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 Abstract 7 
 8 

In this study, the design aspects of optically accessible pressure vessels are investigated via a case study of a High Pressure 9 

Combustor experimental rig. The rig was designed to take optical measurements of combustion, simulating the conditions 10 

found in internal combustion engines and turbines. Although, it is not new to equip chambers and reactors with sight 11 

windows, important aspects of design and relevant information regarding optical access is missing or are insufficiently 12 

explored or not readily accessible in the existing literature. A comprehensive review of requirements for optical access to 13 

such high-pressure, high-temperature systems has been conducted. It is shown in a readily-navigable format as function of 14 

application and precision, with data and technical correlations hitherto not found in a ‘user-friendly’ style. The material 15 

selection procedure is detailed and supported by a complete comparison of optical materials and relevant properties. The 16 

review revealed a significant inconsistency in mechanical properties claimed in the literature for optical materials. As a 17 

response to this, increased safety factor values are suggested as function of level of uncertainties and effects of failure, 18 

typically three to four times higher than the industrial standard. Moreover, newly developed equations are presented linking 19 

performance analysis to the design criteria.  20 

  21 
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1 Introduction to the High Pressure Combustor (HPC) and the need for optical development 29 
Over the past two decades, concerns about global warming and the depletion of the ozone layer have driven researchers to 30 

find better alternatives to the high energy consumption demand [1-4]. With the combustion of fossil fuel and the subsequent 31 

production of carbon dioxide being accounted for as the main contributor to the current release of greenhouse gases to the 32 

atmosphere [5], and taking into consideration that a solution to the current energy supply problems is yet distant, 33 

improvements in the understanding of the chemical reaction and flame-propagation processes and reduction the emissions 34 

of these engine-fuel combinations should be implemented as a short term solution [6-8]. 35 

The HPC was developed to address research topics in combustion science. Its unique design makes it a versatile tool to 36 

model and test the working, at real-life conditions of industrial furnaces, external and internal combustion engines and gas 37 

turbines. It can be set up to test steady combustion up to 60 bar for 30 minutes. It can accept virtually any combustible 38 

substance with a high accuracy of air-fuel ratio and a control of residence time. Moreover, the flow pattern can be set to 39 

either plug or swirl. The high-pressure air (variable up to 60 bar) is delivered to the chamber via a number of safety 40 

instruments from a large air receiver – which is charged by a three-stage piston pump. The air arriving to the combustion 41 

chamber is dried, and its flow and pressure is set by a computer-controlled valve system. The fuel is injected into the 42 

chamber by interchangeable injectors; the fuel flow pattern, supply pressure and volume flow is variable. The actual 43 

combustion chamber is not a single-piece vessel but rather an assembly of several sections. Therefore, the length of the 44 

chamber – and hence, the residence time of reactants – can be varied depending on the application. The sections were 45 

designed with numerous radial access points so that reaching any point inside the combustor for sampling would be 46 

possible; see Figure 1 for a schematic of the experimental rig. The initial ignition is provided by a high-energy spark. At the 47 

end of the process, the burned mixture leaves the chamber via a special plunger valve that is capable of withstanding the 48 

high temperature and pressure. A detailed description of the HPC facility can be found in [9-11]. 49 

 50 

Figure 1. Schematic drawing of the experimental rig, adapted from [10]. 51 

The HPC has supplied the combustion research community with vital information. Using thermocouples and sample probes, 52 

its current capabilities have been fully utilised. New developments were needed to keep the rig up-to-date. In the last 15 53 

years or so, the optical- and laser-based measurements became the most important tools to investigate combustion details 54 

and results of these methods published elsewhere [12-14]. These methods have a fast response time and do not require 55 

actual physical contact with the flames. It was essential to equip the HPC with optical access in order to keep the research 56 

work current and on-going. 57 

2 Current contribution 58 
The design methods and procedures of industrial pressure vessels are well-documented, with comparisons of methods and 59 

standards available for industrial applications [15-25]. These provide good guidelines even for an unconventional design 60 

task, but of course they do not provide comprehensive data for all possible cases. In general, the available literature lacks 61 
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data regarding optical access to pressurised vessels. Information on design practices and material properties are scattered 62 

in the literature, being hard to find and often inconsistent. Therefore, the aim of this work is to target these gaps by: 63 

collecting the scattered data; dealing with inconsistency found in literature and providing detailed recommendation for 64 

safety factors, collecting and presenting design criteria as function of application; developing new functions and equations.  65 

In this work, novel complementary material is provided for the design of chambers and reactors that require the equipment 66 

of sight windows on them. As a result of extensive review, the properties of practical optical materials were collected and 67 

presented together in graphs and tables, allowing for direct comparison. The details of special design practices regarding 68 

transparent parts are discussed, and the available data on existing design solutions is collected and shown. Some 69 

complementary material is added to the basic equations and relations in Statics. Moreover, there are papers examining 70 

design procedures [26], but to the authors’ knowledge this is the first detailed design study on optically accessible pressure 71 

vessels (fixed volume or internal combustion optical engine) where the real-life application of the collected data is shown. 72 

Structural analysis of optical material window is shown and its effects to practical design. 73 

3 The optical access: review of material and their properties; practical solutions; 74 

mechanical and optical performance 75 

3.1 Optical materials: mechanical, optical and chemical properties 76 

 77 

Figure 2 Transmittance of the reviewed optical materials; relative responsivity and wavelength of interest are also 78 
shown (for Design requirements section). 79 

There are a large number of materials that can be considered for sight windows on pressure vessels, from ordinary plastics 80 

to exotic ceramics. In this work, only the most common and most practical optical materials were chosen for comparison.  81 

The underlying design criteria for selecting the optimal optical material type are: useful transmittance range, operating 82 

temperature and mechanical load. In Table 1, only high-operating-temperature materials are listed. It is important to note 83 

there are other choices available for specialised tasks, such as silicon or germanium, but their availability is limited and they 84 

are costlier. In low-temperature environments, plastics like acrylic and polycarbonate can be used. During design, it is 85 

essential to consider the working temperature and obtain a good estimate of it from simulations or experiments.  86 

Although unusual in mechanical engineering, it is important to choose the right material for the required electromagnetic 87 

band. It is also vital to consider the ratio of the electromagnetic energy falling on a body to that transmitted through it. This 88 

ratio is called the transmittance of the material [27]. Transmittance values for each wavelength vary significantly among 89 

material. For example, a larger selection of materials can be considered if the investigated radiation is in the visible or in the 90 

near infra-red (NIR) regions. Due to the availability of a wider range of materials, the implication is that sight windows for 91 

high speed imaging or laser-aided measurements can be designed more easily, and more complex shapes with larger 92 

dimensions are therefore possible. Choosing an optimal material is more complex when longer wavelengths have to be 93 

captured for both spectroscopy and thermal imaging. For wavelengths over 2500 nm, the transmittance curves start 94 

fluctuating or becoming discontinuous. If this, then, is the electromagnetic wave band region of interest, careful planning 95 

will be needed to select the right material type. The transmittance of common optical materials for wavelengths under 200-96 

250 nm falls rapidly. Yet, it is an important region in combustion science as some radicals have their peak emissivity in this 97 
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electromagnetic band. Researchers and designers are practically left with fused silica and a number of fluorides (MgF2, CaF2, 98 

BaF2) to use. Figure 2 shows the transmittance curves of selected materials. 99 

Once the material candidates are shortlisted by wavelength transmittance, the more conventional design process follows 100 

this when further mechanical, thermal and chemical resistance properties are of interest. 101 

Finally, the cost analysis needs to be taken into account when the material type providing the optimal solution is chosen. 102 

Table 1 summarises some of the most related properties of a selection of practical optical materials. As expected, all of the 103 

listed properties are functions of temperature, size and shape, exact composition, heat treatment, surface finish, and other 104 

manufacturing processes. It is important to note that there are significant differences (10-15%) between the claimed values 105 

by different manufacturers and textbooks. 106 

Table 1. Optical material properties  107 

 Unit 
Soda Lime 

Glass 
Borosilicate  Quartz 

Fused 
Silica 

Sapphire 
Magnesium 

Fluoride 

General        

 Chemical Formula, 
Composition 

(weight %) 

SiO2:74, 
Na2O:15, 

CaO:5, others 

SiO2:80+, 
B2O3:7-13, 

Na2O, others 
SiO2:99 SiO2:99 Al2O3:99 MgF2:99 

 Density (g/cm3) 2.2-2.52 2.2-2.4 2.2 2.2 3.98 3.18 

Optical        

 Useful Transmission (nm) 320-2300 325-2100 200-2400 180-2200 150-5000 110-7500 

 Refractive index (588 
nm) 

- 1.52 1.47 1.46 1.46 1.76 1.38 

Mechanical I       

 Young's Modulus (GPa) 72 64 73 73 335 138 
 Tensile Strength (MPa) 41 27-62 50 50 275 II 140 

 Hardness, Vickers - 550 520-580 1000-1200 
1000-
1200 

1940 400 

 Poisson’s ratio - 0.23 0.21 0.17 0.17 0.25 0.27 

 
Weibull variability of 

strength 
- 6 III 30 IV 8.82 V 10.2 VI 5 5 

 Weibull stress (MPa) 129 III 71 IV 115 V 180 VI 485 96 

Thermal        

 Softening Point (°C) 1450 800-850 1730 1600 2300 VII 1255 

 
Max. Continuous 

Operating 
Temperature 

(°C) 260 280-350 950-1150 950-1100 1200 500 

 Thermal Conductivity 
at 300 K 

(W/mK) 0.96 1.1-1.2 1.38 1.38 27.21 11.6 

 Coefficient of 
Expansion 

(10-6/K) 3.5-9 3.25-4 0.55 0.55 8.4 8.9 

         

properties perpendicular to optical axis 

materials are birefringent for exact refractive indexes see references 
mechanical properties at room temperature 
I mechanical and optical properties are dependent on fabrication method and surface finish; II fractural strength; III Kimble R-6; IV 
BK-7; V standard polish; VI “super polish”; VII melting point 

 108 

Soda lime glass is the common glass type that can be found everywhere. It is mass-manufactured by floating the hot raw 109 

material on a bed of molten tin. It is the least expensive material of all, and being softer than other glasses, it is easy to make 110 

a complex part out of it. It is a hard material with good scratch resistance, but is significantly softer than other glasses or 111 

sapphire. It is not resistant to many chemicals, and its higher coefficient of expansion makes it sensitive to uneven 112 

temperature distribution [28-32]. 113 

Borosilicate glass is 2-3 times more expensive than soda lime glass but still considerably less expensive than fused quartz or 114 

silica. It has the same easy manufacturing properties as soda lime but usually has a lower thermal expansion coefficient, 115 

hence making it more resistant to thermal shock. Leaching can occur but it is more resistant to chemicals [28-31, 33, 34]. 116 
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Fused quartz and silica have very similar properties as they have an almost identical composition. The main difference 117 

between them is in the amount of contamination caused by the different manufacturing processes. Quartz is made from 118 

melted and cleansed naturally occurring quartz sand with larger amount of contamination in the product, while fused silica 119 

is a pure version of quartz synthesised from various gases. However, their mechanical and electrical properties are identical. 120 

The only contrasting (and significant) advantage is that, silica has an excellent transmittance in the ultra violet (UV) region. 121 

This property makes it unique among silicon oxides. A major advantage of quartz and silica, when compared to cheaper 122 

glasses, is their increased stability. Their mechanical properties are significantly less sensitive to temperature changes than 123 

borosilicate or float glasses. For instance, for a borosilicate, the linear thermal expansion at 500 °C increases its ambient 124 

value a few hundred times; silica, however, faces an increase of about 40 times and then stays constant with further increase 125 

of the temperature. This makes the evaluation of thermal stresses a lot easier when implementing quartz and silica. 126 

Nevertheless, their excellent properties come at a price: the material cost is significantly higher than the aforementioned 127 

glasses and their higher temperature resistance makes fabrication more complex. They have a reasonably good resistance 128 

to chemicals but break down with some caustics, fluorinated acids and plasmas [28-31, 33-36].  129 

Sapphire is a single crystal and a very versatile material. It is the second hardest material on Earth, which makes it best 130 

choice of material whenever wear and abrasion are the main constraints. Its high mechanical strength and modulus of 131 

elasticity provides good resistance against impacts. It is virtually impervious to all corrosive materials and its thermal stability 132 

outperforms all other optical materials. Yet, sapphire raw material is not significantly more expensive than fused silica. On 133 

the other hand, its extreme hardness and a high melting point make the manufacturing process challenging and costly. In 134 

conclusion, sapphire is not suitable for large windows and for complex shapes [37-43]. 135 

Magnesium fluoride is an excellent material choice for application in the UV bandwidth (the cheaper CaF2 has similar 136 

properties but with slightly reduced useful transmittance range). Larger size crystals can be grown, and it is possible to 137 

machine it with standard diamond tools as this material can be polished well. Thus, complex shapes and geometries can be 138 

achieved. It has a wide range of transmissivity but it is not as wear-resistant as the other materials, and its surface will 139 

degrade in a humid environment at elevated temperatures (over 500 °C) [33, 39, 44-46].  140 

3.2 Geometric design and mounting methods 141 
There are a number of different ways to hold the optical element within an optical apparatus. A particular mounting method 142 

can be selected considering the geometric constraints, the sealing requirements, position accuracy, the orientation of optical 143 

axis, stress and the deformation caused by pressure difference, and birefringence. In this paper, sight optics is investigated 144 

only; their mounts are less complex than lenses that need more degrees of freedom.  145 

3.2.1 Optical element kept in place by a guided clamp 146 

 147 

Figure 3. Fixed volume combustion chamber with circular window that is positioned by a guided clamp [47]. 148 

Figure 3 shows the usual clamping method where the retainer is fitted and guided in the directon of the displacement of 149 

the window. The radial position of the retainer is fully defined by the contact forces. The advantage of this solution is the 150 

simple tensile load on fixing bolts, and simplified dismantling and re-assembly. Details of loaded bolted joints can be found 151 

in the literature [48]. The disadvantage here is that the larger the size in the direction of optical axis, the more complex its 152 

design and manufacturing turns out to be [49]. 153 
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3.2.2 Optical element kept in place by a free sitting clamp 154 

 155 

Figure 4. Four-stroke optical engine, the rectangular window is sandwiched by the clamp and soft gaskets [6, 7]. 156 

 157 

Figure 5. Special sodium chloride free sitting window for a high-temperature, high pressure difference, IR spectra [50] 158 

The simplest design solution is illustrated in Figure 4 and Figure 5. The clamp is not guided but constrained by contact in one 159 

axis and constrained by friction along the other two axes; its position is defined by fixing bolts. Its advantages are: a simpler 160 

design, easier to manufacture, smaller in size along the optical axis, and that its position along the optical axis can easily be 161 

varied. Its disadvantage is that a greater amount of mechanical (bending) load on bolts is required; since the window can 162 

freely move, bringing the assembly together can also be problematic. 163 

3.2.3 Adhesives 164 
Fixing an optical element in a carrier frame using adhesives, as indicated in Figure 6 is a convenient solution for lower 165 

pressure and temperature environments. In both cases, the window sits against a shoulder which provides an accurate 166 

positioning. All mechanical loads rising from the pressure differential are taken by the adhesive. In the second case, the 167 

adhesive acts as a sealant and retainer; only, the stress is induced, but the pressure difference is taken by the shoulder on 168 

the frame cell. The main advantage of this solution is the modest space requirement. Its only disadvantage is that the 169 

performance of the assembly is proportionately dependent on the properties of the adhesive, which are usually limited. 170 

 
a,  

 
b, 

Figure 6. a, Using adhesives for a low pressure application [51]; b, Using adhesives for a moderate pressure 
application [52].  

 171 
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3.2.4 Fitted inside the shell of the vessel 172 

 173 

Figure 7. Window integrated in the vessel body [53, 54]. 174 

The optical element can be fitted inside the housing, a typical application area is the deep submergance vehicles, Figure 7. 175 

There is no need for bolts as the major load-bearing element. Its advantage is that this setup can take large pressure 176 

differences, while the vessel geometry can also be made more simply. Its disadvantage is that the window can only be 177 

dismantled from the pressurised side, more complex window geometry required. 178 

3.3 Structural design and performance 179 

3.3.1 Allowable or design stress in the optical element, safety factor 180 
The estimation of the allowable or design stress is among the most important and sometimes challenging tasks, especially 181 

at elevated temperatures [23-25, 55-57]. The data of mechanical properties can be found in the literature for the more 182 

common materials; however, there often is no consistency in the given values. It becomes even more difficult to find 183 

information when practical issues are being considered, such as the effects of temperature, humidity, manufacturing 184 

technology, surface finish, and loading rate. Pressure vessel codes provide suggestions for high strength alloys which can 185 

then be taken as a first guidance for optical materials. According to BS EN 13445-3 [56] and ASME Boiler and Pressure Vessel 186 

Code Section VIII [57], the design stress should be calculated as:  187 

(EN) 𝜎𝑑𝑒𝑠 = min (
𝑅𝑝0,2/𝑇

𝑆𝐹
 ;  

𝑅𝑚/20

𝑆𝐹
) =  min (

𝑅𝑝0,2/𝑇

1,5
 ;  

𝑅𝑚/20

2,4
) ( 1) 

 (ASME) 𝜎𝑑𝑒𝑠 = min (
𝑅𝑝0,2/𝑇

𝑆𝐹
 ;  

𝑅𝑚/20

𝑆𝐹
) =  min (

𝑅𝑝0,2/𝑇

1,5
 ;  

𝑅𝑚/20

2,14
) ( 2) 

where, 𝜎𝑑𝑒𝑠  is the allowable design stress; 𝑆𝐹 is the safety factor; 𝑅𝑝0,2/𝑡 is the 0,2% proof strength at T temperature; 𝑅𝑚 is 188 

the tensile strength at 20 °C [58]. As optical materials discussed in this work have brittle characteristics, it is only the safety 189 

factors that are associated with the tensile strength that are applicable. It is suggested that the safety factor for optical 190 

design should always exceed 2. The general value for a well-designed system is around 3, when failure is not expected to 191 

cause major damage. When there is more uncertainty in the design, the usual and conservative safety factor value is 4. The 192 

value can be as high as 5 for non-optimum or unplanned conditions (manufacturing or usage) or when failure can cause 193 

significant damage [51, 59].  194 

3.3.2 Geometric and mechanical tolerances 195 
The tolerances on diameters and on the thickness of the centre and edges are comparable to general precision 196 

manufacturing, typically h6 to h11. When the edge of the window is not fitted and/or it is not a sealing surface the size 197 

tolerance is in the 0.1-0.01 mm range. The tolerance on the thickness of the optical access has importance for lenses but for 198 

windows it is not crucial. Similarly, the usual parallelism requirements are on the fine side but are comparable but to the 199 

ones used in pressure vessel manufacturing. However, the surface roughness values are in a couple of order less than the 200 

typical values for precision manufacturing technologies for metals. Moreover, the quality of the finish is further described 201 

by the scratch and dig number. A usual scratch/dig specification consists of two numbers e.g. 80/50. The first number 202 

indicates the maximum size of cracks (scratches) on the surface of the optical element. The second number describes the 203 

maximus size of round-shaped imperfections: digs and pits [60, 61].  204 

Guidelines are given in Table 3 for selecting optical and mechanical properties for sight window applications.  205 

3.3.3 Deflection and stress 206 
Equations relating deflection to the applied pressure difference can be found in the literature for a number of shapes and 207 

support modes [62, 63]. In this work only the details of relations for the plane-parallel circular window shape are shown. 208 
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Table 2, Classical mechanics of plane-parallel circular elements 

Non supported case Supported case 

  

𝛿 =
3(3 + 𝜇)

8

∆𝑝𝑟2

𝑡2
= 𝐾𝑤

∆𝑝𝑟2

𝑡2
 ( 3) 

 

𝛿 =
3

 4

∆𝑝𝑟2

𝑡2
= 𝐾𝑤

∆𝑝𝑟2

𝑡2
 ( 4) 

 

𝐾𝑤=0.125 ( 5) 
 

𝐾𝑤=0.75 ( 6) 
 

𝑥 =
3

16
(−𝜇2 − 4𝜇 + 5)

∆𝑝𝑟4

𝐸𝑡3
= 𝐾𝑥

∆𝑝𝑟4

𝐸𝑡3
 ( 7) 

 

𝑥 =
3

16
(1 − 𝜇2)

∆𝑝𝑟4

𝐸𝑡3
= 𝐾𝑥

∆𝑝𝑟4

𝐸𝑡3
 ( 8) 

 

 𝐾𝑥=0.96 ( 9) 
 

𝐾𝑥=0.17 ( 10) 
 

 209 

𝐾𝑤  is a generalised constant suggested by textbooks [51, 52, 59]. In these works, 𝐾𝑤  is choosen conservatively to cover a 210 

wide range of optical materials. This conservative method was chosen in this study to make a suggestion for values of 𝐾𝑥. 211 

In the rest of the equations, ( 3)-( 10) 𝛿 is the stress; 𝜇 is the Poisson ratio; ∆𝑝 is the pressure differential; 𝑟 is the radius 212 

which is half of the aperture or diameter 𝐷0; 𝑥 is the defelction; 𝑡 is the thickness of the optical element; 𝐸 is Young’s 213 

modulus. If the the stress equations are rearranged and the safety factor, the diameter and design stress are inserted, then 214 

the minimum required thickness of the optical element can be calculated.  215 

 𝑡𝑚𝑖𝑛 = (
1

2
𝐷𝑜) [

𝐾𝑤  𝑆𝐹𝛿  ∆𝑝

𝛿𝑑𝑒𝑠

]
1 2⁄

 ( 11) 

where, 𝑡𝑚𝑖𝑛 is the minimum thickness of the circular optical element; 𝐷0 is the diameter of the aperture; 𝑆𝐹𝛿  is the safety 216 

factor; ∆𝑝 is the applied pressure difference on the optical element; 𝜎𝑑𝑒𝑠  is the allowable design stress. Using Equations ( 7) 217 

and ( 8), the deflection can be calculated or the rearranged version with the maximum allowable deflection can be used to 218 

find the minimum required thickness: 219 

 𝑡𝑚𝑖𝑛 = [
𝑆𝐹𝑥 𝐾𝑥  ∆𝑝 𝐷0

4

16 𝐸 𝑥𝑚𝑎𝑥

]

1

3

 ( 12) 

where 𝑆𝐹𝑥 is the safety factor. In general, as 𝑆𝐹𝛿 is associated with complete breakdown and failure and 𝑆𝐹𝑥 has an effect 220 

on only the quality of the image produced by the optical element. 𝑆𝐹𝑥 can have a significantly lower value than the 𝑆𝐹𝛿. 221 

Equation ( 12) provides results for a simple case of a mechanical load. When, there is a combined load from thermal and 222 

mechanical loads, the deflection needs to be calculated using Finite Element Analysis (FEA). The result of the simulation can 223 

be used to calculate the outer radius (𝑅) of the window that can be turned into a divergent meniscus lens (assuming the 224 

same deflection on both sides of the window): 225 

 𝑅 =
𝑥2 + 𝐷0

2

8𝑥
 ( 13) 

Then with the known thickness the lens power (𝑃𝑙𝑒𝑛𝑠) can be calculated: 226 

 𝑃𝑙𝑒𝑛𝑠 = (𝑛 − 1)
−𝑡

𝑅2 − 𝑅𝑡
 ( 14) 

The maximum deflection of a window is a function of allowable image distortion. In an optical system with lens and sensor, 227 

the lens focusing error usually gives the tolerance in dioptres. It is hard to find tolerances published, but as a rule of thumb 228 

some values are summarised in Table 3, [64-67]. 229 

Equations of stress, deflection and power calculation for rectangular, plan parallel windows can be found in [68]. 230 

3.3.4 Failure estimation by statistical tool 231 
It is a common practice to implement Weibull statistics to estimate the probability of failure (𝑃𝑓  ) when a given 𝜎 load is 232 

applied on a brittle material. 233 
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 𝑃𝑓 = 1 − exp [− (
𝜎

𝜎0

)
𝑚

] ( 15) 

where 𝑚 is a constant describing the variability in strength; their values having been experimentally determined and 234 

published. 𝜎0 is a stress level at which 63% of the samples fail, 𝑚 is the so called Weibull modulus and indicates the scatter 235 

of fracture stress around 𝜎0 [51, 69-72]. The acceptable values can differ significantly and they should be determined for 236 

each application individually. Some suggested examples: for a cheap easily replaceable cutting tool - 10-2; for an expensive 237 

part that upon failure can cause serious damage – 10-4; when personal injury is at risk – 10-6; when the outcome of a failure 238 

could be fatal then 10-8. 239 

3.4 Optical design and performance 240 

3.4.1 Birefringence and maximum optical path difference (OPD) 241 
It is usual for most practical optical materials to have two indices of refractions. Their refractive index is a function of the 242 

propagation-direction and polarisation of the incident electro-magnetic wave. Furthermore, it is a function of the 243 

mechanical stress in the medium. Optical substances having this property are called birefringent materials [73]. The level of 244 

birefringence is expressed as a difference in the optical path of two perpendicular states of the polarised wave. This 245 

inequality in distance is called the OPD and it is measured in nanometres. The OPD has been previously investigated for 246 

plane-parallel circular plates with a pressure differential applied on them; Sparks et al. [74] derived an approximate relation: 247 

 OPD = 8.89 × 10−3(𝑛 − 1)
∆𝑝2𝐷6

𝐸2𝑡5
 ( 16) 

where, OPD is the optical path difference; 𝑛 is the refractive index of the material; ∆𝑝 is the pressure difference applied 248 

across the planes of the optical element; 𝐷 is the aperture, the unsupported diameter of the optical element; 𝐸 is Young’s 249 

modulus of the medium; and 𝑡 is the thickness of the window. This OPD caused by an applied stress called the stress 250 

birefringence. It is measured as OPD per unit travel path; its unit is nm/cm. The details of the maximum allowable tolerances 251 

on birefringence for some applications are given in ISO 10110-8 [61] and Kimmel and Parks [75]; a summary is presented in 252 

Table 1. Equation ( 16) can be rearranged to find the minimal required thickness: 253 

 𝑡𝑚𝑖𝑛 |𝑂𝐷𝑃∆𝑝 = √8.89 × 10−3(𝑛 − 1)
∆𝑝2𝐷6

OPD ∙ 𝐸2

5

 ( 17) 

 254 
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 Table 3. Sight window properties for different applications 

Precision 
Typical 

application 

Maximum power 

of a deflected 

window 

(dioptre) 

Maximum 

OPD per 

unit path 

length 

(nm/cm) 

Parallelism 

or plane 

angle 

(degree) 

Fl
at

n
e

ss
 

(𝜆
 is

 t
h

e 
ch

ar
ac

te
ri

st
ic

 

w
av

el
en

gt
h

) Surface finish 

or roughness 

(nm) 

Surface finish 

quality 

Extreme 

Polarisation and 

interference 

instrumentation, 

deep-space 

instrumentation 

No data 2 No data 
𝜆

20
 or better 0.3 No data 

High 

Photolithography 

optics and 

astronomical 

telescopes 

No data 5 0.001 
𝜆

10
 0.5 10/5 

Good 

Photographic 

and microscope 

optics, visual 

telescope 

10−2 − 10−6 * 10 0.01-0.001 
𝜆

2
−

𝜆

4
 1 

40/20- 

20/10 

Semi 

Eyepieces, 

viewfinders, 

magnifying 

glasses 

10−1 20 0.1-0.01 𝜆 2 60/40 

Commercial 

Illumination 

optics, 

condenser lenses 

No req.** No req. 0.1 
No req. - 

2 𝜆 
4 80/50 

*in general it can be said that, tolerance values in the order of 10−6 or less are likely to be negligible when they are 

compared to the uncertainty in the focus adjustment of a lens system 

** No req.: No requirement 

It is important to note that there are always some residual stresses in optical materials, depending on the quality of the 255 

manufacturing processes. More details relating the manufacturing process to stress birefringence can be found in the 256 

references.  257 

3.4.2 Factors limiting the maximum thickness 258 
 The most obvious limiting factor is the available space the geometric constraints, which depends on the individual 259 

design. The different possible mounting methods and previous publications of solutions are introduced in other 260 

sections of this work. 261 

 Transmittance change as a function of material thickness [27]. Significant decrease of the transmittance can only 262 

occur with large thicknesses, this is not a usual design constraint for high load applications. 263 

 Temperature gradients can cause stress concentration in window materials. For heated or cooled designs this can 264 

limit the size of the geometry. Ceramics with larger thermal conductivity coefficients are less sensitive to thermal 265 

shock, [76, 77]. 266 

 Price: manufacturing and material cost 267 

As Figure 8 indicates typically there is a thickness range where the price is at its minimum. This is the most 268 

commonly made size range(𝑡 ↔ 𝑝𝑡; 𝑝~3 … 5) that is mass produced with a variety of tolerances and finishes. 269 

These are usually used in general optics and not adequate for high load applications. To the left from this region 270 

(𝑡 ↔ 𝑚𝑡; 𝑚~0.6 … 1.0) there is an increase in price where the manufacturing becomes more laborious. The 271 

relatively thin geometry makes the window fragile and prone to deflection under the manufacturing loads. A 272 

further sharp rise expected for thicknesses below 𝑚𝑡 where extra care is required to provide precision finish. For 273 

example, during manufacturing there is a 50% breakage rate for 0.2mm borosilicate glass coverslips. On the right 274 

hand side from the flat (𝑝𝑡 ↔ 𝑛𝑡; 𝑛~few hundreds) the increase is driven by the cost of material. 𝑛𝑡 represents 275 
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the maximum size that is achievable using the standard or already existing raw material production tooling. Larger 276 

geometries can only be made if tooling cost is covered. 277 

Figure 8 only introduces general trends in the price the actual values will differ from geographic region to region, 278 

material type, and quantity required.  279 

 280 

Figure 8. Approximate cost of manufacturing of disc-shaped windows as function of thickness 281 

3.4.3 Other design considerations 282 
In this section further design considerations are listed and referenced. They are not of interest to this study, but they can 283 

be potentially important for other designs, for instance, in applications where the pressurised chamber is used with high 284 

accuracy polarisation or interference instruments or deep space applications. 285 

 Compressive stress caused by sharp edges on the surface of an optical element [78, 79] 286 

 Effect of a temperature gradient on adhesive bonds [52, 80] 287 

 The tensile stress in a brittle material due to a compressive load on its surface [52, 63, 81] 288 

 Focus shift in thick parallel plane optical elements [82] 289 

 Distortion caused by a temperature gradient [71, 83-85] 290 

4 Design of an optically accessible pressure chamber 291 
The detailed geometry of the existing combustor is shown in Figure 9. An important feature of it is that the working chamber 292 

was constructed from sections. Utilising this property, the reactor’s length could be varied to adjust the residence time of 293 

the reactants. Different length sections were available to build the reactor. When the reactor was assembled, the sections 294 

were sealed by polymer O-rings. As a result of the limited temperature resistance of the stainless steel structure and the 295 

high thermal load, the sections had to be individually water-cooled, as in Figure 9.  296 
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 297 

Figure 9. An isometric and a section view of existing chamber, computational result of in-cylinder temperature 298 
distribution shown in the section view. Conditions: diesel fuel; stoichiometric ratio; 6 bar in-reactor pressure. 299 

 300 

4.1 The section 301 

4.1.1 Design requirements 302 
It was required that the optical section withstand the maximum of 20 bar working pressure at the maximum possible 303 

operating temperature and that its geometry would allow it to be connected it to the existing rig. In order to seal the reactor, 304 

it was essential to maintain the temperature at an acceptable level in the O-ring grooves. The maximum continuous 305 

operating temperature of the Viton O-rings (200 °C) was chosen as a limit on the surfaces that were in contact with the 306 

rings. The system could provide a maximum cooling flow rate of 10 litres per minute for the new optical section. The highest 307 

allowed inflow cooling temperature was 70 °C. The estimation of the heat flux coming from the combustion to the section 308 

was based on a number of test results where an in-chamber, single-point gas temperature measurement was taken. An 309 

example of these results is shown in Figure 10. The results of computational work on combustion and in-chamber conditions 310 

by Demosthenous and Crookes [10] were used as input boundary conditions for the analysis, Figure 9. It was also a 311 

requirement that the windows could be easily changed to metal blanks for heating up or non-optical tests. 312 

 313 

Figure 10. Typical test results of the existing combustion chamber; the time of ignition is indicated by the rapid increase 314 
in temperature and a pressure peak at around 10s after ignition 315 

It was an underlying requirement that the new apparatus would allow investigation with a Phantom 4.3 high speed camera, 316 

a TSI Particle image velocimetry system (laser: dual 50 mJ/pulse, NewWave Gemini Nd:YAG; sensor: PowerView 4MP) and 317 

a FLIR Titanium 560M infrared (IR) camera. 318 
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4.1.2 Material choice  319 
As shown in Figure 12, the resultant optical section is a complex shape, featuring fine finished surfaces for sealing purposes. 320 

It is thus that the material of the section body needed to have adequate strength to withstand the pressure load at high 321 

temperatures. It also needed to be suitable for precision subtractive and additive manufacturing. Moreover, due to the 322 

corrosive products forming inside the chamber and the constant presence of cooling water, the material was required to 323 

have some corrosion-resistant properties. A detailed list of possible materials can be found in EN134453 [86]. The 324 

aforementioned requirements suggested using an austenitic stainless steel grade. After considering the cost, the corrosion 325 

resistance and manufacturability grade 304 (1.403) was chosen. It is easily available, with well-documented data on its 326 

mechanical properties at elevated temperatures showing the tensile stress for the materials that were used to construct 327 

the optical combustor, Figure 11. 328 

The material selection procedure for the combustor body and for the optical element was based on general guidelines with 329 

practicality and availability in focus. However, in design tasks where material cost or other material attributes have higher 330 

significance more detailed material selection methods could be employed, as described in [87, 88]. 331 

 332 

Figure 11. Permissible design stresses of some selected materials as function of temperature [37, 56]. 333 

4.1.3 Design of required geometry and validation 334 
This structure of the overall design defined some underlying properties of the optical access. It was the obvious choice that 335 

the optical access should be constructed on a section which has similar dimensions and had the same sealing method. Given 336 

the nature of the laser-radiation-based measurement method, a three-access point – in a T-like configuration – was 337 

required. A detailed review of optical measurements can be found in the books by Zhao [12, 13]; see details in Figure 12. 338 

This three-access point design was satisfactory for the high speed and IR camera setup. 339 
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 340 

Figure 12. The final design of the optical section. The laser sheet entering and leaving the chamber is also indicated. 341 

At its maximum performance the HPC burns approximately 4 g/s Diesel fuel; it can be seen that cooling is essential for the 342 

continuous operation of this reactor. Insufficient cooling would result in a rapid increase of temperature in the body and in 343 

the window (or blank). The excessive thermal load could lead to the quick failure of the polymer seals. Therefore, the 344 

geometry of the body with window seats had to provide enough surface area for the coolant and allow sufficient volume 345 

flow. Assuming the largest heat flux and inflow cooling temperature, a number of simulations were carried out to estimate 346 

the temperature distribution of solids and the coolant.  347 

Full three-dimensional numerical model was implemented in SolidWorks Multiphysics modelling package using finite 348 

element method. Linear tetrahedral 4-nodes elements were used to discretise the solid components for the structural 349 

analysis whilst hexahedral cells were adopted for the fluid dynamics. The number of cells for the soild and fuild subdoamnis 350 

were 94710 and 62174 respectively, from which 66683 solid cells were in contact with the fluid.  351 

For the purpose of structural analysis, a fixed constraint was applied on the conecting surfaces at one side and an axial 352 

evenly distribute load was added on the relevan surfaces other end of the section. Finally, a pressure load of 2 MPa was 353 

applied on the internal surfaces. The flow analysis was deifend by setting the temperatures, pressures and mass flow rates 354 

for the cooling flow and hot air inside at the inlet and outlet boundaries. The mesh and grid independence was investigated 355 

by means of software embeded tools where the mesh and grid were refined taking the notch effect, stress concentration 356 

and thermal singularities into account. Once the model was set up the coolant flow rate was varied and the temperatures 357 

were monitored, especially the temperature of the O-ring groove as shown in Figure 15 b. 358 

The validation of the model was carried out experimentaly. The temperatures of the coolant entreing and leaving the section 359 

was measured and recorded. Moreover, the outside surface temperature of the metal blanks was monitored for validation 360 

purposes. It was found that the difference between the temperature values predicted by the numerical model and 361 

measurements was approximately 15%.  362 

The O-ring groove temperature curve was plotted against the coolant flow rate, Figure 13. It was found that having at least 363 

5.5 litres per minute coolant flow rate on the designed geometry could keep the O-ring groove temperature at an acceptable 364 

level. The 5.5 litres per minute minimum cooling flow requirement is below the 10 litres per minute maximum performance, 365 

therefore the given cooling system was found to be sufficient. 366 
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 367 

Figure 13. The O-ring groove temperature as the function of the coolant volume flow (value was taken from the corner 368 
point of the hottest possible cross section, as indicated in Figure 15b). 369 

The length of the section was chosen to be the same as that of the longest existing section. The thickness of the optical 370 

section was based on the existing design. Polymer O-rings were used to seal between the sections, the design and 371 

manufacturing were according to BS ISO 3601 [89]. With the given length, a circular window type was selected for easier 372 

machining and the geometrically maximum possible diameter, 82 mm, was chosen to be evaluated. FEA was carried out to 373 

determine the stress arising from thermal loads and applied pressure. As is indicated in Figure 14, the highest stresses are 374 

in the O-ring grooves and in the openings. The grooves had high stresses on their contact surfaces because of the large axial 375 

force pressing the sections together against the pressure. In the case of the openings the high stress rate can be explained 376 

by the reduced material volume, i.e. reduced inertia [90].  377 

   
 

5 bar 10 bar 20 bar  

Figure 14. Stress distribution as a function of chamber pressure 378 

The inner diameter of the optical section is 144 mm; the outer diameter is constrained by the support rods, as seen in Figure 379 

9. As the radial space was limited, the best design solution would have been to place the optical element inside the shell – 380 

but with the given casted base, this was not achievable. Therefore, the second best option – with an eye to optimising 381 

storage space – was to have a free sitting clamp; this setup is shown in Figure 12. The detailed section-view shows the 382 

window kept in place by the circular clamp. The clamps were fixed and positioned by 12 M6 socket-head bolts to the window 383 

seats. The window seats were welded all around to the base chamber or reactor body; the beads sealed the seats and kept 384 

them in place. The window to seat-sealing surfaces were precision-manufactured, as suggested in PD5550:2009 Table 3.8-385 

3 [91]. With the aid of the measurements and computational results, further analysis was carried out to estimate the working 386 

temperature of the section and optical elements. The temperature distribution of the cross-sections is shown in Figure 15. 387 

4.2 The optical access 388 
In this section the design process of a plan parallel circular optical element is introduced via a case study. Table 4 simplifies 389 

the procedure into four main steps showing all the properties that have effect on the design. In the following subsections a 390 

practical application of Table 4 is presented. The values for the variables and main functions/relations are cross-referenced 391 

from Section 3. 392 
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Table 4. Summary of input variables and their use during the design process of a plan parallel optical element 393 

1, Determining design specifications: 
Collection of information that is required to carry out the design task. 
 Instrumentational requirements 
   EM range /Sensor responsivity (nm) 

 Transmissivity (%) 

 Window aperture (mm) 
 Nature of application, precision  
   Power from deflection (dioptre) 

 ODP (nm/cm) 

 Parallelism (degree) 

 Flatness (fraction of characteristic wave length) 

 Surface finish (nm) 

 Surface quality 

 Properties of thermal and mechanical loads 

 Chemical environment 

 Safety factor 
 Geometric requirements  
   Constrains in all directions (mm) 

 Window aperture (mm) 

 Sealing surface area and shape 

2, Material selection: 
This task can be carried out considering the following material properties 
   EM range (nm) 

 Transmissivity (%) 

 Compatibility with environment  

 Availability 

3, Thickness determination  
 
Calculation of the minimum thickness: 
This a usual undertaking where the minimum amount of material is determined that still ensures the window performing 
without any failure. Numerical methods can be used to decrease the uncertainties in the result. 
   Structural analysis, maximum stress (MPa)  

 ODP (nm/cm) 

 Power from deflection (dioptre) 

 Probability of failure 
Maximum thickness: 
The maximum window size is restricted by the followings. 
   Constrains in all directions (mm) 

 Transmissivity (%) 

 Cost constrain 

4, Manufacturing details and instructions 
The tolerances and finish of an optical element depends on the application and precision required. The overall size is a 
result of the thickness determination and geometric constraints.  
   Geometry: aperture, sealing area, diameter, 

thickness 

 Tolerances  

 Parallelism (degree) 

 Flatness (fraction of characteristic wave length) 

 Surface finish (nm) 

 Surface quality 

 394 

4.2.1 Determining design specification  395 
The main purpose of the window is to provide a transparent barrier between the combustion and instrumentation. An 396 

underlying requirement was to allow use of three different sensors (cameras) with differing spectral responses. Wavelengths 397 

of interest are particulate imaging velocimetry (around 532 nm), high speed camera (visible spectra) and IR camera (3 to 5 398 

micron); the responsivity curves are shown in Figure 2. As the wavelength of the laser is in the visible range, there were two 399 

bands of electromagnetic radiation that needed to be considered – 380-985 and 2800-5200 nm. In these regions, the 400 
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minimum of 80% transmittance was required. The tolerance on the OPD had to be kept in the photographic range: 10 401 

nm/cm. As the three sensors were robust and the measurements by them were not overly sensitive, the maximum allowed 402 

lens power of the distorted window was 10-6 dioptre. The maximum expected pressure difference on the optical element 403 

was 20 bar. The required safety factor was required to be four for stresses arising from mechanical and thermal loads, with 404 

a maximum probability failure of 10-4. The technological considerations and tolerances were chosen to fit laser and the 405 

precision measurements requirements. The level of precision was selected to be good according to Table 3. Finally, the 406 

operating temperature of the window had to stay under the maximum permitted level. 407 

4.2.2 Material selection: transmissivity and environmental requirements 408 
The spectral requirement is shown in Figure 2 along with the transmittance curves. The ideal design solution was to select 409 

only one material type to cover the required wavelength ranges. It can be seen that the two possible material types that 410 

cover the needed large range of EM wavelengths are sapphire and magnesium fluoride. The thermal analysis of the optical 411 

section indicated that the steel blanks and windows would need cooling to survive. The calculations and simulations were 412 

carried out for both materials. It was found that MgF2 can be a valid option for low-temperature and low-humidity 413 

environments. Extra caution is required when a temperature gradient is applied on the MgF2 material, as its high expansion 414 

coefficient and middle-range conductivity combined with low strength makes it sensitive to thermal shock. It is also 415 

suggested by manufacturers that MgF2 can react with high temperature steam similar to the one that can be found in the 416 

HPC as a combustion product. Therefore, sapphire was, instead, chosen as material for the windows as it combines good 417 

transmittance in all the required wavelength bands as well as having good thermo-mechanical strength. 418 

  

Figure 15. a) An isometric view of the flow of cooling water, its temperature change and the temperature distribution 
of a cross section of the reactor. b) Temperature distribution around the O-ring groove. 

4.2.3 Determination of required thickness and validation 419 
The diameter of the window was determined by the maximum available space in the optical section. The maximum possible 420 

diameter was found to be 82 mm. Previous experience showed that a width of 9 mm minimum contact surface is required 421 

to provide an adequate sealing performance. The 9 mm wide contact ring also ensured an acceptable level of compressive 422 

stress in the window and provided large enough heat transfer surface for the metal blanks. This geometric design resulted 423 

in a 64 mm aperture. The thickness of the window was estimated by using the equations and relations that were explained 424 

earlier in this paper, and then validated by FEA. The minimum thickness was calculated for two requirements: maximum 425 

allowable stress and OPD. Substituting values to Equations ( 11) and ( 17) the thickness value results were 5.88 and 0.07 mm 426 

respectively. 427 

a, 

b, 
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𝑡𝑚𝑖𝑛 |𝛿 = (
1

2
𝐷𝑜) [

𝐾𝑤  𝑆𝐹𝛿  ∆𝑝

𝛿𝑑𝑒𝑠

]
1 2⁄

= (
1

2
64mm) [

0.75 ∙  4 ∙  2MPa

178MPa
]

1 2⁄

= 5.88mm ( 18) 

𝑡𝑚𝑖𝑛|𝑂𝐷𝑃∆𝑝 = √8.89 ∙ 10−3(𝑛 − 1)
∆𝑝2𝐷6

OPD∙𝐸2

5
 =√8.89 ∙ 10−3(1.76 − 1)

(2MPa)2∙(64mm)6

10
nm

cm
∙(345GPa)2

5
=0.07mm ( 19) 

The results of the estimation indicated that, with the given loads and geometry, the required optical performance was easily 428 

achievable. Then, the window deflection was calculated using FEA for the highest thermal and mechanical loads. The stress 429 

and deflection results were substituted in Equations ( 13), ( 14) and ( 15) in order to check the design for failure probability 430 

and image distortion. Equations ( 13) and ( 14) combined together gives the power of a distorted window as function of 431 

refractive index, aperture and deflection. 432 

 𝑃𝑙𝑒𝑛𝑠 =
64(𝑛 − 1)𝑡𝑥(𝑡)

2  

(𝐷0
2 + 𝑥(𝑡)

2 ) (𝐷0
2 + 𝑥(𝑡)(𝑥(𝑡) − 8𝑡))

 ( 20) 

The power as function of window thickness for the given geometry is shown in Figure 16. 433 

 434 

Figure 16. Power of distortion vs window thickness 435 

It was found that the limiting factors were the probability failure and deflection. Based, on the curve above and financial 436 

consideration the thickness was chosen to be 10mm. Using FEA, the maximum stress was found to be 42.8MPa, with this 437 

level of stress:  438 

𝑃𝑓 = 1 − exp [− (
𝜎

𝜎0

)
𝑚

] = 1 − exp [− (
42.8MPa

485MPa
)

5

] = 5.35 ∙ 10−6 ( 21) 

It is likely that there is a high inaccuracy in this result of probability failure. The value of 𝜎0 is function of a number of 439 

variables, one of the most important ones is temperature. In the equation above the value for 𝜎0 corresponds to room 440 

temperature, and its value expected to be show high sensitivity to changes in temperatures and therefore the probability 441 

failure result can only be received as a guideline. However, no data available for 𝜎0 in the literature for elevated 442 

temperatures 443 

4.2.4 Results and detailed design 444 

 445 

Figure 17. Side view: final sapphire sight window design, where 𝝀 = 𝟓𝟑𝟐nm 446 

 447 

Figure 17 shows the final and detailed manufacturing instructions of the sapphire window. The material selection, 448 

calculation of geometries and tolerances specified were carried out according to Table 4. The stainless section was 449 

manufactured in-house and three sapphire windows were purchased from a specialist company. These were installed in the 450 
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section to make the optically accessible combustor as shown in Figure 12. The HPC with the optical access has been fired 451 

and fully tested successfully. The rig is capable to give insight to the high-pressure combustion process, providing optical 452 

data at different EM wavelengths. Figure 18 indicates the results gained from the working optical section using different 453 

instrumentation. 454 

 
a) 

 
b) 

 
c) 

 
Figure 18. Results from the optical HPC: a) PIV vector field of the flowing air fuel mixture, laser measurement. b) IR 

radiation image recorded from a hydrocarbon flame. c) A still image from high speed video, visible spectra. 

 

5 Conclusion 455 
This work has investigated the design of pressure vessels equipped with optical access. A significant number of data sources 456 

were surveyed to produce a comprehensive review of the most related optical, thermal and mechanical properties for some 457 

optical materials. The database was presented in a way that allows for a convenient and direct comparison. It was concluded 458 

that larger safety factor values are required for optical element design, typically ranging from two to five depending on 459 

operating conditions, manufacturing technology, risks and hazards and so on. The safety factor selection procedure and 460 

criteria was clearly described. The high values suggested is the result of the inconsistency found in available data sourced 461 

from suppliers and from the literature of the thermal and mechanical properties of optical materials. 462 

The little design criteria that was available on the topic in the literature was presented, while also considering practical, 463 

mechanical and optical design considerations. The aspects of the design for optical performance were described in-depth, 464 

with additions to the already published equations and relations. The utilisation of this database allowed for the design 465 

process of a pressure chamber, with optical element under high mechanical and thermal load, to be demonstrated, where, 466 

the required experimental rig needed to support research activity for a range of optical instrumentation.  467 
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