	 distance	 best	 if	 it’s	 close	 to	 the	

source.	Larger	distances	will	be	better	resolved	when	tuning	the	filter	to	 lower	

frequencies.	Since	the	simple	design	of	the	filter	allows	to	use	several,	differently	

tuned	instances	simultaneously,	one	could	construct	a	“filter	bank”	that	resolves	

a	wide	range	of	different	source	distances.	Interestingly,	such	a	filter	bank	tuned	

to	 varying	 degrees	 of	 gas	 intermittency	 has	 been	 described	 in	 arthropod	

olfaction	[21].	

4.1 A	putative	strategy	for	gas-based	robot	navigation	using	bout	counts	

We	have	observed	two	features	of	gas	plumes	that	carry	information	about	the	

location	 of	 the	 detector	 relative	 to	 the	 source.	 First,	 the	 number	 of	 gas	 bouts	

gives	rise	to	an	estimate	about	the	distance	to	the	source.	Second,	the	variance	of	

those	bout	counts	over	time	provides	information	about	whether	the	detector	is	

located	 straight	 downwind	 (low	 variance)	 or	 slightly	 lateral	 from	 it	 (high	

variance).	This	is	summarised	in	Fig.	14.	
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Fig.	 14:	 Indicators	 for	 the	 location	 of	 a	 gas	 detector	 relative	 to	 the	 source.	

Downwind	distance	is	encoded	by	average	bout	count,	while	a	lateral	displacement	

is	encoded	by	the	variance	of	bout	counts.	

These	 features	 give	 rise	 to	 a	 navigational	 strategy	 that	 could	 enable	 a	mobile	

agent,	 e.g.	 a	 robot,	 to	 navigate	 towards	 a	 gas	 source	 based	 on	 the	 temporal	

features	of	a	gas	plume.	The	agent	would	 first	measure,	 at	 its	 current	 location,	

the	number	of	gas	bouts	and	their	variance.	If	the	variance	of	bouts	per	time	is	

low,	this	indicates	that	the	agent	is	located	close	to	the	centreline	of	the	plume.	

Hence,	it	would	move	straight	upwind	for	the	next	measurement.	High	variance	

of	bout	counts	would	indicate	that	the	agent	is	 located	slightly	off	the	centre	of	

the	 plume.	 A	 good	 strategy	would	 be	 to	 perform	 cross-wind	 casting	moves	 in	

order	 to	 find	 the	 centre	 of	 the	 gas	 plume,	 from	 which	 it	 could	 start	 moving	

upwind.	

In	a	practical	scenario,	 it	 is	preferable	to	assess	the	number	of	bout	counts	and	

their	 variance	 from	 continuous	measurements,	 instead	 of	 a	 certain	 number	 of	

fixed-length	 measurement	 blocks.	 Ideally,	 the	 uncertainty	 of	 estimate	 of	 bout	

rate	and	variance	would	decrease	with	each	bout	that	is	encountered.	This	could	

be	achieved	by	basing	the	statistics	on	inter-bout	intervals	(IBI)	rather	than	bout	

counts.	 The	 average	 bout	 count	 𝑛�2¢3 	can	 be	 replaced	 by	
C
£¤£
	,	 with	〈IBI〉	the	

average	 length	 of	 all	 inter-bout	 intervals	 that	 have	 been	 encountered	 so	 far.	

Similarly,	the	standard	deviation	of	bout	counts	𝑠𝑡𝑑 𝑛f<g= 	could	be	replaced	by	
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𝑠𝑡𝑑 IBI .	Replacing	bout	count	statistics	with	inter-bout	interval	statistics	yields	

qualitatively	 very	 similar	 results	 (see	 supplemental	 Fig.	 S6).	 The	 advantage	 of	

inter-bout	 interval	 statistics	 is	 that	 they	 do	 not	 require	 to	 partition	 the	

measurement	 period	 into	 discrete	 chunks.	 Rather,	 they	 can	 be	 updated	

continuously,	 allowing	 for	 appropriate	 action	 to	 be	 taken	 as	 soon	 as	 enough	

bouts	for	a	reliable	estimate	of	mean	and	variance	have	been	encountered.	

Our	 results	 motivate	 future	 work	 on	 putative	 gas-based	 strategies	 for	 robot	

navigation.	 Clearly,	 the	 structure	 of	 turbulent	 gas	 plumes	 (and	 hence	 also	 the	

bout	 statistics)	 depend	 on	 numerous	 factors	 in	 the	 environment,	 as	 e.g.	 wind	

speed,	 shape	 of	 the	 terrain,	 the	 presence	 of	 buildings	 or	 other	 obstacles	 to	

airflow,	among	others.	To	further	explore	the	effect	of	such	factors,	we	think	that	

a	 potential	 navigation	 strategy	 should	 initially	 be	 tested	 in	 a	 simulated	

environment,	that	combines	the	simulation	of	turbulent	plume	dispersal	with	gas	

sensing	 on	 robots	 via	 metal	 oxide	 sensors.	 Such	 an	 environment	 has	 recently	

been	 proposed	 by	Khaliq	 and	 coworkers	 [22].	 A	 simulated	 test	 setup	will	 also	

facilitate	 initial	 comparisons	 to	 other	 gas-based	 navigation	 strategies	 such	 as	

Infotaxis	and/or	reactive	strategies	[23,24].	

5 Conclusions	

We	show	that	it	is	possible	to	predict	the	distance	of	a	gas	source	in	a	turbulent	

environment	 from	the	temporal	structure	of	a	MOX-sensor	signal.	The	distance	

estimation	was	significantly	enhanced	by	using	a	simple	filtering	approach	that	

is	 suitable	 for	 implementation	 on	microcontrollers.	 This	 finding	 demonstrates	

that	 the	 spatio-temporal	 structure	 of	 turbulent	 gas	 plumes	 is	 accessible	 with	

MOX-sensors,	 and	 that	 we	 can	 extract	 useful	 information	 from	 such	

measurements.	 Our	 findings	 may	 enable	 enhanced	 estimation	 of	 gas	 source	

distance,	 and	 potentially	 also	 source	 localisation	 by	 mobile	 agents	 using	 low-

cost,	low-power	platforms.	
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S1 Artefacts	on	Sensor	1	

Sensor	 1	 has	 proven	 to	 be	 unusable	 on	Board	 5	 due	 to	 strong	 artefacts	 in	 the	

recordings	 that	 could	not	 be	mitigated	by	post-processing.	 The	 signal	 contains	

"jumps"	 that	 occur	 inadvertently	 (Fig.	 S1A).	These	 jumps	occur	on	virtually	 all	

recordings	 of	 sensor	 1.	 These	 jumps	 have	 a	 complex	 temporal	 structure	 (Fig.	

S1B).	 We	 were	 unable	 to	 pinpoint	 the	 cause	 for	 these	 jumps.	 Due	 to	 their	

complex	 structure	 it's	 difficult	 to	 remove	 them	 by	 post-processing	 without	

introducing	other	artefacts	 that	might	affect	 the	analysis.	Hence,	we	decided	to	

exclude	all	recordings	from	sensor	1	from	the	analysis	in	this	study.	

	

Fig.	S1:	Artefacts	in	the	signal	from	sensor	1.	The	signal	 jumps	between	high	and	

low	values.	A)	A	representative	example	of	an	entire	measurement.	B)	One	of	the	

"jump	events"	in	detail.	

S2 Influence	of	wind	speed	

The	data	set	contains	measurements	at	three	different	wind	speeds.	We	analysed	

the	 influence	 of	 wind	 speed	 in	 the	 wind	 tunnel	 on	 the	 bout	 counts	 and	 the	

reliability	of	distance	prediction.	Fig.	S2A	shows	 the	signal	 traces	and	detected	

bouts	for	the	slowest	wind	speed	(i.e.	for,	the	lowest	number	of	fan	revolutions	

per	 minute,	 rpm),	 for	 two	 selected	 positions.	 As	 wind	 speed	 increases,	 the	

number	of	detected	bouts	goes	down,	 as	well	 as	 their	 amplitudes,	 as	visible	 in	

single	traces	for	the	medium	(Fig.	S2B)	and	highest	wind	speed	(Fig.	S2C).	While	

the	 bouts	 get	 weaker	 and	 fewer	 in	 number,	 the	 overall	 relationship	 between	

relative	bout	count	and	distance	 to	source	holds	also	 for	all	 three	wind	speeds	

(Fig.	2D,	E,	F).	The	precision	of	the	distance	prediction	is	hardly	affected	in	cross-
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validation	in	this	example.	However,	this	observation	indicates	that	a	model	that	

aims	to	predict	source	distance	in	an	uncontrolled	environment	(as	opposed	to	

sampling	in	a	wind	tunnel	with	controlled	wind	speed)	should	also	incorporate	

wind	speed	measurements	into	the	predictive	regression.	

	

Fig.	 S2:	 Dependence	 on	 wind	 speed	 in	 the	 wind	 tunnel.	 A)	 Filtered	 trace	 and	

detected	bouts	for	one	trial	at	the	slowest	fan	setting	(1500	rpm),	at	two	distances.	

Acetaldehyde	500	ppm,	TGS	2610,	 trial	number	10	(same	as	 in	Fig.	5A).	B)	Same	

gas,	fan	speed	3900	rpm,	C)	fan	speed	5500	rpm.	D)	Regression	for	20	trials	with	

the	fan	speed	1500	rpm,	E)	fan	speed	3900	rpm,	F)	5500	rpm.	Text	insets	in	D,E,F	

show	performance	of	cross-validated	linear	regression.	

S3 Influence	of	heater	voltage	

The	original	data	was	recorded	using	6	heater	voltages,	from	4	to	6	V	in	steps	of	

0.5V.	 A	 higher	 heater	 voltage	 results	 in	 higher	 heater	 current	 and	 therefore	

higher	sensor	 temperature.	We	analysed	 the	 influence	of	sensor	voltage	on	 the	

bout	count	feature	and	distance	prediction.	The	effect	of	heater	voltage	is	shown	

in	 Fig.	 S3.	 The	 signals	 acquired	 with	 heater	 voltages	 of	 5V	 and	 6V	 are	

qualitatively	 very	 similar,	 and	 the	 regression	 of	 bout	 counts	 vs	 distance	 yields	

similar	 accuracy	 in	 cross-validated	 prediction.	 At	 a	 heater	 voltage	 of	 4V,	 the	

signal	gets	considerably	weaker,	resolving	fewer	bouts.	Nevertheless,	the	RMSE	
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of	 the	 cross-validated	 distance	 prediction	 is	 comparable	 to	 the	 performance	

obtained	with	the	higher	heater	voltage.	

	

Fig.	 S3:	 Influence	 of	 heater	 voltage.	 A,B,C)	 EWMA-filtered	 signals	 and	 detected	

bouts	 for	 heater	 voltage	 6V	 (A),	 5V	 (B)	 and	 4V	 (C).	 Acetaldehyde	 500	ppm,	 trial	

number	1	 (cf.	 Fig.	5	and	Fig.	 S2),	 sensor	TGS	2610.	D,E,F)	Bout	 counts	vs.	 source	

distance	 for	 heater	 voltage	 6V	 (D),	 5V	 (E)	 and	 4	 V	 (F).	 Text	 insets	 show	

performance	of	cross-validated	linear	regression.	

S4 Similarity	of	bout	timings	across	sensors	

In	order	to	quantify	the	similarity	of	bouts	across	sensors	we	adopt	an	approach	

first	described	by	Schreiber	et	al	(2003)	that	aims	at	measuring	the	similarity	of	

event	 series.	 This	 approach	 is	 based	 on	 convolving	 a	 time	 series	 of	 discrete	

events	(in	the	original	study,	neuronal	action	potentials)	with	a	Gaussian	kernel,	

thus	creating	a	continuous	time	series.	The	similarity	of	two	time-series	is	then	

quantified	by	the	Pearson	correlation	of	these	continuous	series.		

Here,	we	apply	this	measure	of	event	series	to	the	bout	onsets	as	discrete	events.	

Fig.	S4	depicts	the	bout	onset	times	for	the	signals	in	Fig.	6	(Acetaldehyde,	source	

distance	1.18	m,	trial	19).	We	convolved	these	time	series	with	Gaussian	kernels	

of	 width 𝜎 = 2	𝑠.	 We	 then	 computed	 the	 pairwise	 correlation	 coefficients	
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between	the	generated	continuous	time	series.	This	analysis	was	done	for	all	20	

trials	 that	were	 present	 in	 the	 data	 set	 for	 Acetaldehyde,	measured	 in	 1.18	m	

distance	 from	 the	 source.	 The	 average	 correlation	between	 all	 time	 series	was	

𝑐 = 0.38	 ± 0.21	(standard	deviation).	

	

Fig.	 S4:	 Bout	 onset	 times	 as	 discrete	 events	 (black),	 and	 as	 smoothed	

representation	(Gaussian	kernel,	𝜎 = 2	𝑠,	gray).	

To	check	against	a	random	background,	we	scrambled	the	trials,	i.e.,	computing	

correlations	 between	 time	 series	 that	 were	 randomly	 chosen	 from	 different	

trials.	 Here	 we	 obtained	𝑐 = 0.20 ± 0.14.	 Fig.	 S5	 depicts	 the	 histograms	 of	

pairwise	 correlations	 obtained	 in	 matched	 and	 randomised	 trials.	 A	 2-sample	

Kolmogorov-Smirnov	 test	 confirmed	 that	 the	 correlations	 observed	 in	 pairs	 of	

matched	trials	is	significantly	different	from	randomised	trials	(𝑝 = 2.9 ∙ 10Bh§).	
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Fig	 S5:	 Statistics	 of	 pairwise	 correlations	 between	 smoothed	 time-series	 for	

matched	 trials	 (black)	 and	 trials	 that	 were	 randomly	 picked	 out	 of	 the	 20	

repetitions	(gray).	

S5 Assessment	of	inter-bout	interval	statistics	

In	 a	 scenario	 where	 an	 agent	 interacts	 with	 the	 world	 in	 real-time,	 it	 is	

impractical	to	use	trial-based	bout	count	statistics.	Rather,	it	would	be	preferable	

to	 use	 accumulative	 statistics	 that	 can	 be	 obtained	 continuously.	 To	 this	 end,	

trial-based	bout	count	statistics	can	be	replaced	by	inter-bout	interval	statistics.	

The	average	bout	count	can	be	replaced	by	the	average	length	of	the	inter-bout	

interval	 (IBI).	 The	 average	 IBI	 duration	 becomes	 smaller	 as	 source	 distance	

increases	(Fig.	S6A),	although	the	measure	is	very	sensitive	to	noise	in	when	the	

total	bout	count	is	low,	e.g.	close	to	the	walls	of	the	wind	tunnel	(boards	1,	2,	3	

and	7,	8,	9).	 Likewise,	 the	 standard	deviation	of	bout	 counts	over	 trials	 can	be	

replaced	 by	 the	 standard	 deviation	 of	 inter-bout	 intervals	 in	 a	 trial,	 which	 is	

minimal	 near	 the	 centreline	 of	 the	plume	 (Fig.	 S6B).	Normalising	 the	 standard	

deviation	 by	 the	 average	 IBI	 yields	 gives	 even	 clearer	 minima	 close	 to	 the	

centreline	 of	 the	 plume	 for	 all	 distances,	 potentially	 enabling	 more	 robust	

navigation	 (Fig.	 S6C).	 Taken	 together,	 the	 IBI	 statistics	 exhibit	 a	 similar	

relationship	 to	 down-	 and	 crosswind	 distance	 to	 the	 source,	 but	 with	 the	

advantage	that	they	can	be	obtained	in	an	accumulative,	continuous	fashion,	and	

could	replace	trial-based	approaches	in	interactive	scenarios.	
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Fig.	S6:	 Inter-bout	interval	(IBI)	statistics	in	down-	and	crosswind	direction	from	

the	source.	Board	number	refers	to	cross-wind	position	of	sensors,	with	board	no.	

5	 at	 the	 centre.	 Distance	 from	 source	 is	 indicated	 by	 grey-scale.	 A)	 Reciprocal	

average	duration	of	inter-bout	interval.	Measurements	with	less	than	3	bouts	were	

ignored.	 B)	 Standard	 deviation	 of	 inter-bout	 intervals	 (average	 across	 trials).	 C)	

Average	standard	deviation	normalised	by	average	inter-bout	interval.	
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