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Abstract

We propose that moral behavior of artificial agents could (and should) be intrinsically grounded in their own sensory-
motor experiences. Such an ability depends critically on seven types of competences. First, intrinsic morality should
be grounded in the internal values of the robot arising from its physiology and embodiment. Second, the moral
principles of robots should develop through their interactions with the environment and with other agents. Third,
we claim that the dynamics of moral (or social) emotions closely follows that of other non-social emotions used
in valuation and decision making. Fourth, we explain how moral emotions can be learned from the observation
of others. Fifth, we argue that to assess social interaction, a robot should be able to learn about and understand
responsibility and causation. Sixth, we explain how mechanisms that can learn the consequences of actions are
necessary for a robot to make moral decisions. Seventh, we describe how the moral evaluation mechanisms outlined
can be extended to situations where a robot should understand the goals of others. Finally, we argue that these
competences lay the foundation for robots that can feel guilt, shame and pride, that have compassion, and that know
how to assign responsibility and blame.
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1 Introduction

With the approaching introduction of autonomous robots
into society, it is time to take potential risks seriously. The
perceived threat from artificial intelligence that is currently
in the public eye may certainly be exaggerated, but as robots
are increasingly used in areas such as domestic, healthcare,
or military settings, safety measures need to be put in place
to ensure that robots are not dangerous to us, and that they
know when they do something wrong.

One solution often suggested is something akin to
Asimov’s robot laws:

1. A robot may not injure a human being or, through
inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human
beings except where such orders would conflict with
the First Law.

3. A robot must protect its own existence as long as such
protection does not conflict with the First or Second
Laws.

Although such rules make for good fiction, they are very
problematic as a basis for ethical robots since they require
that the robot has a full understanding of the rules, their

consequences and perfect reasoning skills. Furthermore,
this solution depends on an accurate perception of the
current situation at all times. These underlying assumptions
are not only well beyond the capabilities of present-day
robots, but they are also open to numerous flaws due to their
generality and abstract nature (Anderson, 2008; Murphy &
Woods, 2009; Norman, 2005; Sloman, 2006).

The robotics community has been concerned about ethics
for a number of years, with numerous initiatives and events
organized around the world under the term “Roboethics”
(cf. Anderson & Anderson, 2007). Such concerns can be
grouped into two main strands: the design of robots that
are respectful of and safe for humans in their interactions,
and the concern for robots rights (cf. Sloman, 2006). These
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initiatives take, in one or another way, an approach similar
to Asimov’s in the sense that they constitute attempts
to come up with externally-given rules to constrain the
behavior of robots and their interactions with humans. They
are also typically characterized by attempts to ground the
robot’s ethics in reasoning capabilities often with a tutoring
or advisory role imagined for the future ethical robot (e.g.,
Anderson, 2008; McLaren, 2006).

In contrast, we propose that intrinsically moral robots can
be designed based on development and learning from bodily
(“physiological”) grounding and sensory-motor principles,
such that full autonomy of the robot can be preserved,
and that more advanced capabilities based on the ones
outlined in this paper can subsequently be scaffolded.
Such robots will be intrinsically moral in two senses:
first, being concerned with, and capable of, distinguishing
autonomously between “right” and “wrong”; second,
learning “right” and “wrong” through interactions with
other agents and by “empathizing” with those agents. Being
grounded in the robot’s “physiology” and more generally
embodiment (Cañamero 1997, 2001, 2003) and sensory-
motor principles (Pezzulo, 2011) implies that their morality
will be grounded in the perceptual, value and motor systems
of the robot itself, including values and representations
internalized through interactions with others, and can be
developed using subsystems modeled after (and meaningful
to) their human counterparts. This includes direct visual
and interoceptive perception of causal relations, agency
and harm, as well as relevant motivational and emotional
systems, together with causal reasoning mechanisms and
social learning. Our approach thus puts social emotions
at the heart of moral behavior, and in a fundamental way
brings together embodied sensory-motor cognition, internal
and internalized value systems, internal representations
of self and others, bodily, “kinesthetic” judgments, and
capabilities for self-perception. (Panksepp, 1998; Laird,
2007; Damasio, 1999, 2010; Solomon, 2007; Colombetti,
2014).

The rest of this paper is organized as follows. After
framing our approach in the context of a triadic interaction
model (Section 2), we propose to design agents that learn
from their own experiences to act morally, based critically
on seven types of competences. First, intrinsic morality
must be grounded in the internal values of the robot arising
from its physiology and embodiment (Section 3). Second,
the moral principles of robots must develop through their
experiences of interactions with the environment and with
other agents—humans and robots (Section 4). Third, it is
necessary that the robot is sensitive to social emotions. This
includes using observed emotional reactions—including
(facial, bodily) expressions—of others, both as reinforcing
stimuli and for use in higher level decision making
(Section 5). A sensitivity to social emotions depends both
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Figure 1. Triadic interaction between an observer and two
other agents

on the perceptual recognition problem and the existence
of the appropriate learning mechanisms. We describe that
the dynamics of the social emotions closely parallels that
of other non-social emotional states such as hope and fear,
frustration and relief. Fourth, the robot must also be able
to learn from observation of others. This involves viewing
interactions between other agents and the detection of
their emotional reactions (Section 6). Fifth, a sensitivity to
social emotions also implies an understanding of causation.
We describe how a robot can infer causal relations by
observing the dynamics of interaction between animate or
inanimate objects (Section 7). The technical problem is here
to recognize the dynamic interaction between objects or
agents and to infer causal relations both at a basic dynamic
level and at a more cognitive level. Sixth, the robot must
learn to anticipate and reason about the consequences of
actions (Section 8). Seventh, the robot must be able to infer
the goals of others and know whether an interfering action
will help or hinder. While the previous competences are at
a more sensory motor level, this final level also requires
generative models of other agents (Section 9). We argue
that these competences lay the foundation for robots that
can feel guilt, shame and pride, that have compassion, and
know how to assign responsibility and blame (Section 10).

2 Triadic interaction model

We propose that many questions of morality in robots can
be addressed in a scenario with a triadic interaction between
agents (humans or robots), where two agents interact and a
third observes, learns from the two others, or potentially
intervenes (Fig. 1). The first agent may behave aggressively
toward the second or may help or hinder its actions. The
observing agent will learn to anticipate the reactions of
the second agent, internalize them, and use them in its
own decision making: both when selecting its own actions
and when it decides whether to intervene in the interaction
between agent one and two.

Consider a simple example of a prototypical moral
situation: the robot observes Agent 1 hitting Agent 2,
causing harm to Agent 2, which is suitably expressed
through, for example, a cry of pain or a hurtful facial
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expression. Our interest lies with what the robot now
does. We propose that minimally the robot should feel an
appropriate emotion (e.g., anger, compassion) as a result of
interpreting the observed interaction in terms of its outcome
(Agent 2 being hurt) and by assigning responsibility for that
outcome (seeing that Agent 1 hit Agent 2). Taken together,
these elements should motivate the robot to intervene
appropriately in the situation by expressing its feelings and
thus reproaching Agent 1, and, possibly, hindering Agent
1 from further hitting Agent 2. Hence, more abstractly, for
the robot to behave morally, it needs to not only understand
the goals of others and be able to detect others’ emotional
reactions, but it also needs a set of its own (internal)
and acquired (internalized) values that ground its (moral)
preferences, motivations, assessment of right or wrong and
decisions for action. Further, this also depends on the
representational and self- and other-perception capabilities
of the observer agent that are involved in the consideration
of others as being like me, in social emotions, and in moral
behavior. In the following seven sections we develop a
framework for moral robots based on these principles.

3 Embodiment of emotions: physiological
grounding

To make robots intrinsically moral, the first step is to
provide them with a basis to ground morality inherently,
so that they can “judge” by themselves what is good
or bad for them as well as for others. This means
that the robots must have their own value system to
base such “judgments” on, that will also allow them to
interact with and learn about the physical and social world
proactively and meaningfully (Cañamero, 1995; Pfeifer,
1996). Following an Embodied Cognitive Science and AI
approach, we view embodiment as an essential element and
determinant of cognition and action, as well as of emotion.
In the context of this paper, this means that a value system
that grounds morality intrinsically needs to be based in
the embodiment of the robot in a fundamental way. Such
bodily grounding provides not only the basis for a “core
affect” (Damasio, 1999) system, but transpires through
the entire “cognitive apparatus” of agents, biological or
artificial, embedding us in a world of affective affordances
(Colombetti, 2014) and giving us reasons to make sense
of it and interact in it, not only as solitary individuals
but fundamentally in our interactions with others, in what
has been termed “participatory sense-making” (De Jaegher
& Di Paolo, 2007). Embodiment is also at the core of
moral emotions and their evaluative structure, rooting the
evaluative emotional judgments that characterize them in a
form comparable to kinesthetic judgments, not necessarily
accessible to awareness and rational but rather tacit and
unspoken (Solomon, 2007).

Although “embodiment” has different meanings when
talking about “embodied agents” and “embodied cognition”
(Ziemke, 2003), in this paper and building on a
longstanding approach (Cañamero, 1997, 2001, 2003),
the bodily grounding of moral values and emotions that
we propose stems from the “physiology” of the robot
and its control and interaction dynamics, in addition
to (and coupled with) sensory-motor interaction. Such
“physiological” modeling has greatly developed over the
last two decades, and the term “internal robotics” (Parisi,
2004) was coined to emphasize the importance of modeling
internal as well as external aspects of embodiment.

In our approach, the robot’s physiology—consisting
of essential variables and simulated hormones—and its
dynamics is deeply intertwined with the perceptual,
cognitive and motor capabilities of the robot (Cañamero,
1997; Avila-Garcı́a & Cañamero, 2004; Cañamero & Avila-
Garcı́a, 2007) as well as its social interaction (Cañamero
2008) and provides mechanisms to endow the robot with
the two key dimensions of emotions, namely arousal (Hiolle
et al., 2014) and pleasure (Cañamero & Lewis, 2016
submitted). This modeling approach implies that the robot’s
intrinsic morality will be grounded in the perceptual, value
and motor systems of the robot itself, including values
and representations internalized through interactions with
others, and can be developed using subsystems modeled
after (and meaningful to) their human counterparts.

Such physiologically-based grounding of (moral) values
can also drive and shape learning processes—not only the
“what” of learning but also the “how” (Lowe, 2014). Of
particular relevance to the framework that we propose here
is its role in the learning of object and behavior affordances
(Cos et al., 2010) and in reinforcement learning (Cos et al.,
2013).

4 Development

A key aspect of intrinsically moral social robots is their
ability to internalize the moral values, behaviors and
social emotions of the humans they have to interact with.
While different types of learning—both with and without
explicit “teaching” or “reinforcing” signals on the part
of the human—constitute important mechanisms towards
this end, we argue for the need to adopt a developmental
approach to make robots’ morality intrinsic from the early
stages of the interaction and learning process.

As argued elsewhere (Cañamero et al., 2006), a fuller
and deeper integration of autonomous social robots into
human environments requires their being embedded in
the social environment in which they will fulfill their
roles, in a way akin to how human children develop,
although on a shorter time scale. The relatively recent
field known as Developmental or Epigenetic Robotics
(Zlatev & Balkenius, 2001) is an interdisciplinary area
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at the intersection of child development and robotics
that endeavors both to take inspiration from human
development to build better robots, and to use robots as
models to help understand typical and atypical human
development as well as tools in therapy of developmental
disorders (Prince & Gogate, 2007). This field investigated
the development of different types of skills, including
sensory-motor, cognitive, affective, and social (for surveys
see, e.g., Asada et al., 2009; Berthouze & Ziemke,
2003; Lungarella et al., 2003; Prince & Demiris, 2003).
Grounding on internal value systems such as described
in the previous section and social interaction (Pepperberg,
2001), the developmental processes modeled in this field
can provide human-adapted mechanism for internalization,
socialization and “enculturation” of moral values and
the development of social and moral emotions through
natural interaction with humans. Such processes include the
notion of “ongoing emergence”, defined as the continuous
development and integration of new skills (Prince et al.,
2005), as well as emotional development processes such
as attachment (Cañamero et al., 2006), human-facilitated
emotion regulation (Hiolle et al., 2014), and hormonally-
modulated epigenetic development through sensory-motor
interaxtion with humans (Lones et al., 2016). Such
processed permit robots to develop different internal values,
cognitive and affective profiles, and their external (e.g.,
behavioral, expressive, interactive) manifestations as a
function of their different socially-driven developmental
histories.

Robots with different developmental pathways and moral
values would then be expected to behave differently when
tested in our triadic interaction scenarios, permitting us to
experimentally compare different moral principles.

5 Social emotions

We will ground our view on moral robots in a small
set of emotions. These emotions will ground the robot’s
evaluations but also, as we discuss in the next section,
provide a crucial interface to learning about others.
Compared to the complexity of full human emotions, these
emotions are simplified to the extent that they can be
operationally defined and implemented in a robot with the
perceptual abilities that are within the range of what is
technically possible today. Our focus will be on the social
emotions. To some extent, all emotions are social in the
sense that they are accompanied by more or less visible
expressions. However, some emotions have the additional
quality that they are meaningless without the existence
of a social context. These include negative self-directed
emotions such as shame and embarrassment that involve
violations of societal standards, as well as, pride which
is in a sense its opposite. Although directed at the self,
these emotions can be understood as a preparation for the
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Figure 2. The Emotion Space. Every emotion is located in a
four-dimensional space. Two of the dimensions code for
positive and negative valence (hope and fear), while the two
other code for unfulfilled expectations (frustration and relief).
S

+ and S
− represent stimuli of positive or negative valence,

and S+ and S+ represent omission of such stimuli. (Adapted
from Rolls, 1990)

expected reactions of others. While shame can be seen
as an expectation of social blame or punishment, pride
can be seen as an expectation of praise or other type of
reward. Interestingly, these emotions can be elicited even
without performing the action that caused the emotion. It
is possible to feel ashamed or embarrassed without being
guilty of the action that caused the emotion. Although social
emotions may appear to need complex cognitive abilities, it
has been suggested that emotions such as embarrassment
could be the result of much simpler processes (Griffiths &
Scarantino, 2009).

5.1 The dynamics of social emotions

The basis for our model of social emotions will be the four-
dimensional emotional space∗ proposed by Rolls (1990).
In this model, emotions can be categorized along four
dimensions (Fig 2). The first two can be labeled “hope” and
“fear” and correspond to the expectation of a positive and a
negative event, respectively.

The second set of dimensions corresponds to “frustra-
tion” and “relief”, that is, states caused by unfulfilled
expectations. Relief is caused by a fearful event that did
not happened and frustration is caused by a positive event
that did not occur. These two dimensions are related to what

∗Although one axis represents positive valence and the other negative,

each axis should be considered two dimensions rather than one. To

illustrate this, think that it is possible to expect something that is both

positive and negative at the same time.
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Solomon & Corbit (1974) called “hedonic aftereffects” and
have interesting temporal dynamics. Here, however, we will
simply assume that unfulfilled expectations will immedi-
ately shift the emotional state from hope to frustration or
from fear to relief. In learning theory terms, the second two
dimensions are related to omission of a reinforcer (Gray,
1975).

Together, these give a basic four-dimensional emotional
space. Using the notation of Gray (1975), the basis for this
space is

〈

S+, S−, S+, S−,
〉

.

Here, S is a stimulus (er event) and the sign indicates the
valence of those stimuli. The line over the symbols indicates
omission of an expected stimulus. To a first approximation
and emotion E can thus be represented as a point

E = 〈e1, e2, e3, e4〉

in this space. The values on each of the axes are assumed
to be positive. A scalar valence can be calculated using the
dot product as

V (E) = v · E

where v represent that hope and relief are considered to both
have positive valence while fear and frustration are both
negative,

v = 〈1,−1, 1,−1〉 .

We can also approximate the effects of emotions on
arousal A using a similar calculation

A(E) = a · E

where a indicates the effect on arousal of each emotional
dimension. Alternatively, this calculation can be used to
derive the level of attention that should be allocated to a
stimulus (cf. Billing & Balkenius, 2014). This is important
because it can aid the robot in perceiving and interpreting
causal interactions as well as in its decision making
capabilities (see below).

Although, different emotions can have a place in this
four-dimensional space, this space does not constitute
a complete characterization of an emotion. Many other
factors influence the characterization, conceptualization
and labeling of emotions. One such factor is whether the
emotion is social or not. We suggest that the social emotions
shame and pride directly parallel fear and hope. Shame
can be seen as an expectation of social punishment, such
as contempt, ridicule or scorn, while pride is seen as an
expectation of social reward, for example, admiration or
praise. Just like the omission of a non-social outcome
leads to the emotions relief (in the case of absence of an

expected negative event out outcome) or frustrations (in
the case of absence of an expected positive outcome or
event), omission of the expected social reactions causes
similar effects. However, there are no separate words for
these emotions when the cause is social rather than non-
social.

Omission is not the only type of unfulfilled expectation.
It is also possible, for example, that more praise is received
than expected (or deserved). This mismatch can rebound
into embarrassment. Similarly, when more punishment
is received than expected or motivated, it turns into
humiliation.

In all these situations, the emotional state Et+1 after an
events depends on the expected emotional state E′

t and the
actual outcome Et such that

V (Et+1) = V (Et)− V (E′
t). (1)

Note that this formalism allows for many different
reactions Et+1 as long as they fulfil this condition and
thus allows for both individual differences and different
reactions depending on the exact emotions involved.

5.2 Detecting emotional reactions

Given this basic emotional framework, the robot must be
able to use it to learn about other agents and to evaluate
the actions of others. The dynamics of the emotional model
sketched above can straightforwardly be implemented in a
robot. However, it is necessary for it to be able to accurately
read and respond to the emotional reactions of others. For
simplicity we will assume a non-linguistic robot, so for
natural interactions non-linguistic cues must be understood
and reciprocated. There are several types of cues that can
be detected by various sensory processing systems that can
be useful to a robot.

Returning to our example in Fig. 1, for the robot to
react to Agent 2 being hit it could pick up on non-
verbal vocalisations (whining), painful facial expressions
and bodily responses. A robot can pick up non-verbal
vocalizations and analyse their emotional content without
any understanding of language (Oudeyer, 2003). A
significant amount of information is available in the pitch
profile of non-verbal as well as verbal vocalization (Anikin
et al., submitted). Moreover, such vocalizations appear to
be almost universal (Scherer, 2000) and are thus a very
useful source of information for a robot. Similarly, many
techniques exist that can detect facial expressions in images
(e.g. Turk & Pentland, 1991; Bartlett, et al. 2003; Pantic &
Patras, 2006; Shan, Gong & McOwan, 2009).

A robot can recognize the posture and movements of a
human body and use it to detect emotional reactions as they
manifest in the human body. Many systems exist that are
able to detect actions from image sequences (e. g. Xia, Chen
& Aggarwal, 2012, Guha & Ward, 2012) and such systems
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can be adapted to detect emotional reactions. Finally, an
additional cue might be available in pupil dilation, which
is a more subtle signal containing useful social information
(Kret, Fisher & De Dreu, 2015) that can also potentially
be detected by a robot. Such signals are easily detected by
dedicated eye-trackers, but a robot with a vision system
of sufficient acuity could also detect this signal from a
distance.

5.3 From emotions to behavior

So far, we have only discussed the evaluation of stimuli
and events, but for this to have any bearing on morals, we
need to connect these evaluations with behavior. This is
done by noting that the valence function V above is a value
function as it is used in reinforcement learning. In fact,
Eq. 1 is related to the temporal difference in reinforcement
learning. In the reinforcement learning paradigm, behaviors
are learned as associations between a stimulus (or state)
and a response (or action). For example, in the popular Q-
learning algorithm (Watkins & Dyan, 1992), the expected
value of an action a in a state s is represented by a function,

Q(s, a)

and action selection is reduced to the selection of an action
based on this value function using some strategy. In the
simplest case, the function is represented by a table that
stores the expected values for each combination of state
and action and the action with the maximum expected value
would be selected with high probability. Another approach
is to let the behaviors compete for control over a decision
period (cf. Billing & Balkenius, 2014; Wong & Wang,
2006). This temporal element reflects the fact that the time
when information is attended to affects valuation and choice
process (Krajbich, Armel & Rangel, 2008; Lim, O’Doherty,
& Rangel, 2011; Pärnamets et al., 2015).

This provides a minimal model of how emotions can be
modeled in the robot, how the robot can observe others’
emotions and map them onto its own valuations, and how
its valuations can form the basis for action selection and
decision making. However, for the robot to be able to
select actions, it needs to have a better understanding of its
surroundings and social context. We believe that the key
here is the ability to learn from and through the interaction
with others and to understand causal relations. The next two
sections expand the robot framework in this regard.

6 Observational learning

A robot that can detect the expressions of social emotions
can learn from its own experience which reactions its
behavior will produce in a person. However, this learning
ability will be limited to its own experience. It would

be useful if the robot could also learn by observing the
interactions of others.

Consider again the triadic interaction in Fig. 1. Two
agents interact and the observer, in this case the robot, can
detect the performed actions and the emotional responses of
the two agents. The observed event can be used to estimate
a number of quantities.

Let us first assume that the robot uses something like
simple reinforcement learning, such as Q-learning. If agent
1 performs an action that results in a negative emotional
reaction from agent 2, this can be used to decrease the
expected value of that action. Similarly, if agent 2 reacts
in a positive way, this can be used to increase the expected
value of that action. This situation is very similar to that
described above, except that the action is not performed
by the robot itself but instead by someone else. If the
observation of an action activates the same motor codes as
when the robot performs the action itself, then the learning
can take place in exactly the same way as if the robot
had performed the action itself. Previous research shows
that the mechanisms involved in observational learning
of emotional value in animals and humans are similar
to those used in direct conditioning (Olsson & Phelps,
2007). This claim has recently been extended by studies
of the learning of instrumental actions through observation
using neural (Burke et al., 2010; Crocket, 2016) and
psychophysiological (Selbing, Lindström & Olsson, 2014)
methods to describe the computational mechanisms of
learning the value of others’ actions and their consequences.

In humans and other animals, it is possible that this
ability is supported by “mirror neurons” that react in the
same way when we perform an action as when we see
someone else performing that action (Rizzolatti, Fogassi &
Gallese, 2001). Wolpert, Doya & Kawato (2003) suggested
that a possible computational mechanism could be that the
brain simultaneously simulate many possible actions and
compare them with the observed behavior to determine
which action is performed. This depends on an ability
to anticipate motions and also allows us to coordinate
our actions with others (Knoblich & Jordan, 2002). These
mechanisms then likely interact with other brain systems
supporting both habitual and goal-directed action selection
(Wunderlich, Dayan & Dolan, 2012; Cushman & Morris,
2015). Other computational approaches that can be used by
a robot are described by Schaal, Ijspeert & Billard (2003)

In addition to assigning value to an action based on how
it influences another, there are several other properties that
can be estimated from the observation of an interaction
between two agents. The first is that the value of the action
can be estimated in isolation in a context-independent way.
For example, seeing Agent 1 hit Agent 2 and the negative
reactions it produces could be used to lower the value
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of “hitting” in general, therefore implicitly coding that
“hitting” is bad.

Another type of learning relates to the involved agents.
Seeing agent 1 hit agent 2 could increase the expectation
that agent 1 will perform this action again. This can be
used to assign a negative valence to agent 1, but just like
the valence described in the previous section is a reduced
form of a multidimensional emotional space, the valence
assigned to an agent can depend on many factors. The
negative valence can reflect that agent 1 is stronger, hostile,
more dominant, or possibly a “bad” agent. Valence can also
be assigned to agent 2 in a similar way. However, here it is
important exactly how agent 2 reacts both before and after
being hit. Without any additional knowledge, many possible
interpretations are possible. Should the valence of agent
2 be lowered because it is someone that is hit, or should
it be increased to compensate for the negative valence
induced by the hitting? Indeed, both cases are possible and
occur in different situations. Assigning values in this way
to agents is likely a central feature of morality (Uhlmann,
Pizarro, & Diermeier, 2015), as perceptions of an agent’s
“character” will be computationally more efficient than
fully evaluating each situation. Once the robot has learned
that Agent 1 tends to be the one hitting Agent 2, it can
shape its interventions taking Agent 1’s bad moral character
into account as soon as it recognizes the Agent (cf. Singer,
Kiebel, Winston, Dolan, & Frith, 2004).

In a classical experiment, children between 42 and 71
months of age viewed a model performing hostile actions
toward a doll (Bandura, Ross & Ross, 1961). When they
were later allowed to play with the doll, children that
had seen the model perform aggressive actions toward the
doll were more likely to be aggressive towards the doll
compared to children that had not observed any aggressive
actions towards the doll. Similar learning effects have been
observed in experiments exposing children to interacting
human adults (Repacholi & Meltzoff, 2007). Importantly,
observational learning depends on a range of social factors,
such as experienced similarity (Bandura & Ross, 1961;
Golkar, Castro & Olsson, 2015; Mobbs et al., 2009) and
empathy (Olsson et al., 2016) with the involved agents.

7 Causal perception

To aid the robot’s learning in social situation it should
be equipped with capabilities to understand causal
relationships. This will additionally benefit its capacity for
making moral judgments, since moral judgment and causal
ascription are closely linked, as reviewed below.

In their seminal 1944 study Heider and Simmel
showed participants simple animations of geometrical
shapes moving in various directions and speeds around a
larger semi-closed rectangular structure. Almost uniformly,
participants reported seeing not abstract shapes buzzing

about the screen, but meaningful social interactions.
In particular, the majority of participants attributed
detailed intentions to the shapes, seen as agents engaged
in a malevolent pursuit and hosts to a range of
complex intentional states such as anger, fear, persistence,
shrewdness and more (Heider & Simmel, 1944). Possibly,
human participants use mental state attributions to makes
sense of the complex physical stimulus, hence making
the retention of the observed movement patterns easier
and more parsimonious (cf. Dennett, 1988). Crucial
for our purposes, is that the observation of mere
physical movement patterns suffices to support intentional
attributions on the stimulus side. Around the same time
as Heider & Simmel conducted their study, similar
results were obtained by Michotte (1946/1963), who
was primarily interested in the perception of causality
from simple physical displays. Michotte studied simple
interactions between two (sometimes three) moving objects
and under which conditions participants would perceive the
movements of one object as causing the movements of the
second (for review see Scholl & Tremoulet, 2000).

Simple moving displays have also been used to directly
elicit judgments clearly situated near or in the moral
domain. In a recent study, participants evaluative judgments
of agents shown in moving displays derived from the
work of Michotte (i.e., simple collision events) were
elicited. Participants’ evaluations fitted a dyadic template
of morality, where the roles of “Agent” and “Patient”
were derived from predictions arising from a combination
of the underlying force dynamics (i.e. movements) with
a simple normative principle of non-interference (Nagel
& Waldmann, 2012). Similarly, human participants have
been shown to be sensitive to a variety of kinematic
factors in their judgments of severity of actions (Iliev,
Sachdeva & Medin, 2012). Participants viewed a number
of scenarios involving a predefined agent and patient object
(a cylinder and a cone) as well as a dangerous “fireball”
which caused harm to the patient. For each scenario
a kinematic factor was varied, such as force, distance
travelled, amount of contact, etc., and participants made
severity choices between pairs of scenarios. A kinematic
model, predicted choices in 80% of trials, suggesting that
simple physical factors coupled with domain-general causal
inference can ground a variety of moral judgments. Moving
away from visual displays, work on vignettes and other
abstract problem descriptions has also shown that patterns
of moral judgments are dependent on causally grounded
intentional ascriptions, mirroring judgments elicited for
non-moral scenarios of identical causal structure (Cushman
& Young, 2011). Relatedly, judgments of responsibility
for joint outcomes between multiple agents have been
found to depend on causal functions translating individual
actions to group outcomes (Gerstenberg & Lagnado, 2010).
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Underscoring the impact of causal attributions, other
research has shown that causal attribution, and malicious
intent, to an harmful action to the self, enhances self-rated
and physiological indices of discomfort, as well as feelings
of revenge (Olsson et al, under review).

Studies on human infants indicate that both the capacity
for causal and moral understanding of external events
develops early and at similar ages. Preschoolers ages
3-5 interpret the displays used by Heider & Simmel
similarly to how adults do, inferring agency and complex
intentions to the figures shown (Berry & Springer, 1993).
In an early study, researchers tracked infants gaze towards
animated objects moving in either goal-rational or non-
rational manners (Gergely, Nádasdy, Csibra & Bı́ró, 1995).
The results indicated that 12-month old infants could
differentiate between rational and non-rational approach
trajectories based on prior habituated demonstrations of
agents’ intentions (wanting to be close to another agent).
Other work has demonstrated how infants, as young as 8-
to 10-months old, are able to perceive causation for events
not marked by direct physical contact, and do so for both
biologically plausible and non-plausible motion patterns
(Schlottmann, Surian & Ray, 2008).

We argue that causal perception will form a critical
component in an autonomous moral robot, because without
it they will not be able to make accurate judgments
about their social world, select appropriate actions in the
face of moral transgressions or couple their feelings with
outside states of the world. These notions presuppose
inference of causal relations and intentions. To properly
infer relations of agency and patiency (cf. Gray, Waytz
& Young, 2012), causal and intentional relations must be
understood. Therefore, for moral robots to be able to act in
their environments, they need the ability to attribute causal
relations properly and from these deduce intentions and
agent-patient relations.

Since causal relations can be perceived directly by
looking at the temporal dynamics of interacting objects and
are mediated by strict visual rules (see Scholl & Tremoulet,
2000 for examples), these rules can be implemented in
the visual system of robot allowing it to determine both
that the actions of one agent influences another, and the
relative agency or patiency of that agent. As the robot grows
more experienced, it might of course change how it values
certain causal interactions, just like humans can learn the
difference between a playful punch and a malicious punch.
Similarly, just as in humans, the epigenetic trajectory will
be constitutive of what moral agent the robot becomes
(Zlatev & Balkenius, 2001).

8 Learning the consequences of actions

Learning based on reinforcement is simple and efficient
since it can directly strengthen or weaken a behavior

in a particular situation. This, however, is also its main
limitation since the outcome of the learned behavior is not
remembered. A more useful form of learning is to learn the
actual consequences of actions.

The simplest action-outcome model is a set of tuples

{〈ai, oi〉}

where ai is an action and oi is the corresponding outcome.
These tuples can be learned either from the robot’s
own experiences or from observations just like in the
examples above. The important difference from model-free
reinforcement learning algorithms such as Q-learning is
that these memories can be used in either direction. When
the robot desires a particular outcome oi, it can look through
its database of action-outcome relations for an action that
will likely produce that outcome, that is, although these
structures are learned in the direction action-outcome, they
can be used in the inverse order. This is therefore sometimes
called an inverse model.

Inverse models allows for much more flexible use of
a learned experiences and can obviously be much more
complex that a simple database. For example, an inverse
model typically depends on the state of the robot as
well as the state of the world. The relevance of inverse
model learning for a moral robot is that it allows it to
explicitly choose between different outcomes and use it
for reasoning about different actions and action sequences.
This parallels how humans use separate valuation systems
deriving from a distinction between model-free and model-
based reinforcement learning (Daw, Niv & Dayan, 2005;
Daw, Gershman, Seymour, Dayan, & Dolan, 2011).
Recently, the model-free/model-based distinction has also
been hypothesized to explain moral choices, in particular
that certain responses to moral dilemmas might reflect
the relative dominance of either model-free (or Pavlovian)
strategies relying on heavily on immediate emotional
reactions, while other reflect a switch to a more model-
based strategy entailing a deeper evaluation of the decision
tree (Crockett, 2013; Cushman, 2013).

9 Understanding the goals of others

For a robot to understand how an action that influences
others will be met, it is often necessary to understand what
the other agent is trying to accomplish. But how can a
goal or intention be inferred by simply observing behavior?
One way to do this is to use a generative model (Demiris,
2007; Schrodt & Butz, 2016). Such models have recently
been suggested to be fundamental to how the brain works
(Friston, 2010; Butz, 2016).

Put simply, a generative model G is a model that
produces a specific behavior B for a particular observable
state s and set of hidden parameters φ,
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B = G(s,φ).

Here we are interested in generative models where φ
contains the goal that an agent attempts to accomplish.
Given an observed behavior B, the task for the robot is to
determine the parameters φ that would have produced the
observed behavior. This is usually stated as an optimization
problem and the parameters can be estimated, for example,
using expectation maximization (Moon, 1996).

As a basic example, assume that the robot is viewing an
agent A moving in an environment with an object O. The
movement through the environment could potentially have
something to do with O. The robot can use a generative
model to test if the observed behavior is consistent with
trying to approach, avoid or ignore the object O. Say the
behavior is consistent with approach behavior, in this case
the robot can infer that object O probably has a positive
valence to agent A. With this knowledge, the robot can
conclude that an action that help agent A reach O will be
helpful to A while an action that makes it harder for A to
approach O will hinder A.

A striking test of this ability was an experiment where
6- and 10-month old infants viewed a display of an agent
trying to climb a hill (Hamlin, Wynn & Bloom, 2007).
For some displays another agent hindered the climber
by pushing her down the hill, while for the remainder a
third agent aided the climber by pushing her up the hill.
Both choice and preferential looking data show that infants
strongly prefer the prosocial agents to the anti-social ones.
Together, the data indicates a broad, generalized capacity
to infer causal structures from moving events from an
early age and using this information to support proto-moral
judgments.

Generative models can also be used to understand the
intentions of physical movement. For example, aggressive
behavior follows a very different movement trajectory
than affective behavior. Breitenberg (1984) presented
some illustrative examples were simple goal-directed
mechanisms give rise to movement trajectories that can
be interpreted as fear, aggression, curiosity or liking.
Balkenius (1995, p. 95) describes a parametrization of such
behaviors were clear criteria are given for the different
behavior types that could be used as a generative model.

10 Discussion

We have outlined how intrinsically moral robots can
be designed by implementing seven competencies that,
combined, allow a robot to learn to behave morally and
make moral decisions. The framework describes high-level
criteria that need to be fulfilled by a robot for it to become
intrinsically moral. Each of these competencies can be

implemented in different ways depending on the specific
control architecture used for the robot.

• Physiological and bodily grounding permits to
root morality inherently, so that robots have internal
values that permit them to “judge” by themselves
what is good or bad for them as well as for others.

• Developmental processes will provide a mechanism
for internalizing moral values, behaviors and emo-
tions through social interaction with humans.

• Social emotions will allow the robot not only to
possess a dynamically updating value system but
also to learn from others emotional reactions and
internalize them.

• Observational learning ensures that the robot will
learn from observing the interactions of other
agents, which will provide for a greater amount
of learning opportunities about how different peers
value different actions.

• Causal perception allows the robot to infer from
mechanical and physical properties of interactions
who was responsible and utilize this knowledge in its
moral judgments.

• Learning the consequences of actions allows the
robot to go beyond simple learning and to generalize
its learning to strive for action structures leading to
desirable moral outcomes.

• Understanding the goals of others will let the robot
to not only react to direct interactions it observes
but also to proactively intervene in its environment
to help or hinder other agents depending on what it
believes is the right thing to do.

We have argued that robots designed in this way
are intrinsically moral – in the sense that they do not
merely mimic human morality, but instead generate moral
judgments and behavior grounded in their own valuations,
sensory-motor interactions and past experiences. In other
words, their morality emerges from basic building blocks.
Within the scope of their experiences, they are true moral
agents. For example, empathy and compassion are often
seen as emotions, but given the framework developed above
they should rather be seen as the result of an ability to
see others as being similar to oneself. A robot would be
able become empathetic when it can use its own generative
models to predict the reactions of others, and subsequently
also mirror those reactions within its own emotional system.
It will further show compassionate behavior by using its
inverse models to select actions that will help another agent.

These mechanisms also make possible emotions such as
jealousy and envy that depend on a comparison between
one’s own situation and that of someone else, however,
it is questionable whether there would be any reason to
implement such emotions in a robot.
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It is possible to object that the framework proposed here
is too shallow since it depends on the direct experience
of the robot and does not take questions about right and
wrong into consideration. However, this is exactly the
reason why we believe that this is a viable path toward
robots that can interact with humans in a responsible
way. Each of the mechanisms we have described depend
directly on the experiences of the robot and appropriate
learning mechanisms. Because the robot has learned all
moral behaviors by itself, or from observing others, we
know that the robot will be able to detect these situations
again. This contrasts sharply with a robot ethics based on
explicit rules that are not grounded in the perceptual and
motor abilities of the robot.

Nevertheless, there are of course several limitations to
the approach we have outlined here. One such is that we
have throughout worked with a simple example of a morally
charged interaction - seeing one agent hitting another.
While it is clear how the competencies we discuss are
relevant for the robot being able to act in such a situation, it
might be more difficult to see how it could learn to consider,
for example, that raising a flag upside down is a terrible
thing to do (assuming that this is the case in its community).
This is a much more subtle action, where it might be more
difficult to learn who is responsible, or to gauge reactions to
the flag properly. Understanding the importance of the flag
being upright presupposes understanding its symbolic and
cultural value. However, these kinds of limiting cases, while
important, are also examples of very sophisticated moral
norms that humans construct and, we argue, something that
a first minimal robot system such as the one proposed here
cannot be expected to handle.

A second, related limitation, is the lack of linguistic
capacity in our robot. With language, communication of
norms could be expedited, and more subtle conceptual or
contextual distinctions could be communicated to it. If the
robot, like human children, learned its language together
with learning the rest of its world, we could hope that it
would also learn to symbolically reason based on the norms
it has come to endorse. This would open the framework to
the inclusion of explicit moral rules. However, these would
still need to be grounded in the different competences listed
above.

Third, our approach, with its emphasis on social
emotions and observational learning entails that the robot
will acquire part of its moral valuations from how agents
around it act and react to each other. As autonomous robots
are rare, it is likely that these will be humans, which
raises the question how good models they (we) are? This
limitation allows us to highlight the important distinction
between acting from what we think is right – what a moral
robot can be expected to learn to do – and acting in a
way which is ultimately right - what philosophers are still

discussing. What morality the robot will acquire will be
dependent on where it spends its formative years, but it
will nevertheless be moral as acting consistently with its
emotional and causal appraisals of various situations.

At the start of this paper we motivated the development
of moral robots with concerns about potential risks
of introducing artificial autonomous agents in a human
society, but it is also worth highlighting another benefit
of our approach, namely that autonomous moral robots
will likely be easier for humans to interact with. This is
because their morality, like ours, will be grounded in their
sensory-motor experiences and based on a history of social
learning through their interaction with humans. They will
be beings inhabiting similar lifeworlds to ours (cf. Von
Uexküll, 1934/2010), making them closer to becoming not
only agents of equal moral standing with us, but possibly
also being treated as moral patients in their own right. We
believe this is a necessary step for true social interactions to
take place between robots and humans.

To conclude, we view morality as intrinsically linked to
complex social cognition and behavior. In fact, this link
might be universally applicable across entities with such
social features, ranging from primates (de Waal, 1996) to
autonomous robots as described in this paper. We hope
that our suggested design features for an intrinsically moral
social robot will aid in the construction of artificial agents
that can be fully trusted by both their users and by the public
at large. Only when artificial intelligence is intrinsically
moral, fear of it will dissipate.

References

Anderson, S. L. (2008). Asimov’s “laws of robotics” and
machine metaethics. AI & Society, 22(4), 477–493.

Anderson, M., & Anderson, S. L. (2007). The status of
machine ethics: a report from the AAAI Symposium.
Minds and Machines, 17(1), 1–10.

Asada, M. et al., (2009). Cognitive Developmental
Robotics: A Survey. IEEE Transactions on Autonomous

Mental Development, 1(1), 12–34.
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