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CYCLOTOMIC GAUDIN MODELS WITH IRREGULAR SINGULARITIES

BENOÎT VICEDO AND CHARLES YOUNG

Abstract. Generalizing the construction of the cyclotomic Gaudin algebra from [VY16a], we

define the universal cyclotomic Gaudin algebra. It is a cyclotomic generalization of the Gaudin

models with irregular singularities defined in [FFT10].

We go on to solve, by Bethe ansatz, the special case in which the Lax matrix has simple poles

at the origin and arbitrarily many finite points, and a double pole at infinity.
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1. Introduction

Pick a primitive T th root of unity ω ∈ C×, for some non-negative integer T and let Γ :=
〈
ω
〉
⊂ C×

denote a copy of the cyclic group Z/TZ. Let g be a finite-dimensional semisimple Lie algebra and

σ : g→ g an automorphism whose order divides T .

Associated to these data is a cyclotomic Gaudin algebra [VY16a]. It is a large commutative

subalgebra of U(g⊕N )g
σ
, depending on a choice of non-zero marked points z = {z1, . . . , zN} in the

complex plane whose Γ-orbits are pairwise disjoint. It is generated by a hierarchy of Hamiltonians,

among which are quadratic Hamiltonians H1, . . . , HN that have appeared previously in [Skr06,

Skr13] – see also [CY07] – and, in the context of cyclotomic KZ equations, in [Bro10]. It defines a

quantum integrable model generalizing the quantum Gaudin model [Gau76], to which it reduces in

the special case T = 1.

The cyclotomic Gaudin algebra was constructed in [VY16a] using the technology of coinvari-

ants/conformal blocks of ĝ-modules of critical level, following [FFR94]. The relevant coinvariants

in this case are Γ-equivariant; see [VY16b].
1
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Now, in fact, this approach using coinvariants naturally gives commutative subalgebras not just

of U(g⊕N ) but of the larger algebra U
(⊕N

i=1 g[[t− zi]]
)

, where g[[t − z]] ∼= g[[t]] is the half loop

algebra. Moreover, in the cyclotomic setting it is natural to include also 0 and∞ as marked points.

These are the fixed points of the action of Γ, and to them one attaches twisted half loop algebras,

respectively g[[t]]Γ and (t−1gop[[t−1]])Γ (see §2.2). The first main result of the present sequel to

[VY16a] is thus to construct, in §2, a large commutative subalgebra

Z∞,z,0(g, σ)Γ ⊂ U

(
(t−1gop[[t−1]])Γ ⊕

N⊕
i=1

g[[t− zi]]⊕ (g[[t]])Γ

)gσ

.

It is the cyclotomic generalization of the universal Gaudin algebra defined in [FFT10].

Quotients of half loop algebras of the form g[[t]]/tng[[t]] are called (generalized) Takiff algebras.

Taking such quotients of Z∞,z,0(g, σ)Γ one obtains commutative algebras Z n∞,n,n0
∞,z,0 (g, σ)Γ.1 In

particular, one recovers the cyclotomic Gaudin algebra of [VY16a] as the special case

Z
1,(1),0
∞,z,0 (g, σ)Γ ⊂ U(0⊕ g⊕N ⊕ 0)g

σ
.

More generally, following [FFT10] it is natural to call the integrable models defined by representing

Z n∞,n,n0
∞,z,0 (g, σ)Γ on tensor products of modules over Takiff algebras, cyclotomic Gaudin models with

irregular singularities. Among the simplest possibilities is to introduce one irregular singularity, as

mild as possible, at ∞; that is, to consider

Z
2,(1),1
∞,z,0 (g, σ)Γ ⊂ U

(
(Π−1g)⊕ g⊕N ⊕ gσ

)gσ
.

Here Π−1g ⊂ g denotes the ω−1-eigenspace of σ. It is to be regarded here as a commutative Lie

algebra: it arises as the quotient Π−1g ∼=C (t−1g[[t−1]])Γ
/

(t−2g[[t−1]])Γ. Suppose we now pick a

one-dimensional representation of this commutative Lie algebra i.e. a linear map χ : Π−1g → C.

Applying this map we obtain a commutative subalgebra

A1,(1),1
∞,z,0 (g, σ, χ)Γ ⊂

(
U(g)⊗N ⊗ U(gσ)

)gσχ ,
where gσχ denotes the centraliser of χ under the coadjoint action of gσ on (Π−1g)∗. In the special

case of N = 0 (i.e. only one marked point, at the origin) this is a cyclotomic generalization of the

quantum shift-of-argument subalgebra of [Ryb06]; see also [FFRb10]. The latter is a quantisation of

the shift-of-argument subalgebra Aχ [MF78], the Poisson commutative subalgebra of S(g) ' P (g∗)

generated by all derivatives of every element of S(g)g in the direction of some fixed χ ∈ g∗. The

quantum shift-of-argument subalgebra has important connections to g-crystals, certain limits of

Uq(g)-modules, and cactus group actions on these, see e.g. [Ryb16]. It would be interesting to

investigate these various connections in the cyclotomic setting. (Note also that quantum KdV

theory is closely related to an affine shift-of-argument subalgebra [FF07].)

In the remainder of the paper we go on to diagonalize the Hamiltonians generatingA1,(1),1
∞,z,0 (g, σ, χ)Γ

on tensor products of Verma modules, by means of a Bethe ansatz. We assume that χ, and the

highest weights λ1, . . . , λN , λ0 of these Verma modules, all belong to the dual of a single Cartan sub-

algebra, and that this Cartan subalgebra is stable under σ. Under these assumptions one can apply

1Actually, we define these Z n∞,n,n0
∞,z,0 (g, σ)Γ first, and then the universal algebra Z∞,z,0(g, σ)Γ is their inverse limit.
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the approach to the Bethe ansatz for Gaudin models from [FFR94, Fre05], which uses coinvariants

of a particular class of ĝ-modules at critical level called Wakimoto modules. See §3, Theorem 3.2,

for the precise statement of the result.

Finally, in the special case χ = 0 we prove that the Bethe vectors are singular. See Theorem 3.4.

Let us conclude this introduction with some remarks and open questions.

As discussed in [FFT10], the origin of the term irregular singularities comes from the description

of the spectrum of Gaudin algebras in terms of opers. The notion of opers with regular singularities

was recently extended to the cyclotomic setting in [LV06], and it was conjectured that the spectrum

of the cyclotomic Gaudin algebra Z
1,(1),0
∞,z,0 (g, σ)Γ admits a description in terms of such cyclotomic

opers, or Γ-equivariant opers. It would be interesting to extend the definition of cyclotomic opers

to include the case of irregular singularities and relate these to the spectrum of Z n∞,n,n0
∞,z,0 (g, σ)Γ

defined in the present paper.

The quadratic Hamiltonians of the algebra A1,(1),1
∞,z,0 (g, σ, χ)Γ are the cyclotomic analogs of the

Gaudin models considered in [FMTV00], which exhibit a certain bispectrality property. It would

be interesting to investigate bispectrality in the cyclotomic setting, in the spirit of that paper.

Cyclotomic analogs of the KP hierarchy were defined recently in [CS]. This construction involves

a generalization of (the completion of) Calogero-Moser phase space, which can be seen as a quiver

variety whose underlying quiver has a single loop, to quiver varieties for cyclic quivers. Calogero-

Moser space is known to be related to Gaudin algebras (Bethe algebras) [MTV14], so it is natural

to hope for a similar relation in the cyclotomic setting.

2. The cyclotomic Gaudin model

2.1. Rational functions and formal series. We work over C. For any formal variable t, we

have the ring of polynomials C[t], the ring of formal power series C[[t]], and the field of formal

Laurent series C((t)). Given a finite collection of points x = {x1, . . . , xp} ⊂ C let C∞,x(t) denote

the localization of C[t] by the multiplicative subset generated by t − x1, . . . , t − xp. Elements of

C∞,x(t) are rational functions in t with poles at most at the points x1, . . . , xp and at infinity.

For any z ∈ C we have the map ιt−z : C∞,x(t)→ C((t−z)) which returns the Laurent expansion

ιt−zf(t) of a rational function f(t) about t = z. We have also ιt−1 : C∞,x(t) → C((t−1)) which

returns the Laurent expansion ιt−1f(t) of f(t) in powers of t−1. The maps ιt−z and ιt−1 are both

injective homomorphisms of C-algebras.

Let rest : C((t))→ C be the map which returns the coefficient of t−1. For any f(t) ∈ C∞,x(t) we

have

− rest−1 t2ιt−1f(t) +

p∑
i=1

rest−xi ιt−xif(t) = 0. (2.1)

(This is equivalent to the statement that the sum of the residues of a meromorphic one-form f(t)dt

on CP 1 vanishes.)

2.2. Opposite Lie algebras and left vs. right modules. Given a complex Lie algebra a with

Lie product [·, ·] : a ⊗ a → a we write aop for the opposite Lie algebra, namely the vector space a

endowed with the Lie product [X,Y ]op := [Y,X]. The Lie algebras a and aop are isomorphic (by

e.g. X 7→ −X) but it will be useful to regard them as two distinct Lie algebra structures on the
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same underlying vector space. Modules over a are naturally identified with left modules over the

envelope U(a); modules over aop are naturally identified with right modules over the envelope U(a).

2.3. Marked points and the group Γ. Let ω be a root of unity of order T ∈ Z≥1. The cyclic

group Γ := 〈ω〉 ∼= Z/TZ acts on the Riemann sphere CP 1 = C ∪ {∞} by multiplication. The fixed

points of this action are 0 and ∞. Pick N ∈ Z≥0 points z1, . . . , zN ∈ CP 1 \ {0,∞} whose Γ-orbits

are disjoint: Γzi ∩ Γzj = ∅ whenever i 6= j. We write z = {z1, . . . , zN}.
Let g be a finite-dimensional simple Lie algebra over C and σ : g→ g an automorphism of g whose

order divides T . Let
〈
·, ·
〉

denote the Killing form on g normalised such that long roots have square

length 2. This is σ-invariant since for any pair of elements X,Y ∈ g we have tr
(
ad(σX)◦ad(σY )

)
=

tr
(
σ ◦ adX ◦ adY ◦ σ−1

)
= tr

(
adX ◦ adY

)
using the fact that ad(σX) = σ ◦ adX ◦ σ−1. Let Πk,

k ∈ Z/TZ, be the projectors

Πk :=
1

T

T−1∑
m=0

ω−mkσm : g→ g (2.2)

onto the eigenspaces of σ. They obey
∑

k∈Z/TZ Πk = id. We write gσ for the subalgebra of

invariants,

gσ := Π0g.

Denote by gΓ,k
∞,z,0, k ∈ Z/TZ, the Lie algebra of those g-valued rational functions f(t) of a formal

variable t that have no poles outside the set of points {0,∞} ∪ Γz and that obey the equivariance

condition ω∗f = ωkσf , i.e.

f(ωt) = ωkσf(t).

Let also (g ⊗ C((t±1)))Γ,k := {f(t±1) ∈ g ⊗ C((t±1)) : f(ω±1t±1) = ωkσf(t±1)}. For brevity we

write gΓ
∞,z,0 := gΓ,0

∞,z,0 and (g⊗ C((t±1)))Γ := (g⊗ C((t±1)))Γ,0, etc.

There is an injective homomorphism of Lie algebras

g⊗ C∞,z,0(t) −→ gop ⊗ C((t−1))⊕
N⊕
i=1

g⊗ C((t− zi))⊕ g⊗ C((t))

defined by

f(t) 7−→ (−ιt−1f(t); ιt−z1f(t), . . . , ιt−zN f(t); ιt(t))

(note the op and minus sign in our conventions).

Lemma 2.1 (Γ-equivariant Strong residue theorem). A tuple of formal series

(f∞; fz1 , . . . , fzN ; f0) ∈ (gop ⊗ C((t−1)))Γ,k ⊕
N⊕
i=1

g⊗ C((t− zi))⊕ (g⊗ C((t)))Γ,k

belongs to (−ιt−1 ; ιt−z1 , . . . , ιt−zN ; ιt)(g
Γ,k
∞,z,0), i.e. they are the Laurent expansions of some rational

function in gΓ,k
∞,z,0, if and only if

− 1

T
rest−1 t2

〈
f∞,−ιt−1g(t)

〉
+

N∑
i=1

rest−zi
〈
fzi , ιt−zig(t)

〉
+

1

T
rest

〈
f0, ιt(g)

〉
= 0 (2.3)

for all g(t) ∈ gΓ,−k−1
∞,z,0 .
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Proof. The proof is as in [VY16a, Lemma A.1], but including the poles at ∞. Compare (2.1). �

Let ĝzi denote the extension of g⊗C((t− zi)) by a one-dimensional centre CKzi , defined by the

cocycle

Ωzi(fzi , gzi) := rest−zi
〈
fzi , ∂t−zigzi

〉
Kzi , fzi , gzi ∈ g⊗ C((t− zi)). (2.4)

Thus, each ĝzi , i = 1, . . . , N , is a copy of the (untwisted) affine Lie algebra ĝ.

Let ĝΓ
0 denote the extension of (g ⊗ C((t)))Γ by a one-dimensional centre CK0, defined by the

cocycle

Ω0(f0, g0) := rest
〈
f0, ∂tg0

〉
K0, f0, g0 ∈ (g⊗ C((t)))Γ. (2.5)

Let ĝop,Γ∞ denote the extension of (gop ⊗ C((t−1)))Γ by a one-dimensional centre CK∞, defined

by the cocycle

Ω∞(f∞, g∞) := rest−1

〈
f∞, ∂t−1g∞

〉
K∞

= − rest−1 t2
〈
f∞, ∂tg∞

〉
K∞, f∞, g∞ ∈ (gop ⊗ C((t−1)))Γ. (2.6)

Given any X ∈ g, n ∈ Z we introduce the notations

X[n]zi := X ⊗ (t− zi)n ∈ ĝzi , X[n]0 := X ⊗ tn ∈ ĝ0, X[n]∞ := X ⊗ tn ∈ ĝ∞.

Note in particular our conventions for the nth-modes at ∞.

The algebras ĝΓ
0 and ĝΓ

∞ are both copies of an algebra ĝΓ which is either a twisted affine Lie

algebra (if σ is an outer automorphism) or else isomorphic to ĝ (if σ is an inner automorphism).

Let ĝ∞,N,0 denote the extension of (gop ⊗ C((t−1)))Γ ⊕
⊕N

i=1 g⊗ C((t− zi))⊕ (g⊗ C((t)))Γ, by

a one-dimensional centre CK, defined by the cocycle

Ω(f, g) :=

(
− 1

T
rest−1 t2

〈
f∞, ∂tg∞

〉
+

N∑
i=1

rest−zi
〈
fzi , ∂tgzi

〉
+

1

T
rest

〈
f0, ∂tg0

〉)
K, (2.7)

where f = (f∞; fz1 , . . . , fzN ; f0) and g = (g∞; gz1 , . . . , gzN ; g0) are in (gop ⊗ C((t−1)))Γ ⊕
⊕N

i=1 g⊗
C((t−zi))⊕(g⊗C((t)))Γ. In other words, ĝ∞,N,0 is the quotient of the direct sum ĝop,Γ∞ ⊕

⊕N
i=1 ĝzi⊕ĝΓ

0

by the ideal spanned by Kzi −TK0, i = 1, . . . , N , and K∞−K0, leaving one central generator, say

Kz1 , which we call K.

We have an embedding of Lie algebras

(−ιt−1 ; ιt−z1 , . . . , ιt−zN ; ιt) : gΓ
∞,z,0 ↪−→ (gop ⊗ C((t−1)))Γ ⊕

N⊕
i=1

g⊗ C((t− zi))⊕ (g⊗ C((t)))Γ.

By Lemma 2.1 the restriction of the cocycle Ω to the image of gΓ
∞,z,0 under this embedding vanishes.

Therefore the embedding lifts to an embedding

gΓ
∞,z,0 ↪−→ ĝ∞,N,0. (2.8)

2.4. Induced ĝ∞,N,0-modules. LetMzi be a module over g⊗C[[t−zi]], for each i = 1, . . . , N . We

then make it into a module over g⊗C[[t− zi]]⊕CKzi by declaring that Kzi acts by multiplication

by k ∈ C. Then we have the induced left U(ĝzi)-module,

Mk
zi := U(ĝzi)⊗U(g⊗C[[t−zi]]⊕CKzi )Mzi . (2.9)
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Let M0 be a module over (g ⊗ C[[t]])Γ. We make it into a module over (g ⊗ C[[t]])Γ ⊕ CK0 by

declaring that K0 acts by multiplication by k/T ∈ C. Then we have the induced left U(ĝΓ
0 )-module,

Mk/T
0 := U(ĝΓ

0 )⊗U((g⊗C[[t]])Γ⊕CK0)M0. (2.10)

LetM∞ be a module over (gop⊗t−1C[[t−1]])Γ. We make it into a module over (gop⊗t−1C[[t−1]])Γ⊕
CK∞ by declaring that K∞ acts by multiplication by k/T ∈ C. We have the induced left U(ĝop,Γ∞ )-

module,

Mk/T
∞ := U(ĝop,Γ∞ )⊗U((gop⊗t−1C[[t−1]])Γ⊕CK∞)M∞ (2.11)

Let us write

M :=M∞ ⊗
N⊗
i=1

Mzi ⊗M0 (2.12)

and

ĝ++
∞,N,0 := (gop ⊗ t−1C[[t−1]])Γ ⊕

N⊕
i=1

g⊗ C[[t− zi]]⊕ (g⊗ C[[t]])Γ ⊕ CK. (2.13)

Then the tensor product

M := Mk/T
∞ ⊗

N⊗
i=1

Mk
zi ⊗Mk/T

0 = U(ĝ∞,N,0)⊗U(ĝ++
∞,N,0)M (2.14)

is a module over ĝ∞,N,0 on which K acts as k. Pulling back by the embedding (2.8), we have that

M becomes a module over gΓ
∞,z,0 and we can form the space of coinvariants,

M
/
gΓ
∞,z,0 := M

/
(gΓ
∞,z,0.M).

Proposition 2.2. The Lie algebras ĝ++
∞,N,0 and gΓ

∞,z,0 embed as a pair of complementary Lie sub-

algebras in ĝ∞,N,0, i.e.

ĝ∞,N,0 = ĝ++
∞,N,0 u gΓ

∞,z,0

as vector spaces. Therefore there is a canonical isomorphism of vector spaces

M
/
gΓ
∞,z,0

∼=CM. (2.15)

Proof. As in [VY16a], Lemma 2.1 and Corollary 2.4. �

2.5. Vacuum verma module Vk0. Now let u ∈ C× be an additional non-zero marked point, whose

orbit Γu is disjoint from Γz. Then we have the algebras gΓ
∞,z,u,0, ĝ∞,N+1,0, etc. defined as above

but with the point u included. To the point u we assign a copy of the vacuum Verma module Vk0
over the local copy ĝu of the affine Lie algebra ĝ. Recall that by definition Vk0 is the induced module

Vk0 := U(ĝu)⊗U(g⊗C[[t−u]]⊕CKu) Cv0. (2.16)

Here Cv0 denotes the one-dimensional module over g ⊗ C[[t − u]] ⊕ CKu on which g ⊗ C[[t − u]]

acts trivially and Ku acts by multiplication by k ∈ C.

A vector X ∈ Vk0 is singular if A.X = 0 for all A ∈ g⊗ C[t]. The singular vectors form a linear

subspace of Vk0 denoted z(ĝ).
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Proposition 2.3. There is a canonical isomorphism of vector spaces

(M⊗ Vk0)
/
gΓ
∞,z,u,0

∼=CM⊗ Cv0
∼=CM. �

It follows that, given any X ∈ Vk0, there is a linear map X(u) :M→M defined by

M ↪−→M ·⊗X−−−→M⊗ Vk0 −� (M⊗ Vk0)
/
gΓ
∞,z,u,0

∼−→M (2.17)

where M ↪→ M is the natural embedding. The map X(u) depends rationally on u, with poles at

most at the points 0, ωkzi (1 ≤ i ≤ N and k ∈ Z/TZ) and ∞.

2.6. Generalized Takiff algebras. For any n ∈ Z≥1 there is an ideal g⊗ tnC[t] ⊂ g⊗C[t]. Define

the Lie algebra Tng to be the quotient

Tng := (g⊗ C[t])
/

(g⊗ tnC[t])

∼=C g⊕ tg · · · ⊕ tn−1g.

Thus T1g = g. The Lie algebra Tng is known as a (generalized) Takiff algebra.

The Lie algebras Tng together with the canonical projections Tng� Tmg, n > m, form an inverse

system, and g⊗ C[[t]] is the inverse limit lim←−Tng.

Define also the twisted Takiff algebra TngΓ:

TngΓ := (g⊗ C[t])Γ / (g⊗ tnC[t])Γ

∼=C gσ ⊕ tΠ1g · · · ⊕ tn−1Πn−1g.

In particular T1g
Γ = gσ.

We use the notation Xp for the class of the element tpX = X ⊗ tp in Tng.

For any z ∈ C we have the naive isomorphism Tng ∼= (g⊗ C[[t− z]])
/

(g⊗ (t− z)nC[[t− z]])
which sends Xp to the class of X ⊗ (t− z)p. By means of this isomorphism, modules over Tng pull

back to modules over g⊗ C[[t− z]].

2.7. Universal Cyclotomic Gaudin Algebra. Given any n0, nz1 , . . . , nzN , n∞ ∈ Z≥1 we write

n = {nz1 , . . . , nzN }. Let In∞,n,n0 ⊂ U(ĝ++
∞,N,0) denote the two-sided ideal in U(ĝ++

∞,N,0) generated

by
(
gop ⊗ t−n∞C[[t−1]]

)Γ
, g⊗ (t− zi)nziC[[t− zi]], i = 1, . . . , N , and (g⊗ tn0C[[t]])Γ. Define

U(ĝ++
∞,N,0)n∞,n,n0 := U(ĝ++

∞,N,0)/In∞,n,n0 . (2.18)

These form an inverse system whose inverse limit is U(ĝ++
∞,N,0).

Let us now take the module M in (2.12) to be a copy of U(ĝ++
∞,N,0)n∞,n,n0 , regarded as a left

module over itself. For any X ∈ Vk0 we have a map X(u) : U(ĝ++
∞,N,0)n∞,n,n0 → U(ĝ++

∞,N,0)n∞,n,n0 as

in (2.17). By construction this can be written in terms of the left action of U(ĝ++
∞,N,0)n∞,n,n0 , which

commutes with the right action of U(ĝ++
∞,N,0)n∞,n,n0 . So X(u) commutes with the right action of

U(ĝ++
∞,N,0)n∞,n,n0 . Hence for all a ∈ U(ĝ++

∞,N,0)n∞,n,n0 , X(u).a = X(u).(1a) = (X(u).1)a. That

is, X(u) acts by left-multiplication by the element X(u).1 ∈ U(ĝ++
∞,N,0)n∞,n,n0 . Since the latter

depends on the choice of n∞,n, n0, we will denote it by X(u)n∞,n,n0 . When the choice of n∞,n, n0

is clear from the context we will write X(u)n∞,n,n0 simply as X(u). By construction, whenever
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n′0 > n0, n′zi > nzi and n′∞ > n∞ then

X(u)n∞,n,n0 = X(u)n′0,n′,n′∞ + In∞,n,n0 . (2.19)

In other words, the elements X(u)n∞,n,n0 ∈ U(ĝ++
∞,N,0)n∞,n,n0 are compatible with the above inverse

system and hence define an element of the inverse limit U(ĝ++
∞,N,0). By a slight abuse of notation

we will also call this element simply X(u) ∈ U(ĝ++
∞,N,0).

We have the natural inclusion gσ ↪→ g and hence the “diagonal” embedding

gσ ↪−→ gσ,op ⊕
N⊕
i=1

g⊕ gσ ↪−→ ĝ∞,N,0,

X 7−→ (−X;X, . . . ,X;X) 7−→ (−X[0]∞;X[0]z1 , . . . , X[0]zN ;X[0]0). (2.20)

Identifying gσ with its image under this embedding, this gives an action of gσ on U(ĝ∞,N,0) by left-

and right-multiplication. In particular, we can define the adjoint action of gσ on U(ĝ∞,N,0). Note

that the adjoint action stabilises U(ĝ++
∞,N,0) but the actions by left- and right-multiplication do not,

because the zero-modes at ∞ are not present in U(ĝ++
∞,N,0). Let us write

U(ĝ++
∞,N,0)g

σ
:= {x ∈ U(ĝ++

∞,N,0) : [a, x] = 0 for all a ∈ gσ} (2.21)

for the invariant subspace of the adjoint action of gσ on U(ĝ++
∞,N,0). Define U(ĝ++

∞,N,0)g
σ

n∞,n,n0 likewise.

Now suppose X is a singular vector, X ∈ z(ĝ) ⊂ Vk0. Then X is in particular gσ-invariant,

a.X = 0 for all a ∈ gσ. Hence we have

0 = [1⊗ a.X] = −[a.1⊗X] = −[X(u)a.1⊗ v0] = −[X(u)a.1]

where we “swapped using the constant rational function a”, i.e. used [a.(1 ⊗ X)] = 0, in the

second equality and used the definition of X(u) in the third. On the other hand, in the space of

coinvariants M
/
gΓ
∞,z,0 we have

0 = [a.(X(u).1)] = [aX(u).1].

Taking the difference of the two equalities above, we get

0 =
[
[a,X(u)].1

]
= [a,X(u)]

where in the last equality we can use the identification M
/
gΓ
∞,z,0

∼=M. (The point is that neither

aX(u) nor X(u)a need belong to M = U(ĝ++
∞,N,0)n∞,n,n0 , but the commutator [a,X(u)] does, as

we noted above.) This shows that if X is singular then X(u) ∈ U(ĝ++
∞,N,0)g

σ

n∞,n,n0 .

For each X ∈ Vk0, the element X(u) depends rationally on u with poles at most at 0, ωkzi,∞,

i = 1, . . . , N . Define the algebra Z n∞,n,n0
∞,z,0 (g, σ)Γ to be the span, in U(ĝ++

∞,N,0)g
σ

n∞,n,n0 , of all the

coefficients of singular terms of Laurent expansions of the elements Z(u) as Z varies in the space

of singular vectors z(ĝ) ⊂ V−h
∨

0 .

By virtue of (2.19), the algebras Z n∞,n,n0
∞,z,0 (g, σ)Γ form an inverse system. Define the universal

cyclotomic Gaudin algebra Z∞,z,0(g, σ)Γ to be the inverse limit,

Z∞,z,0(g, σ)Γ := lim←−Z n∞,n,n0
∞,z,0 (g, σ)Γ.

By the argument in [VY16a], following [FFR94], we have
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Theorem 2.4. Each Z n∞,n,n0
∞,z,0 (g, σ)Γ is a commutative subalgebra of U(ĝ++

∞,N,0)g
σ

n∞,n,n0.

Hence Z∞,z,0(g, σ)Γ is a commutative subalgebra of U(ĝ++
∞,N,0)g

σ
. �

2.8. Quadratic cyclotomic Hamiltonians. Let Ia ∈ g and Ia ∈ g, a = 1, . . . ,dim g, be dual

bases of g with respect to
〈
·, ·
〉
, i.e.

〈
Ia, I

b
〉

= δba. Let C := 1
2I

aIa ∈ Z(U(g)), the quadratic Casimir

of g. Here and below we employ summation convention on the index a = 1, . . . ,dim g. Define an

element F ∈ gσ and number K ∈ C by

F :=
1

2

T−1∑
p=1

ωp[σpIa, Ia]

ωp − 1
, K :=

1

2

T−1∑
p=1

ωp
〈
σpIa, Ia

〉
k

(ωp − 1)2
. (2.22)

The quadratic Segal-Sugawara vector S is by definition

S :=
1

2
Ia[−1]Ia[−1]v0 ∈ Vk0 (2.23)

At the critical level k = −h∨, the vector S is singular.

Proposition 2.5. The corresponding element S(u) ∈ U(ĝ++
∞,N,0)g

σ
is given by

S(u)− 1

u2
K =

N∑
i=1

T−1∑
k=0

∞∑
p=0

ω−kp+kHi,p
(u− ω−kzi)p+1

+
∞∑
p=0

p≡1 modT

H0,p

up+1
+

∞∑
p=0

p≡−2 modT

upH∞,p (2.24)

where

Hi,p =

N∑
j=1
j 6=i

T−1∑
l=0

∞∑
n,m=0

(−1)n
[
n+m
m

]
(zi − ω−lzj)n+m+1

Ia[n+ p]ziω
−lm(σlIa)[m]zj

+
T−1∑
l=1

∞∑
r,m=0

ω−lm(−1)r
[
r+m
m

]
((1− ω−l)zi)r+m+1

1

2

{
Ia[r + p]zi , (σ

lIa)[m]zi

}
+

p−1∑
n=0

1

2
Ia[n]ziI

a[p− n− 1]zi

+ T
∞∑

n,m=0

(−1)n
[
n+m
m

]
zn+m+1
i

Ia[n+ p]zi(ΠmI
a)[m]0 +

∞∑
n=0

(−1)n

zn+1
i

F [n+ p]zi

+ T

∞∑
n,m=0

zni

[
n+m

m

]
(Π−n−m−1Ia)[−n−m− 1]∞I

a[p+m]zi , (2.25)

for i = 1, . . . , N , and

H0,p = T 2
∞∑
m=0

∞∑
n=0

N∑
i=1

(−1)n+1
[
n+m
n

]
zn+m+1
i

(Π−m−1Ia)[n]zi(Πm+pI
a)[m+ p]0

+ T 2
∞∑
n=p

(ΠnIa)[n]0(Π−n+p−1I
a)[−n+ p− 1]∞

+
T 2

2

p−1∑
n=0

(ΠnIa)[n]0(Πp−n−1I
a)[p− n− 1]0 + T (Πp−1F )[p− 1]0, (2.26)
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and where finally

H∞,p = T 2
N∑
i=1

∞∑
n=0

∞∑
m=p+n+1

zm−n−1−p
i

[
m− 1− p

n

]
(Π−m−1Ia)[−m− 1]∞(Πm−p−1I

a)[n]zi

+ T 2
∞∑
n=0

(ΠnIa)[n]0(Π−p−n−2I
a)[−p− n− 2]∞

+
T 2

2

p∑
n=0

(Π−n−1Ia)[−n− 1]∞(Π−p+n−1I
a)[−p+ n− 1]∞ + T (Π−p−2F )[−p− 2]∞. (2.27)

Proof. The proof is given in Appendix A. �

Remark 2.6. The expression (2.26) for H0,p vanishes unless p ≡ 1 modT , in accordance with the

restriction in the second sum on the right hand side of (2.24). Indeed, the first three terms involve

expressions of the form (ΠrIa)[n](ΠsI
a)[m] for some r, s ∈ ZT and m,n ∈ Z≥0. However, using

the σ-invariance of the bilinear pairing on g it follows that this is equal to ωr+s(ΠrIa)[n](ΠsI
a)[m]

and therefore vanishes unless r+ s ≡ 0 modT . Likewise, for the last term, (Πp−1F )[p− 1] vanishes

unless p = 1 since F ∈ gσ. The expression (2.27) for H∞,p vanishes unless p ≡ −2 modT for similar

reasons, in accordance with the restriction in the third sum on the right hand side of (2.24).

2.9. Regular singularities and shift-of-argument. In the special case when nzi = 1 for i =

1, . . . , N and n0 = 1, we obtain commutative subalgebras

Z
n∞,(1),1
∞,z,0 (g, σ)Γ ⊂

(
U
((

gop ⊗ t−1C[t−1]
)Γ/(

gop ⊗ t−n∞C[t−1]
)Γ)⊗ U(g)⊗N ⊗ U(gσ)

)gσ
.

If furthermore we set n∞ = 1 then we obtain the commutative subalgebra

Z
1,(1),1
∞,z,0 (g, σ)Γ ⊂ (U(g)⊗N ⊗ U(gσ))g

σ
.

Now consider setting n∞ = 2. Pick any linear map

χ : Π−1g→ C.

The Lie algebra
(
gop ⊗ t−1C[t−1]

)Γ / (
gop ⊗ t−2C[t−1]

)Γ
is commutative, and is canonically iso-

morphic to Π−1g as a vector space. We may therefore regard χ as an algebra homomorphism

χ : U
( (

gop ⊗ t−1C[t−1]
)Γ / (

gop ⊗ t−2C[t−1]
)Γ )→ C. Let then

A1,(1),1
∞,z,0 (g, σ, χ)Γ := (χ⊗ id⊗N ⊗ id)

(
Z

2,(1),1
∞,z,0 (g, σ)Γ

)
.

This defines a commutative subalgebra

A1,(1),1
∞,z,0 (g, σ, χ)Γ ⊂

(
U(g)⊗N ⊗ U(gσ)

)gσχ ,
where gσχ = {X ∈ gσ : χ([X,Y ]) = 0 for all Y ∈ Π−1g} denotes the centralizer of χ under the coad-

joint action. Note that in the special case χ = 0 we recover Z
1,(1),1
∞,z,0 (g, σ)Γ.

For any X ∈ g and i = 1, . . . , N we let X(i) denote the element of U(g)⊗N ⊗ U(gσ) with X in

the ith tensor factor and a 1 everywhere else. Similarly, for X ∈ gσ we let X(0) be the element
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1⊗N ⊗X of U(g)⊗N ⊗ U(gσ). The only non-zero Hamiltonians of Proposition 2.5 above are then

Hi,0 =
N∑
j=1
j 6=i

T−1∑
l=0

I
(i)
a (σlIa)(j)

(zi − ω−lzj)
+
T−1∑
l=1

(σlIa)
(i)Ia(i)

(1− ω−l)zi
+ T

1

zi
I(i)
a (Π0I

a)(0) + TIa(i)χ(Π−1Ia),

Hi,1 =
1

2
I(i)
a Ia(i),

H0,0 = T 2
N∑
i=1

(−1)

zi
(Π−1Ia)

(i)(Π0I
a)(0) + T 2(Π0Ia)

(0)χ(Π−1I
a),

H0,1 =
T 2

2
(Π0Ia)

(0)(Π0I
a)(0) + TF (0),

and

H∞,0 =
T 2

2
χ(Π−1Ia)χ(Π−1I

a).

Note that H0,0 = 0 unless T = 1 and H∞,0 = 0 unless T = 1 or 2, cf. Remark 2.6.

Remark 2.7. The cyclotomic Gaudin algebra introduced in [VY16a] is the commutative subalgebra

Z
1,(1),0
∞,z,0 (g, σ)Γ ⊂ (U(g)⊗N )g

σ
. It is the image of Z

1,(1),1
∞,z,0 (g, σ)Γ under id⊗N⊗ε, where ε : U(gσ)→ C

is the counit.

Remark 2.8. The algebra A1,(1),1
∞,z,0 (g, σ, χ)Γ is a cyclotomic generalisation of the quantum shift-of-

argument subalgebra; see [Ryb06, FFT10, FFRb10].

Remark 2.9. Sometimes setting χ 6= 0 is called adding twisted boundary conditions. The name

comes from the Heisenberg XXX spin chain of which the usual Gaudin model is a limit.

3. Statement of main results

3.1. Cartan data and Verma modules. We fix a Cartan decomposition g = n−⊕h⊕n of g. Let

∆+ ⊂ h∗ be the set of positive roots of g and {αi}i∈I ⊂ ∆+ the set of simple roots, where i runs

over the set I of nodes of the Dynkin diagram of g. Let Eα (resp. Fα) be a root vector of weight α

(resp. −α) for each root α ∈ ∆+, and Hα ≡ α∨ := [Eα, Fα] the corresponding coroot. Overloading

notation somewhat, we write Hi := Hαi , i ∈ I. Then {Hi}i∈I ∪ {Eα, Fα}α∈∆+ is a Cartan-Weyl

basis of g. We shall assume the Cartan decomposition has been chosen to be compatible with the

automorphism σ : g → g, in the sense that σ(h) = h, σ(n) = n and σ(n−) = n−. (Such a choice is

always possible [Kac83].)

Let Mλ denote the Verma module over g with highest weight λ ∈ h∗, namely

Mλ := U(g)⊗U(h⊕n) Cvλ, (3.1)

where Cvλ is the one-dimensional module over h ⊕ n generated by a vector vλ with n.vλ = 0 and

h.vλ = λ(h)vλ for all h ∈ h. Similarly, let Mσ
λ denote the Verma module over gσ with highest

weight λ ∈ h∗,σ,

Mσ
λ := U(gσ)⊗U(hσ⊕nσ) Cvλ, (3.2)

3.2. The weight function. Let λ1, . . . , λN ∈ h∗ be g-weights. Let λ0 ∈ h∗,σ be a gσ-weight.
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As above, let z1, . . . , zN be a collection of N ∈ Z≥0 non-zero points in C such that Γzi ∩Γzj = ∅
for all 1 ≤ i < j ≤ N . In addition, let w1, . . . , wm be a collection of m ∈ Z≥0 non-zero points in C
such that Γwi ∩ Γwj = ∅ for all 1 ≤ i < j ≤ m and such that Γwi ∩ Γzj = ∅ for all 1 ≤ i ≤ m and

1 ≤ j ≤ N . Let c(1), . . . , c(m) be elements of I. We call c(i) the colour of the variable wi.

We now define the (cyclotomic) weight function ψ associated to these data.

Recall the projectors Πk from (2.2), and in particular Π0. Define linear maps

θs :

N⊗
i=1

Mλi ⊗M
σ
λ0
⊗ n− ⊗ . . .⊗ n−︸ ︷︷ ︸

s

−→
N⊗
i=1

Mλi ⊗M
σ
λ0
⊗ n− ⊗ . . .⊗ n−︸ ︷︷ ︸

s−1

for s = 1, 2, . . . ,m, by

θs(x1 ⊗ . . .⊗ xN ⊗ x0 ⊗ y1 ⊗ . . .⊗ ys)

=
x1 ⊗ . . .⊗ . . .⊗ xN ⊗ (TΠ0ys)x0 ⊗ y1 ⊗ . . .⊗ ys−1)

ws

+

N∑
i=1

∑
j∈ZT

x1 ⊗ . . .⊗ xi−1 ⊗ (σjys)xi ⊗ xi+1 ⊗ . . .⊗ xN ⊗ x0 ⊗ y1 ⊗ . . .⊗ ys−1)

ws − ω−jzi

+

s−1∑
i=1

∑
j∈ZT

x1 ⊗ . . .⊗ xN ⊗ x0 ⊗ y1 ⊗ . . .⊗ yi−1 ⊗ [σjys, yi]⊗ yi+1 ⊗ . . .⊗ ys−1

ws − ω−jwi

Then the weight function ψ is by definition the element

ψ := (−1)m(θ1 ◦ · · · ◦ θm)(vλ1 ⊗ . . .⊗ vλN ⊗ vλ0 ⊗ Fαc(1)
⊗ Fαc(2)

⊗ . . .⊗ Fαc(m)
). (3.3)

For λ ∈ h∗ define Π0λ ∈ h∗,σ by (Π0λ)(Π0h) := λ(Π0h) for h ∈ h.

Lemma 3.1. The weight function ψ is an element of
⊗N

i=1Mλi ⊗Mσ
λ0

of gσ-weight

λ∞ := λ0 +
N∑
i=1

Π0λi −
m∑
j=1

Π0αc(j) ∈ h∗,σ. (3.4)

Proof. We can regard n− as a module over hσ, under the adjoint action. Then
⊗N

i=1Mλi⊗Mσ
λ0
⊗n⊗s−

is a module over hσ, for every s ∈ Z≥0. Pick any element Π0h ∈ hσ. For each i ∈ I we have

(Π0h).Fαi := [Π0h, Fαi ] = −αi(Π0h)Fαi = −(Π0αi)(h)Fαi . That is, Fαi has gσ-weight −Π0αi.

Therefore vλ1 ⊗ . . . ⊗ vλN ⊗ vλ0 ⊗ Fαc(1)
⊗ Fαc(2)

⊗ . . . ⊗ Fαc(m)
∈
⊗N

i=1Mλi ⊗ Mσ
λ0
⊗ n⊗m− has

gσ-weight λ∞.

Now, if an element y ∈ n− has gσ-weight λ then so does σjy for any j ∈ ZT . Indeed, Π0 = σjΠ0

so that [Π0h, σ
jy] = [σjΠ0h, σ

jy] = σj [Π0h, y] = σjy λ(Π0h). It follows that the maps θs commute

with the action of hσ, i.e. preserve gσ-weight. Hence the result. �

3.3. The weight Λ0. Define a weight Λ0 ∈ h∗,σ by

Λ0(h) :=
T−1∑
r=1

trn(σ
−radh)

1− ωr
(3.5)

where adh : n→ n;X 7→ [h,X] is the adjoint action of h on n.
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For a more explicit expression for Λ0, note that [Kac83, §8.6]

σ(Eα) = ταEσ(α), σ(Hi) = Hσ(i), σ(Fα) = τ−1
α Fσ(α). (3.6)

Here, by overloading notation, we write σ : ∆+ → ∆+ for the symmetry of the root system, coming

in turn from a symmetry σ : I → I of the Dynkin diagram. The numbers τα, α ∈ ∆+, are certain

roots of unity in Γ = ωZ. (So the “inner part” of the automorphism σ : g → g is encoded in the

choice of ταi , i ∈ I; the remaining τα are fixed by this choice.)

Then

Λ0 =
T−1∑
r=1

1

1− ωr
∑
α∈∆+

σr(α)=α

r−1∏
p=0

τ−1
σp(α)

α. (3.7)

3.4. The cyclotomic Bethe equations. Given a complex vector space A on which σ acts, for

any linear map η : A → C we define Lση := η ◦ σ−1. Let χ ∈ h∗ be such that Lσχ = ωχ. The

cyclotomic Bethe equations (with twisted boundaries) are

0 =
T−1∑
r=0

N∑
i=1

〈αc(j), Lrσλi〉
wj − ωrzi

−
T−1∑
r=0

m∑
k=1
k 6=j

〈αc(j), Lrσαc(k)〉
wj − ωrwk

+
1

wj

(
−1

2

T−1∑
r=1

〈αc(j), Lrσαc(j)〉+ 〈αc(j), Tλ0 + Λ0〉

)
+ 〈αc(j), χ〉. (3.8)

3.5. Eigenvectors of the cyclotomic Gaudin algebra. Let χ ∈ h∗ be such that Lσχ = ωχ.

Extend χ to an element of g∗ by setting χ(n) = χ(n−) = 0. Then a χ is a linear map Π−1g→ C.

Suppose (w1, . . . , wm; c(1), . . . , c(m)) are such that cyclotomic Bethe equations (3.8) are satisfied.

Theorem 3.2. The weight function is an eigenvector of the algebra A1,(1),1
∞,z,0 (g, σ, χ)Γ. In particular,

the eigenvalues Ei of the quadratic cyclotomic Gaudin Hamiltonians Hi,0 are given by

Ei :=

N∑
j=1
j 6=i

T−1∑
s=0

〈λi, Lsσλj〉
zi − ωszj

−
m∑
j=1

T−1∑
s=0

〈λi, Lsσαc(j)〉
zi − ωswj

+
1

zi

(
〈λi, Tλ0 + Λ0〉+

1

2

T−1∑
s=1

〈λi, Lsσλi〉

)
+ 〈λi, χ〉.

Moreover the eigenvalues of H0,0, H0,1 and H∞,0 are, respectively,〈
χ, Tλ0 + Λ0

〉
,

1

2

〈
Tλ0 + Λ0, Tλ0 + Λ0

〉
+
〈
Tλ0 + Λ0, %

〉
−K, 1

2

〈
χ, χ

〉
,

where % := 1
2

∑
α∈∆+ α.

Remark 3.3. The eigenvalue of H0,0 is zero unless T = 1, on Z/TZ-grading grounds, as it should

be in view of Remark 2.6. Similarly, the eigenvalue of H∞,0 vanishes unless T = 1 or 2.

In particular, when χ = 0 the weight function is an eigenvector of the algebra Z
1,(1),1
∞,z,0 (g, σ)Γ.

Moreover, in that case we have the following.

Theorem 3.4. In the special case χ = 0, the weight function ψ belongs to
(⊗N

i=1Mλi ⊗Mσ
λ0

)nσ
λ∞

,

the subspace of nσ-singular vectors of gσ-weight λ∞ in
⊗N

i=1Mλi ⊗Mσ
λ0

.
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Remark 3.5. We have not shown that the weight function is non-zero. When σ is a diagram

automorphism, this is proved in [VY].

4. Proofs

4.1. Restricted duals and contragredient Verma modules. Given a module M over g we

write (M)µ for the subspace of weight µ ∈ h∗,

(M)µ := {v ∈M : there exists n ∈ Z≥1 such that (h− µ(h)1)n.v = 0 for all h ∈ h}. (4.1)

The module M is a weight module if M =
⊕

µ∈h∗(M)µ. In this paper we work with weight modules

all of whose weight subspaces are of finite dimension. If M , N are two such modules, then by

HomC(M,N) we shall always mean the restricted space of linear maps

HomC(M,N) :=
⊕
µ,ν∈h∗

HomC ((M)µ, (N)ν) .

In particular we shall write M∗ := HomC(M,C) =
⊕

µ∈h∗((M)µ)∗, i.e. our duals are restricted

duals. We have HomC(M,N) = HomC(M ⊗N∗,C) = HomC(C,M∗ ⊗N) = M∗ ⊗N .

The restricted dual M∗λ of the Verma module Mλ is naturally a right U(g)-module. We may

twist by any anti-automorphism of U(g) to obtain a left module. The Cartan anti-automorphism

ϕ : U(g)→ U(g) is defined by

ϕ(Hi) = Hi, i ∈ I, and ϕ(Eα) = Fα, ϕ(Fα) = Eα, α ∈ ∆+. (4.2)

It obeys ϕ2 = id. The twist of M∗λ by ϕ is the left U(g)-module called the contragredient Verma

module. Henceforth by M∗λ we shall always mean the restricted dual equipped with this left U(g)-

module structure. That is

(x.f)(v) := f(ϕ(x).v), f ∈M∗λ , x ∈ g, v ∈Mλ.

See e.g. [Hu08, §3.3].

Let S : U(g)→ U(g) be the antipode map, i.e. the extension of the map g→ g;X → −X to an

anti-automorphism of U(g). We have the automorphism ϕ ◦ S = S ◦ ϕ of g. Let us write (M∗λ)ϕ◦S

for the left U(g)-module obtained by twisting by this automorphism. In other words (M∗λ)ϕ◦S is

the dual of Mλ in the usual Hopf-algebraic sense. Hence we have

Homg(A,B ⊗Mλ) = Homg(A⊗ (M∗λ)ϕ◦S , B). (4.3)

Similarly, one has the notion of weight modules, contragredient Verma modules, etc., over gσ.

Given a module V over a Lie algebra a, we denote by V a the space of invariants V a := {x ∈ V :

a.x = 0 for all a ∈ a}.

4.2. Heisenberg algebras at the marked points. Let z1, . . . , zN , w1, . . . , wm, be as in §3. For

brevity we introduce p := N+m and (x1, . . . , xp) := (z1, . . . , zN , w1, . . . , wm). Let x := {x1, . . . , xp}.
Let nC (resp. n∗C) denote the vector space n (resp. n∗) endowed with the structure of a com-

mutative Lie algebra. On the commutative Lie algebra nC ⊕ n∗C there is a non-degenerate bilinear
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skew-symmetric form 〈·, ·〉 defined by〈
(X, η), (Y, ψ)

〉
= ψ(X)− η(Y ), (4.4)

for any (X, η), (Y, ψ) ∈ nC ⊕ n∗C and an action by automorphisms of the group Γ given by

ω.(X, η) :=
(
σ(X), Lσ(η)

)
. (4.5)

Let Hxi , i = 1, . . . , p, denote the central extension of the commutative Lie algebra (nC ⊕ n∗C) ⊗
C((t − xi)), by a one-dimensional centre C1xi , defined by the cocycle rest−xi〈f, g〉1xi . Let HΓ

0

denote the extension of (nC⊗C((t)))Γ,0⊕(n∗C⊗C((t)))Γ,−1 by a one-dimensional centre C10 defined

by the cocycle rest〈f, g〉10. Let HΓ
∞ denote the extension of (nC⊗C((t−1)))Γ,0⊕(n∗C⊗C((t−1)))Γ,−1

by a one-dimensional centre C1∞ defined by the cocycle rest−1 t2〈f, g〉1∞.

Let us give a more explicit description of these Lie algebras in terms of generators and relations.

To do so, we first construct bases of n and n∗ adapted to the automorphism σ. Recall the projectors

Πk, k ∈ Z/TZ, from (2.2). By the adjoint action, g is a module over itself. In particular, it is a

module over its Lie subalgebra gσ = Π0g. As a gσ-module, g =
⊕

k∈Z/TZ Πkg. Let ∆+
k denote the

set of gσ-weights of Πkn and for α ∈ ∆+
k let n(k,α) denote the corresponding weight subspace of

Πkn. We may pick a basis of n consisting of vectors E(k,α) ∈ n(k,α), where k ∈ Z/TZ, α ∈ ∆+
k .2

We now have two bases of n, namely Eα, α ∈ ∆+, and E(k,α), k ∈ Z/TZ, α ∈ ∆+
k . We write E∗α,

α ∈ ∆+, and E∗(k,α), k ∈ Z/TZ, α ∈ ∆+
k for their respective dual bases of n∗.

Then Hxi has the following explicit set of generators:

aα[n]xi := Eα ⊗ (t− xi)n, a∗α[n]xi := E∗α ⊗ (t− xi)n−1,

where α ∈ ∆+ and n ∈ Z; while explicit sets of generators for HΓ
0 and HΓ

∞ are

a(k,α)[nT + k]0 := E(k,α) ⊗ tnT+k ∈ (nC ⊗ C((t)))Γ,0,

a∗(k,α)[nT − k]0 := E∗(k,α) ⊗ t
nT−k−1 ∈ (n∗C ⊗ C((t)))Γ,−1,

and

a(k,α)[nT + k]∞ := E(k,α) ⊗ tnT+k ∈ (nC ⊗ C((t−1)))Γ,0,

a∗(k,α)[nT − k]∞ := E∗(k,α) ⊗ t
nT−k−1 ∈ (n∗C ⊗ C((t−1)))Γ,−1,

respectively, where k ∈ Z/TZ, α ∈ ∆+
k , and n ∈ Z.

Remark 4.1. The above notation is in accordance with the notations for the modes a[n], n ∈ Z of

an element a ∈ L in a vertex Lie algebra L used in [VY16b] and recalled in appendix B below. In

particular, the shift by 1 in the power of t for the modes of a∗α has to do with the fact that this is

an element of degree 0 in the vertex Lie algebra associated to the Heisenberg algebra, cf. [VY16b,

Example 2.6]. Note also our conventions for the modes at ∞.

2Indeed, suppose α ∈ ∆+ is a root of g such that the orbit σZα has t elements, where t ∈ Z≥1 divides T . Then

σtEα = ωtmEα for some unique m ∈ Z/TZ. Let E(m−kT/t,ᾱ) :=
∑t−1
j=0 ω

−(m−kT/t)jσjEα ∈ n(m−kT/t,ᾱ) for k =
0, 1, . . . , t− 1. By picking one root from each σ-orbit, we construct a basis of the required form.
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These generators obey the relations:

[aα[n]xi , a
∗
β[m]xj ] = δijδαβδn,−m1xi ,

[a(i,α)[n]0, a
∗
(j,β)[m]0] = δijδαβδn,−m10,

[a(i,α)[n]∞, a
∗
(j,β)[m]∞] = δijδαβδn,−m1∞,

with all other commutators vanishing.

Each Hxi is isomorphic to the Heisenberg Lie algebra H(g), while HΓ
0 and HΓ

∞ are isomorphic

to a subalgebra H(g)Γ. Note that the opposite Lie algebra HΓ,op
∞ differs from HΓ

∞ only in the sign

of the central extension.

Let H∞,p,0 denote the extension of

(nC ⊗ C((t−1)))Γ,0 ⊕ (n∗C ⊗ C((t−1)))Γ,−1

⊕
p⊕
i=1

(nC ⊕ n∗C)⊗ C((t− xi))

⊕ (nC ⊗ C((t)))Γ,0 ⊕ (n∗C ⊗ C((t)))Γ,−1 (4.6)

by a one-dimensional centre C1, defined by the cocycle

Ω(f, g) :=

(
1

T
rest

〈
f0, g0

〉
+

p∑
i=1

rest−xi
〈
fxi , gxi

〉
− 1

T
rest−1 t2

〈
f∞, g∞

〉)
1 (4.7)

where f = (f∞; fx1 , . . . , fxp ; f0) and g = (g∞; gx1 , . . . , gxp ; g0) are elements of the Lie algebra (4.6).

Equivalently, H∞,p,0 is the quotient of the direct sum HΓ,op
∞ ⊕

⊕p
i=1Hxi⊕HΓ

0 by the ideal generated

by 1xi − T10, i = 1, . . . , p, and 1∞ − 10. Then 1 := 1xi .

Define also

h∞,p,0 := (h⊗ C((t−1)))Γ,0 ⊕
p⊕
i=1

h⊗ C((t− xi))⊕ (h⊗ C((t)))Γ,0

Let us give a set of explicit generators for this commutative Lie algebra h∞,p,0. Let H(k,a), a =

1, . . . ,dim(Πkh), be a basis of Πkh for each k ∈ Z/TZ. Then h0,p,∞ is the commutative Lie algebra

with basis

bj [n]xi := Hj ⊗ (t− xi)n ∈ h⊗ C((t− xi)),

b(k,a)[nT + k]0 := H(k,a) ⊗ tnT+k ∈ (h⊗ C((t)))Γ,0, (4.8)

b(k,a)[nT + k]∞ := H(k,a) ⊗ tnT+k ∈ (h⊗ C((t−1)))Γ,0,

for j ∈ I, k ∈ Z/TZ, a = 1, . . . ,dim(Πkh) and n ∈ Z.

4.3. Wakimoto modules at the marked points. For each i = 1, . . . , p, let C|〉xi denote the

one-dimensional left module over U((nC ⊕ n∗C) ⊗ C[[t − xi]] ⊕ C1xi) on which 1xi acts as 1 and

(nC ⊕ n∗C)⊗ C[[t]] acts as zero. Define Mxi to be the induced module over Hxi ,

Mxi := U(Hxi)⊗U((nC⊕n∗C)⊗C[[t−xi]]⊕C1xi ) C|〉xi .
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Suppose we are given an h∗-valued Laurent series νi ∈ h∗⊗C((t−xi)) in the local coordinate t−xi
about the point xi. Let Cvνi denotes the one-dimensional module over h ⊗ C((t − xi)) on which

f.vνi = vνi rest−xi νi(f), for any f ∈ h⊗C((t−xi)). Then the Wakimoto module Wνi is the module

over Hxi ⊕ h⊗ C((t− xi)) given by

Wνi := Mxi ⊗ Cvνi .

Explicitly, Wνi is the Fock module generated by a vacuum vector |〉xi such that 1xi |〉xi = |〉xi ,

aα[n]|〉xi = 0, n ≥ 0, a∗α[n]|〉xi = 0, n ≥ 1,

and

bk[n]|〉xi = |〉xi νi,−n−1(Hk)

where νi(t− xi) =:
∑∞

s=−S νi,s(t− xi)s for some S ∈ Z and νi,s ∈ h∗. Here and in what follows we

use the obvious shorthand aα[n]|〉xi to denote aα[n]xi |〉xi , etc.

Similarly, let C|〉0 denote the one-dimensional module over (nC⊗C[[t]])Γ,0⊕(n∗C⊗C[[t]])Γ,−1⊕C10

on which 10 acts as 1
T and the first two summands act as zero. Define MΓ

0 to be the induced module

over HΓ
0 :

MΓ
0 := U(HΓ

0 )⊗U((nC⊗C[[t]])Γ,0⊕(n∗C⊗C[[t]])Γ,−1⊕C10) C|〉0.

Suppose we are given an element ν0 ∈ (h∗⊗C((t)))Γ,−1. That is, ν0 is a h∗-valued Laurent series in

t such that ν0(ωt) = ω−1σν0(t). Let Cvν0 denote the one-dimensional module over (h⊗ C((t)))Γ,0

given by

f.vν0 = vν0 rest ν0(f), (4.9)

for any f ∈ (h ⊗ C((t)))Γ,0. We may then consider the twisted Wakimoto module WΓ
ν0

defined as

the HΓ
0 ⊕ (h⊗ C((t)))Γ,0-module

WΓ
ν0

:= MΓ
0 ⊗ Cvν0 .

Explicitly, it is the Fock module generated by a vacuum vector |〉0 such that 10|〉0 = |〉0 1
T ,

a(k,α)[n]|〉0 = 0, n ≥ 0, a∗(k,α)[n]|〉0 = 0, n ≥ 1, (4.10)

and

b(k,a)[n]|〉0 = |〉0 ν0,−n−1(H(k,a))

where ν0(t) =:
∑∞

s=−S ν0,st
s for some S ∈ Z and ν0,s ∈ h∗.

Finally, define

HΓ,+
∞ := (nC ⊗ t−1C[[t−1]])Γ,0 ⊕ (n∗C ⊗ t−1C[[t−1]])Γ,−1 ⊕ C1∞,

and let MΓ,∨
∞ denote the right module over U(HΓ

∞) induced from the trivial one-dimensional right

module C 〈| over U(HΓ,+
∞ ) on which 1∞ acts as 1

T and the first two summands act as zero:

MΓ,∨
∞ := C 〈| ⊗

U(HΓ,+
∞ )

U(HΓ
∞).

Suppose ν∞ ∈ (h∗ ⊗ C((t−1)))Γ,−1. That is, ν∞ is a h∗-valued Laurent series in t−1 such that

ν∞(ω−1t−1) = ω−1σν∞(t−1). Let Cv∗ν∞ denote the one-dimensional module over (h⊗ C((t−1)))Γ,0

given by

f.v∗ν∞ = −v∗ν∞ rest−1 t2ν∞(f), (4.11)
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for f ∈ (h⊗ C((t−1)))Γ,0. Then we have the right U(HΓ
∞ ⊕ (h⊗ C((t−1)))Γ,0)-module

WΓ,∨
ν∞ := MΓ,∨

∞ ⊗ Cv∗ν∞ .

Explicitly, WΓ,∨
ν∞ is the Fock module generated by a vacuum vector 〈| such that 〈|1∞ = 1

T 〈|,

〈|a(k,α)[n]∞ = 0, n < 0, 〈|a∗(k,α)[n]∞ = 0, n ≤ 0, (4.12)

and

〈|b(k,a)[n]∞ = −ν∞,−n−1(H(k,a)) 〈| (4.13)

where ν∞(t) =:
∑S

s=−∞ ν∞,st
s for some S ∈ Z and ν∞,s ∈ h∗.

4.4. Free field realization. The modules Wνi are smooth. That means, by definition, that for

each v ∈Wνi

0 = aα[n]xiv = a∗α[n]xiv = bk[n]xiv for all n� 0,

for all α ∈ ∆+ and k ∈ I.3 Similarly WΓ
ν0

is smooth. The module WΓ,∨
ν∞ is co-smooth. By that we

mean that for each v ∈WΓ,∨
ν∞ ,

0 = v a(k,α)[n]∞ = v a∗(k,α)[n]∞ = v b(k,a)[n]∞ for all n� 0,

for all k ∈ Z/TZ, α ∈ ∆+
k and a ∈ {1, . . . ,dim Πkh}.

Let now π0 ' C[bi[n]]i∈I;n≤−1 be the induced representation of h⊗ C((t)) in which bi[n] acts as

0 for all i ∈ I and all n ∈ Z≥0. Let M be the induced module over the Heisenberg Lie algebra with

generators aα[n], a∗α[n], and 1, which we denote H(g) as in [VY16a, §3.5]. Then

W0 := M⊗ π0, (4.14)

is an induced representation of H(g)⊕ h⊗C((t)). Explicitly, W0 is the Fock module generated by

a vacuum vector |〉 such that 1|〉 = |〉,

aα[n]|〉 = 0, n ≥ 0, a∗α[n]|〉 = 0, n ≥ 1,

and

bk[n]|〉 = 0, n ≥ 0.

Let us recall some facts about the free-field realization of ĝ.

The H(g)⊕h⊗C((t))-module W0 is endowed with the structure of a vertex algebra, see [FFR94] or

e.g. [VY16a, equation (3.24)]. In the notation of [VY16b], see also appendix B, it corresponds to the

vertex algebra V(M ) where M is the vertex Lie algebra underlying the Lie algebra H(g)⊕h⊗C((t)),

given for instance in [VY16b, Example 2.6]. Specifically, M is generated by the finite dimensional

vector space Mo = nC ⊕ n∗C ⊕ h with non-trivial nth-products given by

a(0)b = 〈a, b〉1,

for any a, b ∈ nC ⊕ n∗C, where the skew-symmetric form 〈·, ·〉 on the right hand side was defined in

(4.4). As a vertex algebra, W0 is in particular also a vertex Lie algebra. We may therefore consider

the associated “big” Lie algebra L(W0), cf. §B.1, consisting of all formal modes of states in W0.

3That is, for each v ∈ Wνi α ∈ ∆+ and k ∈ I there exists an n ∈ Z such that 0 = aα[m]xiv = a∗α[m]xiv = bk[m]xiv
for all m ≥ n.
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For each of the marked points xi, i = 1, . . . , p, there is a “local” copy L(W0)xi of L(W0), which

contains L(M )xi = Hxi ⊕ h ⊗ C((t − xi)) as a subalgebra. Moreover, every smooth module over

Hxi ⊕ h⊗C((t−xi)) on which 1xi acts as 1 becomes a smooth L(W0)xi-module in a canonical way.

See e.g. [VY16b, Proposition 5.9].

At the fixed-points 0 and ∞ we have the local copies L(W0)0 and L(W0)∞ of the big Lie algebra

L(W0). The automorphism σ of the Lie algebra L(M ) = H(g)⊕h⊗C((t)) extends in a unique way

to an automorphism of W0 as a vertex algebra. So we get an action by automorphisms of the group

Γ on both local Lie algebras L(W0)0 and L(W0)∞. Let L(W0)Γ
0 and L(W0)Γ

∞ denote the respective

fixed-point subalgebras. They contain the local Lie algebras L(M )Γ
0 = HΓ

0 ⊕ (h ⊗ C((t)))Γ,0 and

L(M )Γ
∞ = HΓ

∞⊕ (h⊗C((t−1)))Γ,0 as subalgebras, respectively, using the notation of appendix B.2.

Every smooth module over L(M )Γ
0 on which 10 acts as 1

T becomes a smooth module over L(W0)Γ
0 .

See [VY16b, Proposition 5.8]. Likewise, every co-smooth module over L(M )Γ
∞ on which 1∞ acts

as 1
T becomes a co-smooth module over L(W0)Γ

∞. See Proposition B.3.

Now the vacuum Verma module V−h
∨

0 also has the structure of a vertex algebra. In the notation

of [VY16b] recalled in appendix B, it corresponds to the vertex algebra V(L ) where L is the vertex

Lie algebra underlying the affine Lie algebra ĝ, generated by Lo = g with non-trivial nth-products

given by (see e.g. [VY16b, Example 2.5])

a(0)b = [a, b], a(1)b = −h∨〈a, b〉K,

for any a, b ∈ g. The normalisation of the 1st-product by −h∨ is chosen so as to conform with the

convention adopted in [VY16b] that the central element K ∈ L(L ) should act as 1 on all modules

over L(L ), including V(L ).

The associated “big” Lie algebra L(V−h
∨

0 ) contains ĝ = L(L ) as a subalgebra, via the embedding

sending K 7→ v0(−1) and A[n] 7→ (A[−1]v0)(n) for any A ∈ g and n ∈ Z. In this way, every

smooth module over L(V−h
∨

0 ) pull back to a smooth module over ĝ of level −h∨. In the same way,

L(V−h
∨

0 )Γ contains the twisted affine algebra ĝΓ as a subalgebra, so that smooth (resp. co-smooth

right) modules over L(V−h
∨

0 )Γ pulls back to smooth (resp. co-smooth right) module over ĝΓ of level

−h∨/T .

The Feigin-Frenkel homomorphism, or free field realisation of V−h
∨

0 , [FF90] (see also [Fre07]) is

a homomorphism of vertex algebras

ρ : V−h
∨

0 −→W0. (4.15)

There is a Z-grading on W0 defined by deg |〉 = 0 and deg aα[n] = deg a∗α[n] = deg bi[n] = n. There

is a Z-grading on V−h
∨

0 defined by deg v0 = 0 and degX[n] = n for X ∈ g. The homomorphism ρ

respects these Z-gradations (see e.g. [Fre07, §6.2.4]).

The homomorphism ρ induces a homomorphism of big Lie algebras L(V−h
∨

0 )xi → L(W0)xi for

every i = 1, . . . , p. Moreover, by the equivariance of the homomorphism with respect to the action

of σ on both vertex algebras [Sz02], it also induces homomorphisms of Γ-invariant subalgebras

L(V−h
∨

0 )Γ
0 → L(W0)Γ

0 and L(V−h
∨

0 )Γ
∞ → L(W0)Γ

∞.

By means of this homomorphism, every smooth module over L(M )xi = Hxi ⊕ h ⊗ C((t − xi))
on which 1xi acts as 1 becomes a smooth module of level −h∨ over the local copy ĝxi of ĝ at xi,

for each i = 1, . . . , p. Likewise, every smooth module over L(M )Γ
0 = HΓ

0 ⊕ (h⊗C((t)))Γ,0 on which
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10 acts as 1
T becomes a smooth module of level −h∨/T over ĝΓ

0 , and every co-smooth module over

L(M op)Γ
∞ = Hop,Γ

∞ ⊕ (h ⊗ C((t−1)))Γ,0 on which 1∞ acts as 1
T becomes a co-smooth module over

ĝop,Γ∞ of level −h∨/T .

In particular, these statements apply to the Wakimoto modules Wνi , i = 1, . . . , p, WΓ
ν0

and WΓ,∨
ν∞ .

We shall need the following facts about the structure of these modules.

For each i = 1, . . . , p, let W̃νi denote the linear span of states of the form a∗α1
[0] . . . a∗αk [0]|〉xi ,

k ∈ Z≥0.

Lemma 4.2. Suppose νi has at most a simple pole. Then the subspace W̃νi is stable under the

action of the subalgebra g ⊂ ĝxi generated by zero-modes, X[0]xi with X ∈ g, and there is an

isomorphism of left U(g)-modules

W̃νi
∼= M∗rest−xi νi

. (4.16)

Moreover the subspace W̃νi is annihilated by all strictly positive modes X[n]xi, n > 0, X ∈ g.

Proof. See [FFR94, §5] for the isomorphism (4.16). Note that aα[n] and a∗α[n] act as zero on W̃νi

for all n > 0. The fact that νi has at most a simple pole means that bk[n] acts as zero on W̃νi for

all n > 0. The “moreover” part follows since Feigin-Frenkel homomorphism respects the Z-grading

of V−h
∨

0 and W0 and their big Lie algebras. �

Let W̃Γ
ν0
⊂ WΓ

ν0
denote the linear span of states of the form a∗(0,α1)[0] . . . a∗(0,αk)[0]|〉0, k ∈ Z≥0,

α1, . . . , αk ∈ ∆+
0 .

Lemma 4.3. Suppose ν0 has at most a simple pole. Then the subspace W̃Γ
ν0

is stable under the

action of the subalgebra gσ ⊂ ĝΓ
0 generated by zero-modes, X[0]0 with X ∈ gσ, and there is an

isomorphism of left U(gσ)-modules

W̃Γ
ν0
∼= M∗,σ1

T
(rest(ν0)−Λ0)

(4.17)

where for λ ∈ h∗,σ we denote by M∗,σλ the contragredient Verma module over gσ of highest weight

λ, and where Λ0 is the weight given in (3.7).

Moreover the subspace W̃Γ
ν0

is annihilated by all strictly positive modes X[n]0, n > 0, X ∈ g.

Proof. The first part is [VY16a, Proposition 4.4], and the “moreover” part is again on Z-grading

grounds. �

Concerning the Wakimoto module at infinity, we shall need two results. Recall the definition of

χ in §3.5. The first result applies only to the case χ = 0, so that t2ν∞ has at most a simple pole

in t−1.

Let W̃Γ,∨
ν∞ ⊂ WΓ,∨

ν∞ denote the span of vectors of the form 〈|a(0,α1)[0] . . . a(0,αk)[0], k ∈ Z≥0,

α1, . . . , αk ∈ ∆+
0 .

Lemma 4.4. Suppose t2ν∞ has at most a simple pole in t−1. Then the subspace W̃Γ,∨
ν∞ is stable

under the action of the subalgebra gσ ⊂ ĝΓ
∞ generated by zero-modes, X[0]∞ with X ∈ gσ, and there

is an isomorphism of right U(gσ)-modules (or equivalently left U(gσ,op) modules)

W̃Γ,∨
ν∞
∼= HomC(M∗,σ1

T
(− rest−1 (t2ν∞)−Λ0)

,C) ∼= Mσ,ϕ
1
T

(− rest−1 (t2ν∞)−Λ0)
. (4.18)
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Moreover the subspace W̃Γ,∨
ν∞ is annihilated by all strictly negative modes X[n]∞, n < 0, X ∈ gσ.

Proof. The condition that t2ν∞ has at most a simple pole in t−1 means that 〈|b(k,α)[n] = 0 for

all n < 0. We have 〈|a(k,α)[n] = 0 and 〈|a∗(k,α)[n] = 0 for all n < 0. Therefore on Z-grading

grounds, for all X ∈ g, X[n] acts as zero on W̃Γ,∨
ν∞ for all n < 0, and the only terms in the free-field

expressions for the zero-modes X[0] which survive on vectors in W̃Γ,∨
ν∞ are those involving only the

zero-modes of a’s, a∗’s, and b’s. In particular since only the zero-modes of b’s contribute,

W̃Γ,∨
ν∞
∼= W̃Γ,∨

−λ/t where λ := − rest−1(t2ν∞),

as modules over the copy of algebra gσ generated by zero-modes.

Also on Z-grading grounds, the only terms in the free-field expressions for the zero modes X[0]

which survive on vectors in W̃Γ
λ/t are those involving only the zero modes of a’s, a∗’s, and b’s.

Now WΓ,∨
−λ/t and WΓ

λ/t are Fock modules over a copy of H(g)Γ as in (4.12) and (4.10). We have

the natural pairing between them, namely the bilinear map B : WΓ,∨
−λ/t ×W

Γ
λ/t → C defined by

B( 〈|, |〉) = 1 and B( 〈|X,Y |〉) = B( 〈|, XY |〉) = B( 〈|XY, |〉) for X,Y ∈ U(H(g)Γ). This pairing

is non-degenerate. In this way the right U(H(g)Γ)-module WΓ,∨
−λ/t is the (suitably restricted) dual

of the left U(H(g)Γ)-module WΓ
λ/t. The pairing restricts to a non-degenerate pairing of the grade

zero subspaces, W̃Γ,∨
−λ/t and W̃Γ

λ/t. So W̃Γ,∨
−λ/t is the dual of W̃Γ

λ/t as a module over the algebra of

zero-modes of a’s and a∗’s, and also of b’s since 〈|b(k,a)[0] = λ(H(k,a)) 〈| and b(k,a)[0]|〉 = |〉λ(H(k,a)).

We conclude that W̃Γ,∨
−λ/t is the dual HomC(W̃Γ

λ/t,C) of W̃Γ
λ/t as a module over the algebra of

zero-modes X[0], X ∈ gσ. And Lemma 4.3 shows that W̃Γ
λ/t
∼= M∗,σ1

T
(λ−Λ0)

. The result follows. �

Second, we need a result valid for all χ.

Let Cχ denote the one-dimensional representation of (gop ⊗ t−1C[[t−1]])Γ defined by

(gop ⊗ t−1C[[t−1]])Γ −→ (gop ⊗ t−1C[[t−1]])Γ/(gop ⊗ t−2C[[t−1]])Γ 'C Π−1g
χ−→ C.

Lemma 4.5. Suppose that t2ν∞ has at most a double pole in t−1, with 2-residue −χ. That is,

suppose that

ν∞(t) = −χ+O(1/t)

Then there is an isomorphism of (gop ⊗ t−1C[[t−1]])Γ-modules

C 〈| ∼= Cχ. (4.19)

Proof. It follows from the explicit form of the Feigin-Frenkel homomorphism and the definition of

the quasi-module map YW , cf. appendix B and in particular Proposition B.3, that the vector 〈| of

(4.13) obeys

〈|(g⊗ t−2C[[t−1]])Γ = 0, 〈|(Π−1A)[−1] =
1

T
χ(A) 〈|.

�

4.5. The generators Gα[n]. The Verma module Mλ = U(g)⊗U(h⊕n) Cvλ ∼=C U(n−)⊗CCvλ, §3.1,

is by definition a left module over U(g). In particular it is a left module over the subalgebra

U(n−) ⊂ U(g). But Mλ also admits a second left action, call it ., of this subalgebra U(n−). These
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two left actions of U(n−) are mutually commuting. They are given by

X.(n⊗ vλ) = Xn⊗ vλ and X . (n⊗ vλ) = −nX ⊗ vλ, X ∈ n−, n ∈ U(n−).

In particular

X.(1⊗ vλ) = −X . (1⊗ vλ). (4.20)

Correspondingly the contragredient Verma module admits a second left action of U(n). We

write Gα, α ∈ ∆+, for the generators of this second copy of n, which we denote n〈G〉. So we have

[Gα, Eβ] = 0 for all α, β ∈ ∆+, where Eα are the generators of n from §3.1.

We have the vacuum Verma module of n〈G〉 ⊗ C((t)),

U(n〈G〉 ⊗ C((t)))⊗U(n〈G〉⊗C[[t]]) Cv0 (4.21)

where v0 is a nonzero vector such that n〈G〉⊗C[[t]]v0 = 0. It has a natural vertex algebra structure,

in which Y (A[−1]v0, x) =
∑

n∈ZA[n]x−n−1 for all A ∈ n〈G〉. There is a free-field realization of this

vertex algebra, i.e. there is an injective homomorphism from this vertex algebra into W0. It is

defined by

Gα[−1]|〉 =
∑
β∈∆+

Rβα(a∗[0])aβ[−1]|〉, α ∈ ∆+,

for certain polynomials Rβα homogeneous of grade β − α.

By means of this free-field realization, the Wakimoto module Wνi becomes a module not only over

ĝxi but also over a copy of n〈G〉⊗C((t−xi)) whose generators we denote Gα[n]xi := Gα⊗ (t−xi)n.

With the obvious modifications, the statement of Lemma 4.2 holds for this copy of n〈G〉⊗C((t−xi)).
Namely, the subspace W̃ν is stable under the subalgebra U(n〈G〉) ⊂ U(n〈G〉 ⊗ C((t))) generated by

zero modes, and (4.16) is an isomorphism of modules over n〈G〉, i.e. Gα[0] acts as Gα.

The analogous statements hold for nσ〈G〉 too. Namely we have generators G(0,α), α ∈ ∆+
0 which

act from the left on contragredient Verma modules M∗,σλ over nσ. These generators commute with

the generators E(0,α) of the standard left action of U(nσ).

Lemma 4.6. The subspace W̃Γ
ν0

is stable under the action of the subalgebra nσ〈G〉 ⊂ (n〈G〉⊗C((t)))Γ

generated by zero-modes, X[0]0 with X ∈ nσ〈G〉, and (4.17) is an isomorphism of left U(nσ〈G〉)-

modules. Moreover the subspace W̃Γ
ν0

is annihilated by all strictly positive modes X[n]0, n > 0,

X ∈ n〈G〉.

Proof. The first part of the proof of [VY16a, Proposition 4.4] shows that (4.17) is an isomorphism

of left U(nσ) modules. The argument that it is an isomorphism of U(nσ〈G〉)-modules is line-by-line

identical but with the polynomials P βα (which define the free-field realization of E’s) replaced by

Rβα. �

4.6. Global Heisenberg algebra and coinvariants. Let HΓ
∞,x,0 be the commutative Lie algebra

HΓ
∞,x,0 := (nC ⊗ C∞,Γx,0(t))Γ,0 ⊕ (n∗C ⊗ C∞,Γx,0(t))Γ,−1.

That is, an element of HΓ
∞,x,0 is a pair (f(t), g(t)) where f(t) is a rational function valued in nC with

poles at most at the points 0, x1, . . . , xp,∞ and obeying the equivariance condition f(ωt) = σf(t),

and where g(t) is a rational function valued in n∗C with poles at most at the points 0, x1, . . . , xp,∞
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and obeying the equivariance condition g(ωt) = ω−1Lσg(t). By virtue of the residue theorem there

is an embedding of Lie algebras,

HΓ
∞,x,0 ↪−→ H∞,p,0,

by taking Laurent expansions, f(t) 7→ (−ιt−1 ; ιt−x1 , . . . , ιt−xp ; ιt)f(t). Cf. (2.8).

Let us write

hΓ
∞,x,0 := (h⊗ C0,Γx,∞(t))Γ,0 and h∗,Γ∞,x,0 := (h∗ ⊗ C0,Γx,∞(t))Γ,−1 .

There is an embedding of commutative Lie algebras

hΓ
∞,x,0 ↪−→ h∞,p,0

and we have the following, which is [VY16a, Proposition 4.3] but now including the pole at ∞.

Lemma 4.7. The space of coinvariants Cvν∞ ⊗
⊗p

i=1 Cvνi ⊗ Cvν0/ hΓ
∞,x,0 is one-dimensional if

and only if there exists a ν(t) ∈ h∗,Γ∞,x,0 such that

(ν∞; ν1, . . . , νp; ν0) = (−ιt−1 ; ιt−x1 , . . . , ιt−xp ; ιt)ν(t).

Otherwise it is zero-dimensional. �

Define

H+
∞,p,0 := (nC ⊗ C[[t−1]])Γ,0 ⊕ (n∗C ⊗ C[[t−1]])Γ,−1

⊕
p⊕
i=1

(nC ⊕ n∗C)⊗ C[[t− xi]]

⊕ (nC ⊗ C[[t]])Γ,0 ⊕ (n∗C ⊗ C[[t]])Γ,−1 ⊕ C1

Then

H∞,p,0 = H+
∞,p,0 +HΓ

∞,x,0 and H+
∞,p,0 ∩H

Γ
∞,x,0 = {0}.

We may regard MΓ,∨
∞ as a left module over U(HΓ,op

∞ ) and then(
MΓ,∨
∞ ⊗

p⊗
i=1

Mxi ⊗MΓ
0

)
= U(H∞,p,0)⊗U(H+

∞,p,0) C 〈| ⊗ |〉x1 ⊗ . . .⊗ |〉xp ⊗ |〉0 (4.22)

Hence (
MΓ,∨
∞ ⊗

p⊗
i=1

Mxi ⊗MΓ
0

)/
HΓ
∞,x,0

∼=C C 〈| ⊗ |〉x1 ⊗ . . .⊗ |〉xp ⊗ |〉0 ∼=C C.

Therefore for any ν(t) ∈ h∗,Γ∞,x,0 the space of coinvariants(
WΓ,∨
−ιt−1ν(t) ⊗

p⊗
i=1

Wιt−xiν(t) ⊗WΓ
ιtν(t)

)/(
HΓ
∞,x,0 ⊕ hΓ

∞,x,0
)

(4.23)

has dimension one. That means there is a unique
(
HΓ
∞,x,0 ⊕ hΓ

∞,x,0
)
-invariant linear functional, call

it τν(t),

τν(t) : WΓ,∨
−ιt−1ν(t) ⊗

p⊗
i=1

Wιt−xiν(t) ⊗WΓ
ιtν(t) −→ C (4.24)

normalised such that τν(t)( 〈| ⊗ |〉x1 ⊗ . . .⊗ |〉xp ⊗ |〉0) = 1.
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By functoriality, i.e. [VY16b, Theorem 6.2] and [VY16b, Corollary 6.6] generalised to the sit-

uation of Appendix B for coinvariants of a tensor product of modules including one attached to

infinity, the functional τν(t) is also invariant under gΓ
∞,x,0.

4.7. Proof of Theorem 3.2. Let c(1), . . . , c(m) ∈ I, λ1, . . . , λN ∈ h∗, λ0 ∈ h∗,σ and χ be as in §3.

Recall

(x1, . . . , xp) = (z1, . . . , zN , w1, . . . , wm).

We now fix

ν(t) := χ+
∑
r∈ZT

 N∑
i=1

Lrσλi
t− ωrzi

−
m∑
j=1

Lrσαc(j)

t− ωrwj

+
Tλ0 + Λ0

t
∈ h∗,Γ∞,x,0, (4.25)

where Λ0 is as in (3.5).

The following is [FFR94, Lemma 2]. We write Gi := Gαi . (Recall Gα for α ∈ ∆+ a positive root

was defined in §4.5.)

Lemma 4.8. Let µ(t) be a highest weight of the form

µ(t) = −αi
t

+
∞∑
n=0

µ(n)tn,

µ(n) ∈ h∗. Then the vector Gi[−1]|〉 ∈ Wµ(t) is singular for ĝ (i.e. X[n]Gi[−1]|〉 = 0 for all n ≥ 0

and all X ∈ g) if and only if 〈
αi, µ

(0)
〉

= 0.

�

Let ν
(0)
j be the constant term in the Laurent expansion of ν(t) about wj , for j = 1, . . . ,m. Note

that the Bethe equations (3.8) are equivalent to the statement that〈
αc(j), ν

(0)
j

〉
= 0, j = 1, . . . ,m. (4.26)

By Lemma 4.8, under this condition the vector Gc(j)[−1]|〉wj ∈Wιt−wj ν(t) is singular for ĝ(wj).

Henceforth, suppose that the Bethe equations are indeed satisfied. It follows that the linear

functional

ψν(t) : WΓ,∨
−ιt−1ν(t) ⊗

N⊗
i=1

Wιt−ziν(t) ⊗WΓ
ιtν(t) → C (4.27)

defined by

ψν(t)(v∞, v1, . . . , vN , v0) = τν(t)

(
v∞, v1, . . . , vN , Gc(1)[−1]|〉w1 , . . . , Gc(m)[−1]|〉wm , v0

)
is invariant under the Lie subalgebra gΓ

∞,z,0 ⊂ gΓ
∞,x,0.

Now we use the set-up of §2.4 and specialize by setting

Mzi = M∗λi
∼= W̃ιt−ziν(t) ⊂Wιt−ziν(t), i = 1, . . . , N,

M0 = M∗,σλ0

∼= W̃Γ
ιtν(t) ⊂WΓ

ιtν(t),

M∞ = Cχ ∼= C 〈| ⊂WΓ,∨
−ιt−1ν(t). (4.28)
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Here the isomorphisms are as in Lemmas 4.2, 4.3 and 4.5, given that we have rest−zi ν(t) = λi and
1
T (rest ν(t)− Λ0) = λ0.

Let ψ denote the restriction of the linear functional ψν(t) of (4.27) to the subspace

Cχ ⊗
N⊗
i=1

M∗λi ⊗M
∗,σ
λ0

∼= C〈| ⊗
N⊗
i=1

W̃ιt−ziν(t) ⊗ W̃Γ
ιtν(t). (4.29)

Such a functional is the same thing as a vector

ψ ∈
N⊗
i=1

Mλi ⊗M
σ
λ0
. (4.30)

To complete the proof of Theorem 3.2, we shall now establish that

(i) ψ is the Bethe vector defined in (3.3), and

(ii) it is an eigenstate of the Gaudin algebra with the given eigenvalue for the quadratic Hamilto-

nians.

We consider (i) first.

For notational convenience let us reorder tensor factors in the argument of τν(t) in such a way

that

τν(t) : WΓ,∨
−ιt−1ν(t) ⊗

N⊗
i=1

Wιt−ziν(t) ⊗WΓ
ιtν(t) ⊗

m⊗
j=1

Wιt−wj ν(t) −→ C (4.31)

Lemma 4.9. For any v ⊗ v0 ∈
⊗N

i=1 W̃ιt−ziν(t) ⊗ W̃Γ
ιtν(t) and any X1, . . . , Xs ∈ n〈G〉, we have

τν(t)( 〈|,v, v0, X1[−1]|〉w1 , . . . , Xs−1[−1]|〉ws−1 , Xs[−1]|〉ws , |〉ws+1 , . . . , |〉wm)

=
N∑
i=1

∑
k∈ZT

τν(t)( 〈|, (σkXs)[0]ziv, v0, X1[−1]|〉w1 , . . . , Xs−1[−1]|〉ws−1 , |〉ws , . . . , |〉wm)

ws − ω−kzi

+
τν(t)( 〈|,v, (TΠ0Xs)

W
(0)v0, X1[−1]|〉w1 , . . . , Xs−1[−1]|〉ws−1 , |〉ws , . . . , |〉wm)

ws

+
s−1∑
j=1

∑
k∈ZT

1

ws − ω−kwj
τν(t)( 〈|,v, v0, X1[−1]|〉w1 , . . . , Xj−1[−1]|〉wj−1 , [σ

k(Xs), Xj ][−1]|〉wj ,

Xj+1[−1]|〉wj+1 , . . . , Xs−1[−1]|〉ws−1 , |〉ws , . . . , |〉wm).

Proof. Let us write y = X1[−1]|〉w1 ⊗ . . .⊗Xs−1[−1]|〉ws−1 ⊗ |〉ws ⊗ . . .⊗ |〉wm ∈
⊗m

j=1Wιt−wj ν(t) for

brevity. We have

0 =
∑
k∈ZT

[
σkXs[−1]|〉
ω−kt− ws

.( 〈| ⊗ v ⊗ v0 ⊗ y)

]
. (4.32)

The square brackets [·] on the right hand side denotes the class in the space of coinvariants(
WΓ,∨
−ιt−1ν(t) ⊗

N⊗
i=1

Wιt−ziν(t) ⊗WΓ
ιtν(t) ⊗

m⊗
j=1

Wιt−wj ν(t)

)/(
HΓ
∞,z,0,w ⊕ hΓ

∞,z,0,w

)
,
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and the equality in (4.32) follows from the straightforward generalisation of the isomorphism in

[VY16b, Theorem 6.2] including the point at infinity. Now

∑
k∈ZT

σkXs[−1]|〉
ω−kt− ws

.( 〈| ⊗ v ⊗ v0 ⊗ y)

=
∑
k∈ZT

(
− rest−1 t2ιt−1

1

ω−kt− ws
〈|YW (σkXs[−1]|〉, t)⊗ v ⊗ v0 ⊗ y

+ 〈| ⊗
N∑
i=1

rest−zi ιt−zi
1

ω−kt− ws
YM (σkXs[−1]|〉, t− zi)ziv ⊗ v0 ⊗ y

+ 〈| ⊗ v ⊗ rest ιt
1

ω−kt− ws
YW (σkXs[−1]|〉, t)v0 ⊗ y

+ 〈| ⊗ v ⊗ v0 ⊗
m∑
j=1

rest−wj ιt−wj
1

ω−kt− ws
YM (σkXs[−1]|〉, t− wj)wjy

)
. (4.33)

The rest−ws term here is 〈|⊗v⊗v0⊗X1[−1]|〉w1⊗. . .⊗Xs−1[−1]|〉ws−1⊗Xs[−1]|〉ws⊗|〉ws+1⊗. . .⊗|〉wm .

(The expansion of 1/(ω−kt − ws) at t = ws has a regular part but it does not contribute because

(Xs[−1]|〉)(n)|〉 = Xs[n]|〉 is zero for all n ≥ 0.)

Consider the first term on the right. We have

rest−1 t2ιt−1

1

ω−kt− ws
〈|YW (σkXs[−1]|〉, t) =

∑
n≥0

wnsω
k(n+1) 〈|(σkXs[−1]|〉)W(−n−1) (4.34)

and this vanishes on Z-grading grounds. (The free-field generators of n〈G〉 involve a, a∗ but not b.)

Consider the third term. We have

rest ιt
1

ω−kt− ws
YW (σkXs[−1]|〉, t)v0 = −

∑
n≥0

w−n−1
s ω−kn(σkXs[−1]|〉)W(n)v0 (4.35)

and on grading grounds only the term n = 0 in this sum contributes, since v0 ∈ W̃ιtν(t). The

remaining terms are similar. �

Recall that we can regard an element of a Verma module Mλ as a linear map M∗λ → C.

Lemma 4.10. The restriction of the linear functional

τν(t)( 〈|, ·, . . . , ·, ·, |〉w1 , . . . , |〉wm) :
N⊗
i=1

Wιt−ziν(t) ⊗WΓ
ιtν(t) → C

to the subspace
N⊗
i=1

W̃ιt−ziν(t) ⊗ W̃Γ
ιtν(t)

∼=gσ

N⊗
i=1

M∗λi ⊗M
∗,σ
λ0
.

is equal to the tensor product

vλ1 ⊗ . . . vλN ⊗ vλ0

of the highest weight vectors vλi ∈Mλi, i = 1, . . . , N , and vλ0 ∈Mσ
λ0

.
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Proof. The functional τν(t)( 〈|, ·, . . . , ·, ·, |〉w1 , . . . , |〉wm) agrees with vλ1 ⊗ . . . vλN ⊗ vλ0 on the vector

|〉z1 ⊗ . . .⊗ |〉zN ⊗ |〉z0 . Indeed, τν(t) was normalized such that

τν(t)( 〈|, |〉z1 , . . . , |〉zN , |〉z0 , |〉w1 , . . . , |〉wm) = 1

and by definition

(vλ1 ⊗ . . . vλN ⊗ vλ0) (|〉z1 , . . . , |〉zN , |〉z0) = 1.

It remains to show that the two agree on all other vectors in
⊗N

i=1 W̃ιt−ziν(t) ⊗ W̃Γ
ιtν(t). For that it

is enough to show that, for any v ⊗ v0 ∈
⊗N

i=1 W̃ιt−ziν(t) ⊗ W̃Γ
ιtν(t),

τν(t)( 〈|,v, a∗(0,α)[0]v0, |〉w1 , . . . , |〉wm) = 0, (4.36)

for any α ∈ ∆+
0 , and

τν(t)( 〈|, a∗α[0](zi)v, v0, |〉w1 , . . . , |〉wm) = 0, i = 1, . . . , N, (4.37)

for any α ∈ ∆+.

To establish the equality (4.36) we use the invariance of τν(t) under the Γ-equivariant function

E∗(0,α) ⊗ t
−1 ∈ (n∗C ⊗ C0,Γx,∞(t))Γ,−1. Namely, we have

0 = τν(t)

(
E∗(0,α)

t
.( 〈| ⊗ v ⊗ v0 ⊗ |〉w1 ⊗ . . .⊗ |〉wm)

)
and here

E∗(0,α)

t
.( 〈| ⊗ v ⊗ v0 ⊗ |〉w1 ⊗ . . .⊗ |〉wm)

= 〈|a∗(0,α)[0]⊗ v ⊗ v0 ⊗ |〉w1 ⊗ . . .⊗ |〉wm

+
N∑
i=1

〈| ⊗ ιt−zi
(E∗(0,α))

(i)

t
v ⊗ v0 ⊗ |〉w1 ⊗ . . .⊗ |〉wm

+ 〈| ⊗ v ⊗ a∗(0,α)[0]v0 ⊗ |〉w1 ⊗ . . .⊗ |〉wm

+
m∑
i=1

〈| ⊗ v ⊗ v0 ⊗ |〉w1 ⊗ . . .⊗ ιt−wi
E∗(0,α)

t
|〉wi ⊗ . . .⊗ |〉wm . (4.38)

The first line is zero by definition of 〈|. The second and fourth lines are zero on Z-grading grounds

(recall that E∗α ⊗ t0 = a∗α[1]). This leaves only the third line, and thus we have (4.36) as required.

The proof of (4.37) is similar (and is as in [VY16a, FFR94, ATY91]). �

Recall the definition of Gα and G(0,α) from §4.5. Let F(0,α) := ϕ(E(0,α)) ∈ nσ−, for α ∈ ∆+
0 , be

the negative root vectors of gσ.

Lemma 4.11.

(1) Let vλ ∈Mλ be a highest weight vector. For any roots α(1), . . . , α(k) ∈ ∆+ we have

vλ(Gα(1)Gα(2) . . . Gα(k) ·) = (−1)k(Fα(1)Fα(2) . . . Fα(k)vλ)(·).
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(2) Let vλ0 ∈Mσ
λ0

be a highest weight vector. For any gσ-weights α(1), . . . , α(k) ∈ ∆+
0 we have

vλ0(G(0,α(1))G(0,α(2)) . . . G(0,α(k))·) = (−1)k(F(0,α(1))F(0,α(2)) . . . F(0,α(k))vλ)(·).

Proof. Consider part (1). It follows from (4.20) that vλi(Eα·) = −vλi(Gα·). Because the two actions

of U(n) commute, we therefore have

vλ(Gα(1)Gα(2) . . . Gα(k) ·) = −vλ(Eα(1)Gα(2) . . . Gα(k) ·)

= −vλ(Gα(2) . . . Gα(k)Eα(1) ·) = · · · = (−1)kvλ(Eα(k) . . . Eα(2)Eα(1) ·)

for any roots α(1), . . . , α(k) ∈ ∆+. Part (1) follows by definition of the contragredient dual. For

part (2) the argument is the same. �

Lemmas 4.9, 4.10 and 4.11 together imply that the weight function ψ of (4.30) is given recursively

as in (3.3). Indeed, repeated use of the relations in Lemma 4.9 allow us to express

τν(t)

(
〈|, v1, . . . , vN , v0, Gc(1)[−1]|〉w1 , . . . , Gc(m)[−1]|〉wm

)
as a linear combination of terms of the form

τν(t)

(
〈|, v′1, . . . , v′N , v′0, |〉w1 , . . . , |〉wm

)
for certain v′0, v

′
1, . . . , v

′
N , with each v′i, 1 ≤ i ≤ N , of the form Gα(1) . . . Gα(k) |〉 and v′0 of the form

G(0,α(1)) . . . G(0,α(k))|〉 . Then Lemma 4.10 tells us that τν(t)

(
〈|, v′1, . . . , v′N , |〉w1 , . . . , |〉wm , v0

)
=

vλ0(v′0)
∏N
i=1 vλi(v

′
i). So we can use Lemma 4.11 to exchange G’s for F ’s. It follows that the vectors

ψ in (3.3) and (4.30) coincide, because the structure of the recursive definition of ψ in (3.3) is

chosen so as to match the relations of Lemma 4.9.

It remains to consider (ii), that is to show that ψ is an eigenstate of the Gaudin algebra, and

to compute its eigenvalue for the quadratic Hamiltonians. The argument is exactly as in [VY16a,

FFT10] following [FFR94]. For completeness, let us recall it. Let u ∈ C× be an additional nonzero

point, with Γ-orbit disjoint from those of the xi, 1 ≤ i ≤ p. To the point u we assign a copy of the

Hu⊕h⊗C((t−u))-module W0 = M⊗π0, cf. (4.14). Then we have a unique
(
HΓ
∞,x,u,0 ⊕ hΓ

∞,x,u,0
)
-

invariant linear functional

τν(t) : WΓ,∨
−ιt−1ν(t) ⊗

N⊗
i=1

Wιt−ziν(t) ⊗WΓ
ιtν(t) ⊗

m⊗
j=1

Wιt−wj ν(t) ⊗W0 −→ C

normalised such that

τν(t)( 〈| ⊗ |〉z1 ⊗ . . .⊗ |〉zp ⊗ |〉0 ⊗ |〉w1 ⊗ . . .⊗ |〉wp ⊗ |〉u) = 1.

(Compare (4.24) and (4.31).)

Let Z ∈ z(ĝ) ⊂ Vk0 be a singular vector in the vacuum Verma module. Recall the Feigin-Frenkel

homomorphism of vertex algebras, ρ : V−h
∨

0 →W0 from (4.15). Now, for any vector

v ∈ Cχ ⊗
N⊗
i=1

M∗λi ⊗M
∗,σ
λ0
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we may evaluate the quantity

τν(t)(v,Gc(1)[−1]|〉, . . . , Gc(m)[−1]|〉, ρ(Z)). (4.39)

in two ways. First, the functional τν(t) is gΓ
∞,x,u,0-invariant. If the cyclotomic Bethe equations (3.8)

hold then for each j, 1 ≤ j ≤ m, the vector Gc(j)[−1]|〉 ∈Wµj is singular for the action of ĝ(wj), as

in Lemma 4.8. Therefore

τν(t)(v,Gc(1)[−1]|〉, . . . , Gc(m)[−1]|〉, ρ(Z)) = τν(t)(Z(u).v,Gc(1)[−1]|〉, . . . , Gc(m)[−1]|〉, |〉)

= ψ(Z(u).v) = (ϕ(Z(u)).ψ) (v). (4.40)

On the other hand, using the invariance of the functional τν(t) under the rational function

1

(n− 1)!

(
∂

∂u

)n−1 ∑
r∈ZT

σrbs
ω−rt− u

∈ hΓ
∞,x,u,0,

and the fact that [bs[n], Gc(i)[−1]] = 0, we have that for all w ∈W0,

τν(t)(v,Gc(1)[−1]|〉, . . . , Gc(m)[−1]|〉, bs[−n]w)

= τν(t)(v,Gc(1)[−1]|〉, . . . , Gc(m)[−1]|〉, w)

(
1

(n− 1)!

(
∂

∂u

)n−1 〈
α∨s , ν(u)

〉)
. (4.41)

Here, cf. (4.25),

〈
α∨s , ν(u)

〉
=
〈
α∨s , χ

〉
+
∑
r∈ZT

 N∑
i=1

〈
α∨s , L

r
σλi
〉

u− ωrzi
−

m∑
j=1

〈
α∨s , L

r
σαc(j)

〉
u− ωrwj

+

〈
α∨s , Tλ0 + Λ0

〉
u

.

It is known that ρ(Z(ĝ)) ⊂ π0 [FFR94]. That means ρ(Z) is a linear combination of terms of

the form bs1 [−n1] . . . bsM [−nM ]|〉, s1, . . . , sM ∈ I, n1, . . . , nM ∈ Z≥1. Therefore, by repeated

use of formula (4.41) one has that τν(t)(v,Gc(1)[−1]|〉, . . . , Gc(m)[−1]|〉, ρ(Z)) is proportional to

τν(t)(v,Gc(1)[−1]|〉, . . . , Gc(m)[−1]|〉, |〉). Together with (4.40), this establishes that ψ is an eigenvec-

tor of ϕ(Z(u)), as required.

In particular, consider the quadratic singular vector S ∈ Z(ĝ) from (2.23). It is known (see e.g.,

[Fre07, §8.1.4]) that

ρ(S) =
1

2

∑
s,t∈I
〈ωs, ωt〉bs[−1]bt[−1]|〉 −

∑
α∈∆+

〈α, α〉
4

bα[−2]|〉.

where ωs, s ∈ I, are the fundamental weights. Hence

ϕ(S(u)).ψ =

1

2

∑
s,t∈I
〈ωs, ωt〉〈α∨s , ν(u)〉〈α∨t , ν(u)〉 −

∑
α∈∆+

〈α, α〉
4
〈α∨, ν ′(u)〉

ψ

=

(
1

2
〈ν(u), ν(u)〉 − 〈ν ′(u), %〉

)
ψ (4.42)

where % = 1
2

∑
α∈∆+ α. Taking the residue in u−zi (which comes only from the term 〈ν(u), ν(u)〉) we

obtain the eigenvalue of the quadratic Hamiltonians Hi,0 given in Theorem 3.2. (In this calculation
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one needs the following steps

T−1∑
s=1

〈
λk, L

s
σλk
〉

zk(1− ωs)
=

1

2

T−1∑
s=1

(〈
λk, L

s
σλk
〉

zk(1− ωs)
+

〈
L−sσ λk, λk

〉
ω−s

zk(ω−s − 1)

)

=
1

2

T−1∑
s=1

(〈
λk, L

s
σλk
〉

zk(1− ωs)
+

〈
Lsσλk, λk

〉
ωs

zk(ωs − 1)

)
=

1

2

T−1∑
s=1

〈
λk, L

s
σλk
〉

zk

where the change of variable s 7→ −s was performed in the second sum.) This completes the proof

of Theorem 3.2.

4.8. Proof of Theorem 3.4. We keep the notations of the previous section. Let us now suppose

that χ = 0. Then we have from (4.25) that

ιt−1ν(t) = 0 +
T

t

 N∑
i=1

Π0λi −
m∑
j=1

Π0αc(j) + λ0 + Λ0/T

+O
(

1

t2

)

= 0 +
T

t
(λ∞ + Λ0/T ) +O

(
1

t2

)
where λ∞ is as in (3.4).

Now we modify the construction of §2.4 as follows. Let M∞ be a module over (gop ⊗ C[[t−1]])Γ

(rather than (gop⊗t−1C[[t−1]])Γ as in §2.4). We make it into a moduleMk/T
∞ over (gop⊗C[[t−1]])Γ⊕

CK∞ by declaring that K∞ acts by multiplication by k/T ∈ C. We have the induced right module

U(ĝΓ
∞) module of level k/T ,

Mk/T
∞ :=Mk/T

∞ ⊗U((g⊗C[[t−1]])Γ⊕CK∞) U(ĝΓ
∞). (4.43)

The tensor product

M := Mk/T
∞ ⊗

N⊗
i=1

Mk
zi ⊗Mk/T

0 (4.44)

is again a module over ĝ∞,N,0 on which K acts as k. Pulling back by the embedding (2.8), we have

that M becomes a module over gΓ
∞,z,0 and we can form the space of coinvariants M

/
gΓ
∞,z,0. Let us

write

ĝ+
∞,N,0 := (gop ⊗ C[[t−1]])Γ ⊕

N⊕
i=1

g⊗ C[[t− zi]]⊕ (g⊗ C[[t]])Γ. (4.45)

We have the natural inclusion gσ ↪→ g and hence the embedding

gσ ↪−→ ĝ+
∞,N,0; X 7−→ (−X[0]∞;X[0]z1 , . . . , X[0]zN ;X[0]0). (4.46)

Pulling back by this embedding, the tensor product

M :=M∞ ⊗
N⊗
i=1

Mzi ⊗M0 (4.47)

is a module over gσ and we have the space of coinvariants M
/
gσ.

Proposition 4.12. There is a canonical isomorphism of vector spaces

M
/
gΓ
∞,z,0

∼=CM
/
gσ.
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Proof. We have

M = U(ĝ∞,N,0)⊗U(ĝ+
∞,N,0)M.

Here we regard M∞ as a left module over U(gσ,op).

There are natural embeddings of Lie algebras gσ ↪→ ĝ+
∞,N,0 and gσ ↪→ gΓ

∞,z,0; the first is given

in (4.46); for the second, X ∈ gσ embeds as the constant function X(t) = X in gΓ
∞,z,0. In turn,

both ĝ+
∞,N,0 and gΓ

∞,z,0 embed into ĝ∞,N,0 – see (2.8) – and the following diagram of embeddings

commutes
gσ ĝ+

∞,N,0

gΓ
∞,z,0 ĝ∞,N,0.

We may identify gσ, ĝ+
∞,N,0 and gΓ

∞,z,0 with their images in ĝ∞,N,0. Then

ĝ∞,N,0 = ĝ+
∞,N,0 + gΓ

∞,z,0 and ĝ+
∞,N,0 ∩ gΓ

∞,z,0 = gσ.

Therefore [Di74, Proposition 2.2.9] there is an isomorphism

U(ĝ∞,N,0) ∼= U(gΓ
∞,z,0)⊗U(gσ) U(ĝ+

∞,N,0)

of vector spaces and in fact of left U(gΓ
∞,z,0)-modules. Hence we have an isomorphism of left

U(gΓ
∞,z,0)-modules,

M ∼= U(gΓ
∞,z,0)⊗U(gσ) U(ĝ+

∞,N,0)⊗U(ĝ+
∞,N,0)M = U(gΓ

∞,z,0)⊗U(gσ)M.

The result follows by the following elementary lemma. �

Lemma 4.13. Suppose b ↪→ a is an embedding of complex Lie algebras. Let V be a b-module and

M an a-module. Then ((U(a)⊗U(b) V )⊗M)
/
a ∼=C (V ⊗M)

/
b.

In particular (taking M to be the trivial one-dimensional module), (U(a)⊗U(b) V )
/
a ∼=C V

/
b.

Proof. Consider the linear map V ⊗ M ∼=C
(
U(b)⊗U(b) V

)
⊗ M ↪→

(
U(a)⊗U(b) V

)
⊗ M �((

U(a)⊗U(b) V
)
⊗M

) /
a sending v ⊗m 7→ [(1 ⊗ v) ⊗m]. This map is surjective. We must show

that it has kernel b.(V ⊗M). And indeed, the kernel is the intersection of
(
U(b)⊗U(b) V

)
⊗M

with a.
((
U(a)⊗U(b) V

)
⊗M

)
, which is b.

((
U(b)⊗U(b) V

)
⊗M

) ∼=C b. (V ⊗M). �

We may now choose modules – cf. (4.28) –

Mzi = M∗λi
∼= W̃ιt−ziν(t), i = 1, . . . , N,

M0 = M∗,σλ0

∼= W̃Γ
ιtν(t),

M∞ = Mσ,ϕ
λ∞
∼= W̃Γ,∨

−ιt−1ν(t), (4.48)

where the isomorphisms are as in Lemma 4.2, Lemma 4.3 and, now, Lemma 4.4. The embedding of

g-modulesM∗λi
∼= W̃ιt−ziν(t) ↪→Wιt−ziν(t) extends to an embedding of modules over g⊗C[[t−zi]]⊕CK

of level −h∨. (Positive modes A[n]zi , n > 0, A ∈ g, act as zero on W̃ιt−ziν(t) as in Lemma 4.2.)

M−h∨zi is by definition the ĝxi-module of level −h∨ induced fromMzi = M∗λi . So we get a canonical

homomorphism M−h∨zi →Wιt−ziν(t) of ĝzi-modules of level −h∨. The marked points 0 and ∞ work
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similarly. In total we get a canonical homomorphism of ĝ∞,p,0-modules

M−h
∨/T

∞ ⊗
N⊗
i=1

M−h
∨

zi ⊗M−h
∨/T

0 →WΓ,∨
−ιt−1ν(t) ⊗

N⊗
i=1

Wιt−ziν(t) ⊗WΓ
ιtν(t).

Hence, from the gΓ
∞,z,0-invariant functional ψν(t) of (4.27), we obtain a gΓ

∞,z,0-invariant functional

M−h
∨/T

∞ ⊗
⊗N

i=1 M−h
∨

zi ⊗M−h
∨/T

0 → C. By Proposition 4.12 this is the same thing as a gσ-invariant

functional

Mσ,ϕ
λ∞
⊗

N⊗
i=1

M∗λi ⊗M
∗,σ
λ0
→ C. (4.49)

Recall that we are embedding gσ ↪→ gσ,op ⊕
⊕N

i=1 g ⊕ gσ by X 7→ (−X,X, . . . ,X,X) and that

the antipode map S : U(gσ) → U(gσ) is defined by S(X) = −X for X ∈ gσ. So the space of

gσ-invariant functionals Mσ,ϕ
λ∞
⊗
⊗N

i=1M
∗
λi
⊗M∗,σλ0

→ C is the space

Homgσ

(
(Mσ

λ∞)ϕ◦S ⊗
N⊗
i=1

M∗λi ⊗M
∗,σ
λ0
,C

)
.

Proposition 4.14. There is an isomorphism of vector spaces, and in fact of left (U(g)⊗N ⊗
U(gσ))g

σ
-modules,(

N⊗
i=1

Mλi ⊗M
σ
λ0

)nσ

λ∞

∼= Homgσ

(
(Mσ

λ∞)ϕ◦S ⊗
N⊗
i=1

M∗λi ⊗M
∗,σ
λ0
,C

)
(4.50)

Proof. We have(
N⊗
i=1

Mλi ⊗M
σ
λ0

)nσ

λ∞

= Homhσ⊕nσ

(
Cvλ∞ ,

N⊗
i=1

Mλi ⊗M
σ
λ0

)

∼= Homgσ

(
U(gσ)⊗U(hσ⊕nσ) Cvλ∞ ,

N⊗
i=1

Mλi ⊗M
σ
λ0

)

= Homgσ

(
Mσ
λ∞ ,

N⊗
i=1

Mλi ⊗M
σ
λ0

)
. (4.51)

This is the space of those maps φ : Mσ
λ∞
→
⊗N

i=1Mλi ⊗Mσ
λ0

such that

φ(x.v) = (∆N+1x).φ(v), v ∈Mσ
λ∞ , x ∈ gσ. (4.52)

It carries a natural left action of (U(g)⊗N ⊗U(gσ))g
σ
: given one such a map φ, the map v 7→ Xφ(v)

is another, for any X ∈ (U(g)⊗N ⊗ U(gσ))g
σ
.

Then

Homgσ

(
Mσ
λ∞ ,

N⊗
i=1

Mλi ⊗M
σ
λ0

)
∼= Homgσ

Mλ∞ ⊗

(
N⊗
i=1

Mλi ⊗M
σ
λ0

)∨,S
,C

 (4.53)

where for a finitely-weighted left U(gσ)-module M we denote by M∨,S its restricted dual made into

a left U(gσ)-module by twisting by the antipode map S. Indeed, given a map φ such that (4.52)
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holds we define a map Φ : Mλ∞⊗
(⊗N

i=1Mλi ⊗Mσ
λ0

)∨,S
→ C by Φ(v⊗µ) = µ(φ(v)), v ∈Mλ∞ , µ ∈(⊗N

i=1Mλi ⊗Mσ
λ0

)∨,S
. It obeys Φ(x.(v⊗µ)) = 0 where x.(v⊗µ) := (x.v)⊗µ+v⊗(µ◦(−∆N+1x.)),

for x ∈ gσ.

Finally, we may twist the action of gσ on Mλ∞ ⊗
(⊗N

i=1Mλi ⊗Mσ
λ0

)∨,S
by the automorphism

S ◦ ϕ = ϕ ◦ S. Since S2 = id here, (M∨,Sλ )S◦ϕ = M∨,ϕλ =: M∗λ . Thus

Homgσ

Mσ
λ∞ ⊗

(
N⊗
i=1

Mλi ⊗M
σ
λ0

)∨,S
,C

 ∼= Homgσ

(
(Mσ

λ∞)ϕ◦S ⊗
N⊗
i=1

M∗λi ⊗M
∗,σ
λ0
,C

)
(4.54)

as required. �

Thus, the functional of (4.49) defines an element of
(⊗N

i=1Mλi ⊗Mσ
λ0

)nσ
λ∞

. At the same time,

by (4.51), this functional is uniquely determined by its restriction to the subspace

Cvλ∞ ⊗
N⊗
i=1

M∗λi ⊗M
∗,σ
λ0

∼= C〈| ⊗
N⊗
i=1

W̃ιt−ziν(t) ⊗ W̃Γ
ιtν(t).

By definition, on this subspace it agrees with the functional of (4.29). In other words, it defines

the same vector ψ ∈
⊗N

i=1Mλi ⊗Mσ
λ0

as in (4.30). We saw in the previous section that ψ vector

of (4.30) is the weight function defined in (3.3). So we have shown that the weight function ψ is

singular when χ = 0, completing the proof of Theorem 3.4.

Appendix A. Proof of Proposition 2.5

Let us write

∂(n)
x :=

1

n!

(
∂

∂x

)n
Consider the Γ-equivariant rational function

f(t) =
T−1∑
k=0

σkA

(ω−kt− u)p+1
∈ gΓ
∞,z,u,0. (A.1)

The expansion of (A.1) at u is

ιt−uf(t) = A[−p− 1]u +

T−1∑
k=1

∞∑
n=0

[
p+ n

n

]
(−1)p+1ωk(p+1)

(ωk − 1)n+p+1un+p+1
(σkA)[n]u ∈ g⊗ C((t− u)). (A.2)

Its expansions at zi, i = 1, . . . , N , and at 0 are given by

ιt−zif(t) = −∂(p)
u

T−1∑
k=0

∞∑
n=0

ω−kn

(u− ω−kzi)n+1
(σkA)[n]zi ∈ g⊗ C[[t− zi]], (A.3)

ιtf(t) = −T∂(p)
u

∞∑
n=0

1

un+1
(ΠnA)[n]0 ∈ g⊗ C[[t]], (A.4)
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where, recall, A[n]zi = A⊗ (t− zi)n ∈ g⊗C((t− zi)). It is regular at ∞ and its expansion there is

given by

−ιt−1f(t) = −∂(p)
u

T∑
k=0

∞∑
n=0

(ωku)nωkσkA[−n− 1]∞ = −T∂(p)
u

∞∑
n=0

un(Π−n−1A)[−n− 1]∞, (A.5)

where recall that for the modes at infinity we write A[n]∞ = A⊗ tn in our conventions.

Thus, since [f(t).(x⊗ v0)] = 0, we have[
S(u)x⊗ v0

]
:=
[
x⊗ 1

2
Ia[−1]Ia[−1]v0

]
=
[
Ia(u)x⊗ 1

2Ia[−1]v0

]
+

T−1∑
p=1

ωp

(ωp − 1)u

[
x⊗ 1

2(σpIa)[0]Ia[−1]v0

]
+

T−1∑
p=1

ωp

(ωp − 1)2u2

[
x⊗ 1

2(σpIa)[1]Ia[−1]v0

]
(A.6)

where, putting the expansions at 0, z1, . . . , zN ,∞ together, we shall write, for any A ∈ g,

A(u) :=

(
N∑
i=1

∞∑
n=0

T−1∑
k=0

ω−kn(σkA)[n]zi
(u− ω−kzi)n+1

+ T

∞∑
n=0

(ΠnA)[n]0
un+1

+ T

∞∑
n=0

un(Π−n−1A)[−n− 1]∞

)
.

(A.7)

The equality in (A.6) is an example of what was called “cyclotomic swapping” in [VY16a]. Then,

defining the element F ∈ gσ and number K as in (2.22), we see after one further such “swapping”

that

S(u) =
1

2
Ia(u)Ia(u) +

1

u
F (u) +

1

u2
K. (A.8)

Consider first the terms in 1
2Ia(u)Ia(u) acting at sites i, j ∈ {1, . . . , N}, i 6= j. Let us write

zik := ω−kzi and ∂
(n)
ik =

1

n!

(
∂

∂zik

)n
. (A.9)

Then 1
(u−zik)n+1 = ∂

(n)
ik

1
u−zik and we get the terms

1

2

∞∑
n,m=0

N∑
i,j=1
j 6=i

T−1∑
k,l=0

∂
(n)
ik ∂

(m)
jl

1

u− zik
1

u− zjl
ω−kn−lm(σkIa)[n]zi(σ

lIa)[m]zj

=
1

2

∞∑
n,m=0

N∑
i,j=1
j 6=i

T−1∑
k,l=0

∂
(n)
ik ∂

(m)
jl

(
1

u− zik
1

zik − zjl
+

1

u− zjl
1

zjl − zik

)
ω−kn−lm(σkIa)[n]zi(σ

lIa)[m]zj

=
1

2

∞∑
n,m=0

N∑
i,j=1
j 6=i

T−1∑
k,l=0

∂
(n)
ik ∂

(m)
jl

1

u− zik
1

zik − zjl
ω−kn−lm

{
(σkIa)[n]zi , (σ

lIa)[m]zj

}

=
∞∑

n,m=0

N∑
i,j=1
j 6=i

T−1∑
k,l=0

∂
(n)
ik ∂

(m)
jl

1

u− zik
1

zik − zjl
ω−kn−lm(σkIa)[n]zi(σ

lIa)[m]zj (A.10)
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where {a, b} := ab+ ba denotes the anti-commutator. Now here

∂
(n)
ik ∂

(m)
jl

1

u− zik
1

zik − zjl
=

n∑
p=0

(
∂

(p)
ik

1

u− zik

)(
∂

(n−p)
ik ∂

(m)
jl

1

zik − zjl

)

=
n∑
p=0

1

(u− zik)p+1
(−1)n−p

[
n+m− p

m

]
1

(zik − zjl)n−p+m+1
. (A.11)

Thus we find the following terms in 1
2Ia(u)Ia(u):

∞∑
n,m=0

N∑
i,j=1
j 6=i

T−1∑
k,l=0

n∑
p=0

ω−kn−lm

(u− zik)p+1
(−1)n−p

[
n+m− p

m

]
1

(zik − zjl)n−p+m+1
(σkIa)[n]zi(σ

lIa)[m]zj

=
N∑
i=1

T−1∑
k=0

∞∑
p=0

1

(u− ω−kzi)p+1

 N∑
j=1
j 6=i

T−1∑
l=0

∞∑
r,m=0

ω−k(r+p)−lm(−1)r
[
r+m
m

]
(ω−kzi − ω−lzj)r+m+1

(σkIa)[r + p]zi(σ
lIa)[m]zj



=
N∑
i=1

T−1∑
k=0

∞∑
p=0

ω−kp+kσk

(u− ω−kzi)p+1

 N∑
j=1
j 6=i

T−1∑
l=0

∞∑
r,m=0

ω(k−l)m(−1)r
[
r+m
m

]
(zi − ωk−lzj)r+m+1

Ia[r + p]zi(σ
l−kIa)[m]zj



=
N∑
i=1

T−1∑
k=0

∞∑
p=0

ω−kp+kσk

(u− ω−kzi)p+1

 N∑
j=1
j 6=i

T−1∑
l=0

∞∑
r,m=0

ω−lm(−1)r
[
r+m
m

]
(zi − ω−lzj)r+m+1

Ia[r + p]zi(σ
lIa)[m]zj

 (A.12)

In part by a similar calculation we find the terms in 1
2Ia(u)Ia(u) acting solely at one site i ∈

{1, . . . , N}, namely

N∑
i=1

T−1∑
k=0

∞∑
p=0

ω−kp+kσk

(u− ω−kzi)p+1
×

T−1∑
l=1

∞∑
r,m=0

ω−lm(−1)r
[
r+m
m

]
((1− ω−l)zi)r+m+1

1

2

{
Ia[r + p]zi , (σ

lIa)[m]zi

}
+

p−1∑
n=0

1

2
Ia[n]ziI

a[p− n− 1]zi

 ,

(A.13)

where the second term is an “on-diagonal” term in 1
2Ia(u)Ia(u).
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The cross terms in 1
2Ia(u)Ia(u) acting at sites i ∈ {1, . . . , N} and 0 are given by (here we use an

obvious trick to make the calculation resemble the one above)

T
∞∑

n,m=0

N∑
i=1

T−1∑
k=0

∂
(n)
ik ∂

(m)
z

1

u− zik
1

u− z

∣∣∣∣
z=0

ω−kn(σkIa)[n]zi(ΠmI
a)[m]0

= T
∞∑

n,m=0

N∑
i=1

T−1∑
k=0

∂
(n)
ik ∂

(m)
z

(
1

u− zik
1

zik − z
+

1

u− z
1

z − zik

)∣∣∣∣
z=0

ω−kn(σkIa)[n]zi(ΠmI
a)[m]0

= T
∞∑

n,m=0

N∑
i=1

T−1∑
k=0

n∑
p=0

1

(u− zik)p+1

(−1)n−p
[
n+m−p

m

]
(zik − z)n−p+m+1

∣∣∣∣∣∣
z=0

ω−kn(σkIa)[n]zi(ΠmI
a)[m]0

+ T
∞∑

n,m=0

N∑
i=1

T−1∑
k=0

m∑
p=0

1

(u− z)p+1

(−1)m−p
[
n+m−p

n

]
(z − zik)n−p+m+1

∣∣∣∣∣∣
z=0

ω−kn(σkIa)[n]zi(ΠmI
a)[m]0

= T

∞∑
n,m=0

N∑
i=1

T−1∑
k=0

n∑
p=0

1

(u− ω−kzi)p+1

(−1)n−p
[
n+m−p

m

]
zn−p+m+1
i

ωk(−p+m+1)(σkIa)[n]zi(ΠmI
a)[m]0

+ T
∞∑

n,m=0

N∑
i=1

T−1∑
k=0

m∑
p=0

1

up+1

(−1)n+1
[
n+m−p

n

]
zn−p+m+1
i

ωk(−p+m+1)(σkIa)[n]zi(ΠmI
a)[m]0

(A.14)

Next, the cross terms in 1
2Ia(u)Ia(u) acting at sites i ∈ {1, . . . , N} and ∞ are

T

T−1∑
k=0

∞∑
n,m=0

N∑
i=1

ω−kn

(u− ω−kzi)n+1
um(Π−m−1Ia)[−m− 1]∞(σkIa)[n]zi

= T
T−1∑
k=0

∞∑
n,m=0

N∑
i=1

m−n−1∑
p=0

[
n+ p

n

]
um−n−1−p(ω−kzi)

p +
n∑
p=0

[
m

p

]
(ω−kzi)

m−p

(u− ω−kzi)n−p+1

×
ω−kn(Π−m−1Ia)[−m− 1]∞(σkIa)[n]zi (A.15)

where we used the identity

um

(u− z)n+1
=

m−n−1∑
p=0

[
n+ p

n

]
um−n−1−pzp +

n∑
p=0

[
m

p

]
zm−p

(u− z)n−p+1
.

This can be seen by writing the left hand side as

um

(u− z)n+1
=

1

n!

∂n

∂zn
um

u− z
=

1

n!

∂n

∂zn

m−1∑
k=0

ukzm−k−1 +
1

n!

∂n

∂zn
zm

u− z
.

After taking the n derivatives with respect to z, each of the two terms on the left hand side then

evaluate to the two terms on the left hand side of the above identity.



CYCLOTOMIC GAUDIN MODELS WITH IRREGULAR SINGULARITIES 37

The pole term in (u− ω−kzi) in (A.15) is (here r = n− p, n = r + p)

T

N∑
i=1

T−1∑
k=0

∞∑
r=0

1

(u− ω−kzi)r+1

∞∑
p,m=0

ω−kr−kmzm−pi

[
m

p

]
(Π−m−1Ia)[−m− 1]∞(σkIa)[r + p]zi

= T

N∑
i=1

T−1∑
k=0

∞∑
r=0

ω−kr+kσk

(u− ω−kzi)r+1

 ∞∑
p,m=0

zm−pi

[
m

p

]
(Π−m−1Ia)[−m− 1]∞I

a[r + p]zi


= T

N∑
i=1

T−1∑
k=0

∞∑
r=0

ω−kr+kσk

(u− ω−kzi)r+1

 ∞∑
n,p=0

zni

[
n+ p

p

]
(Π−n−p−1Ia)[−n− p− 1]∞I

a[r + p]zi

 (A.16)

where we use the fact that σkΠ−m−1 = ω−km−kΠ−m−1.

The powers of u in (A.15) are (here r = m− n− 1− p, p = m− n− 1− r)

T

N∑
i=1

T−1∑
k=0

∞∑
m,n=0

m−n−1∑
r=0

urω−km+k+krzm−n−1−r
i

[
m− 1− r

n

]
(Π−m−1Ia)[−m− 1]∞(σkIa)[n]zi

= T
∞∑
r=0

ur
N∑
i=1

T−1∑
k=0

∞∑
n=0

∞∑
m=r+n+1

ω−km+k+krzm−n−1−r
i

[
m− 1− r

n

]
(Π−m−1Ia)[−m−1]∞(σkIa)[n]zi

(A.17)

The cross terms in 1
2Ia(u)Ia(u) acting at sites 0 and ∞ can be conveniently written as

T 2
∞∑
r=0

1

ur+1

∞∑
n=r

(ΠnIa)[n]0(Πr−n+1I
a)[−n+ r − 1]∞

+ T 2
∞∑
r=0

ur
∞∑
n=0

(ΠnIa)[n]0(Π−r−n−2I
a)[−n− r − 2]∞. (A.18)

Finally the diagonal terms in 1
2Ia(u)Ia(u) acting at sites 0 and ∞ respectively are

T 2

2

∞∑
r=1

1

ur+1

r−1∑
n=0

(ΠnIa)[n]0(Πr−n−1I
a)[r − n− 1]0 (A.19)

and
T 2

2

∞∑
r=0

ur
r∑

n=0

(Π−n−1Ia)[−n− 1]∞(Π−r+n−1I
a)[−r + n− 1]∞. (A.20)

Next we turn to the term F (u)/u in (A.8). Noting that

1

u

1

(u− z)n+1
=

n∑
p=0

(−1)p
1

zp+1

1

(u− z)n−p+1
− 1

u

(−1)n

zn+1
.
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we find that in F (u)/u the terms acting at the sites i ∈ {1, . . . , N} are

N∑
i=1

T−1∑
k=0

∞∑
n=0

 n∑
p=0

(−1)p
ω−kn

(ω−kzi)p+1(u− ω−kzi)n−p+1
− 1

u

ω−kn(−1)n

(ω−kzi)n+1

σkF [n]zi

=

N∑
i=1

T−1∑
k=0

∞∑
r=0

∞∑
n=r

(−1)n−r
ω−kn+k(n−r+1)

(u− ω−kzi)r+1

1

zn−r+1
i

σkF [n]zi −
1

u

N∑
i=1

∞∑
n=0

(−1)n

zn+1
i

T−1∑
k=0

ωkσkF [n]zi

=
N∑
i=1

T−1∑
k=0

∞∑
r=0

∞∑
n=0

(−1)n
ω−kr+k

(u− ω−kzi)r+1

1

zn+1
i

σkF [n+ r]zi −
T

u

N∑
i=1

∞∑
n=0

(−1)n

zn+1
i

Π−1F [n]zi . (A.21)

The terms acting at the sites 0 and ∞ in F (u)/u are clearly

T

∞∑
n=0

1

un+2
(ΠnF )[n]0 + T

∞∑
n=0

un−1(Π−n−1F )[−n− 1]∞

Now we collect terms, and use σkΠm = ωkmΠm, σkHi,p = Hi,p, and the fact that ΠkF = 0 for all

k ∈ Z/TZ \ {0}, to obtain the result.

Appendix B. YW -map

B.1. Vertex Lie algebras. In this appendix we use the notion of a vertex Lie algebra and related

concepts as defined in [VY16b], to which we refer the reader for the precise definition. In particular,

all our vertex Lie algebras are finitely generated as C[D]-modules, of the form

L := C[D]⊗ (Lo ⊕ Cc)
/
DC[D]⊗ Cc ∼=C C[D]⊗ Lo ⊕ Cc,

where Lo is a finite dimensional vector space and D is the translation operator of the vertex Lie

algebra. Moreover, we will always consider the case when L is Z≥0-graded, in the sense that the

underlying finite dimensional vector space Lo is itself Z≥0-graded, D is an operator of degree 1, c

is of degree 0 and deg(a(n)b) = deg a + deg b − n − 1 for any a, b ∈ L where (n) : L ×L → L

for n ∈ Z≥0 denote the nth-products of L . We denote by L(0) the degree operator on L , given

by L(0)a = (deg a)a for homogeneous a ∈ L . We will always assume that L is equipped with an

action Ř : Γ → Aut L , α 7→ Řα through automorphisms of L , and consider the corresponding

twisted action R : Γ→ GL(L ), α 7→ Rα := αL(0)Řα.

To any such vertex Lie algebra L we can associate a genuine Lie algebra, denoted L(L ) and

defined as LieC((t)) L using [VY16b, Lemma 2.2] with A = C((t)), which is isomorphic as a vector

space to Lo ⊗C((t))⊕Cc. The element in L(L ) corresponding to a⊗ tn with a ∈ Lo and n ∈ Z is

denoted by a(n) ∈ L(L ). We denote by c(−1) the copy of the element c belonging to L(L ). The

definition of a(n), n ∈ Z, then extends to all a ∈ L by repeatedly applying (Da)(n) = −na(n− 1).

In particular then c(n) = 0 unless n = −1. For a homogeneous vector a ∈ Lo we also make use of

the notation a[n] ∈ L(L ) for the element corresponding to a⊗ tn+deg a−1. There is a vector space

direct sum decomposition L(L ) = L−(L ) u L+(L ) where L±(L ) are Lie subalgebras isomorphic

as vector spaces to Lo ⊗ C[[t]]⊕ Cc and Lo ⊗ t−1C[t−1] respectively.

Denote by V(L ) the vacuum Verma module over L(L ), namely the L(L )-module induced from

the one-dimensional L+(L )-module Cv0 on which c acts as 1 and Lo ⊗ C[[t]] acts trivially. It is
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naturally endowed with the structure of a vertex algebra. Finally, let L(L )Γ denote the subalgebra

of Γ-invariant elements, where the action of Γ on L(L ) is defined by letting α ∈ Γ send any a(n)

with a ∈ L and n ∈ Z to α−n−1(Rαa)(n). Given any a ∈ L and n ∈ Z we define the corresponding

twisted nth-mode

aΓ(n) :=
∑
α∈Γ

α−n−1(Rαa)(n) ∈ L(L )Γ.

The two main examples of vertex Lie algebras L we shall consider are given in [VY16b, Exam-

ples 2.5 & 2.6], whose corresponding Lie algebras L(L ) are centrally extended loop algebras and

Heisenberg Lie algebras.

B.2. ‘Local’ and ‘global’ Lie algebras. Fix a set x := {xi}pi=1 of p ∈ Z≥0 non-zero points in

the complex plane. We attach to each point xi ∈ x a local copy of the Lie algebra L(L ) defined

as LieC((t−xi)) L using [VY16b, Lemma 2.2] with A = C((t − xi)), which we denote L(L )xi . We

will also use the index xi on the formal modes a(n) or a[n] when we wish to emphasise that these

belong to L(L )xi . Simiarly, to the origin we attach a local copy L(L )Γ
0 of the Γ-invariant subalgebra

L(L )Γ. To the point at infinity we attach the Lie algebra L(L op)Γ
∞ defined as the subalgebra of

Γ-invariants in L(L op)∞ := LieC((t−1)) L op, where L op is the opposite vertex Lie algebra given

by the C[D]-module L but with opposite nth-products. For any n ∈ Z and homogeneous element

a ∈ L , we denote by a(n)∞ (resp. a[n]∞) the class of a⊗ tn (resp. a⊗ tn+deg a−1) in L(L op)∞.

Consider the direct sum L(L op)Γ
∞ ⊕

⊕p
i=1 L(L )xi ⊕ L(L )Γ

0 . We define the ideal

I∞,p,0 := spanC
{
c(−1)xi − T c(−1)∞

}p
i=1
∪
{
c(−1)0 − c(−1)∞

}
, (B.1)

and the corresponding quotient Lie algebra

L(L )∞,x,0 := L(L op)Γ
∞ ⊕

p⊕
i=1

L(L )xi ⊕ L(L )Γ
0

/
I∞,p,0.

Let C∞,Γx,0(t) be the algebra of global rational functions with poles at most at 0, ∞ and the

points in Γx. It comes equipped with the derivation ∂t and an action of Γ defined through pullback

by the multiplication map t 7→ α−1t for α ∈ Γ. Consider the associated Lie algebra LieC∞,Γx,0(t) L

defined with the help of [VY16b, Lemma 2.2] for A = C∞,Γx,0(t). We will denote by af := ρ(a⊗f)

the class in LieC∞,Γx,0(t) L of an element a⊗f ∈ L ⊗C∞,Γx,0(t). The action of Γ on L ⊗C∞,Γx,0(t)

defined for any α ∈ Γ by

α.(a⊗ f(t)) := α−1Rαa⊗ f(α−1t),

gives rise to an action on LieC∞,Γx,0(t) L by Lie algebra automorphisms, cf. [VY16b, Lemma 2.13].

Consider the ideal in LieC∞,Γx,0(t) L defined by

I∞,Γx,0 := spanC

{∑
α∈Γ

c

t− αx

}
x∈x∪{0}

= spanC

{∑
α∈Γ

c

t− αxi

}p
i=1

∪
{
T c

t

}
, (B.2)

and denote the corresponding quotient Lie algebra by

L∞,Γx,0(L ) := LieC∞,Γx,0(t) L
/
I∞,Γx,0.

Noting that the ideal (B.2) is invariant under the action of Γ, i.e. Γ.I∞,Γx,0 = I∞,Γx,0, we obtain

a well-defined action of Γ on the quotient L∞,Γx,0(L ). We denote the corresponding subalgebra of
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Γ-invariants by

LΓ
∞,x,0(L ) :=

(
L∞,Γx,0(L )

)Γ
. (B.3)

Proposition B.1. There is an embedding of Lie algebras

ι : LΓ
∞,x,0(L ) ↪−→ L(L )∞,x,0. (B.4)

Proof. Taking the Laurent expansion of an element of LieC∞,Γx,0(t) L at 0, ∞ and the points in x

yields an embedding of Lie algebras

ι : LieC∞,Γx,0(t) L ↪−→ L(L op)∞ ⊕
p⊕
i=1

L(L )xi ⊕ L(L )0 (B.5)

af 7−→
(
− ρ(a⊗ ιt−1f), ρ(a⊗ ιt−x1f), . . . , ρ(a⊗ ιt−xpf), ρ(a⊗ ιtf)

)
.

Note that under the embedding (B.5) we have ι
(∑

α∈Γ
c

t−αx
)

= c(−1)x−T c(−1)∞ for every x ∈ x
and ι

(
T c
t

)
= T c(−1)0 − T c(−1)∞ from which we deduce that the ideal I∞,Γx,0 ⊂ LieC∞,Γx,0(t) L

defined in (B.2) is mapped to the ideal I∞,p,0 ⊂ L(L op)∞⊕
⊕p

i=1 L(L )xi⊕L(L )0 defined in (B.1).

By [VY16b, Lemma 2.9] it follows that (B.5) induces an embedding of quotient Lie algebras

ι : L∞,Γx,0(L ) ↪−→ L(L op)∞ ⊕
p⊕
i=1

L(L )xi ⊕ L(L )0

/
I∞,p,0.

Finally, by restricting the latter to the subalgebra of Γ-invariants (B.3) we obtain the desired Lie

algebra embedding (B.4). �

LetMxi be a left module over L(L )xi for each i = 1, . . . , p. Following the convention adopted in

[VY16b, Section 3], we will always assume that such modules over L(L ) are of level 1, namely that

the central element c(−1) acts as 1. Let M0 and M∞ be left modules over L(L )Γ
0 and L(L op)Γ

∞
respectively, or alternatively M∞ is a right module over L(L )Γ

∞. Following also the convention

of [VY16b, Section 3], all such modules over L(L )Γ will be assumed to be of level 1
T . The tensor

product M∞ ⊗
⊗p

i=1Mxi ⊗M0 is then a left module over the Lie algebra L(L )∞,x,0 so that by

virtue of Proposition B.1 it also becomes a left module over the global Lie algebra LΓ
∞,x,0(L ). In

particular, we may form the space of coinvariants

M∞ ⊗
p⊗
i=1

Mxi ⊗M0

/
LΓ
∞,x,0(L ).

Many of the statements and proofs of [VY16b] concerning cyclotomic coinvariants which did not

include the point at infinity can be seen to carry over with minor modifications to the present case.

B.3. YW -map. A left module M over L(L ) is said to be smooth if for all a ∈ L and v ∈ M we

have a(n)v = 0 for all n� 0. Likewise, we will say that a right module N over L(L ) is co-smooth

if for all a ∈ L and η ∈ N we have η a(n) = 0 for all n� 0.

Let M∞ be any right co-smooth module over L(L )Γ. We define the quasi-module map

YW (·, u) : V(L ) −→ Hom
(
M∞,M∞((u−1))

)
, A 7−→

∑
n∈Z

AW(n)u
−n−1
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where u is a formal variable and AW(n) are endomorphisms ofM∞ for each A ∈ V(L ) and n ∈ Z, by

direct analogy with the definition given in [VY16b] for left smooth modules over L(L )Γ as follows.

For any a ∈ L we set

YW (a(−1)v0, u) :=
∑
α∈Γ

∑
n∈Z

(Rαa)(n)(αu)−n−1.

Moreover, the map is defined recursively for any other state in V(L ) by letting

YW (a(−1)B, u) := :YW (a(−1)v0, u)YW (B, u): +
∑

α∈Γ\{1}

∑
n≥0

1

((α− 1)u)n+1
YW
(
(Rαa)(n)B, u

)
,

(B.6)

for all a ∈ L and B ∈ V(L ). Here :A(u)B(u): = A(u)+B(u) + B(u)A(u)− denotes the usual

normal ordering where for A(u) =
∑

n∈ZA(n)u−n−1 we define

A(u)+ =
∑
n<0

A(n)u−n−1 =
∑
m≥0

A(−m− 1)um, (B.7a)

A(u)− =
∑
n≥0

A(n)u−n−1. (B.7b)

The following is a direct analogue of [VY16b, Proposition 3.6] for the point at infinity, providing

an alternative definition the above YW -map on co-smooth modules using co-invariants.

Proposition B.2. Let M∞ be a right co-smooth module over L(L )Γ. We have

−ιu−1 [A

u

⊗m∞
∞

⊗ · · · ] =
[
m∞
∞

YW (A, u)⊗ · · ·
]
, (B.8)

for all A ∈ V(L ) and m∞ ∈M∞.

Proof. We use induction on the depth of A. When A = v0 the result follows from the analogue of

[VY16b, Proposition 3.2] including the point at infinity. For the inductive step, we assume that

(B.8) holds for states of depth strictly less than that of A. Without loss of generality we can take

the state A to be of the form A = a(−1)B for some a ∈ L and B ∈ V(L ).

Let Mxi , i = 1, . . . , p be any collection of p ∈ Z≥0 modules attached to the points xi ∈ C for

i = 1, . . . , p which may include the origin. We write x := {xi}pi=1 and let m ∈
⊗p

i=1Mxi . By

definition of the space of coinvariants we have[
f(t).(B

u

⊗m∞
∞

⊗m
x

)
]

= 0, where f(t) =
∑
α∈Γ

α−1Rαa

α−1t− u
.

In other words,[
ιt−uf(t)B

u

⊗m∞
∞

⊗m
x

]
−
[
B

u

⊗m∞
∞

(
ιt−1f(t)

)
⊗m

x

]
+

p∑
i=1

[
B

u

⊗m∞
∞

⊗ ιt−xif(t)m

x

]
= 0.



42 BENOÎT VICEDO AND CHARLES YOUNG

Thus the left hand side of (B.8) may be written as

−ιu−1 [a(−1)B

u

⊗m∞
∞

⊗m
x

] = −ιu−1

[∑
α 6=1

∑
n≥0

(Rαa)(n)

((α− 1)u)n+1
B

u

⊗m∞
∞

⊗m
x

]

− ιu−1

[
B

u

⊗m∞
∞

YW (a(−1)v0, u)+ ⊗m
x

]
− ιu−1

[
B

u

⊗m∞
∞

⊗
p∑
i=1

∑
α∈Γ

∑
n≥0

(Rαa)(n)xi
(αu− xi)n+1

m

x

]
.

Here we made use of the notation (B.7a). The states at the point u on the right hand side are of

lower depth in V(L ), so that we may apply the inductive hypothesis to obtain

−ιu−1 [a(−1)B

u

⊗m∞
∞

⊗m
x

] =
∑
α 6=1

∑
n≥0

1

((α− 1)u)n+1

[
m∞
∞

YW
(
(Rαa)(n)B, u

)
⊗m

x

]

+

[
m∞
∞

YW (a(−1)v0, u)+YW (B, u)⊗m
x

]
+ ιu−1

[
m∞
∞

YW (B, u)⊗
p∑
i=1

∑
α∈Γ

∑
n≥0

(Rαa)(n)xi
(αu− xi)n+1

m

x

]
.

The first two terms on the right hand side are already in the desired form. Taking the map ιu−1

explicitly in the remaining term we may rewrite it as[
m∞
∞

YW (B, u)⊗
p∑
i=1

∑
α∈Γ

∑
m≥0

m∑
n=0

[
m

n

]
xm−ni

(αu)m+1
(Rαa)(n)xim

x

]
. (B.9)

Now consider the following identity∑
m≥0

u−m−1
[
gm(t).

(
m∞
∞

YW (B, u)⊗m
x

)]
= 0, where gm(t) =

∑
α∈Γ

α−1(Rαa)(α−1t)m.

Using this we may rewrite (B.9) simply as∑
m≥0

u−m−1
[
m∞
∞

YW (B, u)
(
ιt−1gm(t)

)
⊗m

x

]
=
[
m∞
∞

YW (B, u)YW (a(−1)v0, u)− ⊗m
x

]
.

Putting the above together and using the recurrence relation (B.6) of the YW -map we obtain

ιu−1 [a(−1)B

u

⊗m∞
∞

⊗m
x

] =
[
m∞
∞

YW (a(−1)B, u)⊗m
x

]
,

as required. �

Recall that the vacuum Verma module V(L ) has the structure of a vertex algebra and so is in

particular a vertex Lie algebra. We may thus form the associated Lie algebra L(V(L )) as well as

its subalgebra of Γ-invariants L(V(L ))Γ. The following is an immediate generalisation of [VY16b,

Proposition 5.8].

Proposition B.3. Let M∞ be a co-smooth right module over L(L )Γ. There is a well-defined

co-smooth right L(V(L ))Γ-module structure on M∞ given for all m∞ ∈M∞ by

m∞A
Γ(n) := m∞A

W
(n).
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