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ABSTRACT 

 

Four well-described strains of Pseudomonas fluorescens were assessed for their effect upon 

pea growth and their antagonistic activity against large Pythium ultimum inocula. The effect of 

Pseudomonas strains upon the indigenous soil microflora, soil enzyme activities and plant growth 

in the presence and absence of Pythium is assessed. Pythium inoculation reduced the shoot and 

root weights, root length, and the number of lateral roots. The effect of Pythium was reduced by 

the Pseudomonas strains as follows: F113, SBW25 and CHAO increased the shoot weights (by 

20%, 22% and 35% respectively); strains Q2-87, SBW25 and CHAO increased root weights 

(14%, 14% and 52%); Strains SBW25 and CHAO increased the root lengths (19% and 69%), and 

increased the number of lateral roots (14% and 29%). All the Pseudomonas strains reduced the 

number of lesions and the root and soil Pythium populations, whilst SBW25 and CHAO increased 

the number of lateral roots. Pythium inoculation increased root and soil microbial populations but 

the magnitude of this effect was Pseudomonas strain specific.  Pythium increased the activity of 

C, N and P cycle enzymes, whilst the Pseudomonas strains reduced this effect, indicating reduced 

plant damage. Overall, strains SBW25 and CHAO had the greatest beneficial characteristics as 

these strains produced the greatest reductions in the side effects of Pythium infection (microbial 

populations and enzyme activities) and resulted in significantly improved plant growth. 

Surprisingly strain SBW25 does not produce antifungal metabolites, and its biocontrol activity 

was related to a greater colonisation ability in the rhizosphere. 
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INTRODUCTION 

 

Modern agriculture is highly dependent on chemical pesticides, in order to control plant 

pathogens. Fungicides and fumigants commonly have drastic effects on the soil biota, as they are 

intentionally applied at much higher rates than herbicides and insecticides (Fraser 1994). These 

methods are time-consuming and uneconomical, pollute the atmosphere, and can be 

environmentally harmful as the chemicals may build up in the soil (Nannipieri 1994). 

Furthermore, the repeated use of such chemicals has encouraged the development of resistance 

among the target organisms (Goldman et al 1994). This has resulted in the use of ever-increasing 

amounts of pesticides and has prompted the search for new strategies of pest control to reduce or 

eliminate the use of pesticides (Cook and Granados 1991, Lorito et al 1994). For instance, 

integration of biocontrol agents with reduced doses of chemical agents has a potential for 

controlling plant pathogens with minimal impact on the environment (Chet and Inbar 1994). 

 

A number of Pseudomonas strains have been intensively studied as possible biocontrol agents 

of soil borne fungal diseases. Among them are Ps. fluorescens strain F113 (Fenton et al 1992), 

Ps. fluorescens strain CHAO (Duffy and Defago 1997, Schnider et al 1995) and Ps. fluorescens 

strain Q2-87 (Mazzola et al 1995). The biocontrol effect of all three of these strains is related in 

part to their ability to produce the antifungal compound 2,4-diacetylphloroglucinol (Phl) (Keel et 

al 1992, Shanahan et al 1992a, Vincent et al 1991), while strain CHAO also produces a second 

antibiotic, pyoluteorin (Natsch et al 1998).  

 

Phl is a key factor in the biocontrol of fungal diseases such as damping off of sugarbeet 

(Fenton et al 1992), take-all of wheat and black rot of tobacco (Keel et al 1992). Phl production in 

soil and the rhizosphere by Pseudomonas has been detected by a number of researchers (Keel et 

al 1992, Shanahan et al 1992b). P. ultimum causes damping off of pea seedlings, and the Phl 
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producing strains inhibit Pythium growth in plate assays (Fenton et al 1992), deletion of the 

biosynthetic locus for Phl production showed that that the ability to produce Phl in strain F113 

was responsible for the biocontrol properties of this strain but did not contribute to its rhizosphere 

competence (Carroll et al 1995, Fenton et al 1992). 

 

Pseudomonas fluorescens strain SBW25 is also well described in the literature (De Leij et al 

1995, De Leij et al 1998, Naseby and Lynch 1998a, b) does not produce the antibiotics 

pyoluteorin or Phl, and does not inhibit Pythium growth in plate assays. The three Phl producing 

strains of Ps. fluorescens and strain SBW25 are here compared for their effect upon pea growth 

and their antagonistic activity against large P. ultimum inocula. The effects of the Pseudomonas 

inocula upon the indigenous soil microflora and soil enzyme activities in the presence and 

absence of Pythium are also assessed. 



 4 

MATERIALS AND METHODS 

 

Soil description.  

The soil used was sandy loam of the Holiday Hills series, taken from Merrist Wood Agricultural 

College (Surrey), and had been under permanent pasture for at least 15 years. The analysis of the 

soil, conducted at the University of Surrey, was pH 5.4, particle ratio 10:9:81 clay: silt: sand 

respectively, and organic matter content 1.6 % by weight. The total NPK contents by weight were 

0.124%, 0.033% and 0.861% respectively. 

 

Microbial strains and treatments.  

Four well-known strains of Pseudomonas fluorescens were used. Strain SBW25 EeZY6KX, was 

isolated from the phytosphere of sugar beet, modified to confer the lacZY, xylE and Km
r
 marker 

genes (Bailey et al 1995). Strain F113, which produces the antibiotic 2,4 diacetylphloroglucinol 

(Phl), was marked with a lacZY gene cassette (Fenton et al 1992).  CHAO, a rifampicin resistant 

strain, which produces the antibiotics Phl and pyoluteorin (Maurhofer et al 1995), and a rif 

resistant strain of Q2-87 which produces Phl (Mazzola et al 1995). 

 

The bacteria were grown on full strength, tryptone soya agar (Oxoid) for 3 days at 30
o
C. The 

bacteria were suspended in 10 ml of sterile quarter strength Ringer’s solution using disposable 

plastic plate spreaders to scrape off the bacterial mat, and colony forming units (c.f.u.) were 

determined by direct counting and spread plates. Control plates (without bacteria) were also 

flooded with quarter strength Ringers solution and surface scraped with spreaders. The resulting 

suspensions containing 6x10
9
 c.f.u./ml of the bacteria were subsequently used to imbibe pea seeds 

(Pisium sativum var. Montana), at a ratio of one seed per mL, for 8 hours (stirred every 30 

minutes) prior to planting, resulting in 2.8 x 10
8 

  0.4 x 10
8
 c.f.u. per pea seed. No significant 

differences in inoculation potential between strains were observed.  
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Pythium ultimum (IMI 308273) was obtained from CABI Bioscience. Material from stock 

cultures was grown on plates of potato dextrose agar (PDA) at 25
0
C for 3 days (primary plates). 

Four 5mm disks were cut and placed in a flask containing: 95 g of sand, 5 g of organically grown 

processed oats and 20 ml of distilled water, all previously autoclaved twice. The flasks were 

incubated for 3 weeks at 25
0
C and mixed at 7 day intervals. After incubation the Pythium media 

containing both oospores and hyphae was homogenised in a blender and mixed with coarsely 

sieved soil at a concentration of 3% w/w, resulting in log 4.6 cfu per g soil (determined by spread 

plates).  

 

Experimental design.  

Pythium inoculated or uninoculated soil (150 g) was placed in experimental microcosms 

consisting of 210 mm high acetate cylinders, slotted between the top and base of plastic 90 mm 

diameter Petri dishes creating semi-enclosed microcosms (Naseby and Lynch 1998a). Each 

microcosm consisted of eight imbibed seeds, planted at a depth of approximately 1 cm below the 

soil surface. Each Pseudomonas treatment (microcosm) and controls were replicated five times in 

the presence and absence of Pythium. Twenty-five ml of water was added to each microcosm 

before all microcosms were placed in a random design into a growth chamber (Vindon Scientific) 

set at a 16 hour photoperiod with a day/night temperature regime of 21
o
C/15

o
C respectively. The 

relative humidity was maintained at 70% and the light intensity was 10,000 lux at shelf level. 

 

Sampling and analysis. 

 After 21 days of growth, the plants were harvested, the number of  plants emerged were counted 

and the individual plant shoot and root weights measured. Subsequently the number of lateral 

roots and lesions along with the root lengths were measured for 5 plants per microcosm. 

Rhizosphere soil (closely associated with the plant roots) was collected by shaking soil closely 
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associated with the roots over a 2 mm sieve and stored at 4
0
C until required on the same day. The 

soil in each group was subsequently assayed for acid and alkaline phosphatase, urease, -

glucosidase, N-acetyl glucosaminidase and aryl sulphatase (Naseby and Lynch 1997).  

 

One gram of pooled fresh root samples, were taken from each microcosm and macerated in 9 

ml of sterile quarter strength Ringers solution using a pestle and mortar. One gram of rhizosphere 

soil from each microcosm was also suspended in 9ml of sterile quarter strength Ringers solution. 

A ten fold dilution series of each root macerate or soil suspension plated onto 10% malt extract 

agar containing 100 ppm streptomycin and 50 ppm rose Bengal, incubated at 20
o
C for 5 days, was 

used to enumerate filamentous fungal populations. P1 medium (Katoh and Itoh 1983) was used 

for the enumeration of indigenous root, fluorescent Pseudomonas, after 5 days growth at 25
o
C. To 

enable quantification of introduced Ps. fluorescens F113 and SBW25 strains, P1 medium was 

amended with 50 ppm X-Gal upon which recovered lacZY modified Pseudomonas could be 

identified as blue colonies. Separate P1 plates amended with 50ppm rifampicin were used for the 

enumeration of the CHAO and Q2-87 strains. Tryptone soya agar (10%) was used for the 

enumeration of total culturable bacteria and incubated for 7 days at 25
o
C. VP agar (Lumsden et al 

1990), based on potato dextrose agar, was used to enumerate Pythium and contained the following 

supplements: Vancomycin (200 mg l
-1

), pimaricin (10 mg l
-1

), pentachlorobenzene (100 mg l
-1

), 

streptomycin (50 mg l
-1

) and rose bengal (2.5 mg l
-1

). Pythium populations were enumerated after 

3 days growth at 20
o
C. 

 

Statistical analysis.  

Data were analysed using SPSS for Windows (SPSS inc.) by means of a one-way ANOVA and 

subsequently differences among treatments (multiple comparisons) were determined using least 

significant differences (LSD) between means as the post hoc test. Emergence and shoot/root ratio 

data were transformed into log
it
 before statistical analyses as above. 



 7 

RESULTS 

 

Plant growth in the presence of Pythium.  

Pythium inoculation reduced the emergence of pea seedlings (Table 1) and this effect was 

significantly (P<0.05) suppressed by Pseudomonas strains SBW25 and F113. Strains F113, 

SBW25 and CHAO significantly (P<0.05) increased the wet shoot weights by 22%, 35% and 

20% respectively (Table 1). Pseudomonas strains Q2-87, SBW25 and CHAO resulted in 

significantly (P<0.05) greater wet root weights (by 14%, 14% and 52% respectively) than the 

Pythium control (Table 1). Only CHAO significantly (P<0.05) affected the shoot/root ratio, 

resulting in a significantly lower ratio than Pythium control, F113 and SBW25 treatments (Table 

1). 

 

Pythium inoculation significantly reduced the root length and the number of lateral roots 

(Table 2). Inoculation with all the Pseudomonas strains significantly (P<0.05) reduced the 

number of lesions caused by Pythium, with strain CHAO resulting in the greatest reduction. 

Strains SBW25 and CHAO significantly (P<0.05) increased the root length by 19% and 69% 

respectively, and the number of lateral roots by 14% and 29% respectively.  

 

Plant growth in the absence of Pythium.  

Strain CHAO resulted in a significantly (P<0.05) lower pea emergence than strains F113 and Q2-

87, whilst none of the inocula significantly affected the shoot weight and only CHAO increased 

the root weight in comparison to the control and Q2-87 treatments (Table 1). Pseudomonas strains 

F113 and CHAO resulted in significantly lower shoot/root ratios than the control and SBW25. 
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Inoculation with Pseudomonas strain Q2-87 significantly reduced the root length in 

comparison with all the other treatments, whilst strains Q2-87, F113 and CHAO reduced the 

number of lateral roots in relation to the control and SBW25 treatments (Table 2).  

 

Microbial populations. 

 Pythium inoculation significantly increased the root and rhizosphere soil bacterial populations 

(Table 3). Pseudomonas strains Q2-87 and F113 significantly increased the root total bacterial 

populations in the absence of Pythium, whilst strain CHAO resulted in a smaller soil bacterial 

population than the control. All the Pseudomonas strains resulted in significantly lower soil and 

root bacterial populations in the presence of Pythium than the Pythium control, with strain CHAO 

resulting in the lowest bacterial populations. Pythium inoculation significantly increased the 

indigenous Pseudomonas populations and this effect was significantly reduced by inoculation 

with strains SBW25 and CHAO (Table 3). Strain SBW25 established the greatest population 

(introduced Pseudomonas) in the absence of Pythium, whilst strain CHAO also colonised at 

significantly greater levels than strains F113 and Q2-87. In the presence of Pythium, a 

significantly lower population of strain CHAO than of the other three strains was found. The total 

Pseudomonas population in the absence of Pythium was increased by the Pseudomonas inocula in 

the following order SBW25 > CHAO > F113, Q2-87 > control. Pythium inoculation significantly 

increased the total Pseudomonas populations, and was increased further by the inoculation of 

strains Q2-87, F113 and SBW25. 

 

The root fungal populations in the absence of Pythium (Table 4) were significantly greater with 

the inoculation of Pseudomonas strains Q2-87, F113 and CHAO than the control. Strains F113 

and CHAO significantly reduced the soil fungal population in comparison to the control. Pythium 

inoculation alone, significantly increased (P<0.05) the root and rhizosphere soil fungal 

populations (Table 4). Strain CHAO significantly reduced and strain Q2-87 significantly 
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increased (P<0.05) the root fungal populations in relation to the Pythium control and the other 

Pseudomonas treatments (Table 4). All the Pseudomonas inocula significantly reduced the soil 

fungal populations in relation to the Pythium control to varying degrees, with strain CHAO 

resulting in significantly (P<0.05) the lowest soil fungal population.  

 

Pseudomonas fluorescens CHAO reduced the root Pythium population to undetectable levels 

whilst the other Pseudomonas inocula also significantly reduced the root Pythium population by 

varying degrees (Table 4). All the Pseudomonas strains significantly reduced the soil Pythium 

populations, with SBW25 resulting in the lowest population. Root and soil Pythium populations 

were not detected in treatments without Pythium inoculation.   

Soil enzyme activities.  

Strains Q2-87, F113 and CHAO significantly increased acid phosphatase, sulphatase and urease 

activities with respect to the control in non Pythium soil (Table 5). Strains Q2-87 and F113 also 

significantly increased (P<0.05) the alkaline phosphatase activity in the soil without Pythium. 

Strains Q2-87, F113 and CHAO significantly reduced (P<0.05) the -glucosidase and NAGase 

activities in soil without Pythium inoculation.  

There were significantly higher (P<0.05) enzyme activities in soil infected with Pythium than 

non infected soil (Table 5). Inoculation with Pseudomonas strains significantly reduced (P<0.05) 

the effect of Pythium as follows.  All four Pseudomonas strains reduced the sulphatase and urease 

activities. Strains Q2-87, SBW25 and CHAO reduced the alkaline phosphatase activity. Strains 

SBW25 and CHAO reduced the -glucosidase activity and only strain CHAO reduced the 

NAGase activity. Only strain Q2-87 significantly (P<0.05) increased the acid phosphatase 

activity, relative to the Pythium control.  
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DISCUSSION 

 

Plant growth.  

The lower emergence rate of seedlings inoculated with strain CHAO may be due to a slight 

deleterious effect sometimes found with this strain, which is related to the production of the 

antibiotics, Plt and Phl (Maurhofer et al 1995). Pythium ultimum is most destructive at the 

seedling stage (Kommedahl et al 1981) and reduced pea emergence in this study.  This effect was, 

however, suppressed by Pseudomonas strains SBW25 and F113, in concordance with the 

suggestions of Cook (Cook 1994) who stated that the ability of Pythium to rapidly colonise the 

host plant before other microorganisms is an essential part of their pathogenicity. 

 

Pseudomonas strains SBW25 and CHAO had the greatest overall effects in the presence of 

Pythium, resulting in increased plant weights, root lengths and lateral roots, whereas the effects of 

strains F113 and Q2-87 were sporadic.  The improvement in plant growth was related to a 

reduction in the root Pythium population to undetectable levels with the inoculation of CHAO, 

which is corroborated by an 80% reduction in the number of root lesions.  The other strains also 

reduced the root Pythium populations and all four Pseudomonas strains reduced the soil Pythium 

populations and reduced the number of root lesions. Therefore, the smaller improvements in plant 

growth with Q2-87 and F113 are related to the large reduction in the soil Pythium population 

rather than the root Pythium population and a greater reduction in the number of lesions than 

strains F113 and Q2-87. 

 

The basis of the biocontrol activity of three of the strains (Q2-87, F113 and CHAO) is 

antibiotic production, however, strains Q2-87 and F113 only produce Phl (Keel et al 1996), 

whereas CHAO also produces Plt (Natsch et al 1997). Therefore, as the performance of CHAO 

was much greater than F113 and Q2-87, the combination of the two antibiotics is more than 
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additive on effectiveness of CHAO as a biocontrol agent.  Pseudomonas strain SBW25 had a 

greater plant protective effect than Q2-87 and F113, yet this strain does not produce Phl or Plt and 

did not produce other soluble metabolites capable of significantly retarding the growth of Pythium 

in place assays. Therefore, the biocontrol activity of this strain is not related to antibiotic 

production, however, it may be related to the ability of this strain to colonise the rhizosphere at 

much higher levels than some other Pseudomonas strains (Naseby and Lynch 1998b) including 

the other three strains described here (Table 4  

 

Microbial Populations.  

The Q2-87, F113 and CHAO strains increased the root fungal populations whereas the F113 and 

CHAO strains reduced the rhizosphere soil fungal populations with respect to the control. Similar 

results were found with the root and rhizosphere soil bacterial populations with the Q2-87 and 

F113 treatments increasing root bacteria and the CHAO treatment reducing soil bacterial 

populations. These results are therefore contradictory in nature, however the explanation may be 

linked to an increase in root exudate/leakage with the inoculation of Phl producing strains 

(Naseby et al 1999) which would support a greater root population.  

 

The reduced populations in the rhizosphere soil may be linked to the antibiotic production 

which is supported by Short (Short et al 1990) who found that soil fungal populations were 

suppressed by a strain of Pseudomonas putida inoculated into soil. Volatile organic compounds 

produced by various soil bacteria have been shown to mediate effects in fungi (Mackie and 

Wheatley 1999), which appeared to be species-specific, with each fungus responding uniquely to 

the products of each of the bacterial cultures.  

 

Other studies investigating the effect of Phl producers on soil or root microbial activities have 

found similar effects. Pseudomonas fluorescens CHAO and a Phl and Pyoluteorin over-producing 
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derivative were found to have a similar but transient increase in the metabolic activity of resident 

root bacterial community (Natsch et al 1998). Furthermore, it has been shown that the F113 strain 

significantly reduced the soil microbial activity (Brimecombe et al 1998), therefore, it follows 

that the CHAO strain had greater effect on the soil bacterial population due to the production of 

two antibiotics rather than one.  However, it must be noted that none of these previous studies 

investigated the effect of Phl producers on root and soil microbial populations concurrently. 

 

The increased root and rhizosphere soil bacterial and fungal populations in the presence of 

Pythium are probably due to the pathogenic effect of the pathogen causing nutrient leakage from 

the root, as has been shown previously (Naseby et al 1999 and 2000). The Pseudomonas strains, 

in general, reduced this effect, which is due to the reduction in the effect of the pathogen on plant 

growth, indicating that the pathogen caused less root damage in the presence of the Pseudomonas 

inocula. It therefore follows that the greatest reductions in the microbial populations are found 

with the inoculation of Pseudomonas strains which offered the greatest protection to plant growth, 

i.e., strain CHAO and to a lesser extent strain SBW25. This is supported by the fact that only 

strains SBW25 and CHAO significantly reduced the indigenous Pseudomonas population relative 

to the Pythium control, in Pythium treated soil. 

 

The additive effect of the introduced Pseudomonas was responsible for the increased total 

Pseudomonas populations with all four Pseudomonas inocula.  The greater increases in the total 

Pseudomonas populations found with the superior colonising abilities of strains SBW25 and 

CHAO support this.  The additive effect was also found in the Pythium infected soil for all four 

Pseudomonas inocula.  This includes strain CHAO which resulted in a smaller indigenous 

population but a similar total population.  The high colonising ability of strain SBW25 (Naseby 

and Lynch 1998a, b) accounts for the greater total Pseudomonas population than the Pythium 
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control, as the SBW25 treatment also resulted in a smaller indigenous Pseudomonas population 

than the Pythium control.  

 

Soil enzyme activities.  

Measurement of soil enzyme activities may be useful for gaining a greater understanding of the 

nature of perturbations caused to ecosystem function and has been used as an indicator of the 

effect of microbial inoculation (Naseby and Lynch 1998b, Naseby et al 1999). 

 

The greater acid and alkaline phosphatase, aryl sulphatase and urease activities with Q2-87, 

F113 and to a lesser extent CHAO, but not the SBW25 treatments infers that this is related to the 

production of Phl. This is corroborated by the fact that Naseby and Lynch (1998b) found a similar 

impact on soil enzyme activities with the inoculation of strain F113, which was not found with a 

Tn5 mutated Phl negative derivative of strain F113. Increased available inorganic soluble 

phosphate is known to have an inverse effect on soil phosphatase activity (Tabatabai 1982, 

Tadano et al 1993) and similar trends occur in sulphatase activity in relation to sulphate 

availability. If this theory is correct, the Q2-87, F113 and CHAO and strains must have caused a 

decrease in the available phosphate and sulphate, thus causing an overall increase in phosphatase 

and sulphatase activities. The decrease in available P and S may have been caused by an increase 

in the amount of available carbon in the rhizosphere as was indicated by a reduction in C cycle 

enzyme activities. This is supported by the fact that increased available carbon in the rhizosphere 

of F113 inoculated pea plants has been shown previously (Naseby et al 1999). Therefore, an 

increase in the ratio of C to available P and S leads to an increase in microbial P and S demand 

and increased phosphatase and sulphatase activities and reduced C cycle activities.  

 

The general increase in enzyme activities found in the presence of Pythium therefore indicate a 

dramatic increase in C and nutrient leakage from roots due to root damage. In conditions of high 
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C availability, such as root leakage, P is a more limiting nutrient and demand increases resulting 

in an increase in phosphatase activity (Naseby and Lynch 1998, Naseby et al 1999). Urease 

activity (N cycle) was also increased by Pythium infection, which again indicates increased C 

availability as shown by Naseby et al (2000).  

 

All the strains inoculated reduced the effect of the Pythium on soil enzyme activities by 

varying degrees. All four strains reduced the sulphatase and urease activities suggesting a 

reduction in C leakage from the root. A further indication is the reduction in alkaline phosphatase 

activity with strains Q2-87, SBW25 and CHAO compared to the Pythium control. C cycle 

enzyme activities (NAGase and -glucosidase) were also reduced by strains SBW25 and CHAO 

in relation to the Pythium control, which again indicates a comparative reduction in root damage. 

The reduction in a number of enzyme activities, especially by strains SBW25 and CHAO, 

therefore indicates a reduction in plant damage and subsequent C leakage caused by Pythium, and 

is also related to increases in the plant growth described earlier with these strains. This is 

supported by the fact that inoculation with strains Q2-87 and F113 resulted in less reductions in 

enzyme activities in relation to the Pythium control than SBW25 and CHAO and these strains 

offered less protection to the plant as shown by the plant growth measurements.  

 

Overall, strain CHAO had the greatest beneficial characteristics as it consistently reduced the 

damage caused to the pea plants by P. ultimum, and reduced the population of the pathogen on the 

root to undetectable levels. However, the slight detrimental effect of CHAO on pea emergence in 

the absence of Pythium may reduce the value of this strain for use in the field and further 

examination is needed. Strain SBW25 surprisingly performed better as a biocontrol agent than the 

Phl producing strains Q2-87 and F113 did. Therefore strain SBW25, on this evidence, warrants 

further investigation as a possible biocontrol agent. 
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TABLE 1. Pea emergence, shoot and root weights as affected by Pseudomonas inocula and 

Pythium ultimum. 

Treatment1 Plant growth
2
 Emergence

3
 Shoot

3
 (g) Root

3
 (g) s/rRatio

3
 

Soil without  

Pythium 

Control 0.93
bc

 0.90
c
 0.92

c
 0.98

bc
 

 SBW25 0.93
bc

 0.94
c
 0.96

cd
 0.98

bc
 

 Q2-87 1.0
c
 0.85

bc
 0.92

c
 0.92

ab
 

 CHAO 0.88
ab

 0.90
c
 1.06

d
 0.84

a
 

 F113 0.98
c
 0.86

bc
 1.03

cd
 0.84

a
 

Soil treated 

with Pythium 

Control 0.8
a
 0.69

a
 0.66

a
 1.05

cd
 

 SBW25 0.95
bc

 0.84
bc

 0.75
b
 1.12

d
 

 Q2-87 0.85
ab

 0.76
ab

 0.75
b
 1.01

bc
 

 CHAO 0.85
ab

 0.93
c
 1.00

cd
 0.93

ab
 

 F113 0.93
bc

 0.83
bc

 0.74
ab

 1.12
d
 

1 
Treatments; control, no inocula; SBW25, inoculated with lacZY marked Ps. fluorescens 

SBW25 EeZY6KX; Q2-87, inoculated with rif marked P fluorescens Q2-87; CHAO, 

inoculated with rif marked P fluorescens CHAO; F113, inoculated with lacZY marked 

Phl+ Ps. fluorescens F113. 

2
 Emergence, proportion of seedlings emerged five days after sowing; shoot, mean shoot 

weight; root, mean root weight; s/r ratio, mean ratio of shoot weight to root weight. 

3
 Letters, within a column, indicate significant differences at p<0.05 level. For emergence 

the mean of five microcosms is given (n=5). For shoot, root and s/r ratio, n is proportional 

to the emergence to a maximum of 40. 

 



 

 

TABLE 2. Mean root length and number of lateral roots and lesions per root system as 

affected by Pseudomonas inocula and Pythium ultimum.  

 

Treatment
1
 Root 

measurements
2
 

Root length
3
 

(cm) 

Lateral roots
3
 Lesions

3
 

     

Soil without 

Pythium 

Control 24.23
c
 23.45

de
 ND 

 SBW25 23.27
c
 23.33

de
 ND 

 Q2-87 19.37
b
 20.73

bc
 ND 

 CHAO 23.37
c
 20.65

bc
 ND 

 F113 24.67
c
 20.87

bc
 ND 

Soil treated 

with Pythium 

Control 14.83
a
 19.33

ab
 17.05

c
 

 SBW25 17.7
b
 21.9

cd
 12.28

b
 

 Q2-87 15.18
a
 18.55

a
 13.3

b
 

 CHAO 25
c
 25

e
 3.6

a
 

 F113 16.85
ab

 19.5
ab

 14.2
b
 

1
 Treatments; control, no inocula; SBW25, inoculated with lacZY marked Ps. fluorescens 

SBW25 EeZY6KX; Q2-87, inoculated with rif marked P fluorescens Q2-87; CHAO, 

inoculated with rif marked P fluorescens CHAO; F113, inoculated with lacZY marked 

Phl+ Ps. fluorescens F113. 

2
 Lateral roots, mean number of lateral roots per root system; lesions, mean no. lesions per 

root system; ND, none detected. 

3
 Letters, within a colunm, indicate significant differences at p<0.05 level, five roots per 

microcosm were measured (n=25). 



 

TABLE 3. Log10 bacterial populations as affected by Pseudomonas  inocula and Pythium 

ultimum.  

 

Treatment
1
 Bacteria

2
 Root bact

3
 Soil bact

3
 Ind pseu

3
 Int Pseu

3
 Tot Pseu

3
 

       

Soil without 

Pythium 

Control 7.36
a
 7.86

b
 6.29

ab
 NA 6.29

a
 

 SBW25 7.38
a
 7.82

b
 6.15

a
 6.62

c
 6.75

d
 

 Q2-87 7.58
b
 7.79

ab
 6.18

a
 6.14

a
 6.46

b
 

 CHAO 7.35
a
 7.64

a
 6.16

a
 6.41

b
 6.6

c
 

 F113 7.56
b
 7.78

ab
 6.18

a
 6.12

a
 6.45

b
 

Soil treated 

with Pythium 

Control 8.45
e
 8.49

d
 6.62

c
 NA 6.62

c
 

 SBW25 8.16
d
 7.87

b
 6.44

b
 6.73

c
 6.91

e
 

 Q2-87 8.19
d
 8.05

c
 6.71

c
 6.63

c
 6.97

e
 

 CHAO 7.92
c
 7.71

a
 6.25

a
 6.48

b
 6.68

cd
 

 F113 8.24
d
 8.11

c
 6.74

c
 6.68

c
 7.01

e
 

1
 Treatments; control, no inocula; SBW25, inoculated with lacZY marked Ps. fluorescens 

SBW25 EeZY6KX; Q2-87, inoculated with rif marked P fluorescens Q2-87; CHAO, 

inoculated with rif marked P fluorescens CHAO; F113, inoculated with lacZY marked 

Phl+ Ps. fluorescens F113. 

2
 Root bact, root bacteria/g root; Soil bact, soil bacteria/g soil; ind pseu, indigenous 

fluorescent pseudomonads/g root; int pseu, introduced fluorescent pseudomonads/g root; tot 

pseu, total fluorescent pseudomonads/g root. 

3
 Letters, within a column, indicate significant differences at p<0.05 level,  (n=5). 



 

 

TABLE 4. Log10 fungal populations as affected by Pseudomonas inocula and Pythium 

ultimum.  

 

Treatment
1
 Fungi

2
 Root fungi

3
 Soil Fungi

3
 Root 

 Pythium
3
  

Soil  

Pythium
3
  

      

Soil without 

Pythium 

Control 3.08
a
 4.56

c
 ND ND 

 SBW25 3.08
a
 4.58

c
 ND ND 

 Q2-87 3.38
b
 4.42

bc
 ND ND 

 CHAO 3.3
b
 4.35

b
 ND ND 

 F113 3.3
b
 4.37

b
 ND ND 

Soil treated 

with Pythium 

Control 3.6
c
 5.09

e
 4.1

d
 4.55

d
 

 SBW25 3.6
c
 4.41

bc
 3.91

c
 3.87

a
 

 Q2-87 3.9
d
 4.58

c
 3.62

b
 4.05

ab
 

 CHAO 3.3
b
 4.08

a
 N

D
 4.21

bc
 

 F113 3.62
c
 4.86

d
 3.34

a
 4.31

c
 

1
 Treatments; control, no inocula; SBW25, inoculated with lacZY marked Ps. fluorescens 

SBW25 EeZY6KX; Q2-87, inoculated with rif marked P fluorescens Q2-87; CHAO, 

inoculated with rif marked P fluorescens CHAO; F113, inoculated with lacZY marked 

Phl+ Ps. fluorescens F113. 

2
 Root Fungi, root fungi/g root; Soil Fungi, soil fungi/g soil; Root Pythium, Pythium/g root; 

Soil Pythium, Pythium/g soil; ND, Not detected. 

3
 Letters, within a column, indicate significant differences at p<0.05 level,  (n=5). 

  



 

 

TABLE 5. Soil enzyme activities in the rhizosphere of pea plants inoculated with 

Pseudomonas and Pythium ultimum. n=5 

 

Treatment
1
 Enzyme

2
 Acid phos

3
 Alk phos

3
 Sulphatase

3
 Urease

3
 -gluc

3
 NAGase

3
 

        

Soil without 

Pythium 

Control 1.53
a
 9.57

a
 0.078

a
 1.41

a
 0.61

bc
 0.32

b
 

 SBW25 1.85
ab

 9.33
a
 0.075

a
 1.17

a
 0.54

ab
 0.33

b
 

 Q2-87 3.62
cd

 10.25
b
 0.107

bc
 2.15

bc
 0.37

a
 0.21

a
 

 CHAO 1.92
b
 9.94

ab
 0.099

b
 1.97

b
 0.42

a
 0.24

a
 

 F113 3.27
c
 10.27

b
 0.099

b
 2.08

b
 0.41

a
 0.20

a
 

Soil with 

Pythium 

Control 4.02
d
 13.13

f
 0.198

e
 2.59

d
 1.15

e
 0.54

d
 

 SBW25 3.61
cd

 12.04
cd

 0.139
d
 2.29

c
 0.74

c
 0.44

c
 

 Q2-87 4.88
e
 12.48

de
 0.140

d
 2.32

c
 1.21

e
 0.49

cd
 

 CHAO 4.12
d
 11.55

c
 0.120

c
 2.14

bc
 0.96

d
 0.33

b
 

 F113 3.97
d
 12.69

ef
 0.148

d
 2.34

c
 1.13

e
 0.50

cd
 

1
 Treatments; control, no inocula; SBW25, inoculated with lacZY marked Ps. fluorescens 

SBW25 EeZY6KX; Q2-87, inoculated with rif marked P fluorescens Q2-87; CHAO, 

inoculated with rif marked P fluorescens CHAO;  F113, inoculated with lacZY marked 

Phl+ Ps. fluorescens F113. 

2
 Acidphos, acid phosphatase; alkphos, alkaline phosphatase; Sulphatase, Aryl sulphatase; 

-gluc, -glucosidase; NAGase, N-acetyl glucosaminidase. Activities expressed as mg PNP 

released/h/g soil. Urease activity expressed as g ammonia released/h/g soil.  

3
 Letters, within a column, indicate significant differences at p<0.05 level,  (n=5). 


