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Abstract: A series of 1,3,4-oxadiazole derivatives with significant broad-spectrum anticancer activity against different 12 
cell lines, and demonstrated telomerase inhibition, was subjected to Quantitative Structure-Activity Relationships 13 
(QSAR) analysis. Validated models with high correlation coefficients were developed. The Multiple Linear Regression 14 
(MLR) models, by Ordinary Least Squares (OLS), showed good robustness and predictive capability, according to the 15 
Multi-Criteria Decision Making (MCDM = 0.8352), a technique that simultaneously enhances the performances of a 16 
certain number of criteria. The descriptors selected for the models, such as electrotopological state (E-state) descriptors, 17 
and extended topochemical atom (ETA) descriptors, showed the relevant chemical information contributing to the 18 
activity of these compounds. The results obtained in this study make sure about the identification of potential hits as 19 
prospective telomerase inhibitors. 20 
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1. INTRODUCTION 26 

 Telomerase, a reverse transcriptase, maintains telomere and chromosomes integrity of dividing cells, while it is 27 
inactivated in most somatic cells (1,2). In tumor cells, telomerase is highly activated, and works in order to maintain 28 
the length of telomeres causing immortality, hence it could be considered as a potential marker to tumorigenesis (3–29 
5). The great advantage of targeting this reverse transcriptase, with respect to other cancer targets, is due to its strict 30 
specificity for cancer cells. In fact, it is expressed in up to the 90% of cancers (6,7). Human telomerase consists of two 31 
portions: a template-encoding RNA (TER), and a reverse transcriptase part (TERT) which also consists of an essential 32 
N-terminal domain (TEN), a telomerase RNA binding domain (TRBD), a reverse transcriptase domain (RT), and a 33 
C-terminal domain (8,9). In the past decades, several classes of inhibitors were identified: oligonucleotides targeting 34 
the telomerase RNA templates (10), compounds targeting telomeric DNA(11), nucleosidic transcriptase inhibitors 35 
(12) and G-quadruplex stabilizing compounds as telomerase inhibitors (13,14). Among this range of compounds’ 36 
classes, different substituted 1,3,4-oxadiazoles showed potent anti-tumor activities (15–18), and in particular 37 
telomerase inhibitory activity (18,19). Moreover, oxazole, bioisoster of 1,3,4-oxadiazole ring, is the scaffold of 38 
telomestatin, which is a natural product isolated from Streptomyces anulatus, with potent telomerase inhibitory activity 39 
(20). The emphasis of recent efforts to develop new telomerase inhibitors has been focused on structure-based design 40 
(18,19,21–23). Ligand-based design by means of Quantitative Structure Activity Relationships (QSAR), an important 41 
application of chemometrics, revealed in the last years to be useful to obtain information in the design of new 42 
molecules against a specific target (24–26). Nevertheless, QSAR modeling is affected by one severe problem: model 43 
validation. In fact, in the past many QSAR models have been published as predictive, although not all the validation 44 
checks have been done. Therefore, model validation has been subject of many debates in scientific and regulatory 45 
communities. To date, to consider a QSAR model as predictive, this latter should be associated to defined OECD 46 
principles (27). A QSAR model, for regulatory purposes, and for the identification of new chemical entities in all the 47 
field of chemistry, should be associated with the following information: (1) a defined endpoint; (2) an unambiguous 48 
algorithm; (3) a defined domain of applicability; (4) appropriate measures of goodness-of-fit, robustness and 49 
predictivity; (5) a mechanistic interpretation, if possible. Our interest in the chemistry of oxadiazoles (28), and the 50 
alive pharmaceutical interest in this outstanding scaffold (29), have placed our attention to the structures-activity 51 
relationships, with the aim of underline the features which could increase anti-tumor activity. Even though other 52 
attempts have been carried out (18,19,21,23,30), no validated models have been built according to OECD principles 53 
for 1,3,4-oxadiazoles as telomerase inhibitors, making predictive power and mechanistic interpretation not reliable. In 54 
this paper, our main aim is to develop validated and predictive models for 1,3,4-oxadiazole derivatives as telomerase 55 
inhibitors, according to the OECD principles, exploiting the great amount of available biological data. The models 56 
developed are commented by means of the selected descriptors, and some interesting mechanistic interpretations could 57 
be stated. 58 
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2. MATERIALS AND METHOD  60 

2.1. Dataset  61 

 A series of 24 N-benzylidene-2-((5-(pyridine-4-yl)-1,3,4-oxadiazol-2yl)thio)acetohydrazide derivatives as 62 
telomerase inhibitors has been considered to carry out QSAR studies (30). The endpoint to build QSAR models is 63 
determined by the IC50 values for telomerase inhibition, i.e., the concentration (µM) of inhibitor that produces 50% 64 
inhibition. These values were converted to pIC50 (-log IC50) values. In Table 1 the structure of the 24 compounds are 65 
reported together with their biological data related to telomerase inhibition. 66 

  67 



 68 

Table 1. Structures of 1,3,4-oxadiazole derivatives with activities 69 

 70 
Comp 
No. 

R Exp pIC50
a QSAR setb 

1 Ph- 5.012 Training 

2 4-F-C6H4- 4.992 Training 

3 4-Cl-C6H4- 4.925 Prediction 

4 4-Br-C6H4- 4.907 Training 

5 4-O2N-C6H4- 4.778 Training 

6 4-HO-C6H4- 5.271 Prediction 

7 4-MeO-C6H4- 5.044 Training 

8 4-H3C-C6H4- 5.070 Training 

9 3-F-C6H4- 4.803 Training 

10 3-F3C-C6H4- 5.286 Training 

11 3-MeO-C6H4- 5.123 Training 

12 2-F-C6H4- 4.837 Training 

13 2-O2N-C6H4- 4.741 Training 

14 2-HO-C6H4- 5.401 Training 

15 2-HO-5-Cl-C6H3- 5.504 Training 

16 2-HO-5-Br-C6H3- 5.369 Training 

17 2-HO-3,5-2Cl-C6H3- 5.319 Prediction 

18 2-HO-3,5-2Br-C6H3- 5.148 Training 

19 3,4-2HO-C6H3- 5.928 Prediction 

20 3-MeO-4-HO-C6H3- 5.539 Training 

21 2,4-2Cl-C6H3- 4.749 Prediction 

22 2-Furan- 5.016 Training 

23 2-Thiophene- 4.871 Training 

24 (E)-styryl- 5.182 Training 
a –log IC50; b the compounds considered for training and prediction set for QSAR study 71 
 72 
 73 
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 75 

2.2. Calculation of Descriptors 76 

A QSAR study requires the calculation of molecular descriptors. In order to have mechanistically interpretable 77 
descriptors, we limited the calculation to 1D-2D descriptors, since this study uses a ligand-based approach and 3D 78 
descriptors could instead be highly influenced by bound ligand conformations (31,32). A total of 1444 1D and 2D 79 
molecular descriptors were calculated using PADEL 2.1 software (33). Constant and semi-constant values (>80%), 80 
and correlated pairwise descriptors were excluded in a cleaning preliminary step (one of any two descriptors with a 81 
correlation greater than 0.95 was removed to reduce redundant information), and a final set of 195 molecular 82 
descriptors were used as input variables for model generation. 83 

 84 

 85 

2.3. Model generation  86 

 Dataset was randomly split into a training set (19 compounds) for model generation, and a prediction set (5 87 
compounds) for the validation of developed models, as reported in Table 1. First, the models were generated by the 88 
all-subset procedure with two variables, and subsequently by using genetic algorithm (GA) up to three variables, 89 
respecting the objects/descriptors ratio ≥ 5 (27). We used the most common and transparent method, where models 90 
are described by clearly expressed mathematical equations: Multiple Linear Regression (MLR) by Ordinary Least 91 
Squares (OLS).  92 

 93 

2.4. Models validation 94 

The generated models were measured according to appropriate measures of goodness-of-fit, robustness, and predictive 95 
capability. Used statistics for goodness-of fit are: R2 > 0.7, concordance correlation coefficient (CCCtr) > 0.85 (34), 96 
RMSE, R2

adj, and R2-R2
adj. Used statistics to measure robustness of the model are: Q2(eq.1) > 0.7, CCCcv, RMSEcv, 97 

Q2
LMO, and R2 calculated according Y-scrambling procedure. 98 

Eq.1 𝒒𝒒𝟐𝟐 = 𝟏𝟏 −  
∑ (𝒚𝒚𝒊𝒊−𝒚𝒚𝒊𝒊�)𝟐𝟐𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒊𝒊=𝟏𝟏
∑ (𝒚𝒚𝒊𝒊−𝒚𝒚�)𝟐𝟐𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒊𝒊=𝟏𝟏

 99 

Where 𝒚𝒚𝒊𝒊  𝒚𝒚𝒊𝒊�  are the actual and predicted activities of the ith molecule, respectively, and 𝒚𝒚� is the average activity of 100 
all molecules. 101 

Predictive capability of the models generated was assessed by means of the external validation of the prediction set. 102 
Used statistics for external validation are: Q2

ext > 0.70(eq.2), Q2
F1 > 0.70(35), Q2

F2 > 0.70(36), Q2
F3 > 0.70(37), 103 

Golbraikh and Tropsha parameters k and k’(38), r2
m metrics >0.65 (39), CCCext > 0.85(40) 104 

 105 

Eq.2  𝒒𝒒𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐 = 𝟏𝟏 −  ∑ (𝒚𝒚𝒊𝒊−𝒚𝒚𝒊𝒊�)𝟐𝟐𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒊𝒊=𝟏𝟏

∑ (𝒚𝒚𝒊𝒊−𝒚𝒚𝒕𝒕𝒕𝒕�����)𝟐𝟐𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒊𝒊=𝟏𝟏

 106 

 107 

Where  𝒚𝒚𝒊𝒊  𝒚𝒚𝒊𝒊�  are the actual and predicted activities of the ith molecule, respectively, and 𝒚𝒚�𝒕𝒕𝒕𝒕 is the average activity 108 
of all molecules in the training set. 109 

With the aim to choose indeed the best performing model, excluding bias due to evaluating many statistic parameters 110 
at the same time, we decided to use the Multi-Criteria Decision Making (MCDM) (41). MCDM is an approach that 111 
sums up the performances of many criteria simultaneously. This is realized associating a desirability function, which 112 
values range from 0 to 1 (where 0 represents the worst validation criteria value and 1 the best), to every validation 113 



criterion. The MCDM scores reported in this paper are: MCDMfit regarding fitting criteria (maximizing R2, R2
adj, and 114 

CCCtr, and minimizing R2-R2
adj), MCDMcv regarding internal validation (maximizing Q2, Q2LMO, CCCcv, and 115 

minimizing R2yscr), MCDMext regarding external validation (maximizing Q2
F1, Q2

F2, Q2
F3, and CCCext). MCDMall, 116 

calculated with all the previous criteria, is able to determine the best compromise models among the selected validating 117 
criteria. 118 

2.4. Applicability Domain 119 

 Prediction capability of modeled properties for the whole universe of chemicals is still not expected, even if robust 120 
and validated models are developed (42). QSAR models must be verified for their applicability domain, the latter 121 
having the ability to provide predicted data for compounds that are similar to chemicals used to generate the model. 122 
The applicability domain of the model was verified by the leverage approach, and fixed thresholds have been used to 123 
define both structural and response outliers. The Williams plot verified the presence of response outliers (compounds 124 
with cross-validated standardized residuals greater than 3.0 standard deviation units), and chemicals very structurally 125 
influent in determining model parameters. These latters are compounds with a leverage value (h) greater than 3p'/n 126 
(h*) where p' is the number of model variables plus one, and n is the number of the objects used to calculate the model. 127 

 128 

3. RESULTS AND DISCUSSION 129 

For the development of the QSAR models for 1,3,4-oxadiazole derivatives, MLR with OLS was applied. Initially, we 130 
generated models considering only one descriptor, then, we extended the calculation to two variables using the “all-131 
subset” procedure, and finally, we proceeded to the third variable with GA. According to the fitness, robustness and 132 
predictive parameters, explained in materials and methods, some statistically significant models have been selected 133 
for discussion and mechanistic interpretation.  134 

Model 1: pIC50 = +6.50 (±0.74) Intercept 135 

  +0.12 (±0.04) naaCH 136 

  +25.5 (±3.54) ETA_dEpsilon_D 137 

  -3.70 (±0.79) ETA_BetaP_ns 138 

N = 19, R2 = 0.85, CCCtr = 0.92, RMSEtr = 0.09, R2
adj 0.82, R2-R2

adj=0.03 fitness 139 

Q2 = 0.73, CCCcv = 0.86, RMSEcv = 0.12, Q2
LMO = 0.71 R2

yscr = 0.16 robustness 140 

Q2
ext = 0.95, Q2

F1 = 0.93, Q2
F2 = 0.92, Q2

F3 = 0.78, CCCext = 0.78, r2
m = 0.87, k = 1.01, k’ = 0.99 predictive 141 

In Figure 1 is shown the plot of experimental versus calculated endpoint. 142 

 143 



Figure 1 plot of experimental versus calculated endpoint for model 1 144 

Model 1 is represented by a three parametric expression. This model, built using the GA-OLS method, has good 145 
measures of fitness above the optimal thresholds, and it shows an internal predictive power of 73% (Q2 = 0.73) with 146 
a very low probability of random correlation among activity values and independent variables (R2

yscr = 0.16). The 147 
external predictive power on test set is good (Q2

ext = 0.95), and all the other predictive parameters are above the 148 
considered significant thresholds. Descriptors are ordered according to their importance, based on their standardized 149 
coefficient values, which are reported in brackets after each descriptors symbol: ETA_dEpsilon_D (+0.93) is a 150 
measure of contribution of hydrogen bond donor atoms; ETA_BetaP_ns (-0.47) is a measure of electron-richness of 151 
the molecule relative to molecular size; naaCH (+0.37) is an electrotopological state index related to aromatic CH 152 
group. 153 

In terms of applicability domain, one structural outlier has been identified (compound #10) based on h*=0.632 (Figure 154 
2). 155 

 156 

 157 

Figure 2. Applicability domain for model 1 158 

Model 2: pIC50 = +7.67 (±0.74) Intercept 159 

   -2.77 (±1.36) VCH-7 160 

   +22.49 (±3.46) ETA_dEpsilon_D 161 

   -3.55 (±0.87) ETA_BetaP_ns 162 

N=19, R2 = 0.82, CCCtr = 0.90, RMSEtr = 0.10 R2
adj = 0.78, R2-R2

adj=0.04 fitness 163 

Q2 = 0.72, CCCcv = 0.85, RMSEcv = 0.12, Q2
LMO = 0.70 R2

yscr = 0.16 robustness 164 

Q2
ext = 0.96, Q2

F1 = 0.94, Q2
F2 = 0.93, Q2

F3 = 0.80, CCCext = 0.96, r2
m = 0.87, k = 1.01, k’ = 0.99 predictivity 165 



In Figure 3 the plot of experimental versus calculated endpoint for model 2 is shown. 166 

Figure 3 the plot of experimental versus calculated endpoint for model 2 167 

 168 

Model 2 is also represented by a three parametric expression, and it was obtained using the same method of model 1. 169 
Model 2 has measures of fitness above the optimal thresholds too, and it shows an internal predictive power of 72% 170 
(Q2 = 0.72), with a very low probability of random correlation among activity values and independent variables (R2

yscr 171 
=0.16). The external predictive power on test set is good (Q2

ext = 0.95), and all the other predictive parameters are 172 
above the considered significant thresholds. Two of the descriptors correlated with the endpoint, are the same of model 173 
1: ETA_dEpsilon_D (+0.81), and ETA_BetaP_ns (-0.45); the third descriptor is VCH-7 (-0.25), a topochemical 174 
descriptor related to Kier-Hall indices (valence chain order 7), which is known for its importance in anticancer drug 175 
design (43).  176 

In terms of applicability domain, the same structural outlier of model 1 has been identified (compound #10) based on 177 
h*=0.632 (Figure 4). 178 



Figure 4. Applicability domain for model 2 179 

 180 

Model 3: pIC50 = +5.96 (±1.17) Intercept 181 

   +21.22 (±3.38) ETA_dEpsilon_D  182 

   -4.81 (±1.21) ETA_BetaP_ns 183 

  +8.68 (±5.10) ETA_EtaP_F_L 184 

 185 

N=19, R2 = 0.81, CCCtr = 0.89, RMSEtr = 0.10 R2
adj = 0.77, R2-R2

adj=0.04 fitness 186 

Q2 = 0.70, CCCcv = 0.89, RMSEcv = 0.13, Q2
LMO = 0.68 R2

yscr = 0.17 robustness 187 

Q2
ext = 0.96, Q2

F1 = 0.92, Q2
F2 = 0.91, Q2

F3 = 0.75, CCCext = 0.95, r2
m = 0.80, k = 1.01, k’ = 0.99 predictivity 188 

As the previous models, Model 3 is also represented by a three parametric expression and has measures of fitness 189 
above the optimal thresholds. In fact it shows an internal predictive power of 70% (Q2 = 0.70), with a very low 190 
probability of random correlation among activity values and independent variables (R2

yscr = 0.17). The external 191 
predictive power on test set is good (Q2

ext = 0.96), and all the other predictive parameters are above the considered 192 
significant thresholds. This model comprises two previously retrieved descriptors too: ETA_dEpsilon_D (+0.77), and 193 
ETA_BetaP_ns (-0.61); the third descriptor is ETA_EtaP_F_L, another extended topochemical atom descriptor, which 194 
correlates local functionality contribution (EtaF_local) with molecular size. The local functionality index was 195 
proposed to measure the molecule functionality, intended as the presence of heteroatoms and multiple bonds (44). In 196 
Figure 5 the plot of experimental versus calculated endpoint for Model 3 197 

 198 

Figure 5 plot of experimental versus calculated endpoint for Model 3 199 

In terms of applicability domain, Model 3 is quite similar to the previous two, with only compound #10 as structural 200 
outlier (Figure 6). 201 

 202 



Figure 6. Applicability domain for model 3 203 

All the three models identified showed good parameters of fitness, robustness and predictive capability. They differ 204 
from each other by a single descriptor, and in terms of applicability domain have a quite similar behavior. Therefore, 205 
in such a landscape of QSAR models, the choice of the best performing model to identify new and more potent 206 
compounds could be very difficult. For this reason, we decided to entrust the management of the best performing 207 
model to the MCDM criteria. In Table 2, predicted and residuals for the three QSAR models are reported. In Table 3, 208 
the MCDM values are shown. Model 1 could have, in terms of MCDMall, the best performing capability, even though 209 
with a slight difference compared to the other two models. As the last choice criteria, we decided to consider the 210 
significance (p-value) of descriptors coefficients in each model. In Model 1, all the descriptor coefficients have p-211 
value<0.05; in model 2, VCH-7 has p-value > 0.05, such as in model 3, ETA_EtaP_F_L has p-value > 0.10. When p-212 
value for descriptors coefficients are under the confidence threshold of 95%, models should be considered with 213 
caution. In the light of this latter considerations, Model 1, in virtue of the best MCDMall value, and in virtue of p-214 
values < 0.05, could be definitively considered as the QSAR model of choice for 1,3,4-oxadiazole derivatives as 215 
telomerase inhibitors.  216 
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Table 2. predicted and residuals for the three QSAR models  218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

Table 3. MCDM values for the QSAR models 238 

 239 

 240 

 241 

  242 

ID STATUS EXP.  MODEL 1 MODEL 2 MODEL 3 
Pred.  Res. Pred.  Res. Pred.  Res. 

1 Training 5.012 5.023 0.011 4.939 -0.073 4.910 -0.102 
2 Training 4.992 4.968 -0.024 4.981 -0.011 4.974 -0.018 
3 Prediction 4.925 4.951 0.026 4.908 -0.017 4.925 0.000 
4 Training 4.907 4.927 0.020 4.823 -0.084 4.845 -0.062 
5 Training 4.778 4.828 0.050 4.824 0.046 4.856 0.078 
6 Prediction 5.271 5.483 0.212 5.431 0.160 5.399 0.128 
7 Training 5.044 5.046 0.002 5.057 0.013 5.072 0.028 
8 Training 5.070 4.998 -0.072 4.966 -0.104 4.960 -0.110 
9 Training 4.803 4.968 0.165 4.981 0.178 4.974 0.171 

10 Training 5.286 5.358 0.072 5.346 0.060 5.339 0.053 
11 Training 5.123 5.046 -0.077 5.057 -0.066 5.072 -0.051 
12 Training 4.837 4.968 0.131 4.981 0.144 4.980 0.143 
13 Training 4.741 4.828 0.087 4.824 0.083 4.861 0.120 
14 Training 5.401 5.483 0.082 5.431 0.030 5.404 0.003 
15 Training 5.504 5.404 -0.100 5.408 -0.096 5.414 -0.090 
16 Training 5.369 5.361 -0.008 5.315 -0.054 5.321 -0.048 
17 Prediction 5.319 5.319 0.000 5.400 0.081 5.427 0.108 
18 Training 5.148 5.239 0.091 5.233 0.085 5.250 0.102 
19 Prediction 5.928 5.904 -0.024 5.895 -0.033 5.859 -0.069 
20 Training 5.539 5.472 -0.067 5.525 -0.014 5.536 -0.004 
21 Prediction 4.749 4.873 0.124 4.894 0.145 4.943 0.194 
22 Training 5.016 4.866 -0.150 5.044 0.028 5.023 0.007 
23 Training 4.871 4.843 -0.028 4.967 0.096 4.929 0.058 
24 Training 5.182 4.999 -0.183 4.921 -0.262 4.903 -0.280 

  MCDM 
FIT 

MCDM CV MCDM 
EXT 

MCDM 
ALL 

MODEL 1 0.871 0.753 0.888 0.835 
MODEL 2 0.843 0.742 0.901 0.826 
MODEL 3 0.831 0.726 0.871 0.807 



CONCLUSION 243 

  In this paper, we have successfully developed robust and predictive QSAR models for 1,3,4-oxadiazole derivatives as 244 
telomerase inhibitors. The results obtained in this study suggests that QSAR models developed with 1D and 2D molecular 245 
descriptors can be used for the design of new analogs with more potent telomerase inhibitory activity as anticancer drugs. 246 
In particular, Model 1 revealed to be the most reliable. A posteriori mechanistic interpretation of descriptors included in the 247 
model suggests important structural information. The ETA (Extended topochemical atom) descriptor ETA_dEpsD, which 248 
takes into account the contribute of H-donor atoms, increases according to the presence of donor atoms into the aromatic 249 
ring. At the same time, the Electrotopological-state descriptor naaCH, which considers the aromatic CH, has a positive 250 
coefficient: this suggests that too many substitutions on the aromatic ring could lead to non-active compounds. The last 251 
descriptors, the ETA descriptor ETA_dEpsD, which takes into account the electron-richness of the molecule relative to 252 
molecular size, slightly decreases related to the endpoint, so this suggests that electron-rich substituents do not have to be in 253 
excessive number related to dimension of the compounds. Therefore, we hope that this theoretical approach, and obtained 254 
structural information, could be an important aid in the design of novel compounds, to boost the identification of lead 255 
compounds to be tested in vitro and in vivo. 256 

 257 
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