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ABSTRACT 

 
Objective To develop paediatric gait standards in healthy children and young 

people. 

Methods This observational study builds on earlier work to address the lack of 

population standards for gait measurements in children. Analysing gait in children 

affected by neurological or musculoskeletal conditions is an important component of 

paediatric assessment but is often confounded by developmental changes. The 

standards presented here do not require clinician expertise to interpret and offer an 

alternative to developmental tables of normalised gait data. Healthy children aged 1-

19 years were recruited from community settings in London and Hertfordshire, U.K. 

The GAITRite ® walkway was used to record measurements for each child for 

velocity, cadence, step length, base of support, and stance, single and double 

support (as percentage of gait cycle). We fitted generalized linear additive models for 

location, scale and shape (gamlss). 

Results We constructed percentile charts for seven gait variables measured on 624 

(321 males) contemporary healthy children using gamlss package in R.  A clinical 

application of gait standards was explored. 

Conclusion Age-related, gender-specific standards for seven gait variables were 

developed and are presented here. They have a familiar format and can be used 

clinically to aid diagnoses, and to monitor change over time for both medical therapy 

and natural history of the condition. The clinical example demonstrates the potential 

of the GOS-ICH Paediatric Gait Centiles (GOS-ICH PGC) to enable meaningful 

interpretation of change in an individual’s performance, and describes characteristic 

features of gait from a specific population throughout childhood. 

 



Keywords: gait, child development, gamlss, walking velocity, cadence, base of 

support, double support. 

 

  



INTRODUCTION 

Gait is widely assessed in paediatrics, as achievement of walking is a developmental 

milestone and reflects maturation of a healthy nervous system (1). Changes in gait 

patterns occur as a child matures and grows, but may also reflect pathological 

changes in neurological or musculoskeletal systems. Gait assessment may 

contribute to diagnosis, describe the natural history, or categorise the severity of 

pathology (2, 3). It is also used as an outcome to demonstrate the efficacy of 

surgery, therapy or medications (4, 5). 

 

Clinicians need a robust measure of gait which is valid and reliable in children, and 

sufficiently specific to detect changes in performance over time. However, there is a 

lack of easy to use, objective assessment for clinical settings. Charts displaying gait 

measurements as a function of height, or speed, have been proposed to simplify 

interpretation (6, 7). However, normative data for clinical gait measures is typically 

tabulated (5). Developmental centile charts of gait measures offer a solution to 

assess individual children’s evolution. 

 

In this paper we construct age-related, gender-specific standards that reflect key 

determinants of normal gait (8): velocity, cadence, step length, base of support, and 

stance, single and double support as percentage of the gait cycle. Self-selected 

velocity was used because it is a good surrogate of functional capacity, and is the 

least variable walking speed (9). Cadence, or rate of stepping, has a complex 

interaction with velocity and stride length. It appears that children use characteristic 

combinations of cadence and stride length to modify their speed (6). Step length, 

base of support, and double support together alter the challenge to equilibrium 



during gait, and may reflect balance ability. Base of support was therefore included 

despite concerns about the reliability (10, 11). 

 

We build on the work of Alderson and colleagues who used the LMS method (6), to 

produced reference centiles for gait measures from a sample of 137 children (81 

male) aged between 4 and 14 years (12, 13). The centiles reflect the distribution of 

each gait measurement as it changes according to a covariate, age. In this paper we 

fit models in the gamlss family. These generalized additive models for location, 

scale and shape (14), allow fitting of smooth age-related changes in kurtosis as well 

as in location, dispersion and skewness.  

 

This study aimed to develop paediatric gait standards for healthy children and young 

people. The proposed standards enable clinicians to objectively quantify 

improvements associated with medical therapies, but, crucially, to also identify 

deterioration in affected children leading to timely intervention. 

 

METHODS 

Participants 

Typically developing children between the ages of 1 – 19 years were recruited from 

local schools, play groups, activity and sports clubs in Greater London and 

Hertfordshire, UK. Parents of pre-school children were approached directly by the 

researcher, whilst older children had information packs distributed by class teachers 

or group leaders. Children were recruited between 2004-2006 and 2012-2014 using 

a convenience sampling approach stratifying by age and sex. We aimed to recruit at 

least 15 children of each sex in one-year age groups. Data from 540 children in 18 



age groups was considered to be sufficient to produce acceptable standards. Data 

on participants’ ethnicity were not collected.  

 

Two experienced paediatric physiotherapists (LA and JK) collected the data using 

two Platinum GAITRite® walkways, with software versions 4.3 and 4.7 (CIR Systems 

Inc). Summary data were compared to ensure consistency between walkways and 

testing epochs. To participate in the study the children had to be ambulant and able 

to walk 100m independently.  Children who had undergone surgery or sustained a 

lower limb injury in the previous six months, or had existing neurological or 

orthopaedic diagnoses were excluded.  Ethical approval for the study was provided 

by the Barnet Enfield and Haringey REC 04/Q0509/49 in October 2004 and 

Bloomsbury Research and Ethics Committee REC 11/LO/1889 January 2012. 

Written consent was obtained from the parents or carer, or the children themselves if 

they were over 16 years old. 

 

Equipment 

The GAITRite® (CIR systems Inc.) is a 5m electronic pressure sensor walkway 

connected via USB to a computer (15). 18 432 sensors are embedded in a grid with 

an active measurement area 61cm by 488cm. Mechanical pressure from foot contact 

activates the sensors which are sampled at a rate of 80Hz, and data is used to 

generate distance and timed gait data.  It has been shown to be an effective 

research tool (16). 

 

 

 



Measurements 

The GAITRite® software processes raw data into footfalls and presents temporal and 

spatial (TS) gait variables.  Concurrent validity of temporal and spatial measures has 

been supported with both 3D motion analysis and a wearable sensor (17, 18). 

Reliability has been explored in adults, with reported limits of agreement +/-

11cm/sec for velocity, and Coefficient of Variation (CVME) 1.8-3.5%  (16, 19). The 

level of precision for velocity measurements in children is comparatively larger, but 

still considered acceptable; 4-11 years CVME 7.5-7.8% (11) and 4-14 years CVME 

10.8% (10). The CVME’s reflect the normal variation in paediatric gait patterns (10, 

11) which is incorporated within the standards. 

   

Base of support and foot progression angle are associated with wide limits of 

agreement in all age groups. The precision of these measurements is affected by the 

spatial resolution of the GAITRite® walkway, a particular problem in young children. 

In the current paper, base of support was included to allow comparison with previous 

work, but foot progression angle was omitted as developmental changes have been 

previously described in detail and have a relatively large measurement error (20, 21). 

Ultimately the seven measurements analysed in this study are widely reported gait 

measurements (5, 22), and were selected to balance clinical utility with reliability. 

 

Normalisation 

Normalisation of gait data has been proposed to remove the influence of changing 

body dimensions on gait measures, thus reducing the age-related variability (23, 24). 

This process of normalisation assumes a simple relationship between, for example, 

leg length and step length, and fails to consider the relative contributions of 



neuromaturation and anthropometric growth and extrinsic factors that influence 

developmental trajectory (25, 26). 

 

The use of continuous standards to describe the distribution of specific gait variables 

offers an alternative analysis. This allows the clinician to look for generality in the 

distribution, not specificity, and avoids the need to normalise or produce non-

dimensional values. A child’s gait can be interpreted against the continuous 

standards and any changes in performance with injury, therapy or growth can be 

interpreted within the context of normal developmental changes. 

 

Study protocol 

We followed the protocol of Alderson (12). The GAITRite® walkway was positioned 

with sufficient space to ensure that acceleration/deceleration occurred outside the 

active recording area. Following one practice walk, children performed three walks at 

each of self-selected, fast and slow walking speeds. In this paper, we only analyse 

self-selected walking speed which was always recorded first. All participants walked 

unaided with bare feet to remove the influence of different footwear (27). 

 

Performance of three consecutive walks at each speed ensured that an adequate 

number of steps (8-12 steps) were recorded to provide an accurate representation. 

Previous work had shown eight steps was a sufficient number to stabilize variation in 

key walking measurements (12).  Footfalls touching an edge of the walkway were 

excluded, as were walks with less than four complete steps (12, 15). 

 



The GAITRite® software automatically combines the three repetitions and provides 

an average which we used for analysis. Previous work comparing unprocessed step 

values with averages of three repeat walks demonstrated similar means, with greater 

variability associated with individual step data (12). Following testing for any 

significant differences, the data for left and right sides were combined. The average 

of the two sides was used for step length and base of support. Double support, 

single support, and stance percent of gait cycle were expressed as the maximum 

value of either side as they were already standardized by gait cycle. 

 

Statistical methods 

The LMS method summarises the age-related distribution of a particular measure, 

using three curves describing location, coefficient of variation and degree of 

skewness (28). These curves are fitted to the data as cubic spline, and the extent of 

smoothing can be expressed in terms of equivalent degrees of freedom, which 

reflects a trade-off between goodness-of-fit and smoothness  (12, 29). Models in the 

gamlss class allow for a curve on a fourth shape parameter, normally kurtosis. We 

used the four-parameter Box-Cox-t distribution (14, 30). The optimal number of 

degrees of freedom in each of the four components of the models was chosen by 

minimising the Bayesian Information Criterion (BIC) (31). All calculations were 

performed using the R language and environment for statistical computing, version 

3.4.2 (32). 

  

Gait measurements collected as part of an observational study of children with spinal 

lipoma were processed using the same protocol (25). Data were imported to R and 



plotted on the corresponding standards, to illustrate the clinical application of the 

standards. 

 

RESULTS 

We collected data from 624 children (303 girls and 321 boys). It was more difficult to 

recruit in the first two age groups, as many didn’t meet the inclusion criteria. We 

analysed seven gait variables:  Velocity (cm/s), cadence (step/min), step length (cm), 

base of support (cm), and single support, double support, and stance (percent gait 

cycle).  Data from one child was excluded as he/she was a new walker and failed to 

reach a minimum velocity to enable analysis. Table 1 shows demographics and age- 

and gender-related means and standard deviations of anthropometric data and step 

counts. We observed a larger variation in step counts in the very young participants 

who were less able to follow the protocol and more likely to step outside the 

recording area. 

 

Table S1 in supplementary material shows the optimal degrees of freedom for each 

component of the gamlss models for each variables. The resulting models were 

judged to balance an appropriate degree of smoothing and fit of the curves to the 

data, however an adjustment reducing one degree of freedom in each gender was 

applied to base of support to avoid over fitting.  The age-related and gender-specific 

standards are presented in Figures 1a-c for velocity, cadence and step length, and in 

supplementary material for base of support, stance, single and double support 

(Figures S1a to S1d). Tables S2a to S2g in supplementary material show the 

gender-specific centiles for selected ages. 

 



Figure 2 shows sequential velocity measurements for a child with spinal lipoma, 

which remained between the 25th and 75th centiles.  Figure 3 plots velocities for a 

group of 18 children with spinal lipoma (33). In this example, older children’s 

velocities tended to be tightly concentrated below the mean, whilst patients under 10 

years of age had a more typical spread. 

 

DISCUSSION 

Assessment of the outcome of therapeutic interventions, or of disease progression in 

paediatrics is increasingly considered within the framework of the International  

Classification of Functioning, Disability and Health in Youth and Children ICF-CY 

(34, 35). Mobility and gait analysis are important outcomes within the activity domain, 

however user-friendly, standardised, quantitative tools have remained elusive, and 

was the driver for developing the GOS-ICH Paediatric Gait Centiles presented in this 

paper. 

 

These standards describe typical changes in gait performance throughout childhood, 

whilst accommodating the observed variation in gait measurements as children 

develop at different rates with different morphologies. This analysis builds on a 

previous study (12, 13), which fitted age-related standards to data from 137 children. 

To our knowledge, the sample described in the current study (624) is the largest 

study analysing paediatric GAITRite® variables. In comparison the 1000 norms 

project included 300 Australian children aged from three to nineteen years (5). 

 

Our age-continuous analysis offers something novel compared to group-based 

analysis, (36, 37). Measurement centiles allow comparison of performance to a 



standard rather than another discrete data point with associated measurement error. 

Sequential changes in an individual’s performance that are less than described limits 

of agreement (10, 16, 19), may still be clinically relevant when taken together and 

tracked against population centiles (see Figure 2).  

 

The increased variability in measurement of base of support is well recognised, 

reflecting both magnitude of measurement relative to tool precision, and normal 

variation (38). This was reflected in the optimised population standards. An 

adjustment was carried out to correct for overfitting in this variable only. 

 

The clinical utility of these standards depends on their simplicity and ease of use. 

Developmental changes can be quickly understood by the clinician, and importantly, 

by families. Subtle gender differences in gait during puberty can also be explored,  

complementing population studies with wider age ranges exploring gait changes 

across the lifespan (5). These standards are also able to identify specific deviations 

from a typical developmental trajectory across a broad spectrum of disorders.  

Clinical applications include the ability to characterize diseased children, to screen 

for deterioration, or to explore effectiveness of interventions such as surgery, novel 

drug therapy, or rehabilitation. 

  

Simplified gait standards from the earlier analysis of 137 children, have been used to 

track performance in children with haemophilia, to explore the cumulative impact of 

progressive joint bleeds on gait, and to allow intervention before secondary gait 

compensations emerge (2). The standards have also shown potential to track the 

performance of children with spinal lipoma (Figure 3), and to support the decision 



making surrounding untethering surgery, and guide rehabilitation (33).  Medical 

management of metabolic disorders relies on accurate functional gait outcomes, 

often used as primary endpoints in the evaluation of efficacy of novel therapies; for 

example enzyme replacement and gene therapy. The GAITRite® measurements 

can easily be combined with capacity measurement, such as the six-minute walk test 

(39), and with wearable gait trackers, a combination of outcomes that are strong 

contenders for inclusion in future trials. 

 

Limitations 

Children living in different geographical areas may exhibit different developmental 

gait patterns. These standards are not necessarily representative of the United 

Kingdom (UK) population. Summary gait statistics are influenced by differences in 

morphology (40). Activity patterns may also contribute to differences; children 

recruited from the Australian population (5) may be more active than their UK 

counterparts. Despite potential differences in sample characteristics, the distribution 

of data at each specific age is comparable with the summary mean and dispersion 

data reported elsewhere (5). 

 

Comparisons between individual children require normalization, but this is not 

necessary to construct standards for healthy children. In the same way that head 

circumference is not standardised to height percentiles, we developed standards that 

were independent of body size to prevent the loss of the “depth” of the normal data. 

 

Random sampling was not attempted because it is not pragmatic to recruit large 

numbers of healthy children as part of a population sampling frame.  



CONCLUSION 

This paper presents a simple way for clinicians describing and assessing gait 

patterns in healthy children. This has been shown to be a useful way to screen 

children with different pathologies to identify early changes in gait. The benefit of 

continuous analysis of gait changes enables an individual’s performance to be 

tracked against expected development. Similar to growth centiles, the clinician does 

not need to consult detailed tables to compare a measurement to a specific mean 

and measure of dispersion, but can identify at a glance how the child’s gait is 

currently functioning and how this has changed relative to previous measurements. 

  



What is known:  

1) Achievement of walking reflects maturation of a healthy nervous system and is a 

key rehabilitation goal, and outcome in clinical trials 

2) Normal developmental changes in gait confound the interpretation of performance 

change in response to therapy or associated with recovery  

3) Accurate measurement of gait which facilitates clinical interpretation and provides 

objective outcomes for clinical trials is challenging 

What this paper adds: 

1) Novel analysis using the  gamlss family of models to develop new standards for 

paediatric gait, to facilitate interpretation of data in a clinical setting 

2) Age-related, gender-specific standards for seven gait variables are presented in a 

familiar display and allow clinicians to objectively quantify improvements 

associated with medical therapies  

3) Gait standards are a useful tool to track natural history and identify deterioration 

to allow timely interventions 
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Tables and Figures 

Table 1 – Age- and gender-related means and standard deviations of anthropometric 

variables.  

Table S1 (supplementary) – Degrees of freedom for splines in gamlss components 

in each variable 

Tables S2a to S2g(supplementary)– summary of standards by age and gender  

 

 

Figures 1a to 1c – Age-related standards by gender for velocity, cadence and step 

length 

Figure 2 – Sequential velocity measurements of a boy with spinal lipoma against 

population standard 

Figure 3 – Cross-sectional velocity measurements for 18 boys with spinal lipoma 

against population standard 

Figures S1a to S1d (supplementary) – Age-related standards by gender for base of 

support, stance, single and double support  



*Frequency of Male and Female in each age group. Mean (standard deviation) for each of 
age, height, weight, (L)&(R) leg length, leg length difference, step count, by age and gender  

Table 1: Age- and gender-related means and standard deviations of anthropometric 
variables 

A
G
E 

Freq* Age (years) height (cm) weight (kg) left leg length 
(cm) 

right leg length 
(cm) 

leg length 
difference 

step count (No of 
steps) 

F M F M F M F M F M F M F M F M 

1 14 12 1.53 
(0.29) 

1.59 
(0.19) 

77.83 
(3.28) 

80.33 
(3.39) 

10.84 
(0.88) 

12 
(1.67) 

34.86 
(2.11) 

36.19 
(2.15) 

34.86 
(2.11) 

36.19 
(2.15) 

0   
(0.14) 

-0.042 
(0.14) 

36.36 
(17.3) 

37.92 
(22.13) 

2 8 10 2.46 
(0.40) 
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