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Magnetic fields are believed to play a vital role in regulating and shaping the flow 

of material onto and away from protostars during their initial mass accretion 

phase. It is becoming increasingly accepted1 that bipolar outflows are generated 

and collimated as material is driven along magnetic field lines and centrifugally 

accelerated off a rotating accretion disk. However, the precise role of the magnetic 

field is poorly understood and evidence for its shape and structure has not been 

forthcoming. Here we report, based on imaging circular polarimetry in the near-

infrared and Monte Carlo modelling, that the magnetic field along the bipolar 

outflow of the HH135-136 young stellar object is helical. The magnetic field retains 

this shape for large distances along the outflow, giving direct evidence for a 

magnetic field structure which can also provide the necessary magnetic pressure 

for the outflow’s collimation. Furthermore, this result lends further weight to the 

hypothesis, central to any theory of star formation, that the outflow is an 

important instrument for removal of high angular momentum material from the 

accretion disk thereby allowing the central protostar to increase its mass. 

Herbig-Haro (HH) objects were discovered as faint, nebulous emission on optical 

plates in the 1950’s by G.H. Herbig2 and G. Haro3. They possess characteristic optical 

spectra4 and are regarded to be the result of a bipolar jet or outflow driven from a young 

stellar object (YSO) interacting with its parent molecular cloud1. In fact, the 

astrophysical jet is considered to be of major importance given its manifestation in a 
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number of different environments from brown dwarfs5 and binary systems1 through to 

black holes and active galactic nucle5. Theoretical models which aim to explain the jet 

phenomenon now consistently appeal to the magneto-hydrodynamic (MHD) interaction 

of the magnetic field with the accreting gas in some form or another: X-wind models6 

generate an outflow very close to the star (~ few stellar radii) in the magnetopause 

between the accretion disk and the protostar; disk-wind models6-7 generate an outflow 

over a relatively large range of radii of the disk surface. In each case, material is lifted 

and centrifugally accelerated along magnetic field lines (rather like ‘beads on a wire’). 

Although present observational techniques struggle to resolve and probe into the 

innermost regions where the jet is launched, these theoretical models are able to explain 

some key observational properties, such as the correlation of accretion with ejection 

rates, and the fractional mass loss rates7. Observations are beginning to favour disk-

wind models8,9 and show that the outflow remains collimated over large distances, 

although the debate is far from resolved. 

Mechanical collimation is possible if the ram pressure in the flow (acting normal 

to the cavity surface) is equal to or less than the pressure in the medium that the outflow 

is pushing through. Although such collimation is plausible for young sources which 

remain embedded within the natal molecular cloud, it does not explain the collimation 

seen in jets from optically revealed YSOs10 – the so-called T-Taurii stars – which have 

had their circumstellar environment cleared away. In order to reconcile this, theories 

invoke the presence and action of magnetic fields whereby an initially collapsing cloud 

forms a rotating accretion disk in the plane perpendicular to the magnetic field lines 

which in turn twists the field lines into a helical field (with opposite helicity above and 

below the disk). This can provide the necessary magnetic pressure in the environment to 

retain the observed collimation to large distances via ‘hoop’ stresses11. Although 

evidence for strong (> 1 mG) magnetic fields at large distances from YSOs is 
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available12 it is small in number, while evidence for the morphology of this field is 

severely lacking. 

The efficacy of polarimetry in constraining various physical parameters 

concerning the scattering geometry and media in the environments of young stellar 

objects has been demonstrated in numerous papers13,14. Grains are in general non-

spherical and aligned by the ambient magnetic field, and selective absorption by the 

long axis of the grains polarizes the radiation (dichroism). Linear polarization 

(generated by dust scattering and/or dichroism) has an almost ubiquitous presence in 

star formation regions whereas circular polarization is far less common, requiring more 

specialized conditions for its generation, e.g. multiple scattering, scattering off aligned 

non-spherical grains (dichroic scattering) or dichroic extinction of linearly polarized 

light.  

In Figure 1 we show near-infrared imaging circular polarimetry data for the 

HH135-136 outflow. Situated at a distance of 2.7 kpc in the Carina nebula19 they are 

two of the most distant HH objects known, powered by an intermediate mass Herbig 

Ae-Be star, IRAS 11101-582920. The data shows that the two lobes of the bipolar 

outflow are strongly circularly polarized. For the southern lobe, the bulk of the radiation 

is positively circularly polarized (i.e. right-handed in the direction of propagation) while 

negative circularly polarized light dominates the northern lobe. In each case, flips in the 

handedness of circular polarization are seen towards the limbs of the outflow lobes 

(most apparent in the Kn and H band images). This pattern does not conform to the 

classical alternating symmetry seen in other objects and models13-16, where the flip 

occurs along the axis of the flow and both senses of polarization are equally prominent. 

The degrees of circular polarization are relatively high. In the Kn band the circular 

polarization is as much as ~ –8%, becoming ~ –3% in the H band and ~ –2.5% in the J 

band. Values as high as ~ 15-20% in the Kn band  have been reported towards the 
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OMC-1 nebula in Orion13 and in NGC6334V21, both regions of high-mass star 

formation. The values we find here are significantly higher than those seen towards low-

mass YSOs where absolute values < 1.5% are typically seen14,22. This places HH135-

136 in an intermediate position between those objects exhibiting high values of circular 

polarization which are thus far associated with high-mass YSOs, and those with low 

values that are associated with low-mass YSOs. If one associates increasing magnetic 

field strength with higher mass star formation then this apparent correlation may be 

simply understood, as in the presence of a strong magnetic field the grains will align 

more efficiently and will more readily circularly polarize radiation.  

It seems most likely that the only way to produce the pattern observed, while still 

retaining the observed centro-symmetric linear polarization pattern produced by 

scattering of light from the central protostar20, is through the manipulation of the 

magnetic field structure. The classic symmetry of an alternating quadrupolar circular 

polarization pattern can arise from multiple scattering by spherical or non-aligned grains 

but this produces only ~1% polarization. If there are aligned non-spherical grains, the 

same pattern can be produced by dichroic scattering or through dichroic extinction if the 

field is oriented parallel to the outflow axis15,17,23, and the fractional polarization is 

higher. 

Output from a successful model (see Supplementary Information) with a pinched 

and twisted field structure is shown in Figure 2. We find that dichroic extinction 

(birefringence) is the principal cause of the observed 8% polarization. As well as 

reproducing the linear polarimetry20, the model reproduces key features of the circular 

polarimetry: (i) the opposite sense of polarization in the two outflow lobes, which 

requires that the helicity reverses in the disk plane (i.e. a bihelical structure, which is 

naturally caused by a rotating disk); (ii) the flip in polarization at the eastern edge of the 

outflow in both lobes, at a certain distance along the flow, which is evidence that the 
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pitch angle of the field to the disk plane increases with increasing distance (i.e. the field 

becomes more axial); (iii) the wavelength dependence of the polarization. This was 

contrary to the usual wavelength dependence of birefringence or dichroic scattering18,23, 

but was found to be caused by the fairly high optical depth of the reflection nebulosity, 

which was determined from the near infrared colours (AV≈13)20. At the shorter 

wavelengths the polarization is reduced by increased multiple scattering, since the 

optical depth and the grain albedo are higher at shorter wavelengths. 

This optical depth implies a mass for the outflow of ~ 1 M


 but given the high H2 

luminosity24 and mass outflow rates25 of objects typical of that driving HH135-136 (~ 

10-3 – 10-4 M


 yr-1) this is not unfeasible. Optical and near-infrared images19,24 show 

emission line structures coincident with the reflection nebulosity indicating that we are 

tracing the material, and hence magnetic field, in an outflow rather than an extended 

molecular envelope. 

The field used is visualised in Figure 3. The model is not very sensitive to the 

radial component of the field (relative to the outflow axis) and so we cannot confirm 

whether the field lines are pinched in the disk plane, though the twist does appear to be 

strongest there. Observations at higher spatial resolution to more precisely measure the 

flips in polarisation at the eastern edge of the flow could in principle measure the field 

pitch angle as a function of distance along the flow, though the imperfect axisymmetry 

of the outflow would introduce some uncertainty.  

We suggest that a helical field is a plausible model for the magnetic field structure 

about HH 135-136 (and other YSO outflows) and possesses an appropriate 

configuration to provide the necessary transverse pressure to retain the collimation of 

outflows, confirming an earlier suggestion based on linear polarimetry26. We also 

suggest that circular polarimetry represents a new and powerful technique for probing 
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the magnetic field structure at these small scales (arcseconds on the sky) and calls for 

further observations to be made towards other YSOs. Finally, given that the 

combination of a rotating disk and a helical magnetic field structure would naturally 

launch material into the outflow with a significant toroidal component, angular 

momentum will be carried away from the central accreting system thus preventing 

centrifugal forces from stopping the collapse and allowing low angular momentum 

material to be accreted onto the protostar. 
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Figure 1: Imaging circular polarimetry of the HH135-136 outflow system. 

Polarimetry in the J, H and Kn near-infrared atmospheric passbands was 

obtained at the Anglo-Australian Telescope on the nights of 22-24 May, 1997, 

using standard instrument and data reduction techniques14. The facility near-

infrared imager-spectrometer (IRIS) was used at the f/15 telescope focus.  The 

panels to the left show the near-infrared intensity in the Kn (2.13 µm), H (1.6 

µm) and J (1.25 µm) bands – top to bottom respectively. Coordinates are given 
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for epoch J2000, North is to the top and East to the left. The circular polarization 

(Stokes V) measured in these bands is shown in the right-hand panels. Intensity 

contours were arbitrarily chosen for each waveband, to accentuate the brighter 

emission features, and are plotted onto the intensity and circular polarization 

images. In each case, black is negatively circularly polarized and white is 

positive. By convention, positive polarization means that the electric vector is 

seen to rotate counterclockwise (right-handed) along the propagation direction 

in a fixed plane by an observer looking at the source. Note how each lobe is 

dominated by a single handedness of polarization and of opposite sign to the 

other lobe, although flips in the handedness of polarization are seen towards 

the edges of the lobes. 
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Figure 2: Results of 3-D Monte-Carlo light scattering model17. Intensity (left 

panel) and circular polarimetry (right panel) images are shown. The upper 

images are for the K band (2.2 µm wavelength) while the lower images are for 

the J band (1.25 µm wavelength). The light emanates from a central protostar 

and is scattered by dust in the bipolar outflow. The inner 50% of the outflow 

cross section (by radius) is optically thin, so that the full length of the outflow is 

illuminated. The outer 50% is denser and is responsible for producing the 

circular polarization through dichroic extinction. The protostar itself is entirely 

obscured from view by an optically thick accretion disk (500 AU radius) and a 
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circumstellar envelope (1000 AU radius), which are viewed edge-on and 

therefore are also not seen. The bright peak near the centre of the model 

intensity images is due to scattering from the outflow in the upper lobe. The 

large vertical gap between the two outflow lobes is due to a much lower density 

of matter in the inner part of lower lobe. The model outflow has a non-

axisymmetric structure in the lower lobe, in order to better reproduce the data. 

The structure of the model is fully described in the Supplementary Information.  

 

 

 

 

 

Figure 3. Helical magnetic field structures. The left panel shows the pinched 

and twisted magnetic field structure used in the model shown in Figure 2. The 

toroidal component, Bφ, slowly decays away with distance from the source. This 

ensures that at large distances from the YSO, the magnetic field can remain 

contiguous with what is assumed to be a generally axial, large-scale, magnetic 
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field running through the molecular cloud. The right panel shows a field with no 

pinch in the disk plane (i.e. Br=0) but with a slightly stronger twist. The two 

structures produce similar circular polarization. The field is drawn to scale with 

the data (Z = 100 = 27,000 AU). Z = 0 represents the disk plane. The sign of Bz 

is the same in both hemispheres (i.e. dipole polarity). The sense of rotation of 

the disk is such that its rotation axis is parallel to North. The equations 

describing the field structure are given in the Supplementary Information. 

 


