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Abstract: This study presents a novel approach that extends face de-identification from person-specific (closed) sets of facial
images to open sets of video frames. Inspired by the previous work in facial expression transfer, the authors have introduced an
‘identity shift’ to ensure identity consistency within a de-identified video sequence. The ‘identity shift’ is derived from the first
video frame of a person and is then applied in the de-identification of all subsequent frames of the same person. Experimental
results show that video frames that are originally associated with the same person will remain related to a common new identity
after the application of the proposed approach. In addition, the proposed approach is able to achieve privacy protection as well
as preservation of dynamic facial expressions. Finally, MATLAB implementation of the approach has confirmed its potential to
operate in real time at the highest standard video frame rate.

1 Introduction
To date, the most successful face de-identification methods are the
solutions in the k-Same family, where privacy protection is
achieved by implementing the theory of k-anonymity [1]. All
existing k-Same methods [2–5] have been proposed for the de-
identification of a set of face images, where the set is first divided
into clusters of size k and then each face image is de-identified by
an aggregation (usually the centroid) of its own cluster. Since all k
faces in each cluster are de-identified with the same aggregated
face, these methods have hence been given the name ‘k-Same’. The
privacy protection performance of a face de-identification method
is evaluated in terms of the re-identification risk of its de-identified
faces, i.e. the risk of its de-identified faces being matched with
their original identities or face images. The lower the re-
identification risk, the better the privacy protection a face de-
identification method provides. As each k-Same de-identified face
image appears in the de-identified image set k times and it can be
matched, at best, with only one of its k original faces, all k-Same
methods can guarantee a re-identification risk lower than 1/k for
their de-identified faces. This guaranteed privacy protection level
has been further reduced to zero by the k-Same-furthest method
when being tested against similarity-based face recognition
methods [5]. An extension of k-Same-furthest is the k-Diff-furthest
method [6]. Apart from better privacy protection, another main
contribution of k-Diff-furthest is that it produces a distinguishable
de-identified face for each original face. Experimental results in [6]
showed that k-Diff-furthest is able to maintain diversity among the
de-identified faces and keep them as diverse and distinguishable as
their original faces. Our work in this paper extends the k-Diff-
furthest method in order to achieve face de-identification in videos.

Like all existing k-Same methods, the k-Diff-furthest method
takes a set of face images as the input and de-identifies the whole
set in a single pass. This means that neither the k-Same methods
nor the k-Diff-furthest method can be applied directly to de-
identify a video sequence frame by frame in real time.
Furthermore, all these face de-identification methods demand the
input image set to be person specific [2], i.e. each person present in
the image set has only one image in the set and no two images in
the set relate to the same person. This means that we cannot apply
the k-Same methods or the k-Diff-furthest method to a set of
frames taken from the same video sequence as they often contain
face images of the same person(s). Therefore, a new approach must
be developed for the de-identification of faces in a video sequence.

In addition to (i) privacy protection and (ii) preservation of data
utility (e.g. gender, age and facial expression), face de-
identification in videos presents two more challenges: (iii) identity
consistency and (iv) real-time processing. Here, identity
consistency means that the face instances originally related to the
same identity must relate solely to the same new identity after de-
identification. This paper presents a novel approach to de-
identifying faces in videos, which is able to address all four
challenges. This new approach is inspired by our previous work on
data utility preservation through facial expression transfer (FET)
[7] and is based on our previously developed k-Diff-furthest
method [6].

This paper is structured as follows: Section 2 provides a review
of FET. Section 3 explains two methods adopted in our new
approach – the facial landmark annotation method and the k-Diff-
furthest method. Section 4 describes our proposed approach to de-
identifying faces in videos and Section 5 tests its abilities to
address the four challenges. Finally, the findings of this work are
summarised in Section 6.

2 Subject review of facial expression transfer
Although k-Same methods are able to guarantee k-anonymised
privacy protection, they seldom address the other common
challenge of face de-identification – the preservation of data utility.
The k-Diff-furthest method shares the same drawback. Since the k-
Same methods as well as the k-Diff-furthest method calculate each
de-identified face as the average of k faces, the data utility will be
averaged out and lost unless all the k faces share the same data
utility including both the class (e.g. happy or sad) and the intensity
of the utility (e.g. how happy a face is). To address the first half of
the data utility challenge, the k-Same-Select method [4] attempted
to integrate utility preservation into face de-identification with a
data utility classifier. The utility classifier is used to partition the
original face set into mutually exclusive utility subsets. The k-
Same de-identification is then performed on each utility subset.
However, this additional classification step has made the algorithm
inflexible as the utility classifier would have to be re-trained every
time a new utility class is introduced to the task. Nevertheless, the
main drawback of the k-Same-Select method is that it preserves
only one aspect of each data utility – the class of the utility. For
binary data utility such as gender, this is adequate. However, for
utilities such as facial expressions, it is necessary to preserve not
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only the class label (e.g. happy or sad) but also the intensity of the
utility (e.g. how happy a face is).

Among the data utilities associated with images/videos of
human faces, facial expression is the most complicated utility due
to the variety of expressions, the simultaneous appearance of
multiple expressions, and the various degrees of intensity with each
expression. On the other hand, the preservation of facial expression
is of significant value to face de-identification in videos, where
various expressions with dynamic degrees of intensity are
expected.

In recent years, active appearance model (AAM) [8] has been
broadly used for building non-rigid deformable models. In face
biometrics, this model provides a compact statistical representation
of the shape and the texture variation of human faces. AAM-
derived face representations have been employed in [9], where the
experimental results proved AAM face representations to be highly
effective for the task of facial expression analysis. Subsequently,
there have been various attempts to use AAM in FET. The study in
[10] focused on real-time dynamic facial expression transfer using
AAMs, generating realistic talking faces in real time at low
computational cost. The work assessed how a fitted expression
from one AAM could be used to synthesise the same expression
realistically onto another person or an animated character in a
separate AAM. The procedure is able to produce video sequences
that are smooth and seemingly acceptable. The study in [11]
describes techniques for mapping and manipulating facial gestures
and global head movements in video sequences of people engaged
in conversation. Such techniques operate in real time at video
frame rate due to the simple mapping of parameters between
AAMs, without a requirement of high-level semantic information
about the facial expressions. Similarly, the work in [12, 13]
presented ad-hoc control of the facial expressions of a target actor
by cloning the facial expressions from another actor in a source
video. Again, the whole process of this approach can be carried out
in real time.

Inspired by the effectiveness and, in particular, the efficiency of
FET approaches in transferring facial expressions between
subjects, an FET approach was previously proposed and integrated
into the face de-identification process to recover the facial
expressions of an original face on its de-identified face [7]. This
FET approach can be represented mathematically as follows:

Λd
expr = Λexpr − Λneutral + Λd

neutral, (1)

where vector Λ denotes the AAM features of a face.
Equation (1) achieves FET in two simple steps: first, calculate

the change of AAM features caused by the expression of the
original expressive face in comparison to the neutral face of the
same person, i.e. Λexpr − Λneutral, and then apply the same change to
the de-identified neutral face Λd

neutral.
Despite the fact that the FET approach defined in (1) does not

satisfy k-anonymity, experimental results in [7] showed that it has
hardly any impact on the re-identification risk of the de-identified
faces generated by the k-Same-furthest method. In addition, the
FET process enables the expressions of an original face to be
effectively cloned onto its de-identified face. As confirmed by the
experimental results from data utility evaluation in [7], the
proposed FET approach preserves expression better than k-Same-

Select. Furthermore, visual results of the output faces in [7]
demonstrate that FET is able to preserve not only the category but
also the dynamic details of facial expressions. As mentioned, our
approach to de-identifying faces in videos is based on this FET
process.

3 Supporting methods
3.1 Landmark annotation using constrained local neural field
(CLNF)

Facial landmark annotation is an essential first step in face
recognition, face de-identification and FET. The accuracy of this
first step has a significant impact on the performance of a face
biometric system.

There have been many attempts to accomplish accurate and
person independent facial landmark annotation [8, 14–17]. One of
the most promising is the constrained local model (CLM) method
[14]. However, CLM struggles in poor lighting conditions, in the
presence of occlusion and when facing unseen datasets. In our
system, we make use of CLNF. This extension of CLM
incorporates local neural field patch experts (also called local
detectors) to exploit spatial relationships between pixels and
evaluate the probability of a landmark being aligned at a particular
pixel location [18].

Fig. 1 shows the 68 facial landmarks used in this work to define
the shape of a face. This set of facial landmarks has been widely
used in face biometric systems [3, 19–21]. 

3.2 The k-Diff-furthest method for face de-identification

The k-Diff-furthest method has been proposed to generate unique
and distinguishable de-identified faces for a given person-specific
set of face images. Instead of using aggregated information to de-
identify faces such as in the k-Same methods, k-Diff-furthest swaps
original faces between a pair of clusters in order to retain the
diversity of the original face set in the de-identified face set. Fig. 2
depicts this cluster swapping process of the k-Diff-furthest method.

In each iteration, the method randomly selects a seed image
from the set of remaining original images and simultaneously
forms two clusters based on the seed image. One of the clusters Cc
consists of images closest to the seed and the other cluster Cf
consists of images furthest to the seed. The formation of each
cluster pair of Cc and Cf must satisfy the condition of no overlap
between the two clusters. As already mathematically proved in [6],
as long as this condition stands, for each de-identified face there
exists at least one original face in the opposite cluster that is closer
to it than its original face. In other words, the de-identified faces
produced by the k-Diff-furthest method have a re-identification risk
of zero when there is no overlap between Cc and Cf and when the

Fig. 1  MultiPIE/IBUG 68 point facial landmarks (figure taken from [20])
 

Fig. 2  k-Diff-furthest face de-identification swaps original faces between a
pair of clusters in order to retain the diversity of the original face set in the
de-identified face set
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de-identified faces are tested against similarity-based face
recognition methods. The re-identification risk would average 1/N
against random matching, where N is the number of identities in
the original data set. The privacy protection ability of the k-Diff-
furthest method has been tested with the FERET dataset using
several face recognition benchmark methods [22]. Although these
face recognition methods use different face representation models
and hence the condition of no overlap between Cc and Cf cannot
always be kept in the respective model spaces, the re-identification
risk of the k-Diff-furthest de-identified faces has always remained
<0.5% for all the face recognition software tested [including PCA,
local binary patterns (LBP), HOG and LPQ] [22].

4 Proposed system
4.1 Efficient approach to de-identifying faces in videos

Let Λi ∈ P be the face instances in a set of video frames that are
related to the same person p. When the FET process defined in (1)
is applied to the individual face instances Λi, (1) can be re-written
as

Λd
i = Λi + (Λd

neutral − Λneutral), (2)

where vector Λneutral is the original neutral face of person p and
vector Λd

neutral is person p's de-identified neutral face. We refer to
the term (Λd

neutral − Λneutral) as the identity shift of person p as it
defines the changes of person p's neutral face when it shifts from
its original identity to a new identity.

As stated, all Λi ∈ P relate to the same person and hence have
the same Λneutral. Obviously, for identity consistency in the de-
identified videos all Λi ∈ P must have an identical Λd

neutral. This
means that in order to de-identify face instances of person p, we
just need to calculate the identity shift of person p once. The de-
identification of person p's face instances in a video can be
achieved frame by frame, highly efficiently, through a simple
addition of the input face instance and the calculated identity shift.
In addition, our face de-identification approach defined by (2) is
able to achieve both privacy protection and preservation of facial
expressions simultaneously. The first term of (2) transfers the facial
expression from an original face instance onto its de-identified
version, while the second term shifts the face instance to its new
identity. Furthermore, our approach inherently ensures identity
consistency after face de-identification.

Fig. 3 shows the proposed face de-identification system with an
example video input. Apart from the key operations defined in (2),
additional operations have been employed in the system to achieve
better visual quality with the de-identified video. The rest of this
section describes the functional blocks in Fig. 3. 

4.2 Calculation of identity shift

The identity shift defines the difference between a person's original
neutral face Λneutral and its de-identified version Λd

neutral. All the
existing k-Same methods as well as the k-Diff-furthest method
operate with a set of face images and is not viable with a single
face image. Furthermore, the original neutral face Λneutral is not
always available in real-life applications and searching for it in a
video sequence is complicated and can be time consuming. To
resolve these two issues, we calculate identity shift using the
following equation instead:

identity shift = Λd
∗ − Λ∗ , (3)

where Λ∗ is the nearest face to Λneutral chosen from a person-
specific set of neutral face images. This estimation has also been
used in [7] with good experimental results. We name the set of face
images {Λ∗} the donor set. In this work, the calculation of {Λd

∗} is
carried out offline using the k-Diff-furthest method in a single pass.
Although {Λd

∗} can be generated using any face de-identification
method, k-Diff-furthest has been used here to maintain
distinguishability between identities after de-identification. The
identity shift (Λd

∗ − Λ∗) for each face Λ∗ (or identity) in the donor
set is also calculated offline to increase the efficiency of the
proposed system. To minimise the initial delay in the online
operation of the system, we always use the first available video
frame of a person's face to choose its closest donor.

4.3 Feature normalisation and retainment of the original head
pose

Our proposed approach uses a generic AAM face model to make
sure it is capable of accurately representing any face instance in the
input video. Our generic AAM model is trained using face images
of various small head poses, facial expressions and illumination
conditions. As a result, the first two shape dimensions of our
trained AAM model represent the pitch and yaw of a face, while
the first three texture dimensions represent the illumination of a
face image. Considering that illumination and head pose have a
noticeable impact on the accuracy of face recognition, we
normalise the illumination, pitch and yaw of Λ1 (the first instance
of Λi) before searching for its nearest donor face Λ∗. This
normalisation is achieved by setting the parameters of the above-
mentioned AAM dimensions to zero.

The same normalisation has also been applied to the set of
donor faces such that the identity shift generated using (3) will not
alter illumination, pitch and yaw of a face. Hence, through the
calculation of (2), all these characteristics of an original face Λi

will be automatically passed to its de-identified version of Λd
i . As

for the translation and roll of Λi, we restore them on Λd
i  through

Fig. 3  Proposed system for de-identifying faces in videos
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Procrustes analysis based on three facial landmarks – the inner
corners of the eyes and the tip of the nose. The retainment of
original illumination and head pose makes the whole video frame
look much more natural when the de-identified face region is
merged with the original image background. It also makes head
movements in the de-identified sequence remain smooth.

4.4 Removal of glasses, beard and moustache through AAM
face representation

In our proposed algorithm, the de-identified neutral faces Λd
∗ in (3)

are generated using the k-Diff-furthest method. As shown in Fig. 2,
the k-Diff-furthest method de-identifies original faces in cluster Cc
by shifting them to around the centre of the opposite cluster Cf and
vice versa. The existence of glasses or heavy facial hair on even
one original face in a cluster will lead to a faded version of the
same artefact showing on its cluster centre and subsequently all the
de-identified faces around this centre. To ensure good visual
quality with our de-identified faces, we remove these artefacts
from the face images in the donor set before applying the k-Diff-
furthest method. In this work, the removal of these artefacts is
achieved through excluding face images with glasses or noticeable
facial hair from the training set of our generic AAM model. A
statistical face model such as an AAM can only represent features
that it has seen in its training set. As a result, glasses or heavy
facial hair on any unseen image will be automatically removed
when the image is projected into our specially trained AAM feature
space.

4.5 Implementing face de-identification in different feature
space

In AAM, the shape and texture of a face can be represented and
processed separately. To ensure perfect alignment, we perform de-
identification of face shapes in the AAM model space. For the de-
identification of face texture, two different approaches have been
attempted. The first approach completes the entire calculation of
(2) in the AAM feature space and then reconstructs the image
pixels based on the de-identified AAM features. The second
approach converts the identity shift calculated in the AAM space
into image pixels offline in advance and adds the resulting image to
the frames of the input video in real time. These two approaches
have similar real-time computational load with the first approach
involving one more matrix multiplication. Fig. 4 shows the result
of both approaches with three example video frames. As shown,

the de-identified video frame generated by the second approach
looks more natural than the first approach. However, the second
approach does not project the original faces into the AAM space,
so any artefacts such as glasses or a mole on the face will be passed
from the original image to its de-identified image and increase the
re-identification risk. The re-identification risk of the de-identified
images produced by these two different approaches is evaluated
and compared in Section 5.3. 

4.6 Merging with the original background

The main challenge of merging a de-identified face region with its
original background is given by the noticeable differences between
the two in terms of skin tone, illumination, direction of lighting etc.
In our work, the method of Poisson seamless cloning [23] has been
used to achieve good visual quality of the blended images at the
cost of relatively long processing time.

As the de-identification process alters the shape of the face, the
background of the original image has to be deformed to fit the de-
identified face region. In this work, the deformation of the
background is achieved using moving least squares [24].

5 Experiments
Our proposed face de-identification system has been tested on the
video sequences from the UNBC-McMaster Shoulder Pain
Expression Archive Database [25]. The UNBC-McMaster database
contains 200 video sequences of the faces of 25 subjects, where
faces in a video all relate to the same subject. We have selected 184
video sequences from the database to make sure a complete face
with the full set of 68 facial landmarks is detected in each frame.
There are on average 238 frames per video.

In our work, the donor set is composed of 780 near neutral faces
from the FERET dataset [26] that are also near frontal. Before
applying face de-identification to video sequences, de-
identification of the donor set is carried out offline in a single pass
and so is the calculation of the identity shift for each donor face.
The k-Diff-furthest method has been used to de-identify the donor
set unless specified otherwise as in Section 5.3.

To enable an accurate representation of the faces in the donor
set as well as those in the test video sequences, we train a generic
AAM with 1952 near frontal faces from the FERET dataset. As
stated in Sections 4.3 and 4.4, these faces present various facial
expressions, illumination and small head poses and are without
glasses or heavy facial hair. After principal component analysis of
the training set, eight-shape components are kept to represent 90%
of the shape variance within the training set and 59 texture
components for 90% of the texture variance.

In this work, various experiments have been conducted to
evaluate the proposed approach's ability to address the four
challenges of face de-identification in videos. The rest of this
section discusses the results of these experiments.

5.1 Preservation of facial expressions

As facial expressions are very complicated and multiple
expressions often appear on a face simultaneously, e.g. happily
surprised or sadly shocked. In the study of facial expression
analysis, action units (AUs) on human faces have been widely used
to describe facial expressions [27] due to their effectiveness. The
UNBC-McMaster dataset contains the ground truth of nine AUs
including brow-lowering (AU4), cheek-raising (AU6), eyelid
tightening (AU7), nose wrinkling (AU9), upper-lip raising (AU10),
oblique lip raising (AU12), horizontal lip stretch (AU20), lips
parting (AU25) and jaw-dropping (AU26), where the intensity of
each AU has been scored manually as an integer from 0 to 6
inclusively. To test the expression preservation performance of our
system, the intensity level of each AU is compared between the
original video frames and their corresponding de-identified frames.
The AU intensity of a video frame is predicted by OpenFace [21],
which generates AU intensity as real numbers. 

Fig. 5 shows the average absolute difference between the AU
intensities calculated by OpenFace and the ground truth for the
original video frames as well as the de-identified frames generated

Fig. 4  Result of both texture transfer approaches
(a) Original video frame, (b) De-identified video frame whose texture has been
transferred in the AAM feature space, (c) De-identified video frame whose texture has
been transferred in raw pixel space. Figures (b) and (c) are using the same de-
identified face shape which is different from (a). Figure (c) contains more texture
details of (a), e.g. wrinkles and gaze
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in the pixel space and the AAM feature space, respectively. The
difference values are averaged over all the 43,734 test video
frames. Fig. 5 shows that, apart from AU7 eyelid tightener and
AU10 upper lip raiser, the AU intensity values of the de-identified
frames have remained almost the same as of their original frames.
For AU10, the AU intensity values predicted from the de-identified
video frames are closer to the ground truth than their original video
frames. Even in the worst case of AU7, the AU intensity has
remained within the same integer level after face de-identification.

As shown by the blue bars in Fig. 5, OpenFace is not always
accurate and have found some AUs hard to predict. Considering
this, we have performed the same AU intensity comparison test
with only the frames that OpenFace can predict correctly, i.e. when
the rounded-up value of OpenFace's prediction matches with the
ground truth values. Fig. 6 shows the comparison results. Again,
there is hardly any change in AU intensity for AU9 nose wrinkler
and AU20 lip stretcher. The highest difference is still with AU7 but
at a negligible level of 0.3 out of 6. Example video frames in Fig. 6
are included to demonstrate the visual impact of the average
intensity difference obtained for each AU. As seen from these
example frames, there is hardly any visual difference in the facial
expressions before and after face de-identification. 

5.2 Identity consistency of the de-identified videos

Each UNBC-McMaster video sequence contains face instances of
only one person. To evaluate identity consistency within each de-
identified video, i.e. to test whether the face instances within a de-
identified video still all relate to the same identity, we have de-

identified every UNBC-McMaster video independently and
conducted a ten-fold cross validation on the de-identified faces
using the LBP8, 2

u2  face descriptor in [28]. The face images used in
this experiment have been cropped out, aligned with the inner
corners of the eyes and the tip of the nose, and resized to 100 × 100
(see Fig. 7 for some examples). The result shows that 99.98% of
our de-identified faces are top-rank matched as another de-
identified face from the same video and therefore of the same
original identity. 

We have also evaluated our method's capability of preserving
identity consistency across videos. Here, we grouped UNBC-
McMaster videos according to their identities given by the dataset
and used the same identity shift to de-identify all the videos in the
same group. The ten-fold cross validation result shows that 99.99%
of the de-identified faces are top-rank matched as another de-
identified face from the same identity group, where 97.57% of the
correct matches are found within the same video and 2.43% are
found from another video of the same original identity.

5.3 Privacy protection ability

De-identification of the donor set can be done using any face de-
identification method and we have tested a few including the k-
Diff-furthest method, the benchmark k-Same method and three face
swapping methods. The three face swapping methods follow the
study in [29], where Rank-i face swapping replaces an original face
with its ith closest face chosen from a donor set of size N. Our
donor set consists of N = 780 faces from the FERET dataset. All
43,734 original faces extracted from the UNBC-McMaster videos
plus our donor set have been used to form the face gallery in the re-
identification test. The donor set has been included in the gallery to
increase the number of subjects. Otherwise, the re-identification
risk even by random matching would be 1 out of the 25 subjects of
the UNBC-McMaster database. Eigenfaces [30] and LBP [28] face
recognition software have been used to match the de-identified
faces of the UNBC-McMaster videos with those in the face gallery.
For each face de-identification method being tested, all the 43,734
de-identified faces before Poisson blending and background
merging have been used as the probe images. Again, the face
regions are cropped out, aligned and resized to 100 × 100. 

Fig. 5  Mean absolute errors of OpenFace AU detection results of the
original frames and the de-identified frames, in comparison with the AU
intensity ground truth provided by the dataset

 

Fig. 6  Average absolute difference in AU intensity between original frames and their de-identified frames, with example frames demonstrating that the
average difference with each AU causes hardly any visible changes to the facial expressions

 

Fig. 7  Examples of the cropped and resized face images used in our
privacy protection test

 

Table 1 Rank-1 re-identification risk of the de-identified video frames
Texture transfer in feature space Texture transfer in pixel space

k-same, % k-DFa, % Rank-1, % Rank-200, % Rank-N, % k-same, % k-DFa, % Rank-1, % Rank-200, % Rank-N, %
eigenfaces 3.83 2.56 4.78 2.67 0.51 23.28 16.76 21.20 19.29 4.66
LBP 2.66 1.29 1.98 1.74 0.95 20.95 13.59 19.36 13.09 8.33
ak-DF stands for k-Diff-furthest.
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Table 1 shows the rank-1 re-identification risk of the de-
identified faces and compares the privacy protection performance
of the above-mentioned face de-identification methods as well as
the two texture transfer approaches described in Section 4.5.
Rank-1 re-identification risk in Table 1 relates to the cases when a
de-identified video frame has been matched with any frame from
its original video sequence.

Results in Table 1 show that when implementing (2) in the
AAM feature space all the tested face de-identification methods
have been able to provide sufficient privacy protection against
similarity-based face recognition software. Transferring the face
texture in pixel space gives the de-identified faces more visual
details of the original facial expression. However, as expected, it
sacrifices the privacy protection performance as more original face
texture details such as wrinkles are also transferred to the de-
identified faces.

As shown in Table 1, the k-Diff-furthest method has
outperformed the k-Same method in both the AAM feature space
and the pixel space. The performance of Rank-1 face swapping is
comparable to that of k-Same. With our donor set of 780 faces, the
performance of k-Diff-furthest is comparable to Rank-200 face
swapping. Rank-N face swapping has generated the lowest re-
identification risk. However, Rank-N face swapping tends to
choose the same outliers in the donor set to replace the original
faces. In our experiments, Rank-N has used only 14 faces to
replace the entire donor set of 780 faces with 625 faces (80%)
sharing the same five new identities. The mechanism of the k-Diff-
furthest method guarantees that each original face is replaced with
a unique de-identified face and the set of de-identified faces
remains as diverse and distinguishable as the original set [6].
Furthermore, both the k-Same and k-Diff-furtheset methods replace
an original face with a synthesised face while the three face
swapping methods use a natural face chosen from a donor set.

5.4 System efficiency

We have run our experiments in MATLAB 2016a on an Intel Core
i7-4770 CPU at 3.40 GHz. It takes on average 0.082 s per video
frame (i.e. 12.2 frames/s) to extract an original face instance,
generate the de-identified face and blend it into the background of
the original frame. The face de-identification step defined in (2),
i.e. the simple addition, takes <1% of the overall processing time,
face warping to combine the de-identified face shape and texture
takes 25%, Poisson blending 10% and background warping 25%.
According to the comparison study presented in [31], MATLAB is
between nine and 11 times slower than the best C++ executable.
According to [32], Pyrex/Cython is 12 times faster than MATLAB
for solving Laplace's equation and C++ is 13.4 times faster. It is
easy to see that with a more efficient programming language such
as C++, the proposed system can easily support real-time face de-
identification in videos at the highest standard video frame rate of
60 frames/s.

5.5 Further remarks

In this section, we have shown that the proposed approach is able
to achieve expression preservation with the particular set of test
videos. However, it is worth mentioning that these results depend
on accurate annotation of the facial landmarks and this can be
challenging for faces with large poses. Furthermore, all video
frames considered in our experiments display a full set of
landmarks. When the head pose becomes so large that some of the
facial landmarks become invisible, additional steps are required to
establish landmark correspondence between the identity shift and
the original video frame in order to implement the addition of the
two as defined in (2).

In our proposed method, identity consistency is achieved by
applying the same identity shift to all face instances of the same
person. However, in practice, the precise identities of the original
face instances are not always known and the scene may switch
between characters (identities) throughout a sequence. When this is
the case, the identity consistency performance of our approach will
heavily depend on the accuracy of the face identification method
employed.

The basis of privacy protection of our proposed approach is the
k-Diff-furthest method, which demands no overlap between the
pair of clusters formed in each iteration. This condition cannot be
guaranteed by the subsequent FET process in our approach.
Although our experimental results show good privacy protection
performance, our proposed approach does not provide theoretical
guarantee of anonymity. Finally, while the proposed approach
seeks to thwart face recognition software, correct identification is
still possible by recognising, for example clothes, behaviour, or
contextual information.

6 Conclusion
To address the challenges of face de-identification in videos, we
have proposed a highly efficient approach that achieves privacy
protection and preservation of facial expressions simultaneously
through the simple operation of adding a pre-calculated identity
shift to the original face instances in the input video. The use of the
same identity shift for each subject in the original videos
guarantees identity consistency in the de-identified video
sequences. It also allows the dynamics of facial expressions
presented in an original video to be preserved in the de-identified
video. Computation time analysis has shown that the proposed
approach can be used to perform face de-identification on videos at
the highest standard frame rate.
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