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Abstract—Polynomial functions have been the main barrier
restricting the circuit realization and engineering application
of multi-wing chaotic systems (MWCSs). To eliminate this
bottleneck, we construct a simple MWCS without polynomial
functions by introducing a sinusoidal function in a Sprott C
system. Theoretical analysis and numerical simulations show that
the MWCS can not only generate multi-butterfly attractors with
an arbitrary number of butterflies, but also adjust the number
of the butterflies by multiple ways including self-oscillating
time, control parameters, and initial states. To further explore
the advantage of the proposed MWCS, we realize its analog
circuit using commercially available electronic elements. The
results demonstrate that in comparison to traditional MWCSs,
our circuit implementation greatly reduces the consumption of
electronic components. This makes the MWCS more suitable
for many chaos-based engineering applications. Furthermore,
we propose an application of the MWCS to chaotic image
encryption. Histogram, correlation, information entropy, and key
sensitivity show that the simple image encryption scheme has
high security and reliable encryption performance. Finally, we
develop a field-programmable gate array (FPGA) test platform
to implement the MWCS-based image cryptosystem. Both the-
oretical analysis and experimental results verify the feasibility
and availability of the proposed MWCS.

Index Terms—Chaotic system, image encryption, FPGA im-
plementation, nonlinear circuit, multi-butterfly attractor, multi-
stability

I. INTRODUCTION

HAOTIC behavior is a major discovery of human natural

science in the 20th century, which has many specific
properties like ergodicity, unpredictability, and initial state
sensitivity [1]. Generally, dynamical systems with chaotic
behaviors are called chaotic systems. Thanks to the chaotic
properties, chaotic systems have been widely studied and
applied in many real-world scenarios, such as weather pre-
diction, industrial control, and market analysis [2-3]. In par-
ticular, they are often used in secure communication [4-
5], as chaotic systems and cryptosystems have the same
properties in unpredictability and initial state sensitivity. Since
the well-known Lorenz chaotic system was discovered in 1963
[6], great efforts have been devoted to the development of
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various new chaotic systems [7-8], such as multi-scroll chaotic
systems (MSCSs) [9], multi-wing chaotic systems (MWCSs)
[10], hyperchaotic systems [11], and chaotic systems with
multistability [12]. Among them, the MSCSs and MWCSs
have more flexible adjustability and higher complexity, which
makes them have a more promising application for informa-
tion encryption [13-14]. As we all know, a common method
to construct MSCSs is based on the double-scroll Chua’s
circuit model [9]. That is to say, the design of MSCSs is
not a difficult task. But MWCSs are hard to be realization
based on the double-wing Lorenz-like system in the same
way done in Chua’s circuit. This is because the nonlinearity of
the Lorenz-like system comes from its cross-product terms or
square terms. Thus, the design of MWCSs is still challenging
work.

Over the past few decades, there have been many methods
to develop MWCSs owning multi-wing attractors. In 2002,
Elwakil et al. [15] constructed the first four-wing chaotic
system by introducing one binary switch in a modified Lorenz
system. One year later, Chen and Liu [16] obtained another
four-wing butterfly attractor from a new Lorenz-like system.
From then on, the realization of MWCSs has greatly stimu-
lated the researcher’s interest, and a large number of different
types of MWCSs have been proposed [17-18]. During this
period, Yu et al. presented many important theories on the
construction of MWCSs and successively put forward a series
of nonlinear polynomial function control methods including
a multisegment quadratic function method [19], symmetric
piecewise-linear function method [20], and switching control
function method [21]. The basic idea is that the nonlinear
polynomial function would increase the number of index-2
equilibrium points where the wings could be produced. In
recent years, more and more MWCSs have been presented by
using other polynomial functions, for example, state feedback
controller function [22], piecewise hysteresis function [23],
sign function [24], and so on [25-26]. Nevertheless, in these
efforts, there are three major drawbacks: (i) Both the system
model and algorithm are very complex, as the nonlinear
function has cumulative polynomials; (ii) It is inconvenient to
adjust the number of the wings because of the mutual effect
of multiple control parameters; (iii) The implementation of
the circuit is more and more complicated with the increase of
wings.

Recently, numerous efforts are devoted to developing new
MWCSs via using non-function control methods [27]. Partic-
ularly, by applying a multi-level pulse control method, Hong
et al. [28-29] proposed multiple new MWCSs with multi-
butterfly attractors. Such method significantly simplifies the
circuit realization of multi-wing-type chaotic systems because



of not using nonlinear polynomial functions. However, the
drawback in the system model and algorithm has not been
fully overcome, as the used multi-level pulse has also multi-
ple control parameters. Furthermore, to obtain more wings,
multiple pulse signal generators with different levels are
required simultaneously, which greatly increases the difficulty
of hardware circuit implementation.

In fact, the physical implementation of chaotic systems
is important and necessary to the chaos application. Up to
now, some MWCSs mentioned above have been physically
realized by using analog circuits or field-programmable gate
array (FPGA). However, these implementations are quite
difficult because of the existence of polynomial functions with
multiple control parameters. Particularly, both their circuits
and algorithms will become more and more complex with the
increase of wings or butterflies. Therefore, finding a novel
MWOCS that can avoid the existence of polynomial functions
is still a challenging and significant research topic.

This paper proposes an extremely simple MWCS without
any polynomial functions. Since the new system has no
polynomial functions, its mathematical model, algorithm, and
circuit are greatly simplified. Theoretical analysis, practical
application, and experimental results demonstrate the ex-
cellent performances of the proposed MWCS. This paper
main includes two theoretical novelties and one experimental
contribution:

1) An extremely simple MWCS with no polynomial func-
tions is designed, and its unique dynamics properties
are revealed.

2) A MWCS-based image encryption scheme is proposed,
and its various security metrics are analyzed.

3) The image cryptosystem based on the MWCS is imple-
mented and demonstrated on the FPGA platform.

The rest of this paper is arranged as follows. Section II
presents a MWCS and investigates its dynamical properties.
Section III realizes the analog circuit of the MWCS. Section
IV proposes a MWCS-based image encryption scheme. Sec-
tion V implements the MWCS-based image cryptosystem on
the FPGA platform.

II. SYSTEM INTRODUCTION AND DYNAMICS ANALYSIS

In general, the realization of multi-wing attractors must be
based on a double-wing Lorenz-like chaotic system. Here we
construct a new MWCS based on the famous Sprott C system
with a double-wing butterfly attractor [30]. The MWCS is
described as

i =a(y—2)
Y = brsin(z) , (1
z=c—y>?

where x, y, z are three state variables, and a, b, ¢ are three
positive system parameters. It is evident that system (1) has
only five terms containing two nonlinear terms bxsin(z) and
2, and has no extended polynomial functions. Therefore, the
proposed system enjoys an extremely simple mathematical
model as compared with the existing MWCSs that own
polynomial functions. In the following subsections, we will try
to study its dynamics properties for exhibiting its uniqueness.

A. Stability for Infinite Discrete Equilibrium Points

In this subsection, according to the heteroclinic loop the-
orem [28], the equilibrium points and their stabilities are
revealed by theoretical analysis and graph description. In
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system (1), letting ©=y=2=0, the equilibrium points of the
system can be computed as

E = (2" = +Ve,y* = £/ec, 2" = kn), (2)

where k=0, £1, £2, .... Clearly, the presented MWCS has
infinite discrete equilibrium points. And the stability of all
the equilibrium points can be determined by eigenvalues of
following the Jacobin matrix.

oz 9z Oz

oy 9 | [—a a0
J=| 9 g—s g4 |=| bsin(z) 0 bx cos(z)
9z 9z 0z 0 -2y 0
ox Jy 0z
(3)
Substituting Equation (2) into Equation (3), we get
—a a 0
Jip=10 0 +by/ccos(km) | . 4
0 F2v/c 0
Both J; and J, have the same characteristic equation:
(A + a)(A\? 4 2bccos(k)) = 0. 5)

In Equation (5), there are different eigenvalues under different
parity of k. If k is an odd number, the eigenvalues of Equation
(5) can be given by

)\1 = —a, )\2 =V 2()67 )\3 = —v2bc. (6)

Consequently, in this case, the corresponding equilibrium
point in Equation (2) is an unstable index-1 saddle point. If
k is an even number, the eigenvalues of Equation (5) can be
obtained by

)\1 = —a,)\g =V 2bcz’,)\3 = —+/2bci. (7)

So, in this case, the corresponding equilibrium point in
Equation (2) is a nonhyperbolic equilibrium point.
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Fig. 1: Equilibrium points distribution of system (1). (a) k-z
plane. (b) x-z plane.

Next, the distribution of the equilibrium points is discussed
by graph description. In Equation (2), the equilibrium points
of the system are determined by the equation z=k7. Namely,
the equilibrium points in the z-axis will orderly extend
with the increase of k. It should be pointed that unlike the
previous MWCSs, all equilibrium points in system (1) exist
in the system itself, rather than being extended by adding
additional polynomial functions. Thus, the new system does
not require additional polynomial functions to yield multi-
butterfly attractors. Let k=0, +1, +£2, £3, +4, +5, Fig. 1
illustrates the distribution of the equilibrium points on the k-
z plane and z-z plane with the increase of k. We can see
that the equilibrium points of system (1) are extended along
the z-axis with the increase of k. And all equilibrium points
are symmetric about the z-axis, which forms infinite pairs of
equilibrium points with the same stabilities. Moreover, the



nonhyperbolic equilibrium points and the unstable index-1
saddle points are alternately extended along z-axis direction
in the z-z plane.

B. Parameter c-dependent Bifurcation Dynamics

The above subsection shows that system (1) has infinitely
many equilibrium points that are related to the parameter
c. In this subsection, the dynamic characteristics of ¢ are
investigated by using bifurcation diagram and Lyapunov ex-
ponents. Set the parameters a=1, b=2.1, the initial values (z,
Yo, 20)=(0.1, 0.1, 0.1), we can plot the bifurcation diagrams
and Lyapunov exponents of system (1) with respect to the
parameter c€(0, 1.8), as shown in Fig. 2, where xmax is the
maxima of the x variable. Fig. 2(a) shows that system (1) ap-
pears forward period-doubling bifurcation with the increase of
parameter c. When c increases to 0.055, system (1) enter into
an intermittent chaotic area until ¢=0.62. With the ¢ further
increase, the chaotic state is degenerated to a periodic state
by tangent bifurcation. However, the periodic state quickly
evolves into a stable chaotic area by forward period-doubling
bifurcation route again. Finally, the chaotic state degenerates
to a stable point through the tangent bifurcation route at c=1.7.
The Lyapunov exponents in Fig. 2(b) are basically consistent
with the dynamical behavior on the bifurcation in Fig. 2(a).
The phase portraits of the attractors of the system (1) with
different values of c¢ are further presented to illustrate its
dynamic evolution with the parameter, as shown in Fig. 3. It
is obvious that system (1) generates different attractors from
initial values (0.1, 0.1, 0.1), for ¢=0.048, 0.051, 0.01, 1.2,
respectively.
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Fig. 2: Bifurcation diagrams and Lyapunov exponents of
system (1) for a=1, b=2.1, c€(0,1.8). (a) Bifurcation diagram.
(b) Lyapunov exponents.
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Fig. 3: Phase portraits of attractors in system (1) with a=1,
b=2.1, and different parameter c. (a) Period-1 attractor with
¢c=0.048. (b) Period-2 attractor with ¢=0.051. (c) Chaotic
attractor with ¢=0.1. (d) Chaotic attractor with c=1.2.

C. Self-oscillating Time-dependent Multi-butterfly Attractors

Assuming that the system parameters a=1, b=2.1 and
¢=0.45, initial states (xg, Yo, 20)=(0.3, 0.3, -14), and simu-
lation time ¢s=800 time units, we can obtain a basic double-
wing butterfly attractor by solving system (1) with the ODE45
algorithm in Matlab R2017a, as shown in Fig. 4. Interestingly,
the trajectory of the basic butterfly attractors is attracted by

a pair of nonhyperbolic equilibrium points, which is different
from some traditional butterfly attractors around unstable
index-2 saddle focus.
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Fig. 4: Basic double-wing butterfly attractor of system (1)
with system parameters a=1, b=2.1, ¢=0.45, initial states (x,
Yo, 20)= (0.3, 0.3, -14), and simulation time ¢s=800. (a) Phase
portrait on the z-z plane; (b) Time series of state variable z.

It is more interesting that extensive simulation results show
that the basic butterfly attractor is orderly duplicated with the
increase of the time of the system self-oscillating. That is to
say, system (1) can generate multi-butterfly attractors, where
the number of butterflies is dependent on the simulation time
of the system. Keeping the system parameters and initial states
unchanged, the different number of multi-butterfly attractors
can be observed under different simulation time, as shown in
Fig. 5. Fig. 5 directly illustrates two important phenomena:
(1) system (1) generates multi-butterfly attractors and (ii) The
longer simulation time comes along with more butterflies in
a multi-butterfly attractor. As we can see, the phase space of
the system is extended to multiple parts along the z-axis with
the increase of simulation time, in which each part represents
a basic butterfly attractor. That is, each pair of nonhyperbolic
equilibrium points form a heteroclinic orbit and correspond
to an independent butterfly attractor. Furthermore, unstable
saddle points are located outside of the butterfly attractors,
which plays a key role in connecting two independent butterfly
attractors.The reason for changing simulation time to generate
a different number of multi-butterfly attractors is that the
nonlinearity of the system is unbound. The time series of
state variable z given in Fig. 6(a) further illustrates this
result. In Fig. 6(a), the value of z increases as the simula-
tion time ts increases, which leads to a bigger number of
multi-butterfly attractors. Furthermore, the corresponding first
three Lyapunov exponents are given in Fig. 6(b) to further
demonstrate the chaotic properties of the system. Evidently,
the largest Lyapunov exponent in Fig. 6(b) is always positive,
which shows that system (1) generates chaotic behavior.

@ ) © @

Fig. 5: Multi-butterfly attractors obtained by setting different
simulation time ts. (a) 2-butterfly attractor with ¢s=2500. (b)
4-butterfly attractor with ts=5500. (c) 5-butterfly attractor with
ts=6500. (d) 8-butterfly attractor with £s=10000.

D. Control Parameters-dependent Multi-butterfly Attractors

Although the multi-butterfly attractors with an arbitrary
number of butterflies could be obtained in the system (1)
by selecting appropriate transient calculation time, it is not
convenient in practical applications to choose a different
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Fig. 6: Chaotic properties of system (1) with ¢s=10000.
(a)Time series of state variable z. (b) Lyapunov exponents
of system (1).

number of multi-butterfly attractor by controlling the system
self-oscillating time. Consequently, we design an additional
controller to accurately control the number of multi-butterfly
attractors. Noted that the number of multi-butterfly attractors
changes with transient simulation time, which is caused by
the unboundedness of state variable z in the system. So, the
number of butterflies can be controlled by adding a bounded
function to bound the range of state variable z in the system.
Based on this strategy, a simple bounded function can be
designed by H(z) = sgn(z + d)+sgn(z — ¢), where d and
e are two positive control parameters, and sgn is the signum
function. As a result, the improved system can be described
by

z=a(y— )
Y = bxsin(z) + (sgn(z + d)+sgn(z — e)) (8)
Z=c—y?

Fortunately, the number of multi-butterfly attractors can be
determined by the control parameter d and e. Keeping system
parameters a=1, b=2.1, ¢=0.45, initial states (0.3, 0.3, -14),
and transient simulation time ts=10000 unchanged, multi-
butterfly attractors with different number of butterflies can
be obtained from system (8) via setting appropriate control
parameter values, as shown in Fig. 7. It can be seen clearly
from Fig. 7(b) and (d) that the value of the state variable z
increases with the simulation time, but it is restricted within
the range d<z<e and the value does not jump and exceed e.
As a result, the phase space of the multi-butterfly attractors
is limited within the range d<z<e in the z axis direction.
Also, the number of the multi-butterfly attractors will meet
n=floor((d+e)/27), where floor rounds the elements of x to
the nearest integers less than or equal to z.
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Fig. 7: Multi-butterfly attractors obtained by selecting differ-

ent values of control parameters d, e, and the corresponding

time series of state variable z. (a) 3-butterfly attractor with

d=18 and e=3. (b) time series of the 3-butterfly attractor. (c)

5-butterfly attractor with d=18 and e=16. (d) time series of

the 5-butterfly attractor.

E. Initial States-dependent Multi-butterfly Attractors

Multistability is a kind of special dynamical phenomenon
that represents the coexistence of multiple different attrac-
tors in dynamical systems under different initial states [31].
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Although multistability is found in many chaotic systems
[32-33], the MWCSs with multistability have not been re-
ported. In this subsection, the multistability of the proposed
MWTCS is discorvered. When keeping system parameters a=1,
b=2.1, ¢=0.45, control parameters d=18, e=16, simulation
time ¢s=10000 unchanged, coexisting multiple multi-butterfly
attractors can be obtained from the following five different
initial states (0.3, 0.3, -14), (0.3, 0.3, -6), (0.3, 0.3, 0),
(0.3, 0.3, 6), and (0.3, 0.3, 14), as shown in Fig. 8. Fig. 8
shows that the constructed MWCS exhibits coexisting multi-
butterfly attractors, namely, multistability. Also, the number of
butterflies is reduced with the increase of initial value zy. That
is, the number of multi-butterfly attractors can be adjusted
by changing initial states. And we can confirm that more
coexisting multi-butterfly attractors with different number of
butterflies will be found by selecting larger control parameter
range (d, e) and more initial states. Furthermore, when control
parameters are selected as d=18, e=35, and both zy and
yo are kept as 0.3, the bifurcation diagram of system (8)
concerning zy €(-15, 35) are plotted for further illustrating
the coexistence of multi-butterfly attractors in Fig. 9. Fig.
9 directly shows that the system generates multiple multi-
butterfly attractors with different number of butterflies with
the increase of zy, which means that the proposed MWCS
has complex multistability.

Table I provides a summary of the comparison between
different MWCSs reported in recent years. It can be seen from
the second and the third column of Table I that all existing
MWCSs have at least one polynomial function/pulse. On the
contrary, the proposed MWCS has no polynomial functions,
which means that it enjoys a very simple system model. In the
fourth column of Table I, there are at least ¢ control parameters
in the existing MWCS, where ¢ represents the number of
wings or butterflies. On the contrary, no matter how many
the number of butterflies is generated, the presented MWCS
has only two control parameters. That is to say, the number
of control parameters in this MWCS does not increase with
the increase in the number of butterflies. Moreover, the fifth
column of Table I illustrates that the proposed MWCS is the
first MWCS with multistability.

III. CIRCUIT VERIFICATION AND PERFORMANCE
COMPARISION

The electronic circuit design is considered as an important
method to analyze the chaotic systems. It can physically verify
the existence of chaotic attractors and provide the possibility
for their engineering applications. The algebraic forms of the
conventional MWCSs with polynomial functions are quite
complex. Hence, it is very difficult to physically realize
their multi-wing chaotic attractors by using the electronic
circuit. On the contrary, since the proposed MWCS enjoys a
simple algebraic expression, an electronic circuit can be easily
designed to implement its multi-wing chaotic attractors. In this
section, the MWCS is physically realized and experimentally
analyzed.

A. Multi-Wing Chaotic Circuit implementation

It is of great significance to verify chaos with analog
circuits because analog chaotic electronic circuits can generate
chaos in the true sense. In general, the nonlinear dynamical
equations can be physically realized by using basic passive
or active electronic elements [34]. Here, the analog circuit of



TABLE I: COMPARISON OF DIFFERENT MULTI-WING CHAOTIC SYSTEMS
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Fig. 8: Five coexisting multi-butterfly attractors under different initial states. (a) 5-butterfly attractor with initial state (0.3,
0.3, -14). (b) 4-butterfly attractor with initial state (0.3, 0.3, -6). (c) 3-butterfly attractor with initial state (0.3, 0.3, 0). (d)
2-butterfly attractor with initial state (0.3, 0.3, 6). (e) 1-butterfly attractor with initial state (0.3, 0.3, 14).
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Fig. 9: Bifurcation diagram of the MWCS with a=1, b=2.1,
c=0.45, d=18, e=35, x¢=10=0.3, and 2y €(-15, 35).
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the proposed MWCS is implemented by adopting capacitors,
resistors, operational amplifiers TLO82CP, analog multipli-
ers AD633JN and trigonometric function converters (TFC)
ADG639AD all powered by +18V symmetric voltages.

Before realizing the system circuit, we first design a
control circuit, as shown in Fig. 10(a). In Fig. 10(a), when
Rs=13.5k(), Rp=1k(2, and R;=10k(2, the input-output rela-
tionship of the control circuit can be expressed by

13.5RF
RsRp

H(vin) = — (sgn(vin + va) +sgn(vin —ve)), (9
where v;,, is the input voltage, vg and v, simulate two control
parameters which can be changed according to practical need.
Considering the system (1), the multi-wing chaotic circuit is
designed in Fig. 10(b). It is noted that a switch is added in the
multi-wing circuit to control the control circuit. According to

Kirchhoff circuit law, the corresponding circuit state equations
are given by
dv, _ R R
Cddt = RZUy B, V=

Uy
RC’ddt" = %gvl sin(v,) +2RH(’UZ) ,

Vz —
RCz = Tg Ve — R7g(vy)

(10)

where RC is the integral time constant, g=1 is the control
gain of the multiplier M, and v, vy, and v, are the capacitor
voltages of three integral circuits, respectively. Assuming that
RC=1ms, the resistance R=10kS2, then the capacitance C'
can be chosen as 100nF. In view of the parameters of the
system and error influence, resistances can be calculated as
R1=R2=R/a, R3=R4=10kQ, R5=R/b, R6=R7=1OkQ. Fur-
thermore, parameters c, d, and e are simulated by using v, vq,
and v, respectively. The multi-wing chaotic circuit is imple-
mented on the experimental circuit breadboard. Considering
system parameters a=1, b=2.1, the resistors R, Ro, and Rj
are taken as 10k(2, 10kS2, and 4.76k(, respectively. When
the switch K is closed, v. is set as 0.45V, and the circuit
simulation time is fixed as 10s, multi-butterfly attractors with
different number of butterflies can be observed under initial
capacitor voltages (0.3V, 0.3V, -14V) and different circuit
control parameters vy and v.. For example, when two sets of
control parameters (vq, v.) are selected as (18V, 3V) and (18V,
16V), 3-butterfly attractor, and 5-butterfly attractor can be
captured as shown in Fig. 11. It is clear that the chaotic circuit
generates multi-butterfly attractors, which further verifies the
above theoretical analysis and numerical simulation results.
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(b)

Fig. 10: Analog circuit implementation. (a) Circuit configuration of the control system. (b) Circuit configuration of the multi-

wing chaotic system.

Fig. 11: Experimental results. (a) 3-butterfly attractor with
v4=18V and v.=3V. (b) 5-butterfly attractor with v4=18V and
ve=16V.

B. Comparison of Related Multi-Wing Circuits

Through the above circuit implementation, it is concluded
that generating multi-wing attractor does not need to change
the topology of the original double-wing circuit. The conver-
sion of the number of butterflies can be realized by adjusting
two input voltages vy and v.. In the past several years,
various circuits of polynomial functions are implemented by
utilizing a large number of operational amplifiers. Hence, the
implementation of multi-wing circuits is very complex. On the
contrary, in our circuit, there is no need to design a compli-
cated polynomial function circuit, which reduces difficulties
in circuit realization. Also, in our circuit, the increase of each
butterfly attractors correspond to the addition of the amplitude
of the voltage. Therefore, the hardware implementation cost
benefit of the presented architecture is obvious, which will
reduce the hardware cost of the chaotic circuit in practical
application. Table II presents the comparison between the
circuit implementation of related MWCSs with n wings or
butterflies. In the table, CR stands circuit realization. It can be
found from the column 3, 4, 6 of Table II that for [22, 24-26],
the greater number (n) of wings or butterflies is generated,
the more operational amplifiers (Opm) and resistors (R) are
required. Although the number of operational amplifiers and
resistors in [28] is unchanged with the increase of butterflies,
the number of pulse generators (PG) is accordingly increased.
In contrast, the designed multi-wing chaotic circuit requires
fewer amplifiers and resistors, as compared with [22, 24-26,
28], reducing area and power dissipation. It also does not
require pulse generators. Therefore, the circuit implementation
of the new MWCS is significantly simplified. It means that
the presented MWCS can be applied in more wide fields.

TABLE II: COMPARISON OF RELATED MULTI-WING
CHAOTIC CIRCUITS

Refs CR Attractor Opm M R PG | TFC
[22] Yes n-wing 18+5n 1 33+5n 0 0
[25] Yes n-wing T+5n 4 10+10n 0 0
[24] Yes | n-butterfly 5+2n 3 9+2n 0 0
[26] No n-butterfly 13+n 4 32+n 0 0
[28] Yes | n-butterfly 15 2 32 n 0
This work | Yes | n-butterfly 7 2 11 0 1

IV. APPLICATION IN IMAGE ENCRYPTION

The study of chaos-based image encryption has been a
recent focus [35-37]. Generally, systems with multiple wings
or multistability have become potential candidates for chaos
applications compared to chaotic systems with fewer wings
or stability due to their complex dynamical properties. Thus,
the proposed MWCS would have a more attractive applica-
tion prospect in image encryption schemes, as it has both
multi-butterfly attractors and multistability. In this section, an
MWCS-based image encryption scheme is proposed to verify
its merit for image secure communication.

A. Description of Encryption Process

As shown in Fig. 12, the architecture of the MWCS-based
image encryption scheme mainly consists of four blocks:
chaotic sequence generator, key generator, encryption module,
and decryption module. We assumes that a grayscale original
image P is used as the encryption object. The process of
encryption and decryption is composed of four steps of
operations.

1) Chaotic sequence generator: Set system parameters,
control parameters, initial values, discarded number Ny,
and time step, then iterate the MWCS with the fourth-
order Runge-Kutta algorithm (ODE45). Three discrete
chaotic sequences (x (i), (%), z(2)) kept the same length

with the original image are obtained.
2) Key generator: The three chaotic sequences are repro-
cessed as following:

K (i) =mod (floor(((x () +y(i) +2())/3) * 10'°), 256),
Y
where the floor(x) rounds the elements of z to the
nearest integers less than or equal to z.
3) Encryption module: The original image is encrypted as
P'(i) = P(i) ® K(4),
where the symbol & represents the exclusive XOR
operation.
4) Decryption module: The encrypted image is decrypted
with the reverse process of the encryption algorithm.
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Fig. 12: The architecture of the MWCS-based image encryp-
tion scheme.

B. Experiments and Performance Analyses

To demonstrate the efficiency of the presented image
encryption scheme, numerical simulation experiments were
performed by Matlab R2017a. And some classic metrics
like histogram, correlation coefficient, information entropy,
and key sensitivity were measured [5, 13, 35-37]. In all
experiments, the “Lena 256x256” image is employed as the
test image, as shown in Fig. 13(a). Setting a=1, b=2.1, c¢=0.45,
d=18, e=16 and initial states (0.3, 0.3, -14), a pseudorandom
sequence generated by Equation (11) is used for image
encryption. In this process, to avoid the transient effect, the
first Nyp=500 results of the iteration are discarded, and the
time step is chosen as 0.001.

1) Histogram analysis: The histogram of an image repre-
sents the distribution of the pixel intensity values in the image.
In general, a good encryption scheme can make the encrypted
image has a uniform histogram to resist any statistical attacks.
The original image and its histogram are shown in Fig.13 (a)
and Fig. 13(b). Fig. 13(c) and Fig. 13(d) depict the encrypted
image and corresponding histogram, respectively. As we can
see, the histogram of the encrypted image is very uniform and
is significantly different from that of the original image, which
means that the encryption scheme based on the proposed
MWCS can resist statistical attacks well.

0 50 100 150 200 250 0 50 100 150 200 250

(@) (b) (© ()
Fig. 13: Simulation results of the proposed encryption scheme.
(a) Original image. (b) Histogram of the original image. (c)
Encrypted image. (d) Histogram of the encrypted image.

2) Correlation analysis: The adjacent pixels of a original
image have a strong correlation in the horizontal, vertical, and
diagonal directions. But in a encrypted image, the correlation
coefficients are expected to be close to zero in three directions.
The correlation of each pair of pixels can be calculated by
[35-36]

M=

(x; — F

, — E(y))

i — E(2))(ys

Pzy = L s
N N

\/; (zi — E(»”C))Q\/:Z1 (vi — E(y))*

where x and y denote the intensity values of two adjacent
pixels, IV is the total number of pixels, and E(x) and E(y)
are the mean values of z and y, respectively. As an example,

12)

we selected five pairs of adjacent pixels from the original
image in horizontal directions, namely, N=5, (z;-x5)=(93,
105, 110, 106, 103) and (y1-y5)=( 99, 106, 109, 106, 107). In
this case, the correlation coefficient of the adjacent pixels in
the original image can be calculated by Equation (12), namely
Pzy=0.960175. After the original image is encrypted, we
obtained the corresponding pixels from the encrypted image,
namely (z1-x5)=( 126, 93, 109, 56, 65) and (y;-y5)=( 76, 196,
147, 108, 20), respectively. Under this case, the correlation
coefficient of the adjacent pixels in the encrypted image can be
calculated by Equation (12), p,,=0.260651. It shows that the
correlation coefficients of the adjacent pixels in the original
image are large, but there are low correlation coefficients after
the original image is encrypted. It should be pointed that to
obtain a more effective correlation coefficient, a larger N
should be selected. So, we randomly select 10000 pairs of
adjacent pixels from the original image and the encrypted
image in the horizontal, vertical, and diagonal directions to
test their internal correlations. The correlation coefficients of
the original and encrypted images are given in Table. III. It
shows that the correlation coefficients of the original image
are very close to 1, while those of the encrypted image is
around O in all directions. Therefore, the presented encrypted
algorithm can effectively resist statistical attacks.

3) Entropy analysis: The information entropy is an impor-
tant indicator in evaluating the randomness of a encrypted
image. If an encryption scheme can generate encrypted images
owning the maximum information entropy close to 8, it means
that it has excellent randomness property. In experiments,
we can obtain the information entropy by calculating the
following formula [5]

L
H(m) == P(m;)logy "™,

i=1

13)

where m represents the type of all existing pixels in the image,
the number of types is L. P(m;) denotes the probability value
of the m; type pixel in the image. In grayscale images, m;<(0,
1,2,3,...,255), L=256, P(m;)€[0,1], and sum(P(m;))=1.
And the theoretical maximum information entropy is 8. The
closer the information entropy is to 8, the more random
the grayscale distribution of image pixels. For example, we
assumes that there are only five types of the pixel in a gray
image 256x256, namely mi-ms. Their probability values are
0.1, 0.15, 0.2, 0.25, and 0.3, respectively. The information
entropy of the image can be calculated by Equation (13),
namely H=2.2282. It means that the pixel distribution in this
image is not uniform, that is, it has poor randomness property.
Here, the information entropies of the original image and
encrypted image are calculated using Equation (13), and the
calculated entropy values of the original image and encrypted
image are 0.0084 and 7.9976, respectively. It is found that
there is a large improvement in information entropy after the
original image is encrypted. Moreover, the entropy value of
the encrypted image is close to the ideal value 8, which shows
that the proposed algorithm has a strong ability for improving
information entropy.

4) Sensitivity analysis: The key sensitivity is an important
indicator in evaluating the precision of a cryptosystem. In our
encryption algorithm, a, b, ¢, xg, Yo, and zp are all used as
secret keys. In our decryption experiment, we choose c, xg,
and zp as the secret keys. When ¢=0.45, x¢=0.3, and zp=-
14, Fig. 14(a) illustrates the accurate decrypted image. Fig.



14(b)-(d) illustrate the inaccurate decrypted image with a tiny
change of ¢, xg, and zy, respectively. As can be seen, even
the secret key is changed a little (10~?), the decrypted image
is absolutely different from the original image. Therefore, the
key sensitivity test shows that the proposed encryption scheme
has perfect sensitivity to the key.

©€=0.45, %,=0.3, z=-14 ©=0.450000001, %0=0.3, y=-14

©€=0.45, %,=0.300000001, z5=-14  €=0.45, X;

@ ® © @
Fig. 14: Image decryption process with the secret keys ¢, xg,
and zy. (a) Accurate decrypted image with the secret keys
c=0.45, £9=0.3, and zp=-14. (b) Inaccurate decrypted image
with the secret keys ¢=0.450000001, x¢=0.3, and zp=-14.
(c) Inaccurate decrypted image with the secret keys ¢=0.45,
20=0.300000001, and zp=-14. (d) Inaccurate decrypted image
with the secret keys ¢=0.45, x¢=0.3, and zy=-14.000000001.

Meanwhile, Table III presents the performance comparison
of encryption results between encryption schemes based on
different multi-wing chaotic systems (MWCSs) or multi-scroll
chaotic systems (MSCSs). In Table III, the second column
represents the type of original image, and the third column
denotes the chaotic system used in the encryption schemes.
The fourth column clearly demonstrates that the information
entropy of the image generated from the proposed encryption
scheme is higher than the information entropy of the image
generated from other encryption schemes in Refs [13-14,
28, 35]. It shows that the proposed encryption scheme has
better performance in terms of information entropy. And the
sixth column in Table III demonstrates that the horizontal
correlation (HC) coefficient of the encrypted image in this
work is less than those in Refs. [13, 28, 35] and close to
that in Ref. [14], and the vertical correlation (VC) coefficient
of the encrypted image in this work is less than those in
Refs. [13, 35], and close to that in Ref. [14, 28], and the
diagonal correlation (DC) coefficient of the encrypted image
in this work is less than those in Refs. [13-14, 35, 28]. These
results demonstrate that our encryption scheme has a better
ability to disrupt the correlation between adjacent pixels of
an image. According to the above analysis, the presented
encryption scheme based on MWCS can more effectively
resist the entropy attack and statistical attacks and can be
applied to protect image data in information communication.

V. FPGA-BASED CHAOTIC IMAGE CRYPTOSYSTEM

Hardware implementation is fundamental for chaos appli-
cation in various engineering fileds. Although analog circuits
can produce chaotic attractors, it is very difficult to establish
an experimental chaotic communication hardware system on
the analog electronic circuit platform due to the parasitic
parameters of circuit components. In recent years, the appli-
cation of FPGA in the field of chaotic secure communication
provides strong technical support [38-39]. However, FPGA
implementation of a chaotic system requires a lot of hardware
resources, and only some simple chaotic systems can use this
method. To the best of our knowledge, as traditional MWCSs
have complex system models and circuit structures, there is
no FPGA-based image encryption scheme based on MWCSs
until now.
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A. Design of the FPGA-based Chaotic Image Cryptosystem

In this section, we design and implement a MWCS-based
image cryptosystem on the FPGA platform. The hardware
architecture of the image cryptosystem is designed in Fig.
15, which mainly contains five parts: image RMA (random
access memory), chaotic sequence controller, image encryp-
tion module, image decryption module, and VGA display
controller. Among them, the image RMA is used to store and
output the original image, and the chaotic sequence controller
completes the generation and caching of chaotic sequences.
For the process of image encryption, the original image and
chaotic sequences are sent to the image encryption module
synchronously. Then the original image is encrypted in the
image encryption module, the encrypted image is sent to the
VGA display controller and finally displays on the monitor.
For the process of image decryption, the encrypted image and
chaotic sequences are sent to the image decryption module
synchronously. After that, the encrypted image is decrypted
in the image decryption module, and the decrypted image is
displayed on the monitor by the VGA display controller.

Monitor

VGA Display
Controller

]

Image Decryption
Module

Public
Channel

Image Encryption
Module

Image
RMA

F N I N

Chaotic Sequence!
Controller

Fig. 15: Block diagram of FPGA-based image encryption and
decryption.

B. FPGA-based Implementation Results for Chaotic Image
Cryptosystem

Based on the designed hardware architecture in Fig. 15, the
MWCS-based image cryptosystem is implemented by using a
Xilinx Virtex-6 FPGA development board with a 32 bit IEEE
754-1985 floating-point standard. The functions of the five
parts in Fig. 15 are realized by Verilog HDL programming,
where the generation process of the chaotic sequences in a
chaotic sequence controller can refer to our previous work in
[38]. Before the experiment, because the output of the VGA
display controller is a 24-bit RGB value, we first use the
software 'ITmage2Lcd’ to convert the original 256 x256 'Lena’
image from an 8-bit depth grayscale image to a 24-bit depth
image. In the experiment, images are stored in the RAM of
the ZYNQ-XC7Z020 chip. The FPGA development board and
the experimental results are shown in Fig. 16. In Fig.16(b),
the original image and the encrypted image are displayed
on the monitor. When the image decryption module gets the
correct key, the encrypted image can be correctly decrypted,
as shown in Fig.16(c). On the contrary, when the decryption
module gets an incorrect key, the encrypted image cannot be
decrypted, as shown in Fig. 16(d). From the encryption and
decryption results of three groups of images implemented
by the FPGA hardware cryptosystem, there is no intuitive
difference between the encryption effect and the MATLAB
encryption simulation result, and the encrypted image can
achieve the effect of simulation experiment in MATLAB.
And the decrypted image can restore the original image well,



TABLE III: PERFORMANCE COMPARISON OF ENCRYPTION SCHEMES BASED ON DIFFERENT CHAOTIC

SYSTEMS
Refs Image System Erizarsy Correlation coefficients Correlation coefficients Hardware
type type HC, VC, DC (Original image) | HC, VC, DC (Encrypted image) | demonstration
2019[13] | Lena(256x256) | MSCS 7.9889 0.9233, 0.9672, 0.8949 -0.0062, 0.0061, -0.0277 No
2020[35] | Lena(256x256) | MSCS 7.9975 0.949, 0.907, 0.8795 -0.0327, -0.0414, -0.0037 No
2019[28] | Lena(256x256) | MWCS / /, 0.8952, 0.9583 /, 0.003821, 0.006359 No
2020[14] | Lena(256x256) | MWCS | 7.9974 0.94505, 0.96653, 0.91917 0.000682, -0.00077, -0.003636 No
This work | Lena(256x256) | MWCS | 7.9976 | 0.972807, 0.939337, 0.921438 | 0.000827, 0.005238, -0.000455 Yes

which contains almost all the information and details of the
original image. Furthermore, the time for encryption and
decryption on the FPGA hardware cryptosystem is 0.262144s
and 0.262058s, respectively. This time is largely lower than
the corresponding time 0.876952s and 0.630132s in MATLAB
simulation. It shows that the chaotic cryptosystem imple-
mented by FPGA can greatly improve the speed of data
processing and the time of algorithm operation. Therefore,
these experimental results validate the feasibility and relia-
bility of the proposed MWCS-based encryption scheme. It
should be pointed out that the maximum image size that can
be encrypted is determined by the size of the block RAM. In
this FPGA, the capacity of the block RAM is 5040 kb.

= — N
© (d)

Fig. 16: FPGA-based implementation results of MWCS-
based image cryptosystem. (a) Virtex-6 FPGA development
board. (b) The original and encrypted image on the hardware
platform. (c) The encrypted and correctly decrypted image
on the hardware platform. (d) The encrypted and incorrectly
decrypted image on the hardware platform.

VI. CONCLUSION

The complex system model makes chaotic systems difficult
to apply in various engineering fields. The main goal of
the current study was to break the restriction of polyno-
mial functions in MWCSs. This paper proposed a simple
MWCS without polynomial functions. We have affirmed that
the MWCS can generate multi-butterfly attractors with an
arbitrary number of butterflies. The number of butterflies can
be regulated by changing the self-oscillation time, control
parameters, or initial states. The MWCS model has been
verified by an analog circuit. Performance evaluations clarify
that, compared with the existing MWCSs, the circuit imple-
mentation of the MWCS is greatly simplified due to its simple
system model. Moreover, the proposed MWCS was applied to
design a chaotic image encryption scheme. Simulation results
show that the MWCS-based image encryption scheme has
better security properties than those image encryption scheme
based on existing MWCSs. And the image encryption scheme
has been implemented on the FPGA platform. Experimental
results further validated the effectiveness and feasibility of
the MWCS. Therefore, the MWCS is suitable for chaos-
based engineering applications. Certainly, a weakness of this
MWCS is that with the increase of wings the more time
will be expended. Adjusting the frequency and amplitude of

the sinusoidal function may be a good method to solve this
problem, which is what we need to study in the future.
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