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CYCLOTOMIC GAUDIN MODELS WITH TRREGULAR SINGULARITIES

BENOIT VICEDO AND CHARLES YOUNG

ABSTRACT. Generalizing the construction of the cyclotomic Gaudin algebra from [VY16a], we
define the universal cyclotomic Gaudin algebra. It is a cyclotomic generalization of the Gaudin
models with irregular singularities defined in [FFT10].

We go on to solve, by Bethe ansatz, the special case in which the Lax matrix has simple poles

at the origin and arbitrarily many finite points, and a double pole at infinity.
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1. INTRODUCTION

Pick a primitive T'th root of unity w € C*, for some non-negative integer 7" and let I' := <w> cCx
denote a copy of the cyclic group Z/T7Z. Let g be a finite-dimensional semisimple Lie algebra and
0 : g — g an automorphism whose order divides T

Associated to these data is a cyclotomic Gaudin algebra [VY16a]. It is a large commutative
subalgebra of U(g®")9”, depending on a choice of non-zero marked points z = {z1,...,2x} in the
complex plane whose I'-orbits are pairwise disjoint. It is generated by a hierarchy of Hamiltonians,
among which are quadratic Hamiltonians H;j, ..., Hy that have appeared previously in [Skr06,
Skr13] — see also [CYO0T7] — and, in the context of cyclotomic KZ equations, in [Brol0]. It defines a
quantum integrable model generalizing the quantum Gaudin model [Gau76], to which it reduces in
the special case T' = 1.

The cyclotomic Gaudin algebra was constructed in [VY16a] using the technology of coinvari-
ants/conformal blocks of g-modules of critical level, following [FFR94]. The relevant coinvariants
in this case are I'-equivariant; see [VY16b].
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Now, in fact, this approach using coinvariants naturally gives commutative subalgebras not just
of U(g®") but of the larger algebra U (@f\il o[t — zi]]), where g[[t — z]] = g[[t]] is the half loop
algebra. Moreover, in the cyclotomic setting it is natural to include also 0 and co as marked points.
These are the fixed points of the action of I', and to them one attaches twisted half loop algebras,
respectively g[[t]]" and (t7'g°P[[t~!]])" (see §2.2). The first main result of the present sequel to
[VY16a] is thus to construct, in §2, a large commutative subalgebra

.
Zroz0(g,0)" CU <(t Lol ] 69@9 t— z]] 9[[t]])r) :

It is the cyclotomic generalization of the universal Gaudin algebra defined in [FFT10].

Quotients of half loop algebras of the form g[[t]]/t"g[[t]] are called (generalized) Takiff algebras.

n,TLO( I'1l
g,0) .

Taking such quotients of 2% .0(g, )" one obtains commutative algebras 2”02(’;0 In

particular, one recovers the cyclotomic Gaudin algebra of [VY16a] as the special case

200 cU0e g™ 00

o0,

More generally, following [FFT10] it is natural to call the integrable models defined by representing

D@Pnooﬂl 10

.20 (g,0)" on tensor products of modules over Takiff algebras, cyclotomic Gaudin models with

irreqular singularities. Among the simplest possibilities is to introduce one irregular singularity, as
mild as possible, at oco; that is, to consider

220 g,0)" C U (T1-19) @ ¢ @ ¢°)"

Here IT_1g C g denotes the w™!-eigenspace of o. It is to be regarded here as a commutative Lie
algebra: it arises as the quotient II_1g ¢ (t~!g[[t r / t~2g )Y, Suppose we now pick a
one-dimensional representation of this commutative Lle algebra i.e. a linear map x : lI_;g — C.

Applying this map we obtain a commutative subalgebra
AL (0,007 € (U@ @ U(e")™

where gf denotes the centraliser of x under the coadjoint action of g7 on (TT_1g)*. In the special
case of N = 0 (i.e. only one marked point, at the origin) this is a cyclotomic generalization of the
quantum shift-of-argument subalgebra of [Ryb06]; see also [FFRb10]. The latter is a quantisation of
the shift-of-argument subalgebra A, [MF78], the Poisson commutative subalgebra of S(g) ~ P(g*)
generated by all derivatives of every element of S(g)? in the direction of some fixed x € g*. The
quantum shift-of-argument subalgebra has important connections to g-crystals, certain limits of
U,(g)-modules, and cactus group actions on these, see e.g. [Rybl6]. It would be interesting to
investigate these various connections in the cyclotomic setting. (Note also that quantum KdV
theory is closely related to an affine shift-of-argument subalgebra [FF07].)

In the remainder of the paper we go on to diagonalize the Hamiltonians generating Ai’o(}z)bl (9,0, )"
on tensor products of Verma modules, by means of a Bethe ansatz. We assume that x, and the
highest weights A1, ..., An, Ag of these Verma modules, all belong to the dual of a single Cartan sub-
algebra, and that this Cartan subalgebra is stable under . Under these assumptions one can apply

I Actually, we define these Z7°2™"0 (g )" first, and then the universal algebra % - o(g, )" is their inverse limit.

00,2,0



CYCLOTOMIC GAUDIN MODELS WITH IRREGULAR SINGULARITIES 3

the approach to the Bethe ansatz for Gaudin models from [FFR94, Fre05], which uses coinvariants
of a particular class of g-modules at critical level called Wakimoto modules. See §3, Theorem 3.2,
for the precise statement of the result.

Finally, in the special case y = 0 we prove that the Bethe vectors are singular. See Theorem 3.4.

Let us conclude this introduction with some remarks and open questions.

As discussed in [FFT10], the origin of the term irregular singularities comes from the description
of the spectrum of Gaudin algebras in terms of opers. The notion of opers with regular singularities
was recently extended to the cyclotomic setting in [LV06], and it was conjectured that the spectrum
of the cyclotomic Gaudin algebra 2 (1) ) (g,0)! admits a description in terms of such cyclotomic
opers, or ['-equivariant opers. It Would be interesting to extend the definition of cyclotomic opers
to include the case of irregular singularities and relate these to the spectrum of 3‘;2";3 Mo (g, o)l
defined in the present paper.

The quadratic Hamiltonians of the algebra .AOO 2.0 (g, o,x)' are the cyclotomic analogs of the
Gaudin models considered in [FMTV00], which exhibit a certain bispectrality property. It would
be interesting to investigate bispectrality in the cyclotomic setting, in the spirit of that paper.

Cyclotomic analogs of the KP hierarchy were defined recently in [CS]. This construction involves
a generalization of (the completion of) Calogero-Moser phase space, which can be seen as a quiver
variety whose underlying quiver has a single loop, to quiver varieties for cyclic quivers. Calogero-
Moser space is known to be related to Gaudin algebras (Bethe algebras) [MTV14], so it is natural
to hope for a similar relation in the cyclotomic setting.

2. THE cycLOTOMIC GAUDIN MODEL

2.1. Rational functions and formal series. We work over C. For any formal variable ¢, we
have the ring of polynomials C[t], the ring of formal power series C[[t]], and the field of formal
Laurent series C((t)). Given a finite collection of points & = {z1,...,2,} C C let C »(t) denote
the localization of C[t] by the multiplicative subset generated by ¢t — x1,...,t — z,. Elements of
Coo,a(t) are rational functions in ¢ with poles at most at the points z1,...,z, and at infinity.

For any z € C we have the map ¢;—, : Co 2(t) = C((t — 2)) which returns the Laurent expansion
t—»f(t) of a rational function f(¢) about t = 2. We have also t;-1 : Cooz(t) — C((t71)) which
returns the Laurent expansion ¢,-1f(t) of f(t) in powers of t~!. The maps ¢;_, and ¢,—1 are both
injective homomorphisms of C-algebras.

Let res; : C((t)) — C be the map which returns the coefficient of t~1. For any f(t) € Coo »(t) We
have

—res;—1 21 f(t) +Zrest 2 bi—a; f() = 0. (2.1)

(This is equivalent to the statement that the sum of the residues of a meromorphic one-form f(t)dt
on CP! vanishes.)

2.2. Opposite Lie algebras and left vs. right modules. Given a complex Lie algebra a with
Lie product [-,-] : a ® a — a we write a®® for the opposite Lie algebra, namely the vector space a
endowed with the Lie product [X,Y]°P := [V, X]. The Lie algebras a and a°P are isomorphic (by
e.g. X — —X) but it will be useful to regard them as two distinct Lie algebra structures on the
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same underlying vector space. Modules over a are naturally identified with left modules over the

envelope U (a); modules over a®P are naturally identified with right modules over the envelope U(a).

2.3. Marked points and the group I'. Let w be a root of unity of order T" € Z>1. The cyclic
group I' := (w) 2 Z/TZ acts on the Riemann sphere CP! = C U {oc} by multiplication. The fixed
points of this action are 0 and co. Pick N € Z>( points 21,...,2n € CP!\ {0,000} whose T'-orbits
are disjoint: I'z; NT'z; = () whenever ¢ # j. We write z = {z1,...,2n}.

Let g be a finite-dimensional simple Lie algebra over C and ¢ : g — g an automorphism of g whose
order divides T'. Let <~, > denote the Killing form on g normalised such that long roots have square
length 2. This is o-invariant since for any pair of elements X,Y € g we have tr (ad(aX )oad(aY)) =
tr(a oadX oadY o a‘l) = tr(adX o adY) using the fact that ad(cX) = 0 oadX oo~ !. Let Iy,
k € Z/T7Z, be the projectors

Iy = = Z w ke g g (2.2)

onto the eigenspaces of 0. They obey >, ITZ I = id. We write g for the subalgebra of
invariants,
g’ = TIlpg.

Denote by ggé]fz,o’ k € Z/TZ, the Lie algebra of those g-valued rational functions f(t) of a formal
variable ¢ that have no poles outside the set of points {0,000} UT'z and that obey the equivariance
condition w* f = wkof, i.e.

flwt) = wFaf ().
Let also (g @ C((#F))F = {f(tT!) € g@ C((tF)) : fwTHTY) = Wraf(tT1)}. For brevity we
write gl . o := ghoz o and (g @ C((tF))F = (g @ C((tF1))T, ete.

There is an injective homomorphism of Lie algebras

N
g2 Coozo(t) — g®C(t 1) @ EBg R C((t — 2)) ®gC((1))

i=1
defined by
ft) — (=1 f )0tz f(E), - te—an [ (2); 14(2))

(note the op and minus sign in our conventions).

Lemma 2.1 (T-equivariant Strong residue theorem). A tuple of formal series

N
(fooi forr- - Foxi Jo) € @P @ C((EYNF @ @ o @ C((t — 2)) ® (8@ C((1)™F

i=1
belongs to (—ts—15tt—zy s« s li—zp; Lt)(ggélj”z’(]), i.e. they are the Laurent expansions of some rational
function in ggélfzp; if and only if
1 al 1
— i res 2 foo, —ti19(t)) + Zfestlev (fert—z9(t)) + T rest (fo,u(g)) =0 (2.3)
i=1

r,—k—1
forall g(t) € 9.0 40 -
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Proof. The proof is as in [VY16a, Lemma A.1], but including the poles at co. Compare (2.1). O

Let g, denote the extension of g ® C((t — z;)) by a one-dimensional centre CK,, defined by the
cocycle

Qz,(fair 921) = 1e80—z; (f2, 002,92 ) Kty [z, 92 € 8@ C((t — 2)). (2.4)

Thus, each g.,,7=1,..., N, is a copy of the (untwisted) affine Lie algebra g.

Let gi denote the extension of (g ® C((¢)))!" by a one-dimensional centre CKj, defined by the
cocycle

Qo(fo, 90) = res; ( fo, Drgo) Ko, fo,90 € (3@ C((1)))". (2.5)

Let g7 denote the extension of (g% @ C((t71)))F by a one-dimensional centre CK, defined

by the cocycle

Qoo (foos goo) 1= TES41 <foovat*1.goo>Koo
— vesy 1 (oo Do) Koo for oo € (@P R C(E))T. (26)
Given any X € g, n € Z we introduce the notations
X[nl, =X @ ({t—2z)" €8s, X|[n]p := X @ " € gy, X[N]eo := X @ t" € Goo-

Note in particular our conventions for the n**-modes at oco.
The algebras ﬁg and gL, are both copies of an algebra g' which is either a twisted affine Lie
algebra (if o is an outer automorphism) or else isomorphic to g (if o is an inner automorphism).
Let Goo,n0 denote the extension of (g% @ C((t~)" @ PN, g @ C((t — ) @ (g @ C((1)))', by
a one-dimensional centre CK, defined by the cocycle

N

Qf,9) = (—; res;—1 £( foo, Oigoo) + »_resi—z, (fz, 01gz,) + %rest <f0,8t90>> K, (27)

i=1

where f = (foo; fzw cees sz; fO) and g = (goo;gzu s ?gZN;gO) are in (gOp b2y C((til)))r @ @z]\;l g
C((t—2))®(gaC((¢)))!. In other words, oo n 0 is the quotient of the direct sum ﬁoog’F@@i]\il 9-,D05
by the ideal spanned by K,, —T'Kp, ¢t =1,...,N, and K, — Ky, leaving one central generator, say
K, , which we call K.

We have an embedding of Lie algebras

N
(15 btz ey 08) £ Boe 20 = (8P @ C((EH) @ P o @ C((t— 20)) @ (3 C(()))"
i=1

By Lemma 2.1 the restriction of the cocycle €2 to the image of ggq 2,0 under this embedding vanishes.
Therefore the embedding lifts to an embedding
G20 “— Boo,N,0- (2.8)

2.4. Induced g no-modules. Let M., be a module over g C[[t —z]], for each i = 1,..., N. We
then make it into a module over g ® C[[t — z;]] ® CK,, by declaring that K, acts by multiplication
by k € C. Then we have the induced left U(g,,)-module,

MY, == U(8) Qu(gacii-=lack.,) Ma:- (2.9)
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Let Mg be a module over (g ® C[[¢]])'. We make it into a module over (g ® C[[t]])' @ CK{ by

declaring that Ky acts by multiplication by k/T € C. Then we have the induced left U (g{)-module,
k/T ~]

My/" = U(8) @u(geciaprecks) Mo (2.10)

Let M, be a module over (g°P@t~'C[[t~!]])". We make it into a module over (g°Pt~'C[[t~!]])''®
CK o by declaring that K, acts by multiplication by k/T € C. We have the induced left U (§°OS’F)-
module,

MlééT = U(/g\oog’r) ®U((gop®t71(c[[t71]])F€BCKOO) MOO (211)
Let us write
N
M= Moo @ Q) M., @ My (2.12)
i=1
and
N
e =@Pet ' Ct ) e @PoaClit -zl @ (9@ C[[)" & CK. (2.13)
i=1

Then the tensor product

N
M= MYT @ QME © MY = U(Goon0) DUt v M (2.14)

i=1
is a module over go n,0 on which K acts as k. Pulling back by the embedding (2.8), we have that

M becomes a module over ggo,z,() and we can form the space of coinvariants,
r r
M/goo,z,o = M/(goo,z,O'M)'

Proposition 2.2. The Lie algebras ﬁgNo and gngp embed as a pair of complementary Lie sub-
algebras in Goo,N 0, i-€.

~ A~ . F

HJoo,N,0 = 9£N70 + 000,20

as vector spaces. Therefore there is a canonical isomorphism of vector spaces
M /gt 2.0 Zc M. (2.15)

Proof. As in [VY16a], Lemma 2.1 and Corollary 2.4. O

2.5. Vacuum verma module V’g. Now let © € C* be an additional non-zero marked point, whose
orbit I'u is disjoint from I'z. Then we have the algebras ggoyz%o, Ooo,N+1,0, etc. defined as above
but with the point u included. To the point v we assign a copy of the vacuum Verma module V’g
over the local copy g, of the affine Lie algebra g. Recall that by definition V’é is the induced module

Ve = U(Gu) ®u(gact—u]ock.) Cro. (2.16)

Here Cvy denotes the one-dimensional module over g ® Cl[t — u]] & CK, on which g ® CI[[t — u]
acts trivially and K, acts by multiplication by k € C.

A vector X € V& is singular if A.X =0 for all A € g® C[t]. The singular vectors form a linear
subspace of V§ denoted 3(g).



CYCLOTOMIC GAUDIN MODELS WITH IRREGULAR SINGULARITIES 7

Proposition 2.3. There is a canonical isomorphism of vector spaces

(M ® VS)/ggo,z,u,O =c M® (CUO =c M. OJ

It follows that, given any X € V§, there is a linear map X (u) : M — M defined by
MM E2L Mo VE— M VE) /65,00 > M (2.17)

where M — M is the natural embedding. The map X (u) depends rationally on u, with poles at
most at the points 0, wFz; (1 <i < N and k € Z/TZ) and oc.

2.6. Generalized Takiff algebras. For any n € Z>; there is an ideal g®t"CJt] C g®C[t]. Define
the Lie algebra 7,g to be the quotient

Tng = (8 @ Clt]) / (9 © t"C[t])
Segatg-at" g

Thus 71g = g. The Lie algebra 7,g is known as a (generalized) Takiff algebra.

The Lie algebras T,g together with the canonical projections T,g — Tg, n > m, form an inverse
system, and g ® C[[t]] is the inverse limit Hm 7y, g.

Define also the twisted Takiff algebra T,g" :

Tog" == (@@ Ct))" /(g @ t"C[t))"
e g @tlhg - @ t" 19

In particular T1g" = g°.

We use the notation X, for the class of the element t*X = X ® tP in T,g.

For any z € C we have the naive isomorphism 7,,g & (9@ C[lt —2]]) / (g ® (t — 2)"C[[t — 2]])
which sends X, to the class of X ® (¢ — z)?. By means of this isomorphism, modules over 7,g pull
back to modules over g ® C[[t — =]].

2.7. Universal Cyclotomic Gaudin Algebra. Given any ng,n.,,...,n.y,Ne € Z>1 We write

n={n.,....,n.y}. Let I nn, C U@L y,) denote the two-sided ideal in U(g'l 5 ;) generated

by (% @ ¢t "=C[[t ")), 9@ (t — 2)"Cllt — =]}, i = 1,...., N, and (g & e C[[]})". Define
U(ﬁgzv,o)noo,n,no = U(/g\:_oi]v,o)/fnoo,n,no- (2.18)

These form an inverse system whose inverse limit is U(gXl ).
Let us now take the module M in (2.12) to be a copy of U(G v o)nec,mno. regarded as a left
module over itself. For any X € VE we have a map X (u) : U(g y o)nonimne — U8 n o)nee,nino 88

in (2.17). By construction this can be written in terms of the left action of U (g y o)ne,nne, Which

Moo,
commutes with the right action of U (ﬁ;j N.0)neo,mng- S50 X (u) commutes with the right action of
U(ﬁ;‘jN,o)nw,n,nw Hence for all a € U(ﬁ;N,O)nwmno, X(u).a = X(u).(la) = (X(u).1)a. That
is, X (u) acts by left-multiplication by the element X (u).1 € U(ﬁgjv,o)noo,n,no- Since the latter
depends on the choice of ny, n, ng, we will denote it by X (u)n. n.n,- When the choice of no, n, ng

is clear from the context we will write X (u)y_ nn, simply as X(u). By construction, whenever
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ng > ng, n. > n;, and nj, > ne then
X (Wnoomimo = X (Wt g i, + Fnoemmo- (2.19)

In other words, the elements X (u)n. m.no € U85 x o)noo,mmo are compatible with the above inverse
system and hence define an element of the inverse limit U (/g\;roF ~No)- By a slight abuse of notation
we will also call this element simply X (u) € U(g )

We have the natural inclusion g — g and hence the “diagonal” embedding

N
07— 7P P D87 — Foov o,
=1

X (XX, X3 X) e (=X [0)oo; X[0]ay- - -, X[0] 5 X[0]o). (2.20)

Identifying g7 with its image under this embedding, this gives an action of g7 on U(gso,n,0) by left-
and right-multiplication. In particular, we can define the adjoint action of g7 on U(gs n,0). Note
that the adjoint action stabilises U(ﬁg N o) but the actions by left- and right-multiplication do not,

because the zero-modes at oo are not present in U (ﬁg ~No)- Let us write
U(/g\;;N,O)gU ={x e U(ﬁotiN,O) :la,z] =0 for all a € g7} (2.21)

for the invariant subspace of the adjoint action of g on U(g! ). Define U(g! 0)%;,n,no likewise.
Now suppose X is a singular vector, X € 3(g) C V'g. Then X is in particular g?-invariant,

a.X =0 for all @ € g°. Hence we have
0=1®aX]=-al®X]=—-[X(u)al®uv|=—[X(u)al]

where we “swapped using the constant rational function a”, i.e. used [a.(1 ® X)] = 0, in the
second equality and used the definition of X (u) in the third. On the other hand, in the space of
coinvariants M/ g£o7z70 we have

0=[a.(X(u).1)] = [aX (u).1].
Taking the difference of the two equalities above, we get
0= [[a, X (w)].1] = [a, X ()

where in the last equality we can use the identification M / ggq 20 =M. (The point is that neither
aX (u) nor X (u)a need belong to M = U(E.ZF,N,O)noo,n,noa but the commutator [a, X (u)] does, as
we noted above.) This shows that if X is singular then X (u) € U(ﬁ£N70)2;7n,no.

For each X € V’g , the element X (u) depends rationally on u with poles at most at 0,wkz, 0o,
i =1,...,N. Define the algebra D%'”OZ‘);BMO (g,0)" to be the span, in U(@Nyo)%;mmoa of all the
coefficients of singular terms of Laurent expansions of the elements Z(u) as Z varies in the space
of singular vectors 3(g) C Vg h

By virtue of (2.19), the algebras f;f;:g’no (g,0)" form an inverse system. Define the universal

cyclotomic Gaudin algebra %% »0(g, )" to be the inverse limit,

gnoo ;1,10

goo,z,()(g) G)F = 1&1 00,2,0 (ga U)F‘
By the argument in [VY16a], following [FFR94], we have



CYCLOTOMIC GAUDIN MODELS WITH IRREGULAR SINGULARITIES 9

o

Theorem 2.4. Each 2.0 (9,0)" is a commutative subalgebra of U(G  o)fiee mino-

Hence %% »0(g,0)" is a commutative subalgebra of U(gll 5 )% . O

2.8. Quadratic cyclotomic Hamiltonians. Let I, € g and I* € g, a = 1,...,dimg, be dual

bases of g with respect to <-, ->, i.e. <Ia, Ib> =6, Let C:= %I“Ia € Z(U(g)), the quadratic Casimir

of g. Here and below we employ summation convention on the index a = 1,...,dimg. Define an

element F' € g and number K € C by
T-1

T-1
1 PloPI%, 1 1 wP(aPI 1)k
Fi=23" M, K== {7 ) (2.22)
2 wP — 1 2 (wP —1)?
p=1 p=1
The quadratic Segal-Sugawara vector S is by definition
1
S = G [~1]I[ 1wy € A% (2.23)
At the critical level k = —h", the vector S is singular.
Proposition 2.5. The corresponding element S(u) € U(ﬁgNo)ga is given by
N T-1 oo —kp+k [e§) 00
S(u) — EK 220 (1 — )Pt + ot T > ey (2:24)
i=1 k=0 p=0 p=0 p=0
p=1modT p=—2modT
where
N N ST )
Pip=2 0 2 Gt el e T
7j=11=0 n,m=0
J#
T-1 o0 —lm r[r+m p—1
w=tm(=1)r [T ! 1
EDID D e et (S G SIS R DI AN AR 1B
=1 r,m=0 n=0

oo (_1)n[n+m] . o) n
TS Ll pla (Yo + 3 e P+l
n=0

n,m=0 i

/\

+ T Z |:n . m:| H—n—m—lfa)[_n —-m — 1]ooIa[p + m]zi’ (225)

n,m=0

fori=1,...,N, and

oo oo N n+1 [n-i-m]
Hop =T > Z n+m+1 (m—11a)[n]z; (W) [m + plo
m=0n=0 i=1

+T22HI Jo(I_pip 1 1) [=n 4 p — 1]ao

p—1
+ 7; %(Hnla)[n]o(ﬂp_n_ua)[p —n—1]o+ T, 1F)[p—1]o, (2.26)
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and where finally
N oo [e%s) m—1— D
Hoop =T > D JHAW[ ]mwﬂm&mﬂuﬁmem%

; n
i=1 n=0 m=p+n+1

o)

+ T2 (Wplo)[nlo(Hpn—2I®)[~p — 1 — 20
n=0
7%
+ o Z(anflla)[_n — Yoo (Mpin-1I*)[=p+n — oo + T(Ip—2F)[=p — 2]oc. (2.27)
n=0
Proof. The proof is given in Appendix A. O

Remark 2.6. The expression (2.26) for Hg, vanishes unless p = 1mod T, in accordance with the
restriction in the second sum on the right hand side of (2.24). Indeed, the first three terms involve
expressions of the form (II,1,)[n|(Il;1%)[m] for some r,s € Zr and m,n € Z>o. However, using
the o-invariance of the bilinear pairing on g it follows that this is equal to w”T5(I1,.1,) [n] (ITs1%)[m)]
and therefore vanishes unless r +s = 0mod T'. Likewise, for the last term, (II,—; F')[p — 1] vanishes
unless p = 1 since F' € g?. The expression (2.27) for H p vanishes unless p = —2mod T for similar

reasons, in accordance with the restriction in the third sum on the right hand side of (2.24).

2.9. Regular singularities and shift-of-argument. In the special case when n,, =1 for ¢ =

1,...,N and ng = 1, we obtain commutative subalgebras

Qpnw,(l),l(% O_)I‘ - <U<(gop ® t_l(C[t_l])F/(QOP Q t_noo(C[t_l])F> ® U(g)®N X U(ga))gU

00,2,0

If furthermore we set no, = 1 then we obtain the commutative subalgebra

o

2. e 0)" < (U @ Ue”)).

00,2,0

Now consider setting no, = 2. Pick any linear map
X - H_lg — C.

The Lie algebra (g ®t‘1(C[t_1])F/ (g°p ®t‘2(C[t_1])F is commutative, and is canonically iso-
morphic to II_1g as a vector space. We may therefore regard y as an algebra homomorphism
X:U((g® @t7'Clr ') / (9 ® ¢72C[t"])" ) — C. Let then

ALY g o 0 = (x @ id®N @ id) (gl(l)’l(g’a)r) ‘

00,2, 00,2,0

This defines a commutative subalgebra

AW (g0 € (U(e)®N @ Ug7)™,

00,2,0
where g7 = {X € g7 : x([X,Y]) =0 for all Y € II_;g} denotes the centralizer of x under the coad-
joint action. Note that in the special case xy = 0 we recover Qfl’(l)’l(g, o)l

00,2,0

For any X € gand i =1,...,N we let X denote the element of U(g)®" @ U(g”) with X in
the #*" tensor factor and a 1 everywhere else. Similarly, for X € g% we let X(© be the element
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19V @ X of U(g)®N @ U(g?). The only non-zero Hamiltonians of Proposition 2.5 above are then

N T-1 () _17a\G) T=1/_ 17 \() 7a@)
I, (o' 1)V o'ly)VI1 1 “ ali
Hio = E ¥+ E ()+T%L§)(HOI )(0)+TI ()X(H,lla),

’ oyl 1) 5.
= (zi —w™lz)) = (1 —whz
i
H;y = 2100 pald)
) 2 a ?
= (=1) -
Hoo =17 (T1_11,) D (I 1%)©) + T2(y I,) Oy (11 I%),
Zi
=1
T2
Ho1 = 7(Hola)@) (o) 4+ T F©),

and
2

T
Hoo,O = ?X(Hflla)X(Hflla)-

Note that Hoo = 0 unless ' =1 and Hoo,0 = 0 unless 7' =1 or 2, cf. Remark 2.6.

Remark 2.7. The cyclotomic Gaudin algebra introduced in [VY16a] is the commutative subalgebra
Qpl’(l)’o(g, )b c (U(g)®V)%. It is the image of Qpl’(l)’l(g, o)l under id®*Y @, where € : U(g?) — C

00,2,0 00,2,0
is the counit.

Remark 2.8. The algebra Aig(’lz):ol (g,0,%)" is a cyclotomic generalisation of the quantum shift-of-
argument subalgebra; see [Ryb06, FFT10, FFRb10].

Remark 2.9. Sometimes setting x # 0 is called adding twisted boundary conditions. The name

comes from the Heisenberg XXX spin chain of which the usual Gaudin model is a limit.

3. STATEMENT OF MAIN RESULTS

3.1. Cartan data and Verma modules. We fix a Cartan decomposition g =n_@hdn of g. Let
AT C b* be the set of positive roots of g and {c;};er C AT the set of simple roots, where i runs
over the set I of nodes of the Dynkin diagram of g. Let E, (resp. F,) be a root vector of weight «
(resp. —a) for each root o € A*, and H, = oV := [E,, F,] the corresponding coroot. Overloading
notation somewhat, we write H; := H,,, @ € I. Then {H;}icr U{Eq, Fo}aca+ is a Cartan-Weyl
basis of g. We shall assume the Cartan decomposition has been chosen to be compatible with the
automorphism o : g — g, in the sense that o(h) = b, o(n) =n and o(n”) = n~. (Such a choice is
always possible [Kac83].)
Let M) denote the Verma module over g with highest weight A € h*, namely

M) := U(g) @u(pan) Co, (3.1)

where Cuv), is the one-dimensional module over §h & n generated by a vector vy with n.vy = 0 and
h.vy = A(h)vy for all h € bh. Similarly, let M{ denote the Verma module over g” with highest
weight A € h™,

MY == U(g7) ®umogne) Cox, (3.2)

3.2. The weight function. Let A{,..., Ay € b* be g-weights. Let \g € h*7 be a g?-weight.



12 BENOIT VICEDO AND CHARLES YOUNG

As above, let z1,...,2zn be a collection of N € Z>( non-zero points in C such that I'z; NT'z; =0
for all 1 <7 < j < N. In addition, let wy,...,w,, be a collection of m € Z>p non-zero points in C
such that I'w; N T'w; = () for all 1 <1i < j < m and such that T'w; N Iz = 0 for all 1 <4 <m and
1 <j<N. Let ¢(l),...,c(m) be elements of I. We call ¢(i) the colour of the variable w;.

We now define the ( cyclotomzc ) weight function 1) associated to these data.
Recall the projectors IT; from (2.2), and in particular IIy. Define linear maps

N N

O : QR My, @M, @n_®..0n. — QM @M @n @..0n_
; —_— ) —_—
=1 =1 s—1

fors=1,2,...,m, by

Os(x1®..eNRT) QY1 D ... R Ys)
r1®...0...@ry @ (Tys)ro @Y1 ® ... @ Ys_1)

Ws

N .
T1Q...0xi1® (07ys)x; 41 Q... TN QTR Y1 @ ... D Ys—1)
+>_ 2

L . ws —w Iz
=1 ]EZT

—1 .

JFSX: Z T1®...QINOTIQYI @ ... QYi—1 @ [07Ys, Yi] D Yit1 ® ... @ Ys—1
L . ws —wIw;

Z:1]€ZT

Then the weight function 1 is by definition the element

= (=1)"(010---00p)(vy ®...Q0 v, ®Vy, R Fqo ., Q Fy oy ® -+ @ Fac(m)). (3.3)

Ae(1)
For A € h* define IIgA € ™7 by (IIgA)(Ilph) := A(Ilph) for h € b.

Lemma 3.1. The weight function i is an element of ®f\;1 My, ® M3, of g7 -weight

N m
Aoo i= Ao + Z IIg\; — Z H()Oéc(j) S f)*’a. (3.4)
i=1 j=1

Proof. We can regard n_ as a module over h?, under the adjoint action. Then ®f\i 1 My, @MY on®s
is a module over h?, for every s € Z>o. Pick any element IIph € h?. For each i € I we have
(Iloh).Fy, = [loh, Fy,] = —ai(Ilgh)F,, = —(pa;)(h)F,,. That is, F,, has g7-weight —IIpa;.
Therefore vy, ® ... ® Uay ® Urg ® Fayyy @ Fary @ ... @ Fa, € Q) My, ® M ® n®™ has
g7-weight A

Now, if an element y € n_ has g°-weight X then so does o7y for any j € Zp. Indeed, Iy = o711y
so that [llph, 07y] = [07Tgh, o7y] = o [Ilph,y] = o7y A(Tlph). Tt follows that the maps 65 commute
with the action of h?, i.e. preserve g°-weight. Hence the result. ]

3.3. The weight Ay. Define a weight Ay € h*“ by

= tro(c"ady)

E (3.5)
C1—wr

r=1

where adp, : n — n; X — [h, X] is the adjoint action of h on n.
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For a more explicit expression for Ay, note that [Kac83, §8.6]
0(Eo) = TaBuay,  0(Hi) = Hypy,  0(Fa) = 75 Fy(a)- (3.6)

Here, by overloading notation, we write o : AT — AT for the symmetry of the root system, coming

in turn from a symmetry o : I — I of the Dynkin diagram. The numbers 7., o € AT, are certain

Z

roots of unity in I' = w”. (So the “inner part” of the automorphism o : g — g is encoded in the

choice of 7,,, ¢ € I; the remaining 7, are fixed by this choice.)

Then
T-1 1 r—1
_ —1
Ao = Z 1 —wr Z H Tap(a) a. (37)
r=1 acAT p=0

o"(a)=a

3.4. The cyclotomic Bethe equations. Given a complex vector space A on which o acts, for
any linear map 1 : A — C we define L,n := noo~!. Let x € h* be such that L,x = wy. The

cyclotomic Bethe equations (with twisted boundaries) are

T-1 N T-1 m
<CMC( ) LA > <ac(])7Laac(k)>
0= Z wj —w'z _ZZ wj — w'w

r=0 i=1 r=0 k=1
k#j

1 [ 1=

o (‘2 > {0 Lote(s) + (e, TAo + Ao>> + (e, x)- (3:8)
J r=1

3.5. Eigenvectors of the cyclotomic Gaudin algebra. Let x € h* be such that L,x = wy.
Extend x to an element of g* by setting x(n) = x(n-) = 0. Then a x is a linear map II_;g — C.
Suppose (wi, ..., wm;c(l),...,c(m)) are such that cyclotomic Bethe equations (3.8) are satisfied.

1,(1),1

00,2,0

Theorem 3.2. The weight function is an eigenvector of the algebra A5 (9,0, x)'. In particular,

the eigenvalues E; of the quadratic cyclotomic Gaudin Hamiltonians H; o are given by

N T-1 m T-—1 T—-1
(i, LEA) (N, Lyaey) 1 [, 1 sy ,
L T T ey T QTR A5 2 QLN |
j=1 s=0 j=1 s=0 s=1

JF

Moreover the eigenvalues of Ho,o, Ho1 and Heop are, respectively,
1 1
{x,TAo + Ao), §<T)\o + Ao, TAo + Ao) + (Tho + Ao, 0) — K, §<X7 X),
where 0 1= 13" cax .

Remark 3.3. The eigenvalue of Hg is zero unless T = 1, on Z/TZ-grading grounds, as it should

be in view of Remark 2.6. Similarly, the eigenvalue of Ho, o vanishes unless 7' =1 or 2.

In particular, when x = 0 the weight function is an eigenvector of the algebra fm(z)o (g,0)".

Moreover, in that case we have the following.

Theorem 3.4. In the special case x = 0, the weight function ¢ belongs to (®f\i1 M), ® M/‘\’O)'j\g ,
the subspace of n?-singular vectors of g7 -weight Ao in ®fv:1 My, ® M3 .



14 BENOIT VICEDO AND CHARLES YOUNG

Remark 3.5. We have not shown that the weight function is non-zero. When ¢ is a diagram

automorphism, this is proved in [VY].

4. PROOFS

4.1. Restricted duals and contragredient Verma modules. Given a module M over g we

write (M), for the subspace of weight p € b*,
(M), :={v € M : there exists n € Z>; such that (h — p(h)1)".v =0 for all h € h}. (4.1)

The module M is a weight module if M = @ueh* (M), In this paper we work with weight modules
all of whose weight subspaces are of finite dimension. If M, N are two such modules, then by

Homg (M, N) we shall always mean the restricted space of linear maps

Homg (M, N) := @5 Home (M), (N),).
wreh®
In particular we shall write M* := Homc¢(M,C) = €D,y ((M),)*, i.e. our duals are restricted
duals. We have Hom¢ (M, N) = Home (M ® N*,C) = Homc(C,M*® N) = M* ® N.
The restricted dual M} of the Verma module M) is naturally a right U(g)-module. We may
twist by any anti-automorphism of U(g) to obtain a left module. The Cartan anti-automorphism
¢ :U(g) — U(g) is defined by

o(Hy))=H;, i€l, and ¢(E,) =F,, ¢(F,) =FE, acAt. (4.2)

It obeys p? = id. The twist of M} by ¢ is the left U(g)-module called the contragredient Verma
module. Henceforth by M} we shall always mean the restricted dual equipped with this left U(g)-

module structure. That is

(@.f)(v) := flp(x)v),  feMS, weg, ve M,

See e.g. [Hu08, §3.3].

Let S : U(g) — U(g) be the antipode map, i.e. the extension of the map g — g; X — —X to an
anti-automorphism of U(g). We have the automorphism ¢ o S = S o ¢ of g. Let us write (M;)?°%
for the left U(g)-module obtained by twisting by this automorphism. In other words (M;)#°% is
the dual of M) in the usual Hopf-algebraic sense. Hence we have

Homg(A, B ® M) = Homgy(A ® (M3)¥°%, B). (4.3)

Similarly, one has the notion of weight modules, contragredient Verma modules, etc., over g°.
Given a module V over a Lie algebra a, we denote by V*® the space of invariants V® := {z € V :
a.x =0 for all a € a}.

4.2. Heisenberg algebras at the marked points. Let z1,..., 2N, w1,...,wn, be as in §3. For
brevity we introduce p := N+m and (z1,...,2p) = (21,..., 2N, W1, ..., Wy). Let © :={z1,...,2p}.
Let nc (resp. ng) denote the vector space n (resp. n*) endowed with the structure of a com-

mutative Lie algebra. On the commutative Lie algebra nc @ ng there is a non-degenerate bilinear
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skew-symmetric form (-, -) defined by

for any (X, 7n), (Y,9) € nc @ ng and an action by automorphisms of the group I" given by
w.(X,m) = (0(X), L () (4.5)
Let Hy,, i = 1,...,p, denote the central extension of the commutative Lie algebra (nc ® ng) ®

C((t — 7)), by a one-dimensional centre C1,,, defined by the cocycle res;_4,(f,g)1s,. Let H{
denote the extension of (nc @ C((£)))"0® (n®C((¢)))""~! by a one-dimensional centre C1, defined
by the cocycle res¢(f, g)1o. Let HL, denote the extension of (nc @ C((t™1)))"0 & (nt @ C((t71)))H!
by a one-dimensional centre C1, defined by the cocycle res;—1 t2(f, g)1oo.

Let us give a more explicit description of these Lie algebras in terms of generators and relations.
To do so, we first construct bases of n and n* adapted to the automorphism o. Recall the projectors
Iy, k € Z/TZ, from (2.2). By the adjoint action, g is a module over itself. In particular, it is a
module over its Lie subalgebra g = Ilgg. As a g°-module, g = @keZ/TZ II;g. Let Ag denote the
set of g7-weights of IIxn and for a € AZ let n(; o) denote the corresponding weight subspace of
IIxn. We may pick a basis of n consisting of vectors E, o) € Nk o), Where k € Z|TZ,c € AZ’.Q

We now have two bases of n, namely F,, o« € AT, and E.a), k € Z|TZ, « € A:. We write B,
a € AT, and EEkk,a)’ keZ|TZ, a € A;r for their respective dual bases of n*.

Then H,, has the following explicit set of generators:

aa[n]e, == Eq ® (t — ;)" ah[nls, == EL @ (t— ;)" ",
where o € AT and n € Z; while explicit sets of generators for H(l; and HL, are
Ak (VT + Ko := B a) ® T e (ne @ C((1)0,
a?k,a) [nT — k]o := E@a) @t" Tl e (k@ C(() L,
and
(o) VT + Koo = E(g o) @ "% € (ng@ C((¢t7))",
o) [T = Koo = By oy @t 1 € (ng @ C((E7H)0 7,

respectively, where k € Z/TZ, « € A;, and n € Z.

Remark 4.1. The above notation is in accordance with the notations for the modes a[n], n € Z of
an element a € .Z in a vertex Lie algebra . used in [VY16b] and recalled in appendix B below. In
particular, the shift by 1 in the power of ¢ for the modes of a}, has to do with the fact that this is
an element of degree 0 in the vertex Lie algebra associated to the Heisenberg algebra, cf. [VY16b,

Example 2.6]. Note also our conventions for the modes at oco.

2Indeed, suppose @ € AT is a root of g such that the orbit o”a has ¢ elements, where ¢ € Z>; divides 7. Then

0'E, = w'™E, for some unique m € Z/T7Z. Let Em—k1r/t,0) = Z;;(l) W m=kT/iGi g N(m—kT/t,a) for k =
0,1,...,t — 1. By picking one root from each o-orbit, we construct a basis of the required form.
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These generators obey the relations:

[aa [n]xm a’; [m]l‘g] = 6ij5a65n,—m1xi7
(a5, [P0, a; 3y [m]o] = 6ij6apdn,—mLo,
[@i,0) [1] 005 () [M] 0] = 6ij0ap0n,—m oo,
with all other commutators vanishing.
Each H,, is isomorphic to the Heisenberg Lie algebra H(g), while HOF and H. are isomorphic
to a subalgebra H(g)". Note that the opposite Lie algebra HL°P differs from HL only in the sign

of the central extension.

Let H p o denote the extension of

(nc @ C(EH)MP @ (g (@)
p
@ @Pnc@ng) @ C((t - 1))

i=1
® (ne ® C((1) @ (g @ C(H)"! (4.6)

by a one-dimensional centre C1, defined by the cocycle

p
Q(f,9) = <11-, resg <f0790> + Zrest*wi <ffﬂiagﬂci> - %rest—l t2<fooagoo>> 1 (4.7)

i=1
where f = (foo; fois -+ [z, fo) and g = (gooi Ga1s - - - » 9z, 90) are elements of the Lie algebra (4.6).
Equivalently, H ;0 is the quotient of the direct sum H. LoP ®r | H,, @Hg by the ideal generated
by 1, —T1p,7=1,...,p, and 1o — 19. Then 1:=1,,.
Define also
P
Boopo = (H@C((t ) &P b C((t—u)) @ (ho C((1)"°

i=1

Let us give a set of explicit generators for this commutative Lie algebra hoopo. Let Hy o), a =

1,...,dim(II4h), be a basis of II;h for each k € Z/TZ. Then b ~ is the commutative Lie algebra
with basis

b][n]rl = Hj X (t — .CL‘Z)n €Eh® (C((t — .’Bz)),
b(kz,a) [nT + k]o = H(k,a) ® tnT+k € (b ® (C((t)))nou (48)
by [NT + Kloo = Hjy @ "5 € (g @ C((¢71))°,

forjel, keZ/TZ,a=1,...,dim(Il3h) and n € Z.

4.3. Wakimoto modules at the marked points. For each i = 1,...,p, let C|),, denote the
one-dimensional left module over U((nc @ ng) ® C[[t — x;]] @ C1,,) on which 1,, acts as 1 and
(nc @ ng) ® C[[t]] acts as zero. Define M, to be the induced module over H,,

Mg, := U(Hz,) ®u((ncaenz)oCt—z:oCL,,) Cl)a:-
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Suppose we are given an h*-valued Laurent series v; € h* @ C((t — z;)) in the local coordinate t —z;
about the point x;. Let Cuv,, denotes the one-dimensional module over h ® C((t — z;)) on which
fvy, = vy, resi_g, vi(f), for any f € @ C((t — ;). Then the Wakimoto module W, is the module
over Hy, b ® C((t — x;)) given by

Wy, =My, ® Cu,,.

k3

Explicitly, W,, is the Fock module generated by a vacuum vector |),, such that 1)z, = )a,,

k2

ann)))z, =0, n>0, aryn)l)z =0, n>1,

«

and

bi[n][)a; = )a; Vi—n—1(Hk)
where v;(t — x;) =: Y oo g Vis(t —x;)° for some S € Z and v; 5 € h*. Here and in what follows we
use the obvious shorthand as[n]|)s, to denote aq[n]s;|)s;, ete.

Similarly, let C|)o denote the one-dimensional module over (nc @ C[[t])! Y@ (nt @ C[[t])l' 1@ C1,
on which 1j acts as % and the first two summands act as zero. Define l\/lg to be the induced module
over H}':

Mg := U(Hp ) @ (e o meacli)t— ac1o) Cho-

Suppose we are given an element vy € (h* ® C((¢)))"'~L. That is, v is a h*-valued Laurent series in
t such that vg(wt) = wlowy(t). Let Cu,, denote the one-dimensional module over (h ® C((t)))°
given by

[y = vy, resy vo(f), (4.9)
for any f € (h® C((t)))"°. We may then consider the twisted Wakimoto module W}, defined as
the HY @ (h ® C((¢)))F%-module

Wy, = Mj ® Cuy,.

Explicitly, it is the Fock module generated by a vacuum vector |)o such that 1o[)o = [)o,

agwlllo=0, n>0,  af,lnlhe=0 n>1, (4.10)

and
bir,a) [P0 = [0 0,-n—1(H(k,a))
where vy(t) =: Y o0 g 1v0,st° for some S € Z and v 5 € h*.
Finally, define

Ht = (e @t 'Ct ) @ (ng @t C )" @ Cla,

and let MY denote the right module over U (HL.) induced from the trivial one-dimensional right

module C (| over U(HL") on which 1. acts as + and the first two summands act as zero:

MLV .=C(® U(HL).

U(Has)
Suppose vy € (h* @ C((t71)))5' "1, That is, vo is a h*-valued Laurent series in ¢t~! such that
Voo (w™t™1) = wloweo(t7!). Let Cuj_ denote the one-dimensional module over (h ® C((t71)))"°
given by

fgp = —vh_res;-1 tPuso(f), (4.11)

Voo
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for f € (h® C((t1)))'Y. Then we have the right U(HL @ (h @ C((t~1)))"?)-module

r r
WY =MLY @ Cuj_.

Explicitly, Wi." is the Fock module generated by a vacuum vector (| such that (|1s = e
<|a(k:,o¢) [n]oo =0, n<O0, <’a>{k,a) [n]oo =0, n<O, (412)
and
(Ib(k,0) [Mloo = =Voo,~n—1(Hk,a)) (| (4.13)
where v (t) =: Zfzfoo Voo st® for some S € Z and v s € h*.

4.4. Free field realization. The modules W,, are smooth. That means, by definition, that for
eachv e W,

0 = an[n]gv = aj[n]z,v = bg[n)|yv forall n>0,
for all « € AT and k € I.3 Similarly WEO is smooth. The module W,,FO;V is co-smooth. By that we
mean that for each v € WEO;V,

0=vagalnleo =vajq)nleo =vbxa(nleo forall n <0,

forall k € Z/TZ, a € A} and a € {1,...,dimII;h}.

Let now 7y ~ C[b;[n]]icr,n<—1 be the induced representation of h @ C((¢)) in which b;[n] acts as
O for all € I and all n € Z>p. Let M be the induced module over the Heisenberg Lie algebra with
generators aq[n], a’[n], and 1, which we denote H(g) as in [VY16a, §3.5]. Then

Wo := M ® mo, (4.14)

is an induced representation of H(g) @ h ® C((¢)). Explicitly, Wy is the Fock module generated by
a vacuum vector |) such that 1[) =),

an[n]]) =0, n>0, ay[n]]) =0, n>1,

and
bi[n]|) =0, n>0.

Let us recall some facts about the free-field realization of g.

The H(g)®h®C((t))-module Wy is endowed with the structure of a vertex algebra, see [FFR94] or
e.g. [VY16a, equation (3.24)]. In the notation of [VY16b], see also appendix B, it corresponds to the
vertex algebra V(.#Z') where . is the vertex Lie algebra underlying the Lie algebra H(g)®h®C(()),
given for instance in [VY16b, Example 2.6]. Specifically, .# is generated by the finite dimensional
vector space M° = nc @ ng @ b with non-trivial n*-products given by

a(o)b = (a, b)1,

for any a,b € nc @ ng, where the skew-symmetric form (-, -) on the right hand side was defined in
(4.4). As a vertex algebra, Wy is in particular also a vertex Lie algebra. We may therefore consider
the associated “big” Lie algebra L(Wj), cf. §B.1, consisting of all formal modes of states in Wj.

3That is, for each v € W,, o € AT and k € I there exists an n € Z such that 0 = aa[m]s;v = a[m]s;v = bx[m]s,v
for all m > n.
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For each of the marked points z;, i = 1,...,p, there is a “local” copy L(Wy)s, of L(Wy), which
contains L(#),, = Hy, ® b ® C((t — 2;)) as a subalgebra. Moreover, every smooth module over
H,, ®hC((t —x;)) on which 1,, acts as 1 becomes a smooth L(Wy),,-module in a canonical way.
See e.g. [VY16b, Proposition 5.9].

At the fixed-points 0 and oo we have the local copies L(Wy)o and L(Wg)oo of the big Lie algebra
L(Wp). The automorphism o of the Lie algebra L(.#) = H(g) ®h®@C((t)) extends in a unique way
to an automorphism of Wy as a vertex algebra. So we get an action by automorphisms of the group
I on both local Lie algebras L(W)o and L(Wp)so. Let L(Wo)§ and L(Wq)L, denote the respective
fixed-point subalgebras. They contain the local Lie algebras L(.Z)§ = H{ @ (h ® C((¢)))"? and
L)L, = HL @ (h@C((t™1)))1? as subalgebras, respectively, using the notation of appendix B.2.

Every smooth module over L(.#){ on which 1y acts as 7 becomes a smooth module over L(Wy)J.

r
)

See [VY16b, Proposition 5.8]. Likewise, every co-smooth module over L(.#Z),, on which 1, acts
as % becomes a co-smooth module over L(Wg)L . See Proposition B.3.

Now the vacuum Verma module V, """ also has the structure of a vertex algebra. In the notation
of [VY16b] recalled in appendix B, it corresponds to the vertex algebra V(.%) where .Z is the vertex
Lie algebra underlying the affine Lie algebra g, generated by L° = g with non-trivial n*"-products

given by (see e.g. [VY16b, Example 2.5])
a(())b = [CL, b]v a(l)b = _hv<aa b>K7

for any a,b € g. The normalisation of the 15t-product by —h" is chosen so as to conform with the
convention adopted in [VY16b] that the central element K € L(.Z) should act as 1 on all modules
over L(.Z), including V(Z).

The associated “big” Lie algebra L(V{ hv) contains g = L(Z) as a subalgebra, via the embedding
sending K +— wvg(—1) and A[n] — (A[-1]ug)(n) for any A € g and n € Z. In this way, every
smooth module over L(V hv) pull back to a smooth module over g of level —h". In the same way,
L(Vy hv)r contains the twisted affine algebra g' as a subalgebra, so that smooth (resp. co-smooth
right) modules over L(V hv)F pulls back to smooth (resp. co-smooth right) module over g- of level
—hY/T.

The Feigin-Frenkel homomorphism, or free field realisation of V " [FF90] (see also [Fre07)) is
a homomorphism of vertex algebras

p: Ve — W (4.15)
There is a Z-grading on W defined by deg|) = 0 and deg a,[n] = dega},[n] = deg bi[n] = n. There
is a Z-grading on Vg " defined by degvg = 0 and deg X[n] = n for X € g. The homomorphism p
respects these Z-gradations (see e.g. [Fre07, §6.2.4]).

The homomorphism p induces a homomorphism of big Lie algebras L(Vy hv)mi — L(Wp),, for
every i = 1,...,p. Moreover, by the equivariance of the homomorphism with respect to the action
of o on both vertex algebras [Sz02], it also induces homomorphisms of I'-invariant subalgebras
L(V5™ )b = L(Wo)§ and L(V5" )5, — L(Wo)L.

By means of this homomorphism, every smooth module over L(.#),, = Hy, ® h @ C((t — z;))
on which 1,, acts as 1 becomes a smooth module of level —h" over the local copy g, of g at z;,
for each i = 1,...,p. Likewise, every smooth module over L(.#)§ = H} @ (h @ C((¢)))!"? on which
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1y acts as % becomes a smooth module of level —h" /T over ﬁg , and every co-smooth module over
L(.#°P)L, = HP' @ (h @ C((t1)))T0 on which 1, acts as + becomes a co-smooth module over
a2 of level —hY/T.

In particular, these statements apply to the Wakimoto modules W, ¢ =1,...,p, WEO and WEO;V.
We shall need the following facts about the structure of these modules.

For each i = 1,...,p, let Ww denote the linear span of states of the form aj, [0]...a}, [0]])«,,
k € Z>g.

Lemma 4.2. Suppose v; has at most a simple pole. Then the subspace Wyi is stable under the

action of the subalgebra g C g, generated by zero-modes, X0,

7

with X € g, and there is an
isomorphism of left U(g)-modules
W, = M (4.16)

rest,zi v;*

Moreover the subspace Wyi is annihilated by all strictly positive modes X[n]z,, n >0, X € g.

Proof. See [FFR94, §5] for the isomorphism (4.16). Note that as[n] and a},[n] act as zero on WW
for all n > 0. The fact that v; has at most a simple pole means that bi[n] acts as zero on W, for

all n > 0. The “moreover” part follows since Feigin-Frenkel homomorphism respects the Z-grading
of Vahv and Wy and their big Lie algebras. O

Let vaVFO C W,, denote the linear span of states of the form {0,001 - - - a{g o) [0]))0, K € Z>0,
o, ..., 0 EAS‘.

Lemma 4.3. Suppose vg has at most a simple pole. Then the subspace /I/I\?EO is stable under the
action of the subalgebra g7 C ﬁg generated by zero-modes, X|[0]g with X € g7, and there is an
isomorphism of left U(g?)-modules

Wk =~

vo

% res¢(vo)—Ao) (417)
where for A € b7 we denote by M;’a the contragredient Verma module over g° of highest weight
A, and where Ag is the weight given in (3.7).

Moreover the subspace W,}; is annihilated by all strictly positive modes X [n]op, n >0, X € g.

Proof. The first part is [VY16a, Proposition 4.4], and the “moreover” part is again on Z-grading
grounds. O

Concerning the Wakimoto module at infinity, we shall need two results. Recall the definition of
x in §3.5. The first result applies only to the case x = 0, so that t?v4, has at most a simple pole
in ¢t L.

Let Wi C Wi denote the span of vectors of the form (la@,a)[0] - - - a@,a)[0], k € Zxo,
o, ..., o0 EA(T.

Lemma 4.4. Suppose t’vs has at most a simple pole in t='. Then the subspace WN/EO;V is stable
under the action of the subalgebra g° C gL generated by zero-modes, X[0]oo with X € g%, and there
is an isomorphism of right U(g?)-modules (or equivalently left U(g?°P) modules)

WV = Home (M3 C) = M7¥ (4.18)

7 (—res,—1(t%vo0)—Ao)’ 7 (—res,—1(t%vo0)—Ao)’
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Moreover the subspace W,Fo;v is annihilated by all strictly negative modes X [n]so, n <0, X € g°.

Proof. The condition that t*v4, has at most a simple pole in ¢~ means that (|b)[n] = 0 for
all n. < 0. We have (|a,q[n] = 0 and <|a(k a)[ n] = 0 for all n < 0. Therefore on Z-grading
grounds, for all X € g, X[n] acts as zero on W,, Y for all n < 0, and the only terms in the free-field
expressions for the zero-modes X [0] which survive on vectors in I/Vl,oo are those involving only the

zero-modes of a’s, a*’s, and b’s. In particular since only the zero-modes of b’s contribute,
er = WFAV/t where ) := —res; 1 (t2vs0),

as modules over the copy of algebra g generated by zero-modes.

Also on Z-grading grounds, the only terms in the free-field expressions for the zero modes X|0]
which survive on vectors in Wf Jp are those involving only the zero modes of a’s, a*’s, and b’s.

Now WFA\;t and W)\/t are Fock modules over a copy of H(g)' as in (4.12) and (4.10). We have
the natural pairing between them, namely the bilinear map B : WE)\\;t X W)lj e C defined by
B((L1)) = 1 and B((X.Y]) = B((, XY]) = B((XY.])) for X,Y & U(H(@)"). This paiving
i\ /t is the (suitably restricted) dual
of the left U(H (g)" ) module WAF s~ The pairing restricts to a non-degenerate pairing of the grade

is non-degenerate. In this way the right U(H (g)")-module W'

zero subspaces, wh ~3 /t and W)\ It So ’WFV/ is the dual of W)\ /¢ 85 @ module over the algebra of

zero-modes of a’s and a*’s, and also of b’s since <|b(ka 0] = )\(H(kﬂ)) (| and by q)[0]]) = DA(H (1,a))-
We conclude that Wr/\\//t is the dual HomC(W)l: /t,C) of W/\ LK module over the algebra of
zero-modes X[0], X € g°. And Lemma 4.3 shows that W)l: =M *’E')\ Ao)' The result follows. [

Second, we need a result valid for all y.
Let C,, denote the one-dimensional representation of (g°® ® t1C[[t~!]])'" defined by

(@ @t )T — (@ @)/ @ ) 2 Mg S5 C,

Lemma 4.5. Suppose that t>vs has at most a double pole in t=1, with 2-residue —x. That is,
suppose that

Voo (t) = =x + O(1/1)
Then there is an isomorphism of (g°° ® t~1C[[t~1]])' -modules

C( =C,. (4.19)

Proof. 1t follows from the explicit form of the Feigin-Frenkel homomorphism and the definition of
the quasi-module map Yy, cf. appendix B and in particular Proposition B.3, that the vector (| of
(4.13) obeys
(@otCt™' P =0, (M1 A)[-1] = Zx(4) (.
0

4.5. The generators G,[n]. The Verma module My = U(g) @y yan) Coa Zc U(n-) @c Cuy, §3.1,
is by definition a left module over U(g). In particular it is a left module over the subalgebra
Un_-) C U(g). But M, also admits a second left action, call it >, of this subalgebra U(n_). These
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two left actions of U(n_) are mutually commuting. They are given by
X.n®vy)=Xn®vy and Xp>((neuvy) =-nXQuv), Xen_neU(m).

In particular
X.(1®vy) =—-Xb>(1®uvy). (4.20)

Correspondingly the contragredient Verma module admits a second left action of U(n). We
write G, a € AT, for the generators of this second copy of n, which we denote ng. So we have
(Ga, Eg] =0 for all a, 8 € AT, where E, are the generators of n from §3.1.

We have the vacuum Verma module of nigy @ C((t)),

U(ngy @ C((1))) ®u(neeci) Cro (4.21)

where v is a nonzero vector such that n/gy ® C[[t]Jvg = 0. It has a natural vertex algebra structure,
in which Y (A[—1]vo,z) = >,z Aln]a™" ! for all A € nig. There is a free-field realization of this
vertex algebra, i.e. there is an injective homomorphism from this vertex algebra into Wq. It is
defined by
Go[-1])) = > R [0)ag[-1)l),  acA™,
BeAT
for certain polynomials Rg homogeneous of grade 8 — a.

By means of this free-field realization, the Wakimoto module W,, becomes a module not only over
0z, but also over a copy of ngy ® C((t — x;)) whose generators we denote Gu[n]s, == Go ® (t — ;)"
With the obvious modifications, the statement of Lemma 4.2 holds for this copy of ng @ C((t—z;)).
Namely, the subspace W, is stable under the subalgebra U(ny) C U @ C((t))) generated by
zero modes, and (4.16) is an isomorphism of modules over n(gy, i.e. G[0] acts as G,.

The analogous statements hold for n‘ZG> too. Namely we have generators G (g q), o € A(J)r which
act from the left on contragredient Verma modules M ;’U over n?. These generators commute with
the generators Eq 4 of the standard left action of U(n?).

Lemma 4.6. The subspace WE; is stable under the action of the subalgebra nfg, C (ney @ C(())"
generated by zero-modes, X[0]p with X € nfg, and (4.17) is an isomorphism of left Unfg)-
modules. Moreover the subspace W,}; is annihilated by all strictly positive modes X[n]o, n > 0,
X € na)-

Proof. The first part of the proof of [VY16a, Proposition 4.4] shows that (4.17) is an isomorphism
of left U(n?) modules. The argument that it is an isomorphism of U(n‘<’0>)—modules is line-by-line

identical but with the polynomials P’ (which define the free-field realization of E’s) replaced by
Ry, 0

4.6. Global Heisenberg algebra and coinvariants. Let H go,w,O be the commutative Lie algebra
H 0= (nc ® Coorao(t)" @ (ng ® Coorao (1)

That is, an element of H, 5075870 is a pair (f(t), g(t)) where f(t) is a rational function valued in n¢ with
poles at most at the points 0,z1,...,2p, 00 and obeying the equivariance condition f(wt) = o f(t),

and where g(t) is a rational function valued in ng with poles at most at the points 0, z1, ..., xp, 00
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and obeying the equivariance condition g(wt) = w™'L,g(t). By virtue of the residue theorem there
is an embedding of Lie algebras,
Hgo,:c,O — HOO,p,O?

by taking Laurent expansions, f(t) = (—t;-15tt—zy, -+, ti—z,; te) f(t). CL. (2.8).
Let us write

b0 = (1@ Coram(®)™ and §L o= (b"© Coram(t) "
There is an embedding of commutative Lie algebras
hgo,:n,() — Boop,0
and we have the following, which is [VY16a, Proposition 4.3] but now including the pole at co.

Lemma 4.7. The space of coinvariants Cv,, @ Q"_; Cv,, ® Cv”o/hgo,w,o is one-dimensional if

and only if there exists a v(t) € h;}j%o such that

(Voo§ Uiy« Up; VO) = (_Ltfl;['t—fcla s btz [/t)y(t)'
Otherwise it is zero-dimensional. O

Define
HY o= MmcoCt N e mE ot !

© Pnc ®ng) @ Clt - ]

i=1
® (nc @ C[IH])"™ @ (ng @ CIA)" " @ C1
Then
Hepo=HY o+ Hy o and  HE NHL .,={0}.
We may regard M’ as a left module over U(HL°?) and then
P
<M£5v ® QM. ® Mg> = U(Hoop0) @yt ) CU@ e @@ D)z, @ o (4.22)
i=1
Hence

p
(M&V ® QM. ® ME) JHY 20 Zc C{® oy ® ... ® )z, ® )0 = C.

i=1

Therefore for any v(t) € f);Fm o the space of coinvariants

wT
( W @ ® Wirmagt & me) / (o @ Docmo) (423)
has dimension one. That means there is a unique (H{wo S hgo7w70)—invariant linear functional, call
it T,/(t),
. P
. Vv
o) W2, @ (19 Wiy _vit) © Wr,m—C (4.24)
i=1

normalised such that 7, ( (| ® [}z, ® ... ® |}z, ® [)o) = 1.
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By functoriality, i.e. [VY16b, Theorem 6.2] and [VY16b, Corollary 6.6] generalised to the sit-
uation of Appendix B for coinvariants of a tensor product of modules including one attached to
infinity, the functional 7, is also invariant under ng,:c,o

4.7. Proof of Theorem 3.2. Let ¢(1),...,¢(m) € I, A\1,...,An € h*, Ao € ™7 and x be as in §3.
Recall

(@1, 2p) = (215, 2N, W1, .. ., Wip).
We now fix
N m
Sy e Lyaeg) | |, Tho+ Ao _ ur
t)= - e chs 4.25
" XJrreZ ot ;t_wrwj M Doc.a0 (4.25)
T = =

where A is as in (3.5).
The following is [FFR94, Lemma 2]. We write G; := G,,. (Recall G, for a € AT a positive root
was defined in §4.5.)

Lemma 4.8. Let u(t) be a highest weight of the form

p™ € b*. Then the vector G;[—1]|) € Wy is singular for g (i.e. X[n]Gi[—1]]) =0 for alln >0
and all X € g) if and only if

<aia IU‘(O)> =0.
O
Let V](O) be the constant term in the Laurent expansion of v(t) about wj, for j =1,...,m. Note
that the Bethe equations (3.8) are equivalent to the statement that
0 .
(e ™y =0, j=1,...,m. (4.26)

By Lemma 4.8, under this condition the vector G.;)[~1][)w, € W,,_, v() is singular for g, ).
J
Henceforth, suppose that the Bethe equations are indeed satisfied. It follows that the linear

functional N
LYOR Wfitv_w(t) ® ® Wiy oty ® Wiy = C (4.27)
defined by -
V() (Voos V1, - -, UN; 00) = Ty(t) (Voo U1 - - -, UN, Gy [= 1 wn s -+ -5 Gemy[= 1] [N ewm v0)

is invariant under the Lie subalgebra g£o7z70 C ggo’m’o.
Now we use the set-up of §2.4 and specialize by setting
M, :M;Z_ gWLtfziV(t) C Wbt7ZiV(t), i=1,...,N,
) ~ NF T
Mo=MY7 =W, ,p W,

My =C, =C{| C szz/,lu(t)‘ (4.28)
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Here the isomorphisms are as in Lemmas 4.2, 4.3 and 4.5, given that we have res;_,, v(t) = \; and
+(res, v(t) — Ag) = Ao.
Let 1) denote the restriction of the linear functional v, of (4.27) to the subspace

N N
Cy @ @M, @ My = C| @ QWi vy @ Why. (4.29)
i=1 i=1

Such a functional is the same thing as a vector

N

P € Q) M), @ MF,. (4.30)
i=1

To complete the proof of Theorem 3.2, we shall now establish that

(i) 9 is the Bethe vector defined in (3.3), and
(ii) it is an eigenstate of the Gaudin algebra with the given eigenvalue for the quadratic Hamilto-

nians.

We consider (i) first.
For notational convenience let us reorder tensor factors in the argument of 7,(;) in such a way
that

Tu(t) - —Lt 1v(¢) ® ® WLt 2 v( ® Wtu(t) ® ®Wbt w; v(t) —C (431)
j=1
Lemma 4.9. For any v ® vy € ®f\i1 WLF%V@) ® WLEV@) and any X1, ..., Xs € n), we have
Ty( ( <‘ v UOle[_l]lev s 7Xs_l[_l”>w5717Xs[_l”>ws7 ‘>w5+17 R Dwm)

Tu(t U "X )[O]Ziv’ Y ’Xl[_l]lev s 7XS—1[_1”>U)5717 ’)ws’ R ’>wm)
>y :

wg —wkz;

i=1 k€Zr
7_1/(15)( <’7 v, (THOXS)E/E)/)’U(J? Xl[_1”>w17 s ’Xsfl[_l]bwsfl’ |>ws’ SRR ’)wm)

Ws

! Z1I€ZZ Wg — W™ V(t)( <|7 v>U0>X1[_1”>w17 RN Xjfl[_1”>wj717 [Uk(XS)’ XJ][_l]ija

Xj+1[_1]|>wj+1? s 7X8*1[_1]|>ws—1’ |>ws’ sy |>wm)'

Proof. Let us write y = X1[~1][)uw; @ ... @ Xs—1[~1])w, 1 @ w, @ .. @ [w,, € Q2 W, _ 0 for
brevity. We have

ok s|—
0= Z [M.(<|®v®vo®y)]. (4.32)
k€Zr

The square brackets [-] on the right hand side denotes the class in the space of coinvariants

N
(WEZZ_lu(t) ® ® W’»tfziy(t) ® W, Ltl/ ® ® Wi l/(t))/( 00,2,0,w P boo ,2,0 w)

=1
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and the equality in (4.32) follows from the straightforward generalisation of the isomorphism in
[VY16b, Theorem 6.2] including the point at infinity. Now

k _
> D ovswey

wkt — w,
k€l

1
= Z < — I'eéSy—-1 tQLtflm <|YW(Usz[—1]|>,t) RUVRKUVRY

k€l
al 1
+ <’ &® ;reSt_zi Lt_zleM(UkXS[—l]D,t — Zi)ZiU & Vo ® y
+ (| ®@v @res; LthW(Usz[—l]l%t)vo@y
i 1
+ <| RV Vo X ZreSt_wj Lt_wijM(O'sz[—l]D,t — w])w]y> . (433)

j=1
The res;_,, term here is (|@v@vo@X1[—1][)u; ®. . .@Xs_1[=1][)w,_1 OXs[1] )10, @) rwyi1 @ - - @) aon -
(The expansion of 1/(w™*t — w;) at t = ws has a regular part but it does not contribute because
(Xs[—1]]))(n)]) = Xs[n]|) is zero for all n > 0.)
Consider the first term on the right. We have

(Y (X[, 1) = 3wl (A X -,y (434)

n>0

12,
res;—1 1 U 1w_kt .
and this vanishes on Z-grading grounds. (The free-field generators of n(g) involve a,a* but not b.)
Consider the third term. We have

reSg Ly

Vi (0" X 1), oo = — 3wy o eF X ) e (435)

wkt — w,
n>0

and on grading grounds only the term n = 0 in this sum contributes, since vy € WN/LtV(t). The

remaining terms are similar. O

Recall that we can regard an element of a Verma module M) as a linear map My — C.

Lemma 4.10. The restriction of the linear functional

N

le(t)( <‘7 ERERERCRE ’)wu B ’)wm) : ® WLt,ziu(t) ® Wi‘u(t) —-C
=1

to the subspace
N N
i NF ~ * *,
® WLt_zil/(t) ® WLtZ/(t) g7 ® MAi ® MAOU'
i=1 i=1

1s equal to the tensor product
V), X cUny ®v)\0

of the highest weight vectors vy, € My,, i =1,..., N, and vy, € M .
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Proof. The functional 7,4 ({|,5 -5 Dwis -+ 5w, ) agrees with vy, ® ... vy, ® vy, on the vector
Doy @ ... ® )2y @ [)z- Indeed, 7,4 was normalized such that

Tu(t)( <’7 ‘>Zl’ EE) ‘>2N7 DZO’ ’)wu"" ’)wm) =1

and by definition
(U>\1 Q.. Uy @ U/\o) (|>Zl7 ) |>ZN7 |>Zo) =1
It remains to show that the two agree on all other vectors in ®f\;1 W, ) ® WLI;/( 8- For that it

is enough to show that, for any v ® vg € ®f\;1 Wbt*ziy(t) ® WN/LI;V(t),
Tu(t)( <‘7 v, a?ﬂ,a) [O]’Uo, lev s Dwm) =0, (4'36)
for any a € A, and
7o) (|, @& 0]z 05 005 wss - -+ 5 wm ) = 0, i=1,...,N, (4.37)

for any o € AT,
To establish the equality (4.36) we use the invariance of 7,(;) under the I'-equivariant function
Elo) ® t71 € (nf ® Coraco(t))> L. Namely, we have

E*
o:w( (2’)-<<r®v®vo®\>wl®...®\>wm>>

and here

*

0,
(80808 |y ®--- 8 |)u,)

= <|a)(k0,a)[0] VOV ® uw; @ - Dw,

N (E* N )(z’)
Y (1@ U0 @ @y @ - ©
=1

+ (| ® v ® afy 4)[0]v0 @ Juy @ - @ [w,,

*

E0,0)

m
) (V010 ® [y @+ @ Ly .

i=1

Duwi @+ @ [y (4.38)

The first line is zero by definition of (|. The second and fourth lines are zero on Z-grading grounds
(recall that E} @ t° = a[1]). This leaves only the third line, and thus we have (4.36) as required.
The proof of (4.37) is similar (and is as in [VY16a, FFR94, ATY91]). O

Recall the definition of G4 and G(g o) from §4.5. Let Flg o) := ¢(E(g)) € n7, for a € A7, be
the negative root vectors of g°.

Lemma 4.11.
(1) Let vy € My be a highest weight vector. For any roots oW a®) e At we have

UMGo)Gp@ - Gomy) = (—1)F(Fya) Foe - .. Fyavn) ().

«
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(2) Let vy, € M3, be a highest weight vector. For any g”-weights a®, . alk) e Ag we have
(G001 G0,0@) -+ Go.aty) = (=) (Flg 0y Flo,a@) - - Flo,a00y02) (-)-

Proof. Consider part (1). It follows from (4.20) that vy, (Eq ) = —vy,(Ga-). Because the two actions
of U(n) commute, we therefore have

NGy G - Goiy) = =By G - - Guin)
= 0\ (Gp@ . Gum Eqny)) = - = (=)o (B - .. By En°)

for any roots ), ..., a®¥) € AT, Part (1) follows by definition of the contragredient dual. For
part (2) the argument is the same. O

Lemmas 4.9, 4.10 and 4.11 together imply that the weight function v of (4.30) is given recursively

as in (3.3). Indeed, repeated use of the relations in Lemma 4.9 allow us to express

Tu(t) ( <‘7,U17 -+, UN, V0, Gc(l)[_l]bwlv s 7Gc(m)[_1”>wm)

as a linear combination of terms of the form

Tll(t)( vaiv T 7U§V’U6’ |>w17 R |>wm)
for certain vj,vy,..., v}y, with each v}, 1 < i < N, of the form G ) ...G ) and v; of the form
Go,am)---Goaml) - Then Lemma 4.10 tells us that 7o) (00 U Dt -+ D> 00) =

o (V) TIX, wa, (v)). So we can use Lemma 4.11 to exchange G’s for F’s. Tt follows that the vectors
¥ in (3.3) and (4.30) coincide, because the structure of the recursive definition of ¢ in (3.3) is
chosen so as to match the relations of Lemma 4.9.

It remains to consider (ii), that is to show that 1 is an eigenstate of the Gaudin algebra, and
to compute its eigenvalue for the quadratic Hamiltonians. The argument is exactly as in [VY16a,
FFT10] following [FFR94]. For completeness, let us recall it. Let u € C* be an additional nonzero
point, with I'-orbit disjoint from those of the z;, 1 <14 < p. To the point u we assign a copy of the
Hy, &b @C((t—u))-module Wy = M@, cf. (4.14). Then we have a unique (HY, .. 0 @ b5 4 40)-
invariant linear functional

m

N
r,v
Tt Wity @ QW) @ Wiy @ QWi iy © Wo — €

_ Ly
i=1 Jj=1

normalised such that
T (@D @ @)z, @0 @ [y ® -+ @ w, @ [Ju) = 1.

(Compare (4.24) and (4.31).)
Let Z € 3(g) C Vlg be a singular vector in the vacuum Verma module. Recall the Feigin-Frenkel
homomorphism of vertex algebras, p : V; LN Wy from (4.15). Now, for any vector

N
v e Cy Q) My, @ My°
i=1
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we may evaluate the quantity

Tu(t) (U’ Gc(l) [_1] D’ SRR Gc(m) [_1] |>v p(Z)) (439)

in two ways. First, the functional 7, is ggo’m’wo-invariant. If the cyclotomic Bethe equations (3.8)
hold then for each j, 1 < j < m, the vector G;)[~1]|) € W), is singular for the action of g(,,), as

in Lemma 4.8. Therefore

Tu(t) (’U, Gc(l)[_l]D? SO Gc(m)[_1]|>v p(Z)) = Ty(t)(Z(u)'va Gc(l)[_1]|>v s 7Gc(m)[_1”>7 |>)
= ¢(Z(u)v) = (p(Z(u))-¥) (v). (4.40)

On the other hand, using the invariance of the functional 7,(;) under the rational function

1 o n—1 O'Tbs -
m <8u> Z m € hoo,a:,u,Oa

reflr
and the fact that [bs[n], G.@;)[—1]] = 0, we have that for all w € Wy,
Tu(t) (U) Gc(l) [_1] ’)a SR Gc(m) [_1] |>7 bS[_n]w)
1 o\,
= Tty (0, Gey [=11) -+, Gegmy [=111), w) =1 \au (ag,v(u)) | . (4.41)

Here, cf. (4.25),

N
v /Y (o Lr>\> (o, Lio)) (a, Tho + Ao)
<a5,u(u)>—<a5,x>+ gz; z; u—w'z; Z U — whw; * u .
r T 1=

It is known that p(3(g)) C m [FFR94]. That means p(Z) is a linear combination of terms of
the form bs,[—n1]...bs,, [—nm]]), s1,-..,8m € I, ni,...,ny € Z>;. Therefore, by repeated
use of formula (4.41) one has that 7, (v, Gey[=1]]),- -, Geeny[=1]]), p(Z)) is proportional to
7o) (U, Ge)[= 1) - - s Gemy [ 1), 1)) Together with (4.40), this establishes that ¢ is an eigenvec-
tor of p(Z(u)), as required.

In particular, consider the quadratic singular vector S € 3(g) from (2.23). It is known (see e.g.,
[Fre07, §8.1.4]) that

p(8) = 1 3 bl -Ubl-1)) - 3 {Bp )
s,tel acA+
where wg, s € I, are the fundamental weights. Hence
oS0 = | 5 3 wnwalv)oy vw) — 3 C 0¥ vy | v
s,tel acAt
= (5W00) - /.0 v (1.42)

where o0 = 4 3" ca+ . Taking the residue in u—2z; (which comes only from the term (v(u), v(u))) we

obtain the eigenvalue of the quadratic Hamiltonians #; o given in Theorem 3.2. (In this calculation
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one needs the following steps

S

Z <>\k,L Ak )

_1
(1 —w®) 2

-1 <<)\k,L )\k> n <L;S)\k,)\k>w_s>

pot 2 (1 — w?) zp(w= —1)

M2 1M

<<)\]€,L )\k> <L )\lm)\k ) }T 1 )\k,LS)\k>
2

2i(1 — w?) zp(ws — 1)

l\D\l—‘

s=1
where the change of variable s — —s was performed in the second sum.) This completes the proof
of Theorem 3.2.

4.8. Proof of Theorem 3.4. We keep the notations of the previous section. Let us now suppose
that x = 0. Then we have from (4.25) that

N m
T 1
Lp—1 V(t) =0+ ? E IIg\; — E Hoac(j) + Ao + Ao/T + O (152)

i=1 j=1

T 1
0+ % (Ao +80/T) + 0 (t2>

where Ay is as in (3.4).

Now we modify the construction of §2.4 as follows. Let Mo, be a module over (g°® @ C[[t~!]])"
(rather than (g°P @t~ 1C[[t~!]])' as in §2.4). We make it into a module MET over (gPRC[t ) 'e
CK by declaring that K, acts by multiplication by k/T € C. We have the induced right module
U(gL,) module of level k/T,

MELT = MELT @u(gaciereck..) UG)- (4.43)
The tensor product
N
M = MY @ QM oMy (4.44)
=1

is again a module over g n,0 on which K acts as k. Pulling back by the embedding (2.8), we have
that M becomes a module over 91;07270 and we can form the space of coinvariants M/ 91;07270. Let us
write
N
G = @ eCt) e PaaClt -zl (g )" (4.45)
i=1
We have the natural inclusion g° < g and hence the embedding

07 — 0 v X = (=X[0oe; X[0],, .., X[0].y; X[0]o)- (4.46)
Pulling back by this embedding, the tensor product
N

M= Moo @ Q) M., @ My (4.47)
i=1

is a module over g? and we have the space of coinvariants M / g°.

Proposition 4.12. There is a canonical isomorphism of vector spaces

M/gl .0 Zc M/
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Proof. We have
M = U(goo,N,O) ®U(ﬁ:o'—o,N,0) M.
Here we regard M, as a left module over U(g?°P).

There are natural embeddings of Lie algebras g7 — fj;ro No and g7 — ggo,z,o; the first is given
in (4.46); for the second, X € g7 embeds as the constant function X (¢) = X in ng,z,o- In turn,
both ﬁ; N, and ggo,z,o embed into goo,n0 — see (2.8) — and the following diagram of embeddings
commutes

o -+
g —— B Npo

[ [

F o~
90,20 ——— Boo,N,0-

We may identify g7, ﬁ; ~No and glc:o’zp with their images in goo n0. Then

~  ~t T ~4 1N __ O
900,N,0 = 8o, N,0 T 950,20 and 9o0,N,0 N 800,20 =0 -

Therefore [Di74, Proposition 2.2.9] there is an isomorphism

U(ﬁoo,N,O) = U(ggo,z,O) XU (ge) U(ﬁio,]v,o)

of vector spaces and in fact of left U (ggo’zjo)-modules. Hence we have an isomorphism of left
U(gk. - 0)-modules,

M 2 U(goc,2,0) ©U(e7) Ul n0) Qg ) M = Ul850,2.0) Buge) M-

The result follows by the following elementary lemma. O

Lemma 4.13. Suppose b < a is an embedding of complex Lie algebras. Let V' be a b-module and
M an a-module. Then ((U(a) @y V) © M)/a ¢ (V@ M)/b.
In particular (taking M to be the trivial one-dimensional module), (U(a) ®yp) V) /a=c V /b,

Proof. Consider the linear map V @ M =¢ (U(b) ®u(v) V)® M < (U(a) ®u(v) V)® M —
((U(a) ®uey V) ® M) /a sending v @ m — [(1 ® v) ® m]. This map is surjective. We must show
that it has kernel b.(V ® M). And indeed, the kernel is the intersection of (U(b) @y V) ® M
with a. ((U(a) @) V) ® M), which is b. ((U(b) Que) V) @ M) =¢ b.(V @ M). O

We may now choose modules — cf. (4.28) —

MZ»L:M;; gVV (t)? izl,...,N,

Lt—z, V
— *70 ~ NF
MQ - M)\O - W (t)’

LV

0,90 ~ 1170,
Moo =MJP =W (4.48)

—t,—1v(t)’
where the isomorphisms are as in Lemma 4.2, Lemma 4.3 and, now, Lemma 4.4. The embedding of
g-modules M} =W, ) = W,,__ () extends to an embedding of modules over gRC[[t—z;]| @CK

of level —hY. (Positive modes A[n].,, n > 0, A € g, act as zero on W,,__ ) as in Lemma 4.2.)

tfziV(

M;hv is by definition the g,,-module of level —h" induced from M, = M N So we get a canonical

homomorphism M;hv = W,,__ @ of §.,-modules of level —h". The marked points 0 and oo work
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similarly. In total we get a canonical homomorphism of gug p o-modules

N N
RV /T Y —hV /T r,v T
M @ QM @M, =W, Ly ® QW vy @ Wy
i=1 i=1
Hence, from the ggo%o-invariant functional 1,y of (4.27), we obtain a gl(;o’zp—invariant functional
—hVY _pV
M T ®Z]\L1 M;ihv ® M, MIT By Proposition 4.12 this is the same thing as a g?-invariant

functional
N

MY ® Q) M, ® My — C. (4.49)
i=1
Recall that we are embedding g% — g7°" @ @f\ilg ®g? by X — (—X,X,..., X, X) and that
the antipode map S : U(g?) — U(g?) is defined by S(X) = —X for X € g°. So the space of
g7-invariant functionals My ® ®fi1 M @M ;OU — C is the space

N
Homye ((M;;)@"S © @M, © My @) -
=1

Proposition 4.14. There is an isomorphism of vector spaces, and in fact of left (U(g)®N ®
U(g%))% -modules,

N n? N
(@ My, ® M;fO) =~ Homge ((Mgw)ws ® Q) M, @ My, c) (4.50)
A

i=1 =1

oo

Proof. We have

N n? N
<® My, ® Mf\’0> = Hompyogne (me, Q) My, ® Mf\’0>
A

i=1 i=1

oo

N
= Homyo (U(g") DU enr) Coaes @) My, ® M§o>
=1

N
= Homgo (Mgoo, Q) My, @ Mj\’0> . (4.51)
i=1
This is the space of those maps ¢ : MY — ®f\i1 M)y, ® M3 such that
p(zv) = (AN 2).p(v), ve M ,z€g’. (4.52)
It carries a natural left action of (U(g)®N ®@U(g?))8": given one such a map ¢, the map v — X é(v)

is another, for any X € (U(g)®N @ U(g?))%".
Then

N N V.8
Homgo <M/§’w, Q) My, ® M;fO) =~ Homgo [ My, ® (@ My, ® Mgo) ,C (4.53)
i=1 =1

where for a finitely-weighted left U (g”)-module M we denote by M "> its restricted dual made into
a left U(g?)-module by twisting by the antipode map S. Indeed, given a map ¢ such that (4.52)
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v,S
holds we define a map ® : M ® (®Z]\L1 My, ® Mfo) — Cby ®(vepu) = u(o(v)),ve My, n €

<®z]\;1 My, ® M§0>V,S. It obeys ®(z.(v®u)) = 0 where z.(v@p) := (z.v)@u+ve (o (—ANT1z)),
for z € g°.

Finally, we may twist the action of g7 on M, _® (®Z]\L 1My, @ M ;’O)V’S by the automorphism
Sop=pos. Since S? = id here, (M,"®)5°¢ = M)"¥ =: M. Thus

N V.8 N
Homgs | M{_® <® My, ® M§O> ,C | =~ Homyo ((M/‘\foo)soos ® Q) M, @ M;(v)",(c) (4.54)

=1 =1

as required. 0

o

n
Thus, the functional of (4.49) defines an element of <®f\;1 My, ® Mfo))\ . At the same time,
by (4.51), this functional is uniquely determined by its restriction to the subosopace

N
Cor, ® R ME, © M7 = | !®®Wu 0 © Wiy
i=1 i=1

By definition, on this subspace it agrees with the functional of (4.29). In other words, it defines
the same vector ¢ € ®f\;1 M, ® M3 as in (4.30). We saw in the previous section that 1) vector
of (4.30) is the weight function defined in (3.3). So we have shown that the weight function v is
singular when x = 0, completing the proof of Theorem 3.4.

APPENDIX A. PROOF OF PROPOSITION 2.5

Lo\
(n) . = [ 2
0" n! (8$>

Consider the I'-equivariant rational function

Let us write

T—1 O'kA -
f(t) = Z (w Ft—apit € Uo0,2,u,0° (A1)
k=0
The expansion of (A.1) at u is
T-1
p+n (—1)PHikp+D)
Lt—uf(t) = VT 1 + ’; z;) |: . :| OJk _ 1)n+p+1un+p+1 (UkA) [’I’Z]u €g X C((t - u)) (A2)
Its expansions at z;, = 1,..., N, and at 0 are given by
T-1 oo
(0 = =00 03 (e A, € g - 5], (43)
k=0 n=0
wf(t) = )njo € g & C[[t], (A.4)
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where, recall, A[n],, = A® (t —z;)" € g C((t — 2z;)). It is regular at oo and its expansion there is
given by

—ty f(t) = —OP) ZZ whu)"WF ok Al—n — 1o = —TOP) iu”(ﬂ_n_lA)[—n — 1), (A5)

k=0n=0 n=0
where recall that for the modes at infinity we write A[n]oc = A ® t" in our conventions.
Thus, since [f().(z ® vg)] = 0, we have

[S(uw)z ®@vo] == [z ® %I“[—l][a[—l]vo] = [I*(u)z ® L1I,[—1]vo]

T-1 T—1

wP L (P 01] w? L(oP T[]
+p§1(a)p_1)u[$®2(0' )[0] a[_]-]UO] —|—p:1(a}p_1)2u2|:$®2(0' )[1] a[—l]'UO]
(A.6)
where, putting the expansions at 0, z1, ..., 2y, o0 together, we shall write, for any A € g,
N oo T-1 _kn(O'kA) HA [e'e)
0= (LTS LA S Ol -1,
i=1 n=0 k=0 n=0
(A.7)

The equality in (A.6) is an example of what was called “cyclotomic swapping” in [VY16a]. Then,
defining the element F' € g° and number K as in (2.22), we see after one further such “swapping”
that

1 1 1
S(u) = Qla(u)fa(u) + aF(u) + EK (A.8)
Consider first the terms in %Ia(u)la(u) acting at sites 7,7 € {1,..., N}, i # j. Let us write
_ 1/ 0 "
zin i =w ¥z and 8( n) - <8zlk> . (A.9)
Then W = Ol(k)u o and we get the terms

co N T-1 1

DD u_zkU_—%lw*’“"*lm<o’“fa>[n]zxolfa)[m]zj

n,m=01,j=1 k,l=0
JFi

1 [e's) N T-1 1 1 1 1
=5 X Y Y ()¢ e Tl
n,m J= ? ? J 7

Zil 2
0i,j=1ki=0 gt =l
JFi

co N T-1 1 1

2 wkn=tm L (gk nl (T Iml..
Z Z ;Oa@k: Jl U — Zik Zik — Zjl {( Ia)[ ]zz,( I)[ ]z]}

n,m=01,7=1k
J#i

co N T-1
1

=5 3 Y apa R ——— Z]lw_k"_lm(akfa)[n]zi(JlIa)[m]Zj (A.10)

n,m=01,j=1k,l=0
J#i
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where {a,b} := ab + ba denotes the anti-commutator. Now here

(n) g(m) 1 1 & 1 (nep) n(m) 1
%y, 051 U— Zik i — 21 Z <aik w_ Zik> <8ik e

— Zik = Zjl
n
1 _In+m—p 1
= —(=1)"7P . (A1l
el C zik)p+1( : [ m ] (zik — zp)" Pt (A1)
Thus we find the following terms in %Ia(u)la(u)
o) N T-1 n —kn—Im
w plnt+tm-—p 1 i !
nHmr 1, I?
PO ID 3 3 e i A e LGSR
B 7
N T-1 oo N T-1 o~ 7k(r+p)flm _1\r[rtm
1 w O,k z
=220 e | 2L X oy @ Ll 0 )l
i=1 k=0 p=0 v j=1 1=0 r,m=0 v J
J#i
N T-1 x —kp+k _k N T-1 o0 (k—l)m(_l)"r[T-i-m]
B w o w -k
- Z Z Z (u — wFz)ptl Z Z (2 — wk—lz‘)r+:nl+1ja[r + plz, (0" I) M),
i=1 k=0 p=0 j=1 1=0 r,m=0 J
J#
N T—-1 oo kp+k k N T—-1 oo 7[m(_1)7«[r+m]
_ w o w l1a
=S G | X Y oy e, | (A12)
i=1 k=0 p=0 j=1 1=0 r,m=0
J#i

In part by a similar calculation we find the terms in $I,(u)I%(u) acting solely at one site i €
{1,..., N}, namely

N TZ1 o —kptkk
2.0 ot
i=1 k=0 p=0
T-1 o0 —Im r[r+m p—1
w ( 1) [ ] 1 lra 1 a
> 2 [ wayinia {Lalr + Pl (1)), + 2 glelnl= o= =1l |

where the second term is an “on-diagonal” term in %1, (u)I%(u).
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The cross terms in 3/, (u)I%(u) acting at sites i € {1,..., N} and 0 are given by (here we use an

obvious trick to make the calculation resemble the one above)

wik”(akla) (n]., (I 1) [m]o

w ™t (0" La)[n], (M 1) [mo

— ik 7z U— Zig Zik — 2 U — 22— %k

n,m=0 i=1 0 z=0
[e'S) N T—-1 n (_1)7171) [n—l—m—p] i .
—kn
=T Z Z Z — 2in) P (i — Z)n—meH w™ (0" o) ]z, () [m]o
n,m=0i=1 k=0 p= 0 k Zik 2=0
T-1

moy (e[
Z (u _ Z>p+1 (Z _ Zik)n[—p—‘rm—l—]l

Wt (0" o) 0]z, (T 1) [l
z=0
T-1 n 1 (_1)n—p [n-i—m—P

m ] k(—p+m+1)/ _k a
(u — w=kz)ptHl Zln—p+m+1 w™ P (07 1a)[n]z; (Hm I*)[m]o

- 1 (_1)n+1[n+7:—p] k(—p+m+1)/ _k a
PR g (0" L) [z (L I*) [mlo

(A.14)
Next, the cross terms in £7,(u)I%(u) acting at sites i € {1,..., N} and oo are
T-1 oo N —kn )
T 3 Y oy Weme ) [m = (0" 1),
k=0 n,m=0 i=1 ¢

N m—n—1 |:

n —k ., \m—p
m p:| um_n_l_p(w—kziy’ + Z |:m:| (w 7}?) —
k=0 n,m=0 i=1 p=0 n =0 p (’LL - W zz)

w1 1) [=m — 1] (6®1%)[n]., (A.15)

where we used the identity

u™ m—n—1 [n—l—p} N L P ZMm—p
_ —n—1-pp
s u S,
(u—z)" = n =l (u—z)n=P
This can be seen by writing the left hand side as
u™ Lo w1 8””1231 kym—k-1 10" 2™
(u—2)"+t1 ~ pldzru—z  nldzn n! 02" u— z

After taking the n derivatives with respect to z, each of the two terms on the left hand side then

evaluate to the two terms on the left hand side of the above identity.
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The pole term in (u —w™*2;) in (A.15) is (here r = n —p, n = r + p)

N T-1 oo 1 o0
) I eI DLl U (LS A ST NED S IER R
i=1 k=0 r=0 ¢ p,m=0 p
N T-1 o0 —kr+k k o0
w o _p[m
DI I D Dl I (LT CTE SRR
i=1 k=0 r=0 t p,m=0
T-1 o kr+k k
w o n—+p
= TZ Z Z ( & ,)7«+1 Zi [ :| (anfpflla)[_n —D— 1]001(1[7“ + p]zi (A-lﬁ)
i=1 k=0 r=0 U—w Tz n,p=0 p

where we use the fact that o*II_,,_ 1 = w "™ I1_,, ;.

The powers of u in (A.15) are (herer=m—-n—1—p,p=m—-n—1—r)

ry-

i=1 k=0 m,

T—1 oo m—n—1

—1-
Z u'w —km-‘rk:-‘rkrzim—n—l—r [m T:| (H—m—lla)[_m o 1]Oo(akla)[n]2i

Z Z w—km—l—k—&—krzsznflfr |:m —1- T:| (H_m_lfa)[—m—l]oo(o'kla)[n]m

n

(A.17)

The cross terms in %Ia(u)l ®(u) acting at sites 0 and oo can be conveniently written as

> u’"1+1 > (ML) oMy n 1 I%) =0+ 7 — 1o
r=0 n=r
+T2§: E:HI JoI_y—poI®)[-n—r —2]o. (A.18)

Finally the diagonal terms in %Ia (u)I*(u) acting at sites 0 and oo respectively are

T2 00 r—1
2 WH Z (M da)[lo(y—n—1 1) = n — 1] (A.19)
and
T2 o0 T
5 Sy (Mo 1a)[~n = oo (i1 1)) [~1 + 1 — 1. (A.20)

Next we turn to the term F'(u)/u in (A.8). Noting that

1 1 R et 1 1(=1)"
E(u— Z)ntl Z{)(_ ) 2Pt (y — z)n—pHl oy ot
p:




38 BENOIT VICEDO AND CHARLES YOUNG

we find that in F(u)/u the terms acting at the sites i € {1,..., N} are

D

i=1

~

-1

n Ly w—kn 1 w—kn(_l)n kF
Z(_ ) (w—k’zi)p-l—l(u _ w—kzi)n—p—&—l - a (w—kzi)nﬂ o [n]z

M

p=0

b

M8

w—kn+k(n—7‘+1) 1

(U — w Fz;)rtl Zzn—rﬂ o

™M= I

(-1

~
|

T
}—‘E

¢ I

Mz T

" w*kTJrk 1 X T N oo (_1>n
(1) o e Fln+7]s — — N STl Flnl. (A21)
(2 ) =

|
.MZ

~
Il
—
B
Il
o
=)
Il
=)

r=un

The terms acting at the sites 0 and oo in F'(u)/u are clearly

o o0
1 _
7> —s (I F)[nlo + T w1 F)[—n — 1o
n=0 n=0
Now we collect terms, and use o*II,, = w*™I1,,, UkHW = H;p, and the fact that II;F' = 0 for all
k € Z/TZ\ {0}, to obtain the result.

APPENDIX B. Y/ -MAP

B.1. Vertex Lie algebras. In this appendix we use the notion of a vertex Lie algebra and related
concepts as defined in [VY16b], to which we refer the reader for the precise definition. In particular,

all our vertex Lie algebras are finitely generated as C[D]-modules, of the form
£ :=C[D]® (L° ® Cc)/DC[D] ® Cc =¢ C[D] ® L° & Cc,

where L° is a finite dimensional vector space and D is the translation operator of the vertex Lie
algebra. Moreover, we will always consider the case when .Z is Z>o-graded, in the sense that the
underlying finite dimensional vector space L° is itself Zx>p-graded, D is an operator of degree 1, c
is of degree 0 and deg(a(,)b) = dega + degb —n — 1 for any a,b € £ where () : £ x £ = &£
for n € Z>( denote the nM-products of .Z. We denote by L(0) the degree operator on ., given
by L(0)a = (dega)a for homogeneous a € .Z. We will always assume that .Z is equipped with an
action R : I' = Aut.Z, a — R, through automorphisms of %, and consider the corresponding
twisted action R: ' — GL(.Z), a +— Ry := a"OR,,.

To any such vertex Lie algebra . we can associate a genuine Lie algebra, denoted L(.¥¢) and
defined as Liec(()) £ using [VY16b, Lemma 2.2] with A = C((¢)), which is isomorphic as a vector
space to L° ® C((t)) @ Cc. The element in L(.Z) corresponding to a ® t" with a € L° and n € Z is
denoted by a(n) € L(.Z). We denote by c(—1) the copy of the element ¢ belonging to L(.Z). The
definition of a(n), n € Z, then extends to all a € £ by repeatedly applying (Da)(n) = —na(n —1).
In particular then c(n) = 0 unless n = —1. For a homogeneous vector a € L° we also make use of
the notation a[n] € L(.#) for the element corresponding to a ® t"+464~1 There is a vector space
direct sum decomposition L(.Z) = L=(.Z) + L*(Z) where L*(.Z) are Lie subalgebras isomorphic
as vector spaces to L° @ C[[t]] & Cc and L° ® t~'C[t!] respectively.

Denote by V(.Z) the vacuum Verma module over L(.Z’), namely the L(.Z)-module induced from
the one-dimensional LT (.%)-module Cvg on which ¢ acts as 1 and L° ® C[[t]] acts trivially. It is
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naturally endowed with the structure of a vertex algebra. Finally, let L(.Z)" denote the subalgebra
of I'-invariant elements, where the action of I' on L(.¥) is defined by letting o € I" send any a(n)
with a € Z and n € Z to a1 (Raa)(n). Given any a € .Z and n € Z we define the corresponding
twisted n*-mode
Za "1(Rua)(n) € L(L)".
acl’
The two main examples of vertex Lie algebras - we shall consider are given in [VY16b, Exam-

ples 2.5 & 2.6], whose corresponding Lie algebras L(.Z) are centrally extended loop algebras and
Heisenberg Lie algebras.

B.2. ‘Local’ and ‘global’ Lie algebras. Fix a set @ := {z;}}_; of p € Z>¢ non-zero points in
the complex plane. We attach to each point z; € x a local copy of the Lie algebra L(.Z) defined
as Lieg((4—g,)) £ using [VY16b, Lemma 2.2] with A = C((t — x;)), which we denote L(.Z).,. We
will also use the index x; on the formal modes a(n) or a[n] when we wish to emphasise that these
belong to L(.Z),,. Simiarly, to the origin we attach a local copy L(.Z)} of the I-invariant subalgebra
L(ZL)Y. To the point at infinity we attach the Lie algebra L(.Z°P)L  defined as the subalgebra of
[-invariants in L(ZP)e = Lieg(;-1)) Z£°P, where £°P is the opposite vertex Lie algebra given
by the C[D]-module .Z but with opposite n*'-products. For any n € Z and homogeneous element
a € £, we denote by a(n)so (resp. a[n]s) the class of a @ " (resp. a ® t"tde8a=1) in L (LP)
Consider the direct sum L(Z°P)L @ @F_, L(L)s, ® L(ZL)§. We define the ideal

Inop,0 i=spang{c(—1)y, — Tc(— }p U{c(=1)o — c(-1)s }, (B.1)

and the corresponding quotient Lie algebra

L(Z) o0 := L(£°P)L, @@L )z @ L( )/Ioo,p,o.

Let Coora,0(t) be the algebra of global rational functions with poles at most at 0, co and the
points in I'e. It comes equipped with the derivation d; and an action of I' defined through pullback
by the multiplication map t — a 't for @ € I'. Consider the associated Lie algebra Liec, rq.0(t) 7
defined with the help of [VY16b, Lemma 2.2] for A = Coo 12,0(t). We will denote by af := p(a® f)
the class in Liec__ ., (1) Z of an element a® f € L ®RCo 12,0(t). The action of I on £ R Cog 12,0(t)
defined for any o € T" by

a.(a® f(t) :=a 'Rea® f(a't),
gives rise to an action on Liec_, ., (1) Z by Lie algebra automorphisms, c¢f. [VY16b, Lemma 2.13].
Consider the ideal in Liec_ ., ) -2 defined by

Ioora0 = Span(c{ Z < } = spanC{ Z < }p U {Tc} , (B.2)
et t—ax wexU{0} et t—aox; ), t

and denote the corresponding quotient Lie algebra by
LOO,F:B,O(X) = Lie(cooyrmyo(t) g/IOO,Fm,O'

Noting that the ideal (B.2) is invariant under the action of I', i.e. I'.Joo 12,0 = Ioo, 1,0, We obtain

a well-defined action of I' on the quotient Lo 12,0(-Z). We denote the corresponding subalgebra of
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I'-invariants by

r
Loo x, 0(3) = (Loo,Fm,O(g)) . (B.3)
Proposition B.1. There is an embedding of Lie algebras
L: Loomo(f) — L(Z)oo,@,0- (B.4)

Proof. Taking the Laurent expansion of an element of Liec__ ., ) -2 at 0, oo and the points in
yields an embedding of Lie algebras
¢ : Lieg yL — L(LP) @ @ L(Z Lo (B.5)

oo, I'a, 0(

CLf — (_ p(a’® Lt—lf)vp(a(g) Lt—x1f)7 te 7p(a® Lt—:cpf)vp(a(g) Ltf))‘

Note that under the embedding (B.5) we have ¢( Y cp 75-) = ¢(—1)z — T'c(—1) for every z € @
and (—) = Tc(—1)p — Tc(—1)s from which we deduce that the ideal Ioo g0 C Liec rgo(t) <
defined in (B.2) is mapped to the ideal I 0 C L(ZLP)0e @D L(L)s, ®L(L)o defined in (B.1).
By [VY16b, Lemma 2.9] it follows that (B.5) induces an embedding of quotient Lie algebras

L: Loo,Fw,O(g) — L Q?OI) ) @ |_ )O/Ioo,p,o.

Finally, by restricting the latter to the subalgebra of I-invariants (B.3) we obtain the desired Lie
algebra embedding (B.4). O

Let M, be a left module over L(.Z),, for each i = 1,...,p. Following the convention adopted in
[VY16b, Section 3], we will always assume that such modules over L(.Z) are of level 1, namely that
the central element c(—1) acts as 1. Let Mg and My, be left modules over L(Z)§ and L(Z°P)L,
respectively, or alternatively Mo is a right module over L(.Z)L.. Following also the convention
of [VY16b, Section 3], all such modules over L(.£)"" will be assumed to be of level 7. The tensor
product Mo @ @¥_; My, ® My is then a left module over the Lie algebra L(.%)s «,0 so that by
virtue of Proposition B.1 1t also becomes a left module over the global Lie algebra L. x O(,i” ). In

particular, we may form the space of coinvariants

oo®®sz®Mo/ Lol 2),

i=1
Many of the statements and proofs of [VY16b] concerning cyclotomic coinvariants which did not
include the point at infinity can be seen to carry over with minor modifications to the present case.

B.3. Yyy-map. A left module M over L(.Z) is said to be smooth if for all a € £ and v € M we
have a(n)v = 0 for all n > 0. Likewise, we will say that a right module N over L(.¥) is co-smooth
if for all @ € . and n € N we have na(n) =0 for all n < 0.
Let My, be any right co-smooth module over L(.Z)"'. We define the quasi-module map
Yiv (- u) : V(L) — Hom (Moo, Moo((u™))),  Ar— > AT u™!

nel
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where u is a formal variable and A(VK) are endomorphisms of M, for each A € V(.£) and n € Z, by
direct analogy with the definition given in [VY16b] for left smooth modules over L(.Z)" as follows.
For any a € .Z we set

Yw( ’U(), Z Z R, CL nil.
acl' neZ

Moreover, the map is defined recursively for any other state in V(,i” ) by letting

Yiw (a(=1)B, u) := Yiy (a(=1)vo, w)Yig (B, w): + Y Z HHYW((Raa)(n)B,u),
aer\{l}n>0
(B.6)

for all a € £ and B € V(.%). Here :A(u)B(u): = A(u)+B(u) + B(u)A(u)— denotes the usual

normal ordering where for A(u) =3, ., A(n)u™""! we define
wy =Y Anpu =Y A(-m - 1", (B.7a)
n<0 m>0
=Y Anju 1 (B.7h)

n>0

The following is a direct analogue of [VY16b, Proposition 3.6] for the point at infinity, providing

an alternative definition the above Yjy-map on co-smooth modules using co-invariants.

Proposition B.2. Let My, be a right co-smooth module over L(Z)". We have

1 [A@ Moo @ -] = [MocYiw (A, u) ® - - -], (B.8)

for all A € V(Z) and moo € Mo

Proof. We use induction on the depth of A. When A = vy the result follows from the analogue of
[VY16b, Proposition 3.2] including the point at infinity. For the inductive step, we assume that
(B.8) holds for states of depth strictly less than that of A. Without loss of generality we can take
the state A to be of the form A = a(—1)B for some a € .Z and B € V(.Z).

Let M,,, i =1,...,p be any collection of p € Z>¢ modules attached to the points x; € C for
i = 1,...,p which may include the origin. We write  := {z;}}_; and let m € Q"_; M,,. By
definition of the space of coinvariants we have

a 'R.a
[f(t).(§ ® Moo © T’)] =0, where f(t)=>)_ .
u 9] x a€cl’
In other words,
P
[tt—uf(t) B ® Mmoo @ m] — [B ® Mmoo (-1 f(t)) @ m] + Z [B ® Moo @ L4—a, f(t)m] = 0.
+ + + + + + : + +

PN
[ e ) x u 0o x =1 [e) x
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Thus the left hand side of (B.8) may be written as

n
o )B & o @ m] = _I[ZZ ARl +1B®moo®m]
y o @ i v w

—— B®mooYW(( 1)wo, )+®m}—b-1[3®m0<>®zzz _ n+1m]
u g = 1a€Fn>0 au .T x

Here we made use of the notation (B.7a). The states at the point u on the right hand side are of

lower depth in V(.), so that we may apply the inductive hypothesis to obtain

—ty-tla(— )B®mOO ®m ZZ T [m;ooYW((Raa)(n)B,u) ®T:L:|
u oo ;1; a#l n>0 00 -
)(n)zl
+ mooYW( ( 1)U07 )+YW(B u) ® m T byt mOOYW(B ’LL ® Z Z Z )n+1 m
c; q; 1=1 aan>O w

The first two terms on the right hand side are already in the desired form. Taking the map ¢,-1

explicitly in the remaining term we may rewrite it as

{mooYWBu ®ZZZZ[ ] o m+1(R a)(n)q m]. (B.9)

i=1 acl m>0n=0 -
Now consider the following identity
Z uw ™! [gm(t).(mooYW(B, u) ® m)} =0, where g¢gp(t)= Z a L (Rqa)(a~tt)™.
m>0 S x el
Using this we may rewrite (B.9) simply as
Z u ot {mOOYW(B w) (t-19m(t)) ®m} = {mOOYW(B,u)YW(a(fl)vg,u), Rm|.
+ +

m>0 [e’) xr c:o T
Putting the above together and using the recurrence relation (B.6) of the Yj-map we obtain
tu-1[a(=1)B ® Mo @ m] = [mo Y (a(—1)B,u) @ m],
+ + + + +

u o0 x o0 x

as required. 0

Recall that the vacuum Verma module V(.Z) has the structure of a vertex algebra and so is in
particular a vertex Lie algebra. We may thus form the associated Lie algebra L(V(Z)) as well as
its subalgebra of I'-invariants L(V(.Z))!'. The following is an immediate generalisation of [VY16b,
Proposition 5.8].

Proposition B.3. Let M, be a co-smooth right module over L(Z)'. There is a well-defined
co-smooth right L(V(£))F -module structure on My, given for all ma, € Mo, by

Mmoo Al (n) = mOOAEZ).
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