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ABSTRACT  
 

The use of orthopedic special tests (OSTs) to diagnose shoulder pathology via the 
clinical examination is standard in clinical practice. There is a great deal of research 
on special tests but much of the research is of a lower quality implying that the 
metrics from that research, sensitivity, specificity, and likelihood ratios, is likely to 
vary greatly in the hands of different clinicians and in varying practice 
environments. A way to improve the clinical diagnostic process is to cluster OSTs 
and to use these clusters to either rule in or out different pathologies. The aim of the 
article is to review the best OST clusters, examine the methodology by which they 
were derived, and illustrate, with a case study, the use of these OST clusters to 
arrive at a pathology-based diagnosis.  

 
Key Words: Likelihood ratios, Shoulder, Diagnosis 
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INTRODUCTION 
 

 Physical examination of the shoulder involves a series of steps typically 

beginning with history, progressing with motion and muscle testing, and 

culminating in the use of orthopedic special tests (OSTs) with the aim of diagnosing 

shoulder pathology. While the process itself is systematic and straightforward, for 

evidence-based practitioners, there are numerous problems encountered when 

trying to arrive at a diagnosis. First, there is little evidence reporting the diagnostic 

accuracy of critical pieces of the clinical examination such as history, motion testing, 

and muscle testing causing a greater reliance on OSTs. Second, although there is a 

great deal of research on OSTs of the shoulder, much of that research is of moderate 

to low quality (Hegedus, et al., 2008; Hegedus, et al., 2012). Third, even in those 

OSTs that come from high quality literature, there are very few that display solid 

diagnostic metrics, high sensitivity and specificity(Hegedus, et al., 2008; Hegedus, et 

al., 2012).  Fourth, although sensitivity and specificity are helpful internal test 

metrics, there are issues in the application of these metrics to clinical practice. 

Finally, clinicians and researchers improve diagnostic accuracy by clustering OSTs 

together; however, in some cases, the clusters are used incorrectly or provide 

metrics that lead to post-test probabilities that are no different than use of a single 

stand alone test.  

 Our aims in this paper are to discuss the importance of likelihood ratios and 

modified probability in the diagnostic process, to explain multivariate modeling and 

outline the most effective methods to combine tests for either screening or 

confirmation of diagnosis. For context, we'll briefly review the best test clusters that 
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have been published, and finally, we'll use a case study to illustrate how the best 

available test clusters should be used to aid in diagnosis. 

LIKELIHOOD RATIOS AND MODIFIED PROBABILITY 
 
 Diagnostic accuracy studies have design consistencies, standardized metrics, and 

assumptions. First and foremost, all diagnostic accuracy studies enroll populations of 

individuals with and without the condition of interest; the condition of interest being the 

diagnosis studied. Those without the condition of interest should be individuals with 

some other competing health malady that would normally be distinguished in a traditional 

clinical environment.  

The simplest measures of diagnostic accuracy are sensitivity and specificity. 

Sensitivity is the proportion of people with the condition of interest who will have a 

positive result, whereas specificity is the proportion of the patients who do not have the 

condition of interest who have a negative result. Mathematically, sensitivity values are 

calculated only from those with the condition of interest, whereas specificity values are 

calculated from those without the condition of interest. This is one reason that the use of 

these internal metrics is limited. For example, sensitivity fails to recognize any of the 

examination findings that are reflective of those who did not have the condition of 

interest.  

Both sensitivity and specificity are reported in percentages, from 0 to 100. A 

100% sensitivity or specificity suggests that the test will be positive 100% of the time (if 

truly sensitivity) in patients with the condition of interest and will be appropriately 

negative in 100% of cases when the patient does not have the condition of interest. In 

order to emphasize the context associated with these measures, a sensitivity of 20%, 
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which is a finding associated with most reflex testing suggests that the test will be 

positive in only 20% of cases in which the patient actually has the condition of interest.  

 Likelihood ratios and probability metrics are calculated from the sensitivity and 

specificity values. Positive and negative predictive values reflect proportions of positive 

and negative results when the clinical tests are employed. Positive predictive value 

(PPV), which is sometimes referred to as precision, is the number of true positives  

divided by the number of true positive plus the number of false positives. The 

calculation is derived from positive finding from those with and without the 

condition of interest. A negative predictive value (NPV) is the number of true 

negative divided by the number of true negatives plus the number of false negatives 

and like PPV is derived from those with and without the condition of interest. The 

use of both PPV and NPV in research is cautionary since both are notably influenced 

by prevalence of the condition and may yield findings that are not clinically useful. 

As such, positive and negative likelihood ratios are generally recommended when 

determining post-test probability.  

 A positive likelihood ratio (LR+) is derived from subjects with and without 

the condition of interest.  LR+ is calculated by taking the sensitivity and dividing by 

1-specificity. With LR+, positive findings influence the post-test decision making and 

stronger LR+ will be notably greater than 1.0. In contrast, negative likelihood ratio 

(LR-) is calculated by taking 1-Sensitivity divided by the specificity, where a robust 

finding is hallmarked by smaller values closer to 0, and reflects a negative test 

finding only. Both LR- and LR+ are used to calculate post-test probabilities (0 to 

100%) when the tests are negative or positive. A strong clinical test (or cluster of 
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tests) should have the ability to rule out a condition when negative (with post-test 

probabilities near 0) or rule in a condition when positive (with post-test 

probabilities near 100).  

Further, truly robust tests should have confidence intervals that are precise, 

which is suggestive that repeating the study findings should lead to similar results. A 

confidence interval is a parameter estimate that outlines the boundaries that a given 

test value will fall if the study is repeated numerous times. In most cases, 95% 

confidence intervals are reported. This means that there is a 95% chance that the 

test value would fall within the boundaries of the confidence interval if the study 

was replicated in a different sample. For example, if a LR+ was 1.5 and the 95% 

confidence interval reported was 1.2 to 1.8, this means that there is a 95% chance 

that another trial would a LR+ between the boundaries of 1.2 to 1.8.  

 Because LR+ and LR- determine the values of both positive and negative 

findings, evaluate individuals with and without the condition of interest, and can be 

used to estimate post-test probabilities with adjustments for pre-test prevalence, 

these metrics should be used to guide decision making over sensitivity and 

specificity.  Both LR+ and LR- facts on both those with and without the condition of 

interest and only these truly reflect a situation of diagnostic uncertainly.  

MULTIVARIATE MODELING 

The goal in any data analysis is to extract from raw information the accurate 

estimation(Alexopoulos, 2010). The goal when clustering tests is to determine the best 

combination estimates and to do so multivariate modeling is required. Thus, clustering is 

simply the act of evaluating a set of tests and measures together, in combination, when 
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making a clinical decision or a mathematical assessment.  For example, Wainner and 

colleagues realized that there is no single test or measure that is strong enough to 

diagnosis cervical radiculopathy; however, when tests such as the upper limb tension test, 

Spurling’s test, cervical distraction, and assessment of range of motion to the affected 

side are clustered, the diagnostic accuracy is very strong. Clustering tests more closely 

reflects how many clinicians make decisions because it takes into account a number of 

presentations from the clinical assessment.  

Multivariate modeling is a form of statistical analysis that explores the 

relationship between two or more predictor variables (the clinical tests) and the outcome 

variable (the reference standard). There are multiple forms of multivariate modeling 

methods and for clustering best tests and measures for diagnosis, a logistic regression 

analysis is the most appropriate type since the diagnosis is almost always dichotomous 

(present or absent).  

Following proper multivariate modeling methodology is essential and the failure 

to do so when developing clustered rules or guides has been recognized by many 

authors(Beattie & Nelson, 2006; Beneciuk, Bishop, & George, 2009; C. Cook, Shah, & 

Pietrobon, 2008; Haskins, Rivett, & Osmotherly, 2012; May & Rosedale, 2009; Nee & 

Coppieters, 2011; Stanton, Hancock, Maher, & Koes, 2010). Although multivariate 

modeling can be notably complex, before considering clustering tests to determine most 

parsimonious values it is useful to contemplate the following four principles: 1) 

determination of observations per variable, 2) linearity continuous measures, 3) 

assessment of conditional dependence of the predictor variables (also recognized as 

Variance Inflation Factor or Tolerance) and 4) appropriate stepwise modeling. The 
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following paragraphs will provide recommendations for each of these principles.  

Determination of Observations per Variable: There are a number of ways to 

determine the appropriate observations per variable, or, in determining how many tests 

should be included as independent variables in the multivariate model. For the sake of 

clarity, an observation would be an individual who is enrolled in the sample for the 

diagnostic accuracy study. For simple univariate multinomial or logistic regression, 

Hosmer and Lemeshow(Hosmer & Lemeshow, 2000) have recommended a minimum 

observation-to-variable ratio of 10, but cautioned that a number this low will likely 

overfit (overly burden) a model. That said, it is wisest to adopt the preferred observation-

to-variable ratio of 20 to 1 for stepwise, multivariate modeling, with full recognition that 

a ratio of 50 to 1 is likely to provide more precise results. Thus, if one wanted to include 

4 tests in a cluster multivariate model, a total of 80 to 200 patients are recommended.    

Linearity of Continuous Measures: In most cases, clinical tests of the shoulder are 

either “positive” or “negative”. In some cases, a positive finding is determined after a 

threshold score is ascertained from a continuous set of measures (e.g., a threshold of a 

particular range of motion score). When underlying tests have a continuous value, the 

linearity of that value must be evaluated prior to determining a threshold. Linearity is 

generally analyzed by plotting to identify potential curvilinear relationships. An example 

of a lack of linearity is the estimation of the relationship of one’s flexibility to injury. It is 

suggested that those who are overly inflexible and those who are excessively flexible, are 

more predisposed to an overuse injury that one who is in the middle ranges. If we were to 

evaluate the influence of flexibility toward injury on values such as these, values that are 

not linear, no significant relationship would occur. There are adjustments one can make if 
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a variable lacks linearity. One can create categories and enter the variable as ordinal data 

with a set of indicators (dummies). Or, one can modify the definition of a positive test to 

reflect the variability within the underlying data. Using our previous flexibility example, 

one could score inflexible and excessively flexible as ‘positive’ and those in the middle 

categories as ‘negative’.   

Assessment of Conditional Dependence of the Predictor Variables:  One possible 

reason why past studies have failed to outline clusters of findings is the concept of 

conditional dependence. Conditional dependence(Menten, Boelaert, & Lesaffre, 2008) 

occurs when a subsequent test finding is not dissimilar to the first test finding or when a 

series of tests actually measure the same thing and are positive together in clusters or 

negative together in clusters. During multivariate modeling, this dependence is routinely 

referred to as assessment of multicollinearity. One can assess multicollinearity through 

use of correlation matrixes, variance inflation factors (VIF) and tolerance values. A 

correlational finding of r >0.7 between test variables can be used to assess the potential of 

multicollinearity.(Shen & Gao, 2008)  A mean VIF close to 1 represents little collinearity, 

whereas 10 or greater is very poor and reflects very high collinearity.(Kutner, 

Nachtsheim, & Neter, 2004) Tolerance is the reciprocal of VIF thus values close to 0 are 

considered to have high collinearity.(Firth, 1993) If tests are conditionally dependent and 

are included in the multivariate model, there is a risk that the test will be removed from 

the final model and/or the test will remain in the model but will adversely influence the 

beta scores of the variables within the model.  In layman’s terms, a beta score allows for 

a consistent and meaningful measure across different units for the relationship of an 

independent variable to the dependent variable. A notable example of conditional 
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dependence was the recent publication on clustered tests for cervical myelopathy by 

Cook and colleagues(C. Cook, et al., 2010). In the study, various forms of reflex testing 

were nearly always hyper-responsive at different areas (quadriceps, Achilles, 

brachioradialis, etc), but only one of the tests (positive brachioradialis) was included in 

the clustered model. Adding all the findings to the final model would not improve the 

accuracy and could alter the beta estimates.   

Appropriate Stepwise Modeling: Stepwise modeling is not without 

controversy.(Wlikinson & Dallal, 1981) Stepwise regression modeling is an automatic 

procedure in which the choice of predictive variables is carried out until the strongest, 

most refined explanatory model is determined. Most commonly, univariate analyses for 

each single test to the reference standard is calculated. Univariate analyses with p values 

of <0.15 are generally included in a multivariate model since the tests interactions with 

other tests may yield diagnostic findings in the final analyses. Using the automated 

stepwise processes, most statistical software programs will calculate a single cluster of 

independent variables (tests) that are responsible for the best explanation. By analyzing 

the best number of positive findings (e.g., 1 of 4, 2 of 4, 3 of 4, etc) one can further 

determine the desired sensitivity and specificity of their created cluster.  

BEST TEST CLUSTERS  
Before presenting the best published test clusters, “best” needs to be put in 

context. “Best” as used in this manuscript, is defined as those combinations of tests with 

the strongest likelihood ratios from research with the highest quality. The quality of the 

tests clusters is judged by using the Quality Assessment of Diagnostic Accuracy Studies 

(QUADAS) document and using a 0-14 (0=lowest quality) scale(Whiting, et al., 2004). 

From our past experience(C. E. Cook & Hegedus, 2011; Hegedus, et al., 2008), those 
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studies scoring below 10/14 are full of design faults that make the likelihood ratios from 

those studies questionable and probably not repeatable in populations outside of those 

examined in the study.  

Only 4 articles(Farber, Castillo, Clough, Bahk, & McFarland, 2006; Guanche & 

Jones, 2003; Litaker, Pioro, El Bilbeisi, & Brems, 2000; Park, Yokota, Gill, El Rassi, & 

McFarland, 2005) met our quality criteria and these articles reported on just 6 current 

clusters. The best test clusters currently available are summarized in Table 1. 

Unfortunately, even these high quality studies have failed in some respect with regard to 

sample size, stepwise regression, conditional dependence, and linearity of continuous 

measures (Table 2).  Closer examination of these 4 studies reveals some other 

interesting findings. With regard to rotator cuff tears, of note is that both test 

clusters(Litaker, et al., 2000; Park, et al., 2005) incorporate older age as a component and 

that the most diagnostic cluster(Park, et al., 2005) uses 2 tests, painful arc(Bak, et al., 

2010; Litaker, et al., 2000; Michener, Walsworth, Doukas, & Murphy, 2009) and drop 

arm(Bak, et al., 2010), that have low specificity or sensitivity values resulting in 

likelihood ratios that approach 1.0. In addition, another set of the tests from this same 

study(Park, et al., 2005), infraspinatus and painful arc, are part of the diagnostic cluster 

for impingement, likely leading to diagnostic confusion between early stages of 

impingement and rotator cuff tears (latter stage of impingement). The 2 diagnostic 

clusters for labral tears, a difficult clinical diagnosis, come from a single study(Guanche 

& Jones, 2003) and are only moderately diagnostic when positive with positive likelihood 

ratios ranging between 2.67 and 5.43. Further, one of the clusters for labral tears 

incorporates the active compression test, a test of dubious value(Ebinger, Magosch, 
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Lichtenberg, & Habermeyer, 2008; McFarland, Kim, & Savino, 2002; Morgan, Burkhart, 

Palmeri, & Gillespie, 1998; Oh, Kim, Kim, Gong, & Lee, 2008; Walsworth, Doukas, 

Murphy, Mielcarek, & Michener, 2008). Finally, for examining anterior instability, the 

results of the study(Farber, et al., 2006) are likely influenced by the fact that the 

instability group was younger and was more likely to have a history of trauma. It is 

important to note that in the study by Farber et al,(Farber, et al., 2006) apprehension was 

used as a positive test and not reproduction of pain.  

Despite the limitations of current literature on the diagnostic accuracy of test 

clusters to diagnose shoulder pathology, we thought it would be helpful to illustrate the 

best combinations through a case study (Figure). 

Case Study 

Our fictitious patient is 67 years old and has complained of shoulder pain of 4 

months in duration. He reported that his pain initiated while walking his dogs (when they 

jerked the leash he held) but notes that the pain has progressed markedly over the last two 

months. He is able to raise his arm above his head (with pain) but has noted that his arm 

now aches consistently, with a more noticeable ache at night. Frequent use of ibuprofen 

helps modulate his pain but the effects are only temporary at best.   

As a clinician, one might consider several possibilities, especially with the 

individual’s age, consistent pain, and traumatic onset. Tests with low LR- help “rule out” 

competing conditions thus one might choose to consider tests or clusters of tests for 

shoulder labrum tears, impingement, or a rotator cuff tear. As a reminder, clustering tests 

often leads to higher LR+ with a sacrifice of LR-, unless the cluster was mathematically 

designed as a screen.  
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Since we have 3 competing diagnoses, attempting to rule out one or two 

conditions would be prudent. Currently, there are no high quality clusters of screening 

tests for the labrum that would rule out this condition. In the absence of a labral tear test 

cluster with a LR- near zero, the clinician has 2 choices: 1. consider single test results 

with a LR- near zero or 2. attempt to rule in the condition with a cluster of test findings 

that has a high LR+. Only 1 OST, the biceps load II, comes from a high quality study and 

has a LR- near zero(Kim, Ha, Ahn, & Choi, 2001). Unfortunately, a second high quality 

study(Oh, et al., 2008) showed the test to have no ability to rule out (or in) a labral tear. 

Guanche et al(Guanche & Jones, 2003) reported a test cluster with a LR+ of 5.43 but this 

likelihood ratio is of only moderate assistance in diagnosing a labral tear which does not 

have an established set of signs and symptoms(Luime, et al., 2004) and a likely low 

prevalence, somewhere around 6%(Snyder, Banas, & Karzel, 1995). Therefore, the best 

decision in this case is to treat the diagnosis of labral tear as one of exclusion and move 

on to rule out one of the diagnoses of either rotator cuff tear or impingement. 

Park and colleagues(Park, et al., 2005) reported that with impingement syndrome, 

negative findings of 1) Hawkins-Kennedy, 2) painful arc test and 3) infraspinatus test 

provides a very low LR- (0.17) and thus, has the capacity to rule out the condition.  

Park et al(Park, et al., 2005) also reported that ruling out a rotator cuff tear is 

possible with negative findings on 1) Age > 60 2) painful arc test, 3) drop arm test, 

and 4) infraspinatus test. Since our patient is over age 60, we cannot rule out a 

rotator cuff tear. For the sake of this case, the Hawkins-Kennedy and the painful arc 

tests were negative but the infraspinatus test (weakness against resisted external 

rotation) was positive. The impingement test cluster, therefore, cannot rule out 
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impingement. With a negative Hawkins-Kennedy and painful arc, we also cannot 

rule in impingement. 

To rule in a rotator cuff tear, one could refer back to the findings of Park and 

colleagues(Park, et al., 2005) or consider the results from Litaker et al(Litaker, et al., 

2000). Two consistencies with the findings of Park et al(Park, et al., 2005) and 

Litaker et al(Litaker, et al., 2000) are age and external rotation strength losses. Park 

et al(Park, et al., 2005) report the benefit of the drop arm sign and the painful arc 

test whereas Litaker et al(Litaker, et al., 2000) report the value of night pain. Recall 

that our patient is 67 years old has night pain, and a positive infraspinatus test 

(weakness in external rotation). These 3 findings complete the test cluster by 

Litaker et al(Litaker, et al., 2000). The clinician must be content with a LR+ of 9.84. 

Since the painful arc test was previously reported as negative, the cluster of Park et 

al(Park, et al., 2005), with a LR+ of 28.0, cannot be used.  

CONCLUSION 
The clinical diagnostic process should be viewed through the lens of odds 

and probabilities. In order to do so, test clusters from high quality studies should be 

utilized. In our case study, the patient likely has a rotator cuff tear but we were 

unable to rule out or in a labral tear and impingement. High quality clinical test 

clusters with powerful diagnostic characteristics for labral tears do not presently 

exist and impingement is an all-encompassing term for tendon pathology at the 

shoulder that is, at best, unhelpful in guiding treatment, and, at worst, a clinical 

illusion(Hegedus, et al., 2012; Lewis, 2011). Other important pathologies of the 

shoulder like biceps tendinopathy, multi-directional instability, and fractures, also 

lack powerful clinical diagnostic clusters. Improved research that follows the tenets 
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of multivariate modeling outlined in this article must be performed in order to 

improve the tools available to clinicians as we attempt to make use of the clinical 

examination to diagnose shoulder pathology.  
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Table 1. Best test clusters from current literature 
Author(s) Pathology Test Cluster LR+ LR- 
(Litaker, et al., 
2000) 

Rotator cuff tear 1. Age > 65 and 
2. Weakness in external 
rotation and 
3. Night pain 

9.84 0.54 

(Park, et al., 
2005) 

Rotator cuff tear (full 
thickness) 

1. Age > 60 and 
2. + painful arc test and 
3. + drop arm test and 
4. + infraspinatus test 

28.0 0.09 

(Park, et al., 
2005) 

Impingement 1. + Hawkins-Kennedy 
and 
2. + painful arc test and 
3. + infraspinatus test 

10.56 0.17 

(Farber, et al., 
2006) 

Anterior instability 
(traumatic) 

1. + apprehension test  
and 
2. + relocation test 

39.68 0.19 

(Guanche & 
Jones, 2003) 

Labral tear 1. + relocation test and 
2. + active compression 
test 

4.56 0.65 

(Guanche & 
Jones, 2003) 

Labral tear 1. + relocation test and  
2. + apprehension test 

5.43 0.67 

 
 
Table 2. Design features of the best articles reporting on diagnostic accuracy 
of combined tests. 

Author (Litaker, et al., 
2000) 

(Park, et al., 
2005) 

(Farber, et al., 
2006) 

(Guanche & 
Jones, 2003) 

At least 20 
subjects per 
test in the 
cluster 

yes yes no yes 

Assessed 
conditional 
dependence 

yes no no no 

Stepwise 
regression 

yes yes no no 

Assessed 
linearity of 
continuous 
measures 

yes N/A N/A N/A 
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Figure. Diagnostic process using the best available clinical test clusters for shoulder 
pathology 
Key: + = positive test; - = negative test; H-K = Hawkins-Kennedy; ER = external 
rotation  
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