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Abstract

From its early days the SPH method has been criticised for its shortcomings namely tensile instability and consistency.
ithout thorough understanding of the method attempts were made to make the classical SPH method consistent and stable
hich resulted in the local and Total Lagrangian forms of SPH similar to the finite element method. In this paper we derived and

nalysed a consistent nonlocal SPH which has similarity with Bazant’s imbricate continuum. In addition, the paper provides
omparison and discussion of different SPH forms including: Classical SPH, Nonlocal, Local and Mixed SPH. The partition
f unity approach was used to define the following two mixed forms: Local–Nonlocal and Local–Classical SPH. These mixed
orms were intended for modelling of physical processes characterised with local and nonlocal effects (local and nonlocal
onstitutive equations), e.g. progressive damage and failure. The stabilising effect of the Local form on the Classical SPH,
hich is inherently unstable (tensile instability), are also illustrated. The stability analysis, presented in appendices A and B,
emonstrate stability of the continuous and discrete form of the nonlocal SPH based on Eulerian kernels for elastic continuum.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Smooth Particle Hydrodynamics (SPH); Nonlocal elastic continuum; Nonlocal SPH; Classical SPH; Local SPH; Tensile instability

1. Introduction

The development of the Smoothed Particle Hydrodynamics (SPH) method follows a typical path of any novel
dea in science where an author/group of authors publishes the basic ideas. Hesitatingly at first, little by little, other
riginal contributions appear, until a certain body of knowledge is reached. At this point, overview articles are
ublished, topical conferences are organised, and a first mention is made in textbooks, until specialised books and
onographs are written. SPH has reached that stage now.
The SPH method was originally proposed by Lucy [1] and Gingold and Monaghan [2] to simulate a wide range

f problems in astrophysics, e.g. the formation and evolution of proto-stars, galaxies and the three-dimensional
otion of compressible fluids at different spatial scales.
The meshless nature of the SPH method led to its successful application to other fields. According to

he comprehensive bibliographic survey by S. Li and W.Z. Liu [3], the SPH method has been employed to
olve problems of both compressible flow [4], incompressible or weakly compressible flow [5–7], free-surface
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flows [8,9], multiphase flow [10–15], plasma–fluid motion [16,17], general relativistic hydrodynamics [18,19], heat
conduction [20,21], nonlinear dynamics [22] and solid mechanics [23,24]. In this paper our interest is primarily in
solid mechanics. Here we refer only to few references selected to illustrate development and applications of the
SPH method with no disrespect to the, now, large body of related literature.

It is important to recognise the role of SPH rEsearch and engineeRing International Community (SPHERIC, w
w.spheric-sph.org) the international organisation which has been bringing together the community of researchers

nd industrial users of SPH since 2005. SPHERIC activities include training, methods development through a range
f grand challenges and applications to real world problems.

This paper revisits derivation of the Eulerian version of the SPH method and offers a number of new explanations
f different forms of the discretised balance equations. These developments follow our initial observation of nonlocal
roperties of the SPH method in modelling damage induced material softening [1]. Furthermore, a local–nonlocal
ersion of the SPH (LNL-SPH) method is proposed based on partition of unity. In order to provide a basis for the
NL-SPH derivation we first review relevant theories on which the method is based. Parallels between Eringen’s
onlocal continuum theory, Bazant’s Imbricate continuum and Classical SPH are discussed in Section 2. Emphasis
s placed on the SPH properties common with these theories. Derivation of LNL-SPH formulation is given in
ection 3. Section 4 outlines stability analysis of the new formulation. Section 5 contains a number of numerical
xamples which illustrate performance of LNL-SPH in analysis of elastic solids. This includes tensile instability
onsideration and comparison for different SPH forms. The main conclusions are stated in Section 6. Appendix A
rovides stability assessment of the continuous nonlocal SPH approximation for elastic continuum resulting in the
tability requirements for kernel functions. Appendix B — provides stability assessment of the discretised nonlocal
PH method for elastic continuum according to Swegle [25].

. SPH parallels with nonlocal and imbricate continuum theories

In classical (local) solid mechanics material points are regarded as fundamental entities which form a three-
imensional differentiable manifold representing a deformable body [26,27]. These points have three translational
egrees of freedom. The response of the material to displacement of its points (deformation) is characterised by
evelopment of internal forces which can be quantified by a symmetric stress tensor defined locally at each point.

However, the atomic theory of solids provides evidence of the existence of long-range, cohesive forces and their
ffect on the dispersion of elastic waves. The inclusion of long-range effects has motivated developments of nonlocal
ontinuum mechanics.

The nonlocal theories are characterised by postulates for the whole body which include localisation residuals in
he balance equations which are obtained from the global balance statements. Further, the related formulation of
onstitutive relations allows for dependence on the nonlocal material properties (nonlocal effects). The inclusion
f nonlocal effects is typically achieved by combining local and global postulates: local laws of balance of mass,
omentum and moment of momentum in conjunction with a global law for the balance of energy or a global
lausius-Duhem inequality, [28]. Classical local continuum models comprise partial differential equations (PDEs)
ased on local information in an infinitesimal neighbourhood and are derived, from the assumption of smooth fields.
onlocal continuum models have the potential to provide alternatives or to be used in combination with the local
DE models in many applications including solid mechanics. While mathematical analysis and numerical solution of

ocal PDEs are well established branches of mathematics, the development of rigorous theoretical and computational
rameworks for nonlocal models requires further research [29].

Local continuum theories are characterised by local approximations, e.g. the strain ε and stress σ tensors at the
macroscopic material scale are regarded as certain averages of the microscopic (actual) strains and stresses taken
over a representative volume V (appropriate for the material; considered). In the case of smooth (differentiable) strain
fields the constitutive model can be defined as a relation between ε (x) and σ (x) at the same location (material point)
x. However, if the strain field is characterised by high gradients in V, statistical analysis shows [30,31] that the local
pproach is no longer adequate, and that the entire macroscopic (averaged) stress distribution should be related to

he entire macroscopic (averaged) strain distribution.
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2.1. Eringen’s nonlocal continuum formulation

One of the nonlocal continuum theories used to solve elasticity problems was proposed by Eringen [32].
ccording to this theory the stress–strain relation is

σ (x) =

∫
Ω

C (x) α
(⏐⏐x′

− x
⏐⏐) : ε

(
x′
)

dV =

∫
Ω

C
(
x, x′

)
: ε
(
x′
)

dV (1)

where x is the position vector; ε and σ are the macroscopic stress and strain tensors; C is the fourth order material
stiffness tensor, C is the material nonlocal stiffness tensor; α (s) is a given weighting function and Ω is the weighting
function domain. In applications of this theory it is often assumed that C

(
x, x′

)
= C (x) α (s) , s =

⏐⏐x′
− x

⏐⏐; where
α (s) is given symmetric function with the following properties:

∫
Ω α (s) ds = 1, α (s) = 0 ∀ s /∈ Ω ;.

The above equation can be restated and interpreted as σ (x) = C (x) :
∫
Ω α

(⏐⏐x′
− x

⏐⏐) ε (x′
)

dV = C (x) : ε (x)
where

ε (x) =

∫
Ω

α
(⏐⏐x′

− x
⏐⏐) ε (x′

)
dV (2)

is the nonlocal strain tensor. Note that when the size of the kernel domain Ω tends to zero, the weighting function
tends to the Dirac delta function, i.e. α

(⏐⏐x′
− x

⏐⏐) ⇒ δ
(⏐⏐x′

− x
⏐⏐) and the nonlocal strain tends to the local strain

ε (x) ⇒ ε (x).
For clarity reasons we limit the considerations in this paper to linear elasticity and small-strain formulations.

Consequently, Eq. (2) can be restated in 1D as:

σ (x)=Eε (x) , ε (x) =

∫
Ω

ε (x + s) α (s) ds = Hε (x) (3)

here σ (x) is stress (macroscopic); E is elastic modulus; ε (x) is local strain ; ε (x) is weighted average (nonlocal)
strain; H is averaging operator; and α (s) is a given weighting function, which is zero or negligibly small outside
the region −l/2 ≤ x ≤ l/2, where l is a parameter which defines size of the representative volume. According to

ringen’s nonlocal continuum theory the strain averaging defined by Eq. (3) is interpreted as the dependence of
train ε (x) at point x on the strains ε (x + s) at the locations x + s.

This definition of nonlocal strain was questioned and an alternative definition offered by Bazant who stated that
he above interpretation is inappropriate because the material at one point cannot “feel” the local strain at another
oint. The strain measure should be physically interpreted through its relation to the change of distance between
oints, e.g. x + s and x − s [33,34]. The key aspects of the nonlocal approach proposed in those two papers is
ummarised and partially reproduced below, for 1D elastic continuum. This provides the background for application
f a similar framework for interpretation and derivation of the SPH discrete forms of balance equations.

.2. Bazant’s imbricate continuum formulation for 1D

To illustrate effects of the strain averaging defined by Eq. (3) one can substitute ε (x + s) =
du(x+s)

ds (where
u is displacement) into Eq. (3) and integrate by parts. Using the property of the weighting function α (s) =

∀ − l/2 ≥ s ≥ l/2, where l is a characteristic length, and noting that the symmetry property, α (s) = α (−s)
equires anti-symmetry of the derivative dα(s)

ds = −
dα(−s)

ds , nonlocal strain ε (x) becomes

ε (x) =

∫ l/2

−l/2

du (x + s)
ds

α (s) ds = [u (x + s) α (s)]l/2
−l/2 −

∫ l/2

−l/2
u (x + s)

dα (s)
ds

ds

ε (x) =
1
l

[
u
(

x +
l
2

)
− u

(
x −

l
2

)]
α

(
l
2

)
−

∫ l
2

0
[u (x + s)− u (x − s)]

dα (s)
ds

ds
(4)

o simplify Eq. (4), the weights, α (s) are assumed to be uniform, i.e., α (s) = 1/l. This assumption results in
l
2

0 [u (x + s)− u (x − s)] dα(s)
ds ds = 0 (to be discussed further in relation to SPH). Hence, the mean strain ε (x)

efined by Eq. (4) becomes a finite difference expression

ε (x) =
1
∫ l/2

ε (x + s) ds =
1
[

u
(

x +
l
)

− u
(

x −
l
)]

(5)

l −l/2 l 2 2

3
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Fig. 1. Imbricate nonlocal continuum: (a) Representative volume; (b–d) System of local and imbricate elements, as illustrated in [33].

Eq. (5) indicates that the nonlocal strain ε and stress σ depend on the relative displacement between the ends of
egment l or, more precisely, that the stress resultant σ · A (force) over the cross section area A of the representative

volume depends on the change of length of segment 1–2 in Fig. 1(a).
Note, in the concept of imbricated elements points 1 and 2 are symmetrically located relative to cross section

PQ (Is this a general requirement or specific to uniform α (s)). Similarly, a change of length of segment 3–4 in
Fig. 1(a) determines the stress on cross section RS.

Following Bazant, we continue with consideration of a 1D continuum, i.e. a bar of a unit cross section. The
bar is subdivided into N equal segments of length h by nodes k = 1, 2, 3, . . . ,N + 1 as shown in Fig. 1(b). The
bar is also divided into K overlapping segments of length l, see Fig. 1(c), subject to the condition that l = n · h
in which n is an integer of 2 or greater and l is the given size of the representative volume. The mean strain ε,

efined by the difference expression Eq. (5), is the strain obtained in one-dimensional elements of length l. These
lements are shown as circles in Fig. 1(c). They span over n segments h, and are connected only at their ends, so
hat the strain in each of them is uniform. These elements overlap, i.e., are imbricated (see Fig. 1(c), the nodes
ocated above each other have the same displacement). A cross section between two nodes, Fig. 1(c), is intersected
y a total of n identical imbricate (regularly overlapping) elements acting in parallel. The combined cross-section
rea of all imbricate elements intersected by the same cross section of bar must be a constant, independent of n.
enoting this combined area as (1 − c) where 0 ≤ c ≤ 1, we see that the cross section of each imbricate element

s equal (1−c)/n. Obviously, it decreases as the subdivision of l is refined and tends to 0 as n → ∞.
In their development [33] proceed by formulating the following hypothesis, for 1D continuum, in which l is a

aterial property (a constant) called the material characteristic length.

ypothesis I. The nonlocal stress σ at any point x (except in a boundary layer of thickness l/2):

1. Depends on the change of distance between points x + l/2 and x - l/2; but
2. does not depend on the change of distance between any other two points lying a finite distance apart.

t follows that the continuum must consist of all possible (continuously distributed) material elements connecting any
wo points lying at distance l from each other. Moreover, part 2 of Hypothesis I suggests that these elements should
ave a parallel and overlapping (imbricated) arrangement, in which the neighbouring elements are not mutually
4
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joined, see Fig. 1(c). A proof that such an imbricated arrangement unequivocally follows from Hypothesis I may
be given by variational calculus.

The principle of virtual work was used to prove Hypothesis I. According to Hypothesis I the incremental virtual
ork, δℵ, depends on the local strain, ε, and on the nonlocal strain, ε. Therefore, for a bar of length L:

δℵ = cδℵ0 + (1 − c) δℵ1 + δℵb −

∫ L

o
p(x)δu(x)dx = 0

δℵ0 =

∫ L−l/2

l/2
τ (x)δε(x)dx, δℵ1 =

∫ L−l/2

l/2
σ (x)δε(x)dx

(6)

here x is the length coordinate of the bar; u is displacement; δℵb is the work done by stresses for segments
of length l at each end; δℵ0, δℵ1 is the works of nonlocal stresses σ and local stresses τ within the rest of the
bar; p(x) is distributed load; δu(x), δε(x), δε(x) are kinematically admissible variations; and c is a coefficient
with values between 0 and 1, defined above and illustrated in Fig. 1. Substituting ε (x) =

1
l

∫ l/2
−l/2 ε (x + s) ds =

1
l

[
u
(
x +

l
2

)
− u

(
x −

l
2

)]
for ε, and ε = ∂u/∂x for ε, we have

δℵ0 =

∫ L−l/2

l/2
τ (x)

∂

∂x
δu(x)dx

δℵ1 =

∫ L−l/2

l/2

σ (x)
l

[
δu
(

x +
l
2

)
− δu

(
x −

l
2

)]
dx

(7)

ntroduction of new variables, ξ = x + l/2, η = x − l/2, and then renaming in separate integrals both ξ, η as x,
ields

δℵ1 =
1
l

∫ L

l
σ

(
ξ −

l
2

)
δu (ξ) dξ −

1
l

∫ L−1

0
σ

(
η +

l
2

)
δu (η) dη

=
1
l

∫ L

l
σ

(
x −

l
2

)
δu (x) dx −

1
l

∫ L−1

0
σ

(
x +

l
2

)
δu (x) dx

(8)

fter integrating by parts in δW0, and substituting p (x) = −ρ ∂
2u(x)
∂t2 (ρ = mass density) according to d’Alembert

rinciple, we obtain

δW =

∫ L−l

l

{
(1 − c)

1
l

[
σ

(
x +

l
2

)
− σ

(
x −

l
2

)]
+ c

∂τ (x)
∂x

− ρ
∂2u (x)
∂t2

}
δu (x) dx

+

∫ l

0
F1δu (x) dx +

∫ L

L−l
F2δu (x) dx = 0

(9)

here F1 and F2 are certain functions which are zero for l/2 ≤ x ≤ L − l/2 and have effect only within end
segments of length l/2. Since δℵ = 0 for any kinematically admissible δu(x), the expression in the braces { } of
the first integral must be zero. This yields the one-dimensional continuum equation of motion, Eq. 19 of Bazant at.
al. [33] (given below).

(1 − c) Dxσ (x)+ c
∂τ (x)
∂x

= ρ
∂2u (x)
∂t2 Eq. (19) in [33]

ε (x) =
1
l

∫ l/2

−l/2
ε (x + s) ds = Dx u (x) =

1
l

[
u
(

x +
l
2

)
− u

(
x −

l
2

)]
Eq. (4) in [33]

Note that Eq. (4), as well as Eq. 19 of Bazant at. al. [33], applies only at points whose distances from the ends are
at least l. The boundary conditions, which ensue from functions F1 and F2, do not refer just to the end points, but
are evidently spread out over boundary segments of length l (which can be generalised in two or three dimensions
as boundary layers, i.e. volume constrained domains). Bazant proposes that the boundary conditions are applied to
the finite element part of the discretisation [33].

The foregoing variational derivation shows that, if there is a difference operator (or gradient-averaging operator)
in the strain–displacement relation, the same operator must be applied to stress in the continuum equation of motion
(or equilibrium). The fact that this equation can be derived from an energy principle is important. It means that the
operators are symmetric and that discretisation must lead to symmetric matrices. This is, of course, automatically
implied if one begins with a finite element system, as was done in Bazant [34]. The foregoing properties, which
are not shared with the existing nonlocal continuum theory, represent the characteristic features of the imbricate
nonlocal continuum. Similar, more generic observations were made in [35].
5
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3. SPH discretisation

This section outlines the main aspects of the SPH method relevant to the considerations to follow. SPH uses
ernel interpolation to approximate the field variables at any point in a domain. For instance, an estimate of the
alue of a function f (x) at the location x is given, in a continuous form, by an integral of the product of the function

f (x) and a kernel (weighting) function W (
⏐⏐x − x′

⏐⏐ , h):

⟨ f (x)⟩ =

∫
Ω

f (x′)W (
⏐⏐x − x′

⏐⏐ , h)dx′ (10)

here: the angle brackets ⟨⟩ denote a kernel approximation
h is a parameter, known as the smoothing length, that defines size of the kernel support Ω

′ is the additional independent variable.
The kernel function W usually has the following properties:

t is symmetrical, typically bell-shaped, function with compact support, i.e. W is zero everywhere except on a finite
omain. In Classical SPH this domain is taken to be all points within twice the smoothing length, h, of the centre:

W (
⏐⏐x − x′

⏐⏐ , h) = 0 for
⏐⏐x − x′

⏐⏐ ≥ 2h (11)

ormalised∫
Ω

W (
⏐⏐x − x′

⏐⏐ , h)dx′
= 1 (12)

he kernel gradient (13) is antisymmetric, i.e. ∇x′ W (
⏐⏐x − x′

⏐⏐ , h) = −∇xW (
⏐⏐x − x′

⏐⏐ , h)

∇W (
⏐⏐x − x′

⏐⏐ , h) = ∇W (x) =
dW
dr

1
r

(
x − x′

)
(13)

here is r =
⏐⏐x − x′

⏐⏐ distance from the centre of the kernel support.
These requirements, formulated by Lucy [1], ensure that the kernel function reduces to the Dirac delta function

hen h tends to zero, i.e. limh→0 W (
⏐⏐x − x′

⏐⏐ , h) = δ(
⏐⏐x − x′

⏐⏐ , h) and therefore, it follows that limh→0 ⟨ f (x)⟩ =

f (x). These requirements are consistent with the requirements for the nonlocal weighting function α (s) in Eringen’s
onlocal continuum theory.

It is important to observe that the approximation (10), when applied to displacement and velocity fields in
ontinuum, results in nonlocal continuum description. The classical, local continuum is obtained as a special case
hen the kernel support size h → 0, i.e. limh→0 W (

⏐⏐x − x′
⏐⏐ , h) = δ(

⏐⏐x − x′
⏐⏐ , h) and the kernel function tends to

irac’s delta function.
At this point, it is useful to recall Eringen’s statement [36], In order for this type of approximation, to be

pplicable to an elastic continuum it must satisfy the following two requirements:

equirement I - If the stresses, σ(x), are everywhere zero, the strains in a stable material must be also zero, i.e., no
nresisted deformation (zero – strain energy deformation mode) may be permitted by the theory.

equirement II - In a stable material, the wave propagation velocity, v, must be real.
From these two requirements it follows that the Fourier transform of the weighting function, W (

⏐⏐x − x′
⏐⏐ , h),

must be positive for all real k, i.e.

W (k) =

∫
∞

−∞

e−iks W (s, h)ds =

∫
Ω

e−iks W (s, h)ds, s =
⏐⏐x − x′

⏐⏐ (14)

These requirements are referred to and used in the consideration of SPH stability in Appendices.
If the function f (x) is only known at N discrete points, the integral of Eq. (10) can be approximated by a

ummation:

f I = f (xI ) ≈

∫
Ω

f
(
x′
)

W
(⏐⏐x − x′

⏐⏐ , h
)

dΩ ≈ ⟨ f (xI )⟩ =

Nn∑
J=1

m J

ρJ
f (xJ )W (|xI − xJ | , h) (15)

n the above equation, the subscript I and J denote particle number, m J and ρJ the mass and the density of particle
J, Nn the number of neighbours of particle I (number of particles that interact with particle I, i.e. within the kernel
support), m J is the volume associated with the point/particle J and W (|x − x | , h).
ρJ I J

6
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Fig. 2. Central particle I (in red) and its neighbours (in blue) used in the SPH approximation. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

The discrete Eq. (15) constitutes the basis of the SPH method. The value of a variable at a particle, denoted by
uperscript I, is calculated by summing the contributions from a set of neighbouring particles (Fig. 2), denoted by
uperscript J and for which the kernel function is not zero:

⟨ f (xI )⟩ =

∑
J

m J

ρJ
f (xJ )W (|xI − xJ | , h) (16)

ote that in general ⟨ f (xI )⟩ ̸= f (xI ) because m J
ρJ

W (|xI − xJ | , h) ̸= δI J , unlike in finite element approximations
here shape functions satisfy the condition of being equal to 1 or 0 over the interpolation points, i.e. NI (xJ ) = δI J .
Now we consider a kernel approximation of gradient ∇ f (x) of a scalar valued function, i.e.

⟨∇ f (x)⟩ =

∫
Ω

∇ f (x′)W
(⏐⏐x − x′

⏐⏐ , h
)

dx′ (17)

ntegrating by parts gives:

⟨∇ f (x)⟩ =

∫
Ω

∇(W
(⏐⏐x − x′

⏐⏐ , h
)

f (x′))dx′

−

∫
Ω

f (x′)∇W
(⏐⏐x − x′

⏐⏐ , h
)

dx′
(18)

sing Green’s theorem, the first term on the right-hand side can be rewritten as:∫
Ω

∇ f (x′)W
(⏐⏐x − x′

⏐⏐ , h
)

dx′
= −

∫
Ω

f (x′)∇W
(⏐⏐x − x′

⏐⏐ , h
)

dx′
= 0 (19)

he surface integral is zero if the domain of integration is larger than or equal to the compact support of W or if
he field variable assumes zero value on the boundary of the body (free surface). If none of these conditions are
atisfied, modifications should be made to account for boundary conditions. When discretised over a set of points,
ontained in the kernel support, Eq. (19) becomes

⟨∇ f (xI )⟩ = −

∑
J

m J

ρJ
f (xJ )∇W (|xI − xJ | , h)

= −

∑
J

m J

ρJ
f (xJ )∇WI (xJ , h)

(20)

here the kernel gradient is evaluated for points J at distance r I J =
⏐⏐x − x′

⏐⏐ from the centre I of the kernel domain

∇W (|xI − xJ | , h) = ∇WI (xJ ) =
dW 1

(xI − xJ )
dr r I J

7
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However, in SPH codes, instead of the approximation (20) velocity gradient and stress divergence are typically
approximated using alternative expressions:

v(x) ≈ −

∑
J

m J

ρJ

[
v(x) − v(x′)

]
⊗ ∇W (|xI − xJ | , h)

⟨∇v(xI )⟩ = −

∑
J

m J

ρJ
[v(xI ) − v(xJ )] ⊗ ∇W (|xI − xJ | , h)

(21)

∇ · σ(x) ≈

∫
Ω

[
σ(x) ± σ(x′)

]
· ∇W

(⏐⏐x − x′
⏐⏐ , h

)
dx′

⟨∇ · σ(xI )⟩ = −

∑
J

m J

ρJ
[σ(xI ) ± σ(xJ )] ∇WI (xJ , h)

(22)

here v(x) in Eq. (21) is artificially added in order to ensure that the velocity gradient vanishes for a uniform
elocity distribution [37]. Similarly, σ(x) in Eq. (22) is added to ensure conservation of linear momentum. The
tandard derivation of these equations can be found in [38,39]. Note that Eq. (21) represents gradient of relative
elocity instead of velocity. Similarly, the difference form of Eq. (22) represents an approximation of divergence
f stress resultant [σ(xI ) − σ(xJ )].

At this point we refer again to Bazant at. al. [34,36] and the statement that strain measure should be physically
nterpreted through its relation to the change of distance between points x + s and x − s. In the case of the SPH
pproximation, given below for one dimension (1D) for clarity reasons, nonlocal strain ε is related to the change

of distance between points x and x ′ (or x and x − s, s =
⏐⏐x − x ′

⏐⏐) as stated in Eq. (23).

ε (x) =

∫
Ω

dur
(
x, x ′

)
dx ′

W
(⏐⏐x − x ′

⏐⏐ , h
)

dx ′
=

ε (x) =

∫ 2h

−2h

d
ds

[(u (x)− u (x − s))W (s, h)] ds −

∫ 2h

−2h
(u (x)− u (x − s))

dW (s, h)
ds

ds

ε (x) = [(u (x)− u (x − s))W (s, h)]2h
−2h −

∫ 2h

−2h

[
u (x)− u

(
x −

(
x − x ′

))] dW
(⏐⏐x − x ′

⏐⏐ , h
)

dx ′
dx ′

ε (x) =

∫ 2h

−2h

[
u
(
x ′
)
− u (x)

] dW
(⏐⏐x − x ′

⏐⏐ , h
)

dx ′
dx ′

= Di ui (x)

(23)

where Di represents differential operator as proposed by Bazant [34]. The term [(u (x)− u (x − s))W (s, h)]2h
−2h =

due to compact kernel support.
Note, Eq. (23) represents smoothed gradient of relative displacement and that in the SPH method the displacement

eld is not smoothed. Further, when the kernel support size h → 0, i.e. limh→0 W (
⏐⏐x − x′

⏐⏐ , h) = δ(
⏐⏐x − x′

⏐⏐ , h) and
he kernel function tends to Dirac’s delta function the nonlocal strain in Eq. (23) tends to zero ε (x) → 0, not to

the classical local continuum strain as illustrated below.

ε (x) =

∫ 2h

−2h

[
u
(
x ′
)
− u (x)

] dW
(⏐⏐x − x ′

⏐⏐ , h
)

dx ′
dx ′

= −

∫ 2h

−2h

d
dx ′

[
u
(
x ′
)
− u (x)

]
W
(⏐⏐x − x ′

⏐⏐ , h
)

dx

lim
h→0

∫ 2h

−2h

d
dx ′

[
u
(
x ′
)
− u (x)

]
W
(⏐⏐x − x ′

⏐⏐ , h
)

dx = lim
x ′→x

d
[
u
(
x ′
)
− u (x)

]
dx ′

δ
(⏐⏐x − x ′

⏐⏐) = 0
(24)

This represents a very important difference from Eringen’s nonlocal continuum where limh→0 ε (x) = limh→0∫ h
−h ε (x + s) α (s) ds ⇒ ε (x) nonlocal strain ε (x) tends to local strain ε (x) as the kernel domain size tends to
ero. The same observation holds for the velocity gradient approximation (21) and the difference form of the stress
ivergence approximation (22).

Finally, a discrete SPH form for ε can be stated as

⟨ε (x I )⟩ =

∑
J

m J

ρJ
[u (x I )− u (x J )]

d
dx ′

W (|x I − x J | , h) (25)

here I & J are particle labels not indexes. Bu differentiating Eq. (25) with respect to time the nonlocal strain rate
an be defined in terms on particle velocities as⟨

ε̇ (x I )
⟩
=

∑ m J

ρ
[v (x I )− v (x J )]

d
dx ′

W (|x I − x J | , h) (26)

J J

8
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In the derivation of the expressions for strain and strain rate, Eqs. (25) and (26) the kernel anti-symmetry,
d

dx W
(⏐⏐x − x ′

⏐⏐ , h
)

= −
d

dx ′ W
(⏐⏐x − x ′

⏐⏐ , h
)
, was used. These expressions are well known SPH discrete forms

riginally derived using a heuristic approach to enforce Galilean invariance. An alternative explanation is offered
n [40] where the SPH balance equations were derived in a moving reference frame.

When used in a rate form of a constitutive equation, the gradient of relative velocity between particles I and J
given by Eq. (26) indicates that the nonlocal stress rate σ̇ (x I ) at particle I depends on relative velocity between
the particles.

Observe that the discrete nonlocal strain rate and stress rate (nonlocal effects) also tend to zero as the reduction
of kernel domain size tends to zero, i.e. when the kernel function tends to Dirac delta function. This represents
the main difference with Eringen’s nonlocal continuum theory where this limit process results in the classical local
continuum theory.

For the principle of virtual work in the SPH formalism we assume that the incremental work, δℵ, depends on
the local strain, ε, and on the smoothed (nonlocal) strain, ε. Therefore, for a bar of length L virtual work is:

δℵ = cδℵ0 + (1 − c) δℵ1 + δℵb −

∫ L

o
ρ
∂2u (x)
∂t2 δu(x)dx = 0 (27)

δℵ0 =

∫ L−2h

2h
τ (x)δε(x)dx =

∫ L−2h

2h
τ (x)δ

∂u(x)
∂x

dx = [τ (x)δu(x)]L−2h
2h −

∫ L−2h

2h
δu(x)

∂τ (x)
∂x

dx

δℵ1 =

∫ L−2h

2h
σ (x)δε(x)dx =

∫ L−2h

2h
σ (x)Dδu(x)dx =

∫ L−2h

2h
Dσ (x)δu(x)dx

=

∫ L−2h

2h
δu(x)

∫ x+2h

x−2h

[
σ (x) − σ (x ′)

] ∂W
(⏐⏐x − x ′

⏐⏐ , h
)

∂x ′
dx ′dx

(28)

where δℵb is the work done by stresses for the boundary segments of length 2h at each bar end (where kernel
support is incomplete); δℵ0, δℵ1 are the works of nonlocal stresses σ and local stresses τ for the rest of the bar;
δu(x), δε(x), δε(x) are any kinematically admissible variations; and c is the partition of unity coefficient with values
0 ≤ c ≤ 1, to be defined later. Note, in the expression for δℵ1 x is the length coordinate of the bar; u is displacement.

Substituting δℵ0 and δℵ1 into Eq. (27) yields

δℵ =

∫ L−2h

2h

{
(1 − c)

∫ x+2h

x−2h

[
σ (x) − σ (x ′)

] ∂W
(⏐⏐x − x ′

⏐⏐ , h
)

∂x ′
dx ′

+ c
∂τ (x)
∂x

− ρ
∂2u (x)
∂t2

}
δu (x) dx

+

∫ 2h

0
F1δu (x) dx +

∫ L

L−2h
F2δu (x) dx = 0

(29)

here F1 and F2 are certain functions which are zero for 2h ≤ x ≤ L − 2h and have effect only within end
egments of length 2h. Since δℵ = 0 for any kinematically admissible δu(x), the expression in the braces { } of
he first integral must be zero. This yields the one-dimensional equation of motion given in (30).

(1 − c)
∫ x+2h

x−2h

[
σ (x) − σ (x ′)

] ∂W
(⏐⏐x − x ′

⏐⏐ , h
)

∂x ′
dx ′

+ c
∂τ (x)
∂x

= ρ
∂2u (x)
∂t2

(1 − c) Dσ (x) + c
∂τ (x)
∂x

= ρ
∂2u (x)
∂t2

(30)

The bar of a unit cross section is subdivided into N equal segments of length ∆p by particles K =

1, 2, 3, . . . , N + 1 as shown in Fig. 3. The bar is also divided into K overlapping segments of length 4h which
defines the size of the kernel support, i.e. representative volume. The nonlocal strain ε, given by Eq. (25), obtained
in one-dimensional overlapping domains of length 4h, is used to determine nonlocal stress σ (x) for each particle.

hese domains, shown as circles in Fig. 3, overlap at each particle. The number of overlapping segments (kernel
omains) for a particle I is equal to number of particles within the domain of particle I, i.e. n = Nn + 1 where

Nn =
4h
∆p is number of neighbours of particle I (n includes particle I).

In order to continue with the discussion of the SPH approximation it is necessary to recall the concept of area
ectors within the SPH method originally outlined by Swegle [41] which is based on the fundamental definition
f the stress tensor where a resultant force F acting on a surface A with the unit normal n̂ due to stress σ is given
9
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Fig. 3. SPH discretisation of an elastic bar of length L, 4h – kernel support size, ∆p – inter-particle distance with illustration of overlapping
kernel domains, Particle I shown in red with its neighbours shown in black. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Interaction area AI J vector for a pair of particles I and J.

by F = σ · n̂A. He showed that the SPH approximation for stress divergence (smoothed stress divergence) can be
rewritten in terms of a particle interaction area as:

∇ · σ (x) =

∫ x+2h

x−2h

[
σ(x) − σ(x′)

] ∂W
(⏐⏐x − x′

⏐⏐ , h
)

∂x′
dx′

≈

∑
J

m J

ρJ
[σI − σJ ] · ∇WI J

F = ∇ · σ =

∑
J

m J

ρJ
[σI − σJ ] · ∇WI J =

∑
J

AI J · [σI − σJ ]
. (31)

here AI J = VJ ∇WI J is the interaction area vector which has a direction normal to the surface and a magnitude
qual to the area of the surface (shown in Fig. 4) and V is the particle volume. Note I and J indicate particles not
ector or tensor components and that AI J is defined for each IJ pair.

Thus, the gradient of the kernel function can be thought of as defining the area on which stress acts to produce
force between the particles.
When this concept is applied in 1D and more specifically to the bar illustrated in Fig. 3 where each particle

as only two neighbours one on each side, AI J represents the IJ pair interaction area and at the same time the bar
ross section. If the interparticle distance ∆p is decreased so that the number of neighbours is increased to 4, the
nteraction areas AI J for the two particle pairs (particle I and the neighbouring particles) on each side of particle
can be determined. This can be interpreted as two overlapping bar elements acting in parallel on particle I. The

ombined cross-section area of all overlapping elements intersected by the same cross section of bar should be a

onstant and independent of the number of overlapping elements.

10
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4. Variational derivation for difference operator (3D)

As before, we start by adopting Hypothesis I Bazant at. al. [33] and assume that the stress depends on the change
f distance between two particles I and J, |xI − xJ |, in this case in 3D.

Therefore, the stress depends on the kernel approximation of the relative displacement gradient, D ⊗ u (x) =

Di u j (x), where D is a differentiation operator defined as:

D ⊗ u (x) =

∫
Ω

[
u(x) − u(x′)

]
⊗ ∇W

(⏐⏐x − x′
⏐⏐ , h

)
dv′

≈

N∑
J=1

m J

ρJ
[uI − uJ ] ⊗ ∇W (|xI − xJ | , h)

∇W
(⏐⏐x − x′

⏐⏐ , h
)

=
dW
ds

1
s

(
x − x′

)
, s =

⏐⏐x − x′
⏐⏐

(32)

ote, D⊗u (x) represents smoothed gradient of relative displacements, i.e.
∫
Ω ∇

[
u(x) − u(x′)

]
W
(⏐⏐x − x′

⏐⏐ , h
)

dv′.
onsequently, nonlocal strain ε (x) defined using the differential operator D represents a nonlocal smoothed strain
easure and can be expressed in a continuous and then discretised form as

ε (x) =
1
2

{
D ⊗ u (x)+ [D ⊗ u (x)]T }

=
1
2

{
Di u j (x)+ D j ui (x)

}
⟨ε (x)⟩ =

N∑
J=1

m J

2ρJ
{[uI − uJ ] ⊗ ∇W (|xI − xJ | , h)

+ [[uI (x) − uJ (x)] ⊗ ∇W (|xI − xJ | , h)]T }
(33)

here i and j are indices, I and J are particle labels, x is coordinate vector; u is displacement vector; and 2h is the
aterial characteristic length (a material property).
The work of the variations δ

(
Di u j

)
per unit volume of the material is σi jδ

(
Di u j

)
σi jδ

(
Di u j

)
where σi j is the

nonlocal stress tensor (repeated indices imply summation). Based on symmetry of σi j we can write,

σ (x) : δ (D ⊗ u) =
1
2

[
σ : δ (D ⊗ u)+ σ : δ (D ⊗ u)T

]
= σ : δε,

ε =
1
2

(
(D ⊗ u)+ (D ⊗ u)T

)
σi j (x) δ

(
Di u j

)
=

1
2

[
σi jδ

(
Di u j

)
+ σ j iδ

(
Di u j

)]
= σi jδεi j ,

εi j =
1
2

(
Di u j + D j ui

)
(34)

ε in Eq. (34) defines the nonlocal smoothed strain tensor.
According to Hypothesis I [33], the variation of the total work in the body, δℵ, depends on the nonlocal stress

σi j and nonlocal strain εi j as well as on the local stress τi j and local strain εi j . Therefore

δℵ = cδℵ0 + (1 − c) δℵ1 + δℵb −

∫
Ω ′

fiδui dv +

∫
Ωb

Φ jδu j dv +

∫
S0

Pjδu j ds = 0

δℵ0 =

∫
Ω ′

τi jδεi j dv, δℵ1 =

∫
Ω ′

σi jδεi j dv
(35)

here:
′ is the domain of the body without a boundary layer of thickness 2h, Fig. 5
b is domain of boundary layer of thickness 2h, Ω = Ω ′

∪ Ωb, see Fig. 5
S0 is surface of the body as shown in Fig. 5, [33]
v = dx1dx2dx3 is differential volume element
ui is any kinematically admissible virtual displacement fi is distributed volume force in Ω ′

δℵ0 is the virtual work of the local stresses τi j within domain Ω ′

1 − c) δℵ1 is the virtual work of the nonlocal stress
i j within domain Ω ′

s is differential surface element
11
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Fig. 5. Various domains of integration, Ω kernel support, Ω ′ domain discretised with complete kernel supports Ω , Ωb boundary layer
domain which cannot be discretised with complete kernel supports Ω , S0 surface of the domain Ωb ∪ Ω .

Pj is applied surface force on S0

Φ j is distributed volume force in Ωb

The combined volumes of n imbricate elements overlapping at a point must be constant and independent of n.
Denoting this combined volume as (1 − c) where 0 ≤ c ≤ 1, we see that the volume contribution of each imbricate
element is (1−c)/n. Obviously, it decreases as the subdivision of V is refined and tends to 0 as n → ∞.

Note, c characterises the fraction of the material behaving in a local manner. For c = 0, we have the nonlocal
continuum and for c = 1, we have the classical local continuum as special cases. There is a number of possible
ways of determining c, two possibilities are discussed in Section 5.

Let us now try to separate δui , in the integrand of δℵ1. Using Eq. (34) we can write

δℵ1 =
1
2

∫
Ω ′

σi jδεi j dv =
1
2

(∫
Ω ′

σi jδ
(
Di u j

)
dv +

∫
Ω ′

σ j iδ
(
Di u j

)
dv
)

(36)

here repeated subscripts (both i and j) imply summation over 1, 2, 3.∫
Ω ′

σi jδ
(
Di u j

)
dv =

∫
Ω ′

Diσi jδu j dv =

∫
Ω ′

δu(x) ·

∫
Ω

[
σ(x) − σ(x′)

]
· ∇W

(⏐⏐x − x′
⏐⏐ , h

)
dv′dv∫

Ω ′

σ j iδ
(
Di u j

)
dv =

∫
Ω ′

Diσ j iδu j dv =

∫
Ω ′

δu(x) ·

∫
Ω

[
σ(x) − σ(x′)

]T
· ∇W

(⏐⏐x − x′
⏐⏐ , h

)
dv′dv

δℵ1 =

∫
Ω ′

δu(x) ·

∫
Ω

[
σ(x) − σ(x′)

]
· ∇W

(⏐⏐x − x′
⏐⏐ , h

)
dv′dv

(37)

here is Ω is kernel domain (support). Note that σ is evaluated at x and x′ and that, according to Gauss theorem,
q. (38) results from the smoothed divergence of the stress resultant

[
σ(x) − σ(x′)

]
as shown in Fig. 6, i.e.

∫
Ω ∇ ·

σ(x) − σ(x′)
]

W
(⏐⏐x − x′

⏐⏐ , h
)

dv′. In the SPH method nonlocal stress field σ (x) = C (x) :
∫
Ω α

(⏐⏐x′
− x

⏐⏐) ε (x′
)

dV
C (x) : ε (x) is not smoothed and for that reason the symbol σ is not used.
However, if instead of the differential operator D we use conventional local differentiation the expression for

ℵ1 has the form given by Eq. (38) which is not consistent with the definition of the nonlocal strain. Note that this
s the form most commonly used in the SPH balance of linear momentum [37–39].

δℵ1 =

∫
Ω ′

σ(x) : δε(x)dv =

∫
Ω ′

∫
Ω

σ(x) :
[
δu (x)− δu

(
x′
)]

⊗
∂W

(⏐⏐x − x′
⏐⏐ , h

)
∂x′

dv′dv

where −

∫
Ω

σ(x) : δu
(
x′
)
⊗
∂W

(⏐⏐x − x′
⏐⏐ , h

)
∂x′

dv′
=

∫
Ω

σ(x′) : δu (x)⊗
∂W

(⏐⏐x − x′
⏐⏐ , h

)
∂x′

dv′

δℵ1 =

∫
δu (x)

∫ [
σ(x) + σ(x′)

]
·
∂W

(⏐⏐x − x′
⏐⏐ , h

)
dv′dv (38)
Ω ′ Ω ∂x′

12
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Fig. 6. Schematic representation of Nonlocal (long-range) interaction of particles within a kernel domain Ω .

We proceed with virtual work δℵ1 for Ω ′ and δℵb for Ωb as

δℵ1 =

∫
Ω ′

δu (x) ·

∫
Ω

[
σ(x) − σ(x′)

] ∂W
(⏐⏐x − x′

⏐⏐ , h
)

∂x′
dv′dv

δℵb =

∫
Ωb

Φ · δudv

The term δℵ0 by Gauss’ integral theorem, can be restated

δℵ0 =

∫
Ω

τ : δεdv =

∫
S
τδu · nds −

∫
Ω

(∇ · τ) δudv (39)

in which S is the boundary surface of Ω ; n is the unit normal of the surface; and ds is the surface element of S
and τ (ε).

The description of continuum motion based on local stress τ and nonlocal stress σ allows for two different
constitutive equations. The nonlocal constitutive equation for σ offers the possibility to include nonlocal aspects of
material behaviour which cannot be incorporated into the local constitutive equation for τ, see for instance [42].

There are few possible ways to evaluate local stress τ and strain ε including the possibility to calculate τ by
smoothing nonlocal stress σ or by using local strain calculated using normalised corrected kernel interpolation. The
latter option is described below.

The local strain ε and the local stress divergence ∇ · τ are calculated using normalised corrected SPH as
proposed in [43]. The expression used are given below for completeness. Zero order consistent Shepard functions
W̃ (|xI − xJ | , h) are used for approximation of field variables (as kernels). For instance, displacements are
approximated as

⟨u(x)⟩ =

∫
Ω u(x′)W

(⏐⏐x − x′
⏐⏐ , h

)
dx′∫

Ω W (|x − x′| , h) dx′
=

∑
J

m J

ρJ
u(xJ )

[
WJ (|xI − xJ | , h)∑

J
m J
ρJ

W (|xI − xJ | , h)

]

=

∑
J

m J

ρJ
u(xJ )W̃ (|xI − xJ | , h) , W̃ (|xI − xJ | , h) =

WJ (|xI − xJ | , h)∑
J

m J
ρJ

W (|xI − xJ | , h)
(40)
13
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And the corrected approximations of differential operators (first order consistent), e.g. displacement gradient is
approximated as

⟨∇u(x)⟩ =

{[∫
Ω u(x)W

(⏐⏐x − x′
⏐⏐ , h

)
dx′
]
⊗
[∫

Ω ∇W
(⏐⏐x − x′

⏐⏐ , h
)

dx′
][∫

Ω W (|x − x′| , h) dx′
]2

−

[∫
Ω u(x) ⊗ ∇W

(⏐⏐x − x′
⏐⏐ , h

)
dx′
] [∫

Ω W
(⏐⏐x − x′

⏐⏐ , h
)

dx′
][∫

Ω W (|x − x′| , h) dx′
]2

}
· B−1

(41)

where B is

B =

{[∫
Ω W

(⏐⏐x − x′
⏐⏐ , h

)
dx′
] [∫

Ω x′
⊗ ∇W

(⏐⏐x − x′
⏐⏐ , h

)
dx′
][∫

Ω W (|x − x′| , h) dx′
]2

−

[∫
Ω x′W

(⏐⏐x − x′
⏐⏐ , h

)
dx′
]
⊗
[∫

Ω ∇W
(⏐⏐x − x′

⏐⏐ , h
)

dx′
][∫

Ω W (|x − x′| , h) dx′
]2

} (42)

nd finally, ⟨∇u(x)⟩ in discretised form is

⟨∇uI ⟩ =

[[∑
J

m J

ρJ
uJ ⊗ ∇WI J

][∑
J

m J

ρJ
WI J

]
−

[∑
J

m J

ρJ
uJ WI J

]
⊗

[∑
J

m J

ρJ
∇WI J

]]
B−1 (43)

here B =

[∑
J

m J
ρJ

xJ ⊗ ∇WI J

] [∑
J

m J
ρJ

WI J

]
−

[∑
J

m J
ρJ

xJ WI J

]
⊗

[∑
J

m J
ρJ

∇WI J

]
.

Eq. (43) applied to particle velocities is used to approximate local velocity gradient. Finally, local stress divergence
is approximated as

⟨∇ · σI ⟩ =

[∑
J

m J
ρJ
σJ · ∇WI J

] [∑
J

m J
ρJ

WI J

]
−

[∑
J

m J
ρJ
σJ WI J

]
·

[∑
J

m J
ρJ

∇WI J

]
[∑

J
m J
ρJ

xJ · ∇WI J

] [∑
J

m J
ρJ

WI J

]
−

[∑
J

m J
ρJ

xJ WI J

]
·

[∑
J

m J
ρJ

∇WI J

] (44)

These expressions complete definitions of all discrete operators required to discretise the equations of balance of
mass, momentum and energy and at the same time to calculate parameters c and cρ .

According to d’Alembert principle, we may also substitute f = −ρü, where ρ is mass density and ü = ∂2u/∂t2, t
is time. Thus, Eq. (45)

δℵ = cδℵ0 + (1 − c) δℵ1 + δℵb −

∫
Ω ′

ρü · δu(x)dv +

∫
S0

P · δu ds = 0 (45)

takes the form
δℵ =

∫
Ω ′

[ρü − (1 − c)D · σ− c∇ · τ] δudv +

∫
Ωb

ψ · δu dv

+

∫
Ωb

Φδudv +

∫
S0

Pδuds +

∫
S′

Ψδuds

=

∫
Ω ′

[
ρü j − (1 − c) Diσi j − cτi j,i

]
δui dv +

∫
Ωb

ψiδu j dv

+

∫
Ωb

Φ jδu j dv +

∫
S0

Pjδu j ds +

∫
S′

Ψiδu j ds = 0

(46)

where ψi , Φ j , Ψi are functions independent of δu j .
Note that only the first of the integrals in Eq. (46) involve the interior domain Ω ′, which excludes the boundary

layer Ωb. According to the principle of virtual work, Eq. (46) must hold for any kinematically admissible variation,
δu j (x). Choosing δu j (x) to be zero outside Ω ′, and nonzero and arbitrary within Ω ′, it follows from the fundamental
lemma of the variational calculus that the expression in parentheses in the first integral must vanish for all x. This
yields the continuum equation of motion:

(1 − c)D · σ− c∇ · τ = ρü or (1 − c) Diσi j − cτi j,i = ρü j (47)

which is a partial difference-differential equation. Note that this equation holds only within Ω ′, i.e., it does not

apply within the boundary layer Ωb.

14
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The continuum equations of motion for the surface and the boundary layer Ωb follow, mainly, from the second
to fifth integrals in Eq. (46). However, their form requires special attention and it is addressed separately.

5. Determination of the partition of unity parameter c

As already stated, c characterises the fraction of the material behaving in a local manner. For c = 0, we have
he nonlocal continuum and for c = 1, we have the classical local continuum as special cases. One possible way of
etermining c for an elastic continuum is based on the requirement that the local and nonlocal stresses combined
hould be able to define a constant stress field (i.e. are in equilibrium). We start with the assumption that the effects
f the nonlocal stress σi j

(
εi j
)

are equal to the effects of the local stress τi j
(
εi j
)
, i.e. (1 − c) σi j = c · τi j where the

local strain εi j is calculated using normalised corrected SPH as proposed in [43].

(1 − c)Ci jklεkl = c · Ci jklεkl ⇒ (1 − c) εkl = c · εkl (48)

In Eq. (48), representing nonlocal and local stress equilibrium, the fourth order tensors Ci jkl and Ci jkl define
ocal and nonlocal materials stiffness properties. In general, Ci jkl and Ci jkl are different [32]. However, in this
onsideration in order to simplify Eq. (48) we assume that local Ci jkl and nonlocal Ci jkl are the same. This allows
or c to be defined as:

c = εkl
(
εi j + εi j

)
δikδ jl

c = ε : (ε+ ε)−1
(49)

o be consistent in discretisation of the balance laws, we have to use local/nonlocal form of the balance of mass
quation

ρ̇ =
(
1 − cρ

)
ρD · v + cρρ∇ · v or ρ̇ =

(
1 − cρ

)
ρDivi + cρρ∇ · vi (50)

here D · v is nonlocal velocity divergence and cρ characterises the fraction of the material undergoing a local
hange of density. Assuming that the local and nonlocal density in a homogeneous body have to be the same cρ
an be determined as

(1 − cρ)
Nn∑
J=1

ρJ
m J

ρJ
W (|xI − xJ | , h) = cρ

Nn∑
J=1

ρJ
m J

ρJ
W̃ (|xI − xJ | , h)

⇒ cρ =

∑Nn
J=1 m J W (|xI − xJ | , h)∑Nn

J=1 m J W̃ (|xI − xJ | , h)−
∑Nn

J=1 m J W (|xI − xJ | , h)
(51)

n alternative way to determine cρ based on the assumption of volume conservation can be as follows:

ΩI =

∫
Ω

W
(⏐⏐x − x′

⏐⏐ , h
)

dx′
= (1 − cρ)

Nn∑
J=1

m J

ρJ
W (|xI − xJ | , h)+ cρ

Nn∑
J=1

m J

ρJ
W̃ (|xI − xJ | , h)

⇒ cρ =

ΩI −
∑Nn

J=1
m J
ρJ

W (|xI − xJ | , h)∑Nn
J=1

m J
ρJ

W̃ (|xI − xJ | , h)−
∑Nn

J=1
m J
ρJ

W (|xI − xJ | , h)
(52)

. SPH stability assessment for elastic continuum

The instability of the Classical SPH method which typically demonstrates itself in tension (consequently named
ensile instability) has been one of the main shortcomings and sources of criticism of the SPH method. In addition
o tensile instability SPH, similar to the finite element method, exhibits the instability related to zero strain energy

odes of deformation. Here we limit our attention to two key publications related to SPH stability analysis without
ny disrespect to other researchers who worked on this problem.

The first comprehensive stability assessment of the SPH method for a 1D elastic continuum was performed by
wegle [25]. This von Neuman analysis resulted in the well-known instability criterion where the positive product
f stress and second derivative of the kernel function, i.e. W ′′σ > 0, implies instability.

Six years later, Belytschko at al. [44] published a unified stability analysis of meshless particle methods which
ncluded assessment of SPH, again for a 1D elastic continuum, and confirmed Swegle’s findings. It is important
15
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Fig. 7. (a) Swegle’s stability criterion W ′′σ > 0 (b) local-nonlocal stability criterion W ′′σ < 0.

to notice that, unlike in Swegle’s analysis, the SPH stability analysis in [44] was based on the constitutive
equation integrated over the domain (neighbourhood) of the particle I instead of domains (neighbourhoods) of
the neighbouring J particles. The effects of this assumption on the stability analysis were not considered in the
paper.

These two publications considered a version of the SPH method based on the combination of nonlocal derivatives
of velocity and local derivatives of stress. Their findings are directly relevant to the Classical SPH form of the
balance of momentum equation typically used in contemporary SPH codes.

The SPH stability analysis presented here is performed in two stages. In this section we present only the main
findings and provide the detailed analyses in Appendices A and B.

Firstly, we considered stability of the continuous nonlocal and local–nonlocal SPH approximations of the elastic
continuum following [32,36] in order to establish stability requirements for the kernel functions used in the SPH
approximations. In order for the SPH approximations, to be applicable to an elastic continuum they must satisfy
the following two requirements [36]:

Requirement I - If the stresses, σ(x), are everywhere zero, the strains in a stable material must be also zero, i.e., no
unresisted deformation (zero – strain energy deformation mode) may be permitted by the theory.

Requirement II - In a stable material, the wave propagation velocity, v, must be real with an appropriate dispersion
relation.

The consideration of the Requirement I showed that the Fourier transform of the SPH kernel function W ∗(k)
must be positive for all k including k = 0.

From the dispersion relationship we see that, in the case of nonlocal continuum (c = 0), velocity v is real and
the continuum is stable if and only if the autocorrelation of the SPH smoothing function |W ∗ (k)|2 is positive for
all k except k = 0. The local continuum, (c = 1) is unconditionally stable. Consequently, the partition of unity
parameter c can be used to stabilise potentially unstable behaviour of nonlocal continuum.

Details of the analysis which led to these conclusions are given in Appendix A.
Second, we assessed stability of the discretised nonlocal SPH form by repeating Swegle’s [25] analysis.
Swegle’s criterion for instability in terms of the stress state and the second derivative of the kernel function in

the case of nonlocal SPH is W ′′σ < 0 which is reverse of the original Swegle’s instability criterion (illustrated
in Fig. 7(a)). The analysis showed that the method’s stability in tension and in compression coincides with the
stability of elastic continuum (illustrated in Fig. 7(b)). The instability of the Classical SPH originating from an
effective stress with a negative modulus being produced by the interaction between the constitutive relation and the
kernel function was not present in the case of nonlocal SPH.

This analysis is presented step by step for a 1D elastic continuum in Appendix B.

7. Numerical examples

This section provides a number of 1D and 2D examples designed to investigate and illustrate behaviour of the
various SPH formulations derived in the previous sections when implemented in a numerical code. This includes the

discrete local, nonlocal SPH and mixed local-nonlocal forms when implemented in a numerical code. As already

16
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stated, the local form used to approximate velocity gradient is given in Eq. (43) and the form used to approximation
stress divergence is given in Eq. (44).

The discrete form used to approximate non-local relative velocity gradient is:

⟨∇v(xI )⟩ = −

∑
J

m J

ρJ
[v(xI ) − v(xJ )] ⊗ ∇W (|xI − xJ | , h) (53)

ote that Eq. (53) is identical to the Classical SPH approximation of velocity gradient.
The non-local form of the momentum equation, consistent with the approximation of gradient of relative velocity

53) is given in Eq. (54). This form is directly related to Eq. (37) in the derivation of nonlocal SPH.⟨
dvI

dt

⟩
= −

∑
J

m J

ρIρJ
[σ(xI ) − σ(xJ )] ∇WI (xJ , h) (54)

he second form of the balance of momentum equation considered in this section is the Classical SPH Eq. (55)⟨
dvI

dt

⟩
=

∑
J

m J

[
σ(xI )
ρ2

I
+
σ(xJ )
ρ2

J

]
∇WI (xJ , h) (55)

n addition to nonlocal SPH and Classical SPH we also considered two mixed formulations based on partition of
nity. The first mixed formulation is local–nonlocal form and the second mixed formulation is local–Classical SPH
orm.

In both mixed formulations the balance of mass and the balance of momentum equations include a partition of
nity parameter, so the density is updated as

ρ̇ =
(
1 − cρ

)
ρD · v + cρρ∇ · v

nd the acceleration is updated as⟨
dvI

dt

⟩
= (1 − c)

⟨
dvI

dt

⟩
non−local

+ c
⟨

dvI

dt

⟩
local

(56)

hrough the choice of partition of unity parameter c for the momentum equation and cρ for the balance of mass
quation the behaviour of the mixed local forms as well as the special cases of the non-local continuum and local
ontinuum were investigated.

The numerical code uses the second-order explicit central difference algorithm for time integration. The algorithm
s identical to the one used by the LS-DYNA code [45]. This algorithm advances the position of all particles from
ime tn to time tn+1 using

xn+1
= xn

+ vn+1/2∆tn+1/2, (57)

where the particle velocity is updated using the acceleration determined from Eq. (56),

vn+1/2
= vn−1/2

+ an∆tn. (58)

A linear hypo-elastic constitutive model is used for the stress update. The local stress, used in the local form of the
momentum equation and the non-local stress used in the non-local form of the momentum equation were calculated
and stored separately within the code. In the results presented below, where stress is plotted it is the total stress,
i.e.

s = (1 − c) σ− cτ. (59)

For the uniform tension/compression test cases and the Swegle stability test no artificial viscosity is used in order
not to mask any effects of instability. For the subsequent wave propagation and impact test, the standard Monaghan
and Gingold artificial viscosity term [5] is used. The smoothing length is kept constant throughout the simulations.

7.1. Uniform tension and compression in 1D

In these tests a 1D bar of length 1.0 is given a linearly varying initial velocity (v = ±0.001x) to generate a
uniform strain over the length of the bar. In this example the origin of the x-axis was located at the mid-point of the
17



R. Vignjevic, T. DeVuyst and J. Campbell Computer Methods in Applied Mechanics and Engineering 387 (2021) 114164

C

b
v
a

s
s

a

7

c
e
a
−

i
e
t
p
t

2

Fig. 8. Stress profiles for 1D uniform compression problem at the response time t = 1.0 (a) and the response time t = 10.0 (b).

Fig. 9. Stress profiles for 1D uniform tension problem at the response time t = 1.0 (a) and the response time t = 10.0 (b). Results for the
lassical SPH form are not shown due to instability.

ar. The bar was discretised into 100 particles. The three particles closest to each end of the bar were prescribed
elocity equal to the initial velocity, in order to remove the influence of any boundary effects. The bar material was
ssigned the following properties density ρ0 = 8.0, Elastic modulus E = 2.0 and Poisson’s ratio ν = 0.3.

Stress profiles for local, non-local and mixed local-nonlocal results are shown in Figs. 8 and 9. These results
how good agreement with the analytical solutions in both tension and compression. The one exception was the
um form (Classical SPH) for which the calculation was unstable and did not reach a solution time of t = 10.0.

The values of the partition of unity parameter that are calculated for the combined case remain essentially constant
t cρ = 0.501 and c = 0.502.

.2. Swegle numerical stability test in 2D

Swegle demonstrated the SPH tensile instability by applying a perturbation velocity to a single particle in the
entre of a square 2D domain (solid block) prestressed with tensile or compressive stress [25]. In this numerical
xample we used a direct copy of Swegle’s numerical test. The initial particle distribution is a two dimensional
rray of 441 particles arranged in a rectangular lattice with particle coordinates between −1.0 ≤ x ≤ 1.0 and
1.0 ≤ y ≤ 1.0 with a particle spacing of 0.1, as shown in Fig. 10. The loading was generated by defining the

nitial material density as a fraction of the referential density. If this fraction is greater than 1.0 then the material is
xposed to a constant isotropic compressive stress, if the fraction is smaller than 1.0 then the material is exposed
o a constant isotropic tensile stress. An initial velocity perturbation of vx = 1.0 × 10−10 is applied to the centre
article. The outer three layers of particles were fully fixed throughout the calculations to remove any influence of
he domain boundary.

The material properties are representative of hydrodynamic (zero yield strength) aluminium with density ρ0 =
.8, Bulk Modulus K = 0.686275, Shear Modulus = 0.0. All artificial viscosities were switched off.
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Fig. 10. Initial rectangular lattice used in the stability tests.

Fig. 11. Plot showing particle positions and x (horizontal) velocity at the response timet = 30 (a) and the response timet = 42 (b) for the
sum form with initial density ρ0 = 0.990.

Fig. 12. Velocity amplitude for the perturbed (central) particle (a) for Classical SPH (sum form) showing presence of tensile instability, (b)
or the non-local (difference) form showing no tensile instability.

To consider stability in this simulation the absolute velocity of the perturbed particle was recorded. If the
ehaviour is stable the velocity amplitude remains below the value of the initial perturbation. If the behaviour
s unstable then the amplitude grows and the particles move in a non-physical way.

For the sum form (Classical SPH) the nonphysical particle motion (clumping) is illustrated in Fig. 11 for two
esponse times t = 30 and t = 42. The velocity history for the perturbed (central) particle is given in Fig. 12(a)
isplaying the behaviour observed by Swegle [25], i.e. stable behaviour in compression and unstable behaviour in
ension. Note that the rate of growth of the instability is proportional to the level of stress.

Stable behaviour of the non-local difference form in Swegle’s test is illustrated in Fig. 12(b) showing no growth
f the perturbed particle velocity magnitude.

The same test was also performed on the mixed local–Classical SPH form to investigate stabilising effect of the
ocal SPH on the Classical SPH form. The test results are given for two levels of background stress, i.e. Fig. 13(a)
or ρ0 = 0.990 and (b) for ρ0 = 0.950. The partition of unity parameter c calculated was determined according to

Eq. (49) varied in the range 0.497< c < 0.502 and consequently the curves for c = 0.5 and c-calculated are almost

dentical. The increase of c had stabilising effect, manifested in a reduced rate of instability growth.
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(

Fig. 13. Velocity amplitude for the perturbed (central) particle for the unstable (mixed) Classical–local SPH form (a) for ρ0 = 0.990 and
b) for ρ0 = 0.950 illustrating stabilising influence of the partition of unity parameter c.

Fig. 14. Initial particle distribution for 3D bar model of uniform compression and tension models.

7.3. A 3D bar under uniform compression and tension

This numerical example was designed to validate and illustrate behaviour of the mixed local–nonlocal form in
3D. For that purpose, a 3D model of an elastic bar with a constant cross section under the uniform tension and
compression test was generated, see Fig. 14. The boundary conditions and number of particles along the X-axis
was 100 as in the 1D test above. For the free surfaces Y = ±0.035 and Z = ±0.035 symmetry plane boundary
conditions were used to generate the 1D strain state in the bar. A 7 by 7 particle discretisation was used in the
Y and Z directions to ensure that the particles along central region of the bar have no ghost particle neighbours
used to enforce the symmetry boundary conditions. The resulting stress distributions for the central row of particles
along the x-axis for the response times t = 1.0 and t = 10.0 are given in Fig. 15 for compression and in Fig. 16
for tension. These 3D results agree with the results from the equivalent test in 1D given above.

7.4. Compressive wave propagation tests with free surface boundary

This wave propagation test was performed in 1D. This test consisted of a 5 cm long bar impacting a rigid wall at
the origin. This rigid wall was modelled with a symmetry plane. The bar initial velocity was 50 m/s. The material
was linear elastic with Young’s modulus equal to 200 GPa and Poisson’s ratio equal to 0.3. The material density
was 8000 kg/m3. For this wave propagation case, and all subsequent impact test results, Gingold and Monaghan
artificial viscosity term [5] was used in this test case, with a coefficient of 0.5, and the bar was discretised with 500
particles. The ratio of smoothing length to particle spacing was 1.3. This test case was intended firstly to verify
basic performance of the different SPH formulations described in this paper, and second to illustrate the need for
a different treatment of particles in the boundary layer, as described in Section 2.

Upon impact with the rigid wall a compressive stress wave was generated and propagated into the bar. Fig. 17
shows the results before the compressive wave reaches the free end for the Classical SPH (Equations 1.39 and 1.40)
and the nonlocal SPH (Equations 1.38 and 1.39), the purely local formulation (Equations 1.31 and 1.32), and mixed
20
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d

Fig. 15. Stress distribution for the uniform bar compression for 1D and 3D at the response time t = 1.0 (a) and the response time t =

10.0 (b).

Fig. 16. Stress distribution for the uniform bar tension for 1D and 3D at the response time t = 1.0 (a) and the response time t = 10.0 (b).

Fig. 17. Compression wave travelling from the rigid wall at the origin into the bar (towards the right) for local-no-local formulation with
ifferent values of the c coefficient: 0, 0.25, 0.5, 0.75, 1.0 and calculated using density-based criterion at response time t = 10 µs.

local–nonlocal formulation (based on Equation 1.34). The analytical solution is also shown as a solid red curve in
Fig. 17. From these results it is clear that all formulations predict the correct compressive stress magnitude. In terms
of the wave speed one can observe a small difference between the local and nonlocal results. Both Classical SPH
and nonlocal SPH results are close to the analytical solution in terms of wave speed. The mixed formulation results,

as expected, lie approximately half-way between the local and nonlocal results in terms of wave speed. The effect

21



R. Vignjevic, T. DeVuyst and J. Campbell Computer Methods in Applied Mechanics and Engineering 387 (2021) 114164
Fig. 18. Release wave travelling from the bar free end towards the rigid wall (from right to left) for Classical SPH, local SPH, nonlocal
SPH and local-nonlocal SPH: (a) without boundary treatment, (b) with boundary treatment, at response time t = 10 µs.

Fig. 19. Tensile wave propagation problem initial conditions.

of different values of the partition of unity coefficient c is also illustrated in Fig. 17. As expected the curves lie
between the curves for c values equal to 0 and equal to 1.

As pointed out in Section 2, the nonlocal formulation requires special treatment of the boundary layer. This is
illustrated in Fig. 18 which shows the same wave propagation problem at a later response time after the wave has
reflected from the free end and the release wave has travel some distance into the bar. The analytical solution, the
thick solid line, in Fig. 18(a) shows the section of the bar that has unloaded at response time t = 10 µs. It is clear
from this figure that the response on the local, nonlocal and mixed local-nonlocal formulations is non-physical. The
exception, as expected, is result for Classical SPH, which does reproduce the free end boundary condition.

Based on this property of Classical SPH the following approach to treatment of the free boundary was
investigated. The Classical SPH approximation of stress divergence (plus form) for particles in the boundary layer
and the nonlocal SPH (difference form) for the remainder of the domain were used. Specifically, in this example
the Classical SPH form was applied to the last four particles at the free end. The results for this approach are shown
in Fig. 18(b). It is evident that this simple boundary treatment worked effectively in this 1D example as the results
for all formulations now closely match the analytical solution.

7.5. Tensile wave propagation

This second wave propagation test problem, schematically represented in Fig. 19, was adapted from the wave
propagation problem that was used by Baǎzant and Belytschko in [1,33]. In these papers the constitutive behaviour
of the bar included a strain softening response, but for the purpose of this work a pure linear elastic model was
more appropriate to study the propagation of tensile stress waves. The Young’s modulus was 70.8 GPa, Poisson’s
ratio 0.108 and the density 1550 kg/m3. A bar 0.2 m long bar was loaded at both ends with a constant velocity v
= 70 m/s (x = −0.1 m, v = −70 m/s; x = 0.1 m, v = 70 m/s) as shown in Fig. 20.

Therefore, two tensile step waves are generated at the two ends which travel towards the centre of the bar. When
the two waves meet at the centre they superpose resulting in two times higher stress magnitude which propagates
from the centre towards the bar ends.

The problem was modelled in 1D and 3D. In the 1D case the bar had a cross section area A = 1, and in 3D
the models had a 1-by-1 cm cross section with the use of symmetry planes in the +Y/−Y and +Z/−Z directions
22
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Fig. 20. Initial axial velocity for 3D tensile wave propagation problem.

Fig. 21. (a) 1D results and (b) 3D results for tensile wave propagation problem at response time t = 20 µs.

to generate a 1D strain state, as shown in Fig. 20. The bar was discretised with 200 particles along the length for
both 1D and 3D models, with boundary layers of seven particles at each end where the velocity was prescribed
(see Fig. 20).

In both 1D and 3D cases (see Fig. 21(a) and (b)) it can be clearly observed that the Classical SPH (sum form)
results in an unstable solution. For this form the instability starts to develop as soon as the tensile wave is generated
at the ends of the bar and then propagates into the bar as the wave progresses. As can be seen in Fig. 21 after 20
µs the response has become unphysical with large errors in the stress levels across the bar, and including large
unphysical oscillations. In contrast, the non-local difference form and the mixed local-non-local formulation does
not show instability, and match the analytical solution closely. The effect of using different values of the partition
of unity parameter c is illustrated in Fig. 22. It can be seen that irrespective of the value used the response appears
stable.

The SPH solutions are also in close agreement with the equivalent FEA solution. The SPH wave front is not
as steep as the FEA results as this is inherent to the SPH interpolation. The FEA results were obtained using the
LS-Dyna software. The FEA mesh consisted of a line of 200 under integrated hexahedral elements. The symmetry
boundary conditions were applied to the side surfaces of the bar to ensure a 1D strain deformation state. The
prescribed velocities were applied at both ends of the bar.

7.6. 2D and 3D impact tests

The purpose of these tests is to assess the behaviour of the local-nonlocal form on representative solid mechanics
problems. This requires treatment of the free-surface boundary condition that is not represented in the nonlocal form
23
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Fig. 22. Effect of different values of c parameter on results at response time t = 20 µs.

Fig. 23. Detail view of initial particle distribution for elastic shell problem. Boundary particles are highlighted in red. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)

f the momentum equation (54). This is unlike the Classical SPH form of the momentum equation (55), where the
rror which is the consequence of the neighbour particle deficit at the boundary, results in approximation of the free
urface. The wide use of this form is a consequence of this ability to represent free surface. As rigorous treatment
f the free surface boundary condition for the local-nonlocal form is future work, in these tests the free surface
ehaviour was approximated through the use of a boundary layer of particles that use the Classical SPH rather than
he nonlocal form of the momentum equation. Consequently, this boundary layer is unstable in tension.

The first test example is the 2D rubber shell or ‘tennis ball’ impact originally used by Swegle and co-workers [25]
o illustrate SPH behaviour in tension. This problem consists of two 4 cm outer diameter, 3 cm inner diameter, shells
ach with an initial velocity of 50 m/s. The material properties are density 1.01 g/cm3, elastic modulus 439.9 MPa
nd Poisson’s ratio 0.4. In the results presented here we use 40 particles through the shell thickness, Fig. 23, this
s significantly higher than the 10 through the thickness used in the original Swegle results, the reason is that the
ignificant tensile strains that occur on the inner shell surface close to the initial contact point result in instability
n the boundary layer particles that prevents the calculation form continuing. The use of 40 particles ensures that
he boundary layer thickness is small compared to the total shell thickness, allowing the calculation to continue
uccessfully. The boundary layer is two particles thick, so representing the particles that have a reduced number of
eighbour particles due to the surface. The results for the rubber shell are shown in Fig. 24, demonstrating that the
ocal-nonlocal form does allow the shells to contact and separate without failure.

The second example is the 3D symmetric impact of two cylinders, Fig. 25. The purpose of this test was to further
llustrate the behaviour of the local-nonlocal form in 3D. Each cylinder has length 4 cm and diameter 1.9 cm with
n inter-particle distance of approximately 0.1 cm, resulting in 11,360 particles per cylinder. The cylinders use a
inear elastic material model with density 2.8 g/cm3, elastic modulus 1.0 GPa and Poisson’s ratio 0.3. Each cylinder
as an initial velocity of 50 m/s. Results for this case are shown in Fig. 26, showing the impact and separation of

he cylinders. The level of deformation in this analysis is small as increasing the impact velocity or reducing the
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Fig. 24. Results for elastic shell (tennis ball) problem.

Fig. 25. Initial configuration of 3D symmetric elastic cylinder impact test.

Fig. 26. Results for 3D symmetric elastic cylinder impact, showing impact and separation. Particles coloured by von Mises stress (Mbar).
alf the cylinder is blanked to show the internal stress distribution. (For interpretation of the references to colour in this figure legend, the

eader is referred to the web version of this article.)

lastic modulus resulted in instability in the boundary layer across the contact interface, the region of greatest tensile
tress. The interaction of this instability with the contact algorithm resulted in error termination of the analyses.

In order to investigate the 3D behaviour under larger deformation, the model was modified to consist of a single
ylinder and a symmetry plane, removing the need for boundary particles across the impacting surface. To increase
eformation the initial velocity of the cylinder was increased to 100 m/s and the elastic modulus decreased to 100
Pa. Results for this case are shown in Fig. 27, showing successful treatment of the larger elastic deformations in

his case. Instability did begin in the tensile region of boundary layer shortly after the final time shown.
The results from these three cases verify the capability of the 3D local-nonlocal form for solid mechanics

pplications. Robust treatment of the free-surface boundary condition remains a future challenge.

. Conclusions

In this paper we have revisited the derivation of the Eulerian version of the SPH method. In addition to reviewing
he Classical SPH and the normalised corrected/local forms of SPH, we provide a consistent derivation of a nonlocal
25
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C

ρ

Fig. 27. Results for 3D elastic cylinder impact. Particles coloured by von Mises stress (Mbar). Half the cylinder is blanked to show the
internal stress distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

SPH form. Further we proposed and analysed two mixed SPH forms based on the partition of unity. The first
combines the local and nonlocal SPH (LNL-SPH) and the second combines Classical and local SPH (CLL-SPH).
These developments are applicable to Eulerian SPH characterised by variable neighbourhood approximations which
allow for modelling of large deformations.

Our stability analysis of the continuous nonlocal SPH approximation for an elastic continuum defined a stability
requirement that the auto correlation of the kernel function has to be positive. We then demonstrate that the discrete
form of nonlocal SPH, unlike Classical SPH, does not suffer from tensile instability.

However, the nonlocal SPH requires additional treatment of free surface boundary conditions. In the numerical
examples for the nonlocal SPH, free surface boundary conditions were imposed by applying the Classical SPH
approximation for stress divergence over a boundary layer of particles (particles with incomplete kernel support),
i.e. these examples were treated as volume constrained problems.

The mixed SPH forms offer a way of modelling local and nonlocal effects in continuum, e.g. progressive localised
damage through use of local and nonlocal constitutive models. LNL-SPH does not suffer from tensile instability.
In CLL-SPH the local SPH improves stability of Classical SPH.

Further work is required in derivation of rigorous approach to treatment of free surface boundary conditions in
nonlocal SPH and LNL-SPH, as well as development of an efficient numerical implementation of the LNL form to
minimise the additional computational cost of this form. In addition, the proposed nonlocal and mixed formulations
can be extended to SPH in the Total Lagrangian framework.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Appendix A. Stability assessment of the continuous SPH approximation for elastic continuum

The intent is to examine stability of the SPH method when modelling elastic continuum, in which the stress
at a given point is assumed to be a function of the local εi j and nonlocal εi j strains within the neighbourhood at
that point. The instabilities, which are due to the discretisation approach, in particular, the choice of the smoothing
(kernel) function used for displacement averaging are of the main interest.

According to the classical (local), theory of linear elasticity, the constitutive relation may be written as τi j =

i jklεi j , where τi j , εi j and Ci jkl are tensors that depend on position vector x, i.e. are defined at a point within the
continuum. The partial differential equation describing local motion of the continuum is ρüi = τi j, j .

And for the SPH approximation (nonlocal continuum) the same equation becomes (1 − c)D · σ + c∇ · τ =

¨ ε .
u or (1 − c) Diσi j + cτi j,i = ρü j where nonlocal stress σi j is function of nonlocal strain i j
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It is important to observe that the approximation (A.60), of the relative displacement and relative velocity fields
n the continuum, results in nonlocal continuum description.⟨

uR(x)
⟩
=

∫
Ω

[
u(x) − u(x′)

]
W (
⏐⏐x − x′

⏐⏐ , h)dx′

⟨
u̇R(x)

⟩
=

∫
Ω

[
u̇(x) − u̇(x′)

]
W (
⏐⏐x − x′

⏐⏐ , h)dx′
(A.60)

here ⟨⟩ indicates kernel approximation/smoothing. And the related nonlocal stress

σi j (x) = Ci jklεi j (x)

εi j (x) =

∫
Ω

[
ui (x) − ui (x′)

]
⊗
∂W (

⏐⏐x − x′
⏐⏐ , h)

∂x ′

j
dΩ (A.61)

the products of Ci jkl
∂W (|x−x′|,h)

∂x ′ can be labelled the nonlocal elastic moduli Ci jkm where the SPH kernel W (
⏐⏐x − x′

⏐⏐ ,
h) corresponds to the weighting function in nonlocal theory of elasticity [28]. In the SPH approximation of the
quation of motion the smoothing integral (A.60) is applied to the right-hand side of the equation of motion,
.e. the term

ρü ⇒ ⟨ρü⟩ =

∫
Ω

ρü
(
x′
)

W (
⏐⏐x − x′

⏐⏐ , h)dΩ .

ote, when the kernel support size h → 0, the kernel function tends to Dirac’s delta function limh→0 W (
⏐⏐x − x′

⏐⏐ ,
h) = δ(

⏐⏐x − x′
⏐⏐ , h). Consequently, the approximation of the relative displacement

[
u(x) − u(x′)

]
W (
⏐⏐x − x′

⏐⏐ , h) ⇒ 0
nd the nonlocal strain εi j (x) ⇒ 0 leading to the classical, local continuum as a special case, i.e. (1 − c) Di Ci jklεi j

(x)+ cτi j,i =
⟨
ρü j

⟩
⇒ τi j,i = ρü j .

In order for this type of approximation, to be applicable to an elastic continuum it must satisfy the following
wo requirements [36]:

Requirement I - If the stresses, σ(x), are everywhere zero, the strains in a stable material must be also zero,
.e., no unresisted deformation (zero – strain energy deformation mode) may be permitted by the theory.

Requirement II - In a stable material, the wave propagation velocity, v, must be real with an appropriate dispersion
relation. It is shown below that from these two requirements it follows that the Fourier transform of the kernel
function and its differential, W (

⏐⏐x − x′
⏐⏐ , h), ∂W (|x−x′|,h)

∂x′ , must be positive for all real k.
To prove this statement and for the sake of clarity, we consider an infinite 1D elastic body subjected to

eformation, for which Eq. (A.61) may be simplified as

σ (x) = E
∫
Ω

(
u (x)− u

(
x ′
)) ∂

∂x ′
W (
⏐⏐x−x ′

⏐⏐ , h)dx ′
= Eε (x) (A.62)

According to Requirement I σ (x) = 0 ⇔ ε(x) = 0 and using Eq. (A.62),

ε (x) =

∫
Ω

(
u (x)− u

(
x ′
)) ∂

∂x ′
W (
⏐⏐x−x ′

⏐⏐ , h)dx ′
= 0 (A.63)

he nonlocal strain should be zero, i.e. Eq. (A.63) should be satisfied, only when relative displacements u R
(
x ′
)

=

(x) − u
(
x ′
)

are equal to zero (no deformation). A general displacement may be approximated as u (x) =

exp (ikx) which yields

u R (x ′
)

= u (x)− u
(
x ′
)

= a
[
exp (ikx)− exp (ik (x − s))

]
(A.64)
here a is a real amplitude, and k > 0 is a real constant, should satisfy Eq. (A.63).
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Substitution of Eq. (A.64) into Eq. (A.63) yields the condition that the equation must not have any solution,
hich after dividing by a exp (ikx) becomes

ε(k, h) =

∫
Ω

a
[
exp (ikx)− exp (ik (x − s))

] ∂
∂s

W (s, h)ds = 0
⏐⏐x−x ′

⏐⏐ = s∫
Ω

a exp (ikx)
[
1 − exp (−iks)

] ∂
∂s

W (s, h)ds = 0
⏐⏐⏐⏐exp (−ikx)

a∫
Ω

[
1 − exp (−iks)

] ∂
∂s

W (s, h)ds = 0;

∫
Ω

∂

∂s
W (s, h)ds = 0∫

Ω

exp (−iks)
∂

∂s
W (s, h)ds = (ik)W ∗(k, h) = 0

(A.65)

here W ∗(k, h) and
[
∂W (k,h)
∂s

]∗

are Fourier transform of the W (
⏐⏐x−x ′

⏐⏐ , h) and ∂
∂x ′ W (

⏐⏐x−x ′
⏐⏐ , h) respectively as

iven in Eq. (A.66).

W ∗(k, h) =

∫
Ω

exp (−iks)W (s, h)ds = 0
⏐⏐x−x ′

⏐⏐ = s[
∂W (k, h)
∂s

]∗

=

∫
Ω

exp (−iks)
∂

∂s
W (s, h)ds = (ik)W ∗(k, h) = 0

(A.66)

n alternative approach, presented below, based on Fourier transform of W (s, h) leads to the same requirement.

ε(x, h) =

∫
Ω

d
[
u (x)− u

(
x ′
)]

dx ′
W (
⏐⏐x−x ′

⏐⏐ , h)dx ′
= 0

⏐⏐x−x ′
⏐⏐ = s

ε(k, h) =

∫
Ω

a
∂
[
exp (ikx)− exp (ik (x − s))

]
∂s

W (s, h)ds = 0

a exp (ikx)
[
(ik)

∫
Ω

exp (−iks)W (s, h)ds
]

= 0
⏐⏐⏐⏐exp (−ikx)

a (ik)

W ∗ (k) =

∫
Ω

exp (−iks)W (s, h)ds = 0

o, we can conclude that the kernel function Fourier transform W ∗(k, h) must not be zero for any k. Hence, W ∗(k, h)
ust be continuous and it must be either positive or negative everywhere on Ω .
The requirement that W ∗(k, h) must be positive cannot be proven without Requirement II.
Consider the Requirement II. We restrict attention to small deformations, such that in 1D local strain is ε (x) =

∂u(x)
∂x , where u (x) is displacement. The equation of motion for a nonlocal continuum is (1 − c) D [E Dε (x)] +

E ∂ε(x)
∂x =

⟨
ρ
∂2u j
∂t2

⟩
, where t is time and ρ is mass density. Substitution of Eq. (A.62) into the equation of motion

then yields

(1 − c)

[∫
Ω

(
σ (x)− σ

(
x ′
)) ∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

]
+ c

∂τ (x)
∂x

=

∫
Ω

ρ
(
x ′
) ∂2u

(
x ′
)

∂t2 W (
⏐⏐x−x ′

⏐⏐ , h)dx ′

(1 − c)E

[∫
Ωx

(∫
Ωx

(
u (x)− u

(
x ′
)) ∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

−

∫
Ωx ′′

(
u
(
x ′
)
− u

(
x ′′
)) ∂W (

⏐⏐x ′
−x ′′

⏐⏐ , h)
∂x ′′

dx ′′

)

×
∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

]
+cE

∂ε (x)
∂x

=

∫
Ω

ρ
(
x ′
) ∂2u

(
x ′
)

∂t2 W (
⏐⏐x−x ′

⏐⏐ , h)dx ′

(A.67)

here nonlocal terms are

(1 − c)E
∫ [∫ (

u (x)− u
(
x ′
)) ∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

]
∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

= 0

Ωx Ωx
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w

The second nonlocal term can be restated as

(1 − c)E
∫
Ωx

[∫
Ωx ′′

(
u
(
x ′
)
− u

(
x ′′
)) ∂W (

⏐⏐x ′
−x ′′

⏐⏐ , h)
∂x ′′

dx ′′

]
∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

= (1 − c)E
∫
Ωx ∪Ωx ′′

[∫
Ωx ∪Ωx ′′

(
u
(
x ′
)
− u

(
x ′′
)) ∂W (

⏐⏐x ′
−x ′′

⏐⏐ , h)
∂x ′′

dx ′′

]
∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

= (1 − c)E
∫
Ωx ∪Ωx ′′

[∫
Ωx ∪Ωx ′′

u
(
x ′
) ∂W (

⏐⏐x ′
−x ′′

⏐⏐ , h)
∂x ′′

dx ′′

]
∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

−(1 − c)E
∫
Ωx ∪Ωx ′′

[∫
Ωx ∪Ωx ′′

u
(
x ′′
) ∂W (

⏐⏐x ′
−x ′′

⏐⏐ , h)
∂x ′′

dx ′′

]
∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

(A.68)

Assuming that u (x) = a exp (ikx), consider the first integral in Eq. (A.68)

I1 = (1 − c)E
∫
Ωx ∪Ωx ′′

[∫
Ωx ∪Ωx ′′

u
(
x ′
) ∂W (

⏐⏐x ′
−x ′′

⏐⏐ , h)
∂x ′′

dx ′′

]
∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

x − x ′
= s, x ′

− x ′′
= s ′

I1 = (1 − c)E
∫
Ωx ∪Ωx ′′

∫
Ωx ∪Ωx ′′

a exp (ik (x − s))
∂W (|s| , h)

∂x ′
(−ds)

∂W (
⏐⏐s ′
⏐⏐ , h)

∂s ′
(−ds ′)

I1 = (1 − c)EaW ∗

∫
Ωx ∪Ωx ′′

∂W (
⏐⏐s ′
⏐⏐ , h)

∂s ′
(−ds ′) = 0

(A.69)

Now consider the second integral

I2 = (1 − c)E
∫
Ωx ∪Ωx ′′

[∫
Ωx ∪Ωx ′′

u
(
x ′′
) ∂W (

⏐⏐x ′
−x ′′

⏐⏐ , h)
∂x ′′

dx ′′

]
∂W (

⏐⏐x−x ′
⏐⏐ , h)

∂x ′
dx ′

x − x ′
= s, x ′

− x ′′
= s ′

I2 = (1 − c)E
∫
Ωx ∪Ωx ′′

∫
Ωx ∪Ωx ′′

a exp
(
ik
(
x ′

− s ′
)) ∂W (

⏐⏐s ′
⏐⏐ , h)

∂s ′
(−ds ′)

∂W (|s| , h)
∂x ′

(−ds)

I2 = (1 − c)Ea
∫
Ωx ∪Ωx ′′

(ik)W ∗ (k) exp (ik (x − s))
∂W (|s| , h)

∂s
ds = −k2(1 − c)Ea exp (ikx)

⏐⏐W ∗ (k)
⏐⏐2
(A.70)

here |W ∗ (k)|2 is autocorrelation of the SPH smoothing function

(1 − c)k2 Ea exp (ikx)
⏐⏐W ∗ (k)

⏐⏐2 − cEk2a exp(ikx) =

∫
Ω

ρ
(
x ′
) ∂2u

(
x ′
)

∂t2 W (
⏐⏐x−x ′

⏐⏐ , h)dx ′

(1 − c)k2 Ea exp (ikx)
⏐⏐W ∗ (k)

⏐⏐2 − cEk2a exp(ikx) = ρ
∂2u (x .t)
∂t2

u(x, t) = a exp(ikx) = A exp (i (ωt + kx)) ,
∂2u
∂t2 = −Aω2 exp (i (ωt + kx))

−(1 − c)k2 E A exp (i (ωt + kx))
⏐⏐W ∗ (k)

⏐⏐2 − cEk2 A exp(i (ωt + kx)) = −ρAω2 exp (i (ωt + kx))

−(1 − c)k2 E exp (i (ωt + kx))
⏐⏐W ∗ (k)

⏐⏐2 − cEk2 exp(i (ωt + kx)) = −ρω2 exp (i (ωt + kx))

(1 − c)k2 E
⏐⏐W ∗ (k)

⏐⏐2 + cEk2
= ρω2

(1 − c)k2
⏐⏐W ∗ (k)

⏐⏐2 + ck2
=
ρ

E
ω2

=
1
v2ω

2

(A.71)

ω2

k2 = v2
(

c + (1 − c)
⏐⏐W ∗ (k)

⏐⏐2) (A.72)

From the dispersion relationship Eq. (A.72) we see that, in the case of nonlocal continuum (c = 0), v is real and
the continuum is stable if and only if the autocorrelation of the SPH smoothing function |W ∗ k |

2 is positive for
( )
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all k except k = 0. In addition, from the Requirement I the Fourier transform W ∗(k) must be positive also for
k = 0, as already proven. The local continuum, (c = 1) is unconditionally stable. Consequently, the partition of
unity parameter c can be used to stabilise potentially unstable behaviour of nonlocal continuum.

It is important to note the following two points.

• Requirement I is not applicable to inelastic materials with residual stresses. However, Requirement I could
then be replaced, with equal results, by the requirement that, if the stress rate, σ̇ , is zero, the strain rate ε̇ must
also be zero, provided that the tangent modulus, Et =

∂σ
∂ε

, is positive.
• The above stability assessment and the derived stability requirements apply to the continuous form of the SPH

method. Discretised form of SPH is characterised with additional stability requirements for details see Swegle
at al. [25] and Belytschko at al. [44].

Appendix B. Stability assessment of the discretised SPH method for elastic continuum

The main assumption used in the analysis are as follows. The smoothing length is equal to the initial interparticle
distance, consequently only the nearest neighbours contribute to the particle sums. The next-nearest neighbours
located at distance 2h do not, since both the kernel function and its derivative are zero for |x J − x I | ≥ 2h. Density
s assumed to be constant and unaffected by small perturbations. The dependence of the kernel function on the
moothing length is not considered. Further, instead of using symmetrised form Eq. (B.73).

ẍ I = −

Nn∑
J=1

m J

(
σI

ρIρJ
+

σJ

ρIρJ
+ ΠI J

)
∂W (|x I − x J | , h)

∂x
(B.73)

he balance of linear momentum is approximated by Eq. (B.74) in order to simplifies the stability analysis.

ẍ I = −

Nn∑
J=1

m J

(
σJ

ρJρI
+ ΠI J

)
∂W (|x I − x J | , h)

∂x
, ΠI J =

αC I JµI J − β (µI J )
2

ρJρI
(B.74)

here ΠI J is artificial viscosity required to smooth shock waves which has to be consistent with numerical
esolution [46,47], µI J is relative velocity of particles I and J, α and β linear and quadratic term coefficients.

Based on the above assumptions Eq. (B.74) can be restated as

ẍ I = −
m
ρ2

[(
σI+1 + ρ2ΠI,I+1

)
W ′ (|x I − x I+1|)−

(
σI−1 + ρ2ΠI,I−1

)
W ′ (|x I − x I−1|)

]
(B.75)

here W ′ (|x I − x I+1|) =
∂W(|x I −x I+1|,h)

∂x , the particles have been numbered in order of increasing position in the
x direction, so that I − 1 is the index of the nearest neighbour in the negative direction, while I + 1 is the index of
he nearest neighbour in the positive direction. In Eq. (B.75) anti-symmetry of the differential of the kernel function
as used. In 1D, W has dimension of length−1, while the mass m should be interpreted as mass per unit length,
ith the cross-sectional area numerically equal to one. The dimension of W ′ is consequently length−2.
It is important to notice that Eq. (B.75) would be the same if instead of Eq. (B.74) the simplification is performed

n Eq. (B.73) characterised by the stress plus form (Classical SPH), i.e.

ẍ I = −
m
ρ2

(
σI+1 + σI + ρ2ΠI,I+1

)
W ′ (|x I − x I+1|)−

(
σI−1 + σI + ρ2ΠI,I−1

)
W ′ (|x I − x I−1|)

= −
m
ρ2

(
σI+1 + ρ2ΠI,I+1

)
W ′ (|x I − x I+1|)−

(
σI−1 + ρ2ΠI,I−1

)
W ′ (|x I − x I−1|)

his leads to the conclusion that the results of Swegle’s stability analysis apply to the sum form of the momentum
quation.

If the same simplification is applied to Eq. (31) we obtain the form of the momentum equation compatible with
nd convenient for the stability analysis

ẍ I = −
m
ρ2

[(
σI − σI+1 + ρ2ΠI,I+1

)
W ′ (|x I − x I+1|)−

(
σI − σI−1 + ρ2ΠI,I−1

)
W ′ (|x I − x I−1|)

]
=

m [(
σI+1 − ρ2ΠI,I+1

)
W ′ (|x I − x I+1|)−

(
σI−1 − ρ2ΠI,I−1

)
W ′ (|x I − x I−1|)

] (B.76)
ρ2
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In order to simplify and shorten the writing of Eq. (B.76) we introduce the following approximations/substitutions

Q I,I+1 = −ρ2ΠI,I+1 ≈ −α (ẋ I+1 − ẋ I ) ,

Eq. (B.76) becomes

ẍ I =
m
ρ2

[(
σI+1 + Q I,I+1

)
W ′ (|x I − x I+1|)−

(
σI−1 + Q I,I−1

)
W ′ (|x I − x I−1|)

]
hich, after ime derivatives are approximated by central difference expressions and the second substitution TI+1 =

I+1 + Q I,I+1, the equation assumes the form

ẋ I,n+
1
2

− ẋ I,n−
1
2

=
m∆t
ρ2

[
TI+1W ′ (|x I + x I+1|)− TI−1W ′ (|x I − x I−1|)

]
n (B.77)

ollowing Swegle’s approach, stress is defined as a function of density as

σ = −Kη = ρ0c2
(

1 −
ρ0

ρ

)
, K = ρ0c2

σ I
= −K

[
1 −

ρ0

2m

(
x I+1

− x I−1)] (B.78)

here K is bulk modulus, c is speed of sound and η is the volume strain.
Eq. (B.77) is used to update positions of particles according to the following expression

x I,n+1 = x I,n + ∆t ẋ I,n+
1
2

(B.79)

Perturbation Propagation Equations - The next step is to obtain the linearised equations of first variation, which
escribe the propagation of small perturbations in the original equations. This is done by applying perturbations of
he form x → x + δx to each of the variables, subtracting the unperturbed equations and keeping only the terms
hich are first order in δx . All unperturbed quantities in the equations are frozen; the coefficients of the perturbations

re considered constants. The resulting equations are known as the perturbation propagation equations.
Each position and velocity, regardless of its spatial and temporal index, is replaced by a perturbed value given in

q. (B.80). The equations describing the evolution of the perturbations are obtained by substituting the perturbed
uantities into the discretised equation of balance of linear momentum (B.77), retaining only those terms linear in
he perturbations, and subtracting the original equations.

x I,n+1 → x I,n+1 + δx I,n+1

ẋ I,n+
1
2

→ ẋ I,n+
1
2

+ δ ẋ I,n+
1
2

(B.80)

he perturbations given by Eq. (B.80) result in the following perturbations in the equation of state stress,

σI+1,n → σI+1,n + δσI+1,n (B.81)

nd the viscosity

Q I+ 1
2 ,n

→ Q I+ 1
2 ,n

+ δQ I+ 1
2 ,n

(B.82)

where

δσI+1,n =
ρ0 K
2m

(
δx I+2,n − δx I,n

)
δQ I+ 1

2 ,n
= α

(
δ ẋ I+1,n−

1
2

− δ ẋ I,n−
1
2

) (B.83)

And the perturbation of the kernel derivative is approximated using a first-order Taylor series expansion of W ′ and
is independent of the form of the kernel function. W ′′ is the second derivative of W with respect to its argument,
and is thus the slope of W ′.

W ′

I+ 1
2 ,n

→ W ′

I+ 1
2 ,n

+ δW ′

I+ 1
2 ,n

δW ′
1 → W ′′

1
(
δx − δx

) (B.84)

I+ 2 ,n I+ 2 ,n

I+1,n I,n
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Using the above Eq. (B.77) becomes

ẋ I,n+
1
2

+ δ ẋ I,n+
1
2

− ẋ I,n−
1
2

− δ ẋ I,n−
1
2

=
m∆t
ρ2

[(
σI+1,n + Q I+ 1

2 ,n
+ δσI+1,n + δQ I+ 1

2 ,n

) (
W ′

I+ 1
2 ,n

+ δW ′

I+ 1
2 ,n

)
−

(
σI−1,n + Q I− 1

2 ,n
+ δσI−1,n + δQ I− 1

2 ,n

) (
W ′

I− 1
2 ,n

+ δW ′

I− 1
2 ,n

)] (B.85)

The linearised form of this equation, after dropping higher-than-linear terms in the perturbations and subtracting
the original equation, becomes

δ ẋ I,n+
1
2

− δ ẋ I,n−
1
2

=
m∆t
ρ2 (TI+1,nδW ′

I+ 1
2 ,n

− TI−1,nδW ′

I− 1
2 ,n

+ Q I+ 1
2 ,n

+ W ′

I+ 1
2 ,n
δσI+1,n

−W ′

I− 1
2 ,n
δσI−1,n + W ′

I+ 1
2 ,n
δQ I+ 1

2 ,n
− W ′

I− 1
2 ,n
δQ I− 1

2 ,n
)

(B.86)

where total stress is TI+1,n = σI+1,n + Q I+ 1
2 ,n

Note that each cross-product produces surviving terms which consist of the constants in the first term times the
perturbations in the second, plus the constants in the second term times the perturbations in the first. Substituting
Eqs. (B.78), (B.79) and (B.80) into (B.82) yields

δ ẋ I,n+
1
2

= δ ẋ I,n−
1
2

+
m∆t
ρ2

{
δW ′′

I+ 1
2 ,n

TI+1,n
(
δx I+1,n − δx I,n

)
− δW ′′

I− 1
2 ,n

TI−1,n
(
δx I,n − δx I−1,n

)
+
ρ0 K
2m

[
W ′

I+ 1
2 ,n

(δx I+2,n − δx I,n) − W ′

I− 1
2 ,n

(δx I,n − δx I−2,n)
]

−α
[
W ′

I+ 1
2 ,n

(δx I+1,n−
1
2

− δx I,n−
1
2
) − W ′

I− 1
2 ,n

(δx I,n−
1
2

− δx I−1,n−
1
2
)
]}

(B.87)

δx I,n+1 = δx I,n + ∆tδ ẋ I,n+
1
2

(B.88)

qs. (B.87) and (B.88) describe the propagation of small perturbations in the velocity and position.
A Fourier analysis of the perturbation propagation assumes a separation of spatial and temporal variables of the

orm

δx I,n = δxn E I

δ ẋ I,n−
1
2

= δ ẋn−
1
2

E I
(B.89)

here

E I =
(
eik∆X )I

= cos (I k∆X)+ i sin (I k∆X) (B.90)

escribes the spatial variation of the perturbed quantities. In this expression X is the initial, or Lagrangian coordinate,
o that ∆X is the initial uniform spacing between particles, and E I represents E being raised to the power I, rather

than an index. The position of particle I at time zero is given by

x I = I∆X (B.91)

The perturbation is assumed to be periodic with wavenumber, k, which is the circular inverse of the perturbation
wavelength, k, so that

k∆X =
2π

∆X (B.92)

λ
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Substituting the solutions with separated variables into the perturbation propagation equations and dividing by E I
yields

δ ẋn+
1
2

= δ ẋn−
1
2

+
m∆t
ρ2

{
δW ′′

I+ 1
2 ,n

TI+1,n (E − 1)− δW ′′

I− 1
2 ,n

TI−1,n
(
1 − E−1)

+
ρ0 K
2m

[
W ′

I+ 1
2 ,n

(E2
− 1) − W ′

I− 1
2 ,n

(1 − E−2)
]}
δxn

−
αm∆t
ρ2

[
W ′

I+ 1
2 ,n
(E − 1)− W ′

I− 1
2 ,n

(
1 − E−1)] δ ẋn−

1
2

(B.93)

nd

δxn+1 = δxn + ∆tδ ẋn+
1
2

(B.94)

hese expressions can be simplified by considering the case of a uniform initial state, so that

W ′

I+ 1
2 ,n

= W ′

I− 1
2 ,n

= W ′

W ′′

I+ 1
2 ,n

= W ′′

I− 1
2 ,n

= W ′′

TI+1,n = TI−1,n = T

(B.95)

Eq. (B.93) becomes

δ ẋn+
1
2

= δ ẋn−
1
2

+
m∆t
ρ2

{
δW ′′

I+ 1
2 ,n

T
(
E + E−1

− 2
)
+
ρ0 K
2m

W ′(E2
+ E−2

− 2)
}
δxn

−
αmW ′∆t
ρ2

(
E + E−1

− 2
)
δ ẋn−

1
2

(B.96)

here(
E + E−1

− 2
)

= 2
(

cos
2π∆X
λ

− 1
)

(E2
+ E−2

− 2) = 2
(

cos
4π∆X
λ

− 1
) (B.97)

Eq. (B.96) thus becomes

δ ẋn+
1
2

= δ ẋn−
1
2

+
2m∆t
ρ2

{
W ′′ T

(
cos

2π∆X
λ

− 1
)

+
2ρ0 K W ′

2m

(
cos

4π∆X
λ

− 1
)}

δxn

−
2αmW ′∆t

ρ2

(
cos

2π∆X
λ

− 1
)
δ ẋn−

1
2

(B.98)

The first term in brackets multiplying δxn involves kernel variations at constant stress, while the second term in
brackets multiplying δxn involves stress variations at a constant value of the kernel. The term multiplying it δ ẋn−

1
2

involves the artificial viscosity. The shortest wavelength perturbation which can be resolved by the discrete system
is λmin = 2∆X . At this wavelength the term involving stress variations goes to zero, so that the variation of stress
has no effect on the propagation of perturbations at the shortest wavelength.

For the resulting system of equations, we find the amplification matrix A, defined by Un+1 = AUn where Un+1
is the vector of values at the new time step, and U is the vector of values at the old time step. The eigenvalues of
A, which depend on the wavenumber of the perturbation, determine the stability of the system of equations. If the
largest eigenvalue exceeds unity, the amplitude of the value vector is exponential in time.

The perturbation propagation equations can be rewritten in the form

δ ẋn+
1
2

= (1 − r∆t)δ ẋn−
1
2

+ s∆tδxn

−∆tδ ẋ 1 + δx = δx
(B.99)
n+ 2
n+1 n
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where

s =
m∆t
ρ2

{
δW ′′

I+ 1
2 ,n

T
(

cos
2π∆X
λ

− 1
)

+
ρ0 K W ′

2m

(
cos

4π∆X
λ

− 1
)}

r =
αmW ′∆t
ρ2

(
cos

2π∆X
λ

− 1
)
δ ẋn−

1
2

(B.100)

Amplification Matrix Eigenvalues - Eq. (B.99) can be rewritten in matrix form as

LUn+1 = RUn (B.101)

where the vector of new velocities and positions is

Un+1 =

{
δ ẋn+

1
2

δxn+1

}
(B.102)

he vector of old velocities and positions is

Un =

{
δ ẋn−

1
2

δxn

}
(B.103)

nd

L =

[
1 0

−∆t 1

]
, R =

[
(1 − r∆t) s∆t

0 1

]
(B.104)

he stability of this set of equations is determined by the eigenvalues of the amplification matrix A, in the equation
n+1 = AUn . From Eq. (B.101) it follows that

A = L−1R (B.105)

etermination of the eigenvalues of A can be simplified by noting that

|A − λI| = 0 ⇔ |L| |A − λI| = |R − λL| = 0 (B.106)

hus, an equivalent procedure is to find the eigenvalues of

R − λL =

[
(1 − r∆t − λ) s∆t

∆tλ 1 − λ

]
(B.107)

he resulting eigenvalue equation is

λ2
+
(
r∆t − s∆t2

− 2
)
λ+ 1 + r∆t = 0 (B.108)

he system is unstable if the larger root of Eq. (B.108) exceeds unity, i.e. max {λ1, λ2} > 1. This leads to exponential
rowth of the perturbations. Determination of stability criterion can be simplified by writing the eigenvalue equation
n the following form

λ2
− 2Bλ+ C = 0 (B.109)

here

B = 1 + θ, θ =
r∆t + s∆t2

2
C = 1 + r∆t

(B.110)

The value of the maximum eigenvalue depends on the value of the discriminant D, where

D = B2
− C (B.111)

o that the eigenvalues are given by

λ = B ±
√

D (B.112)
1,2
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There are several cases to consider based on the sign of D and the magnitude of B, but in the current analysis
ll cases reduce to the statement that D > 0 is a sufficient condition for instability. Using Eq. (B.110) D can be
xpressed as

D = s∆t2
+ θ2 (B.113)

o a sufficient condition for instability is

s > 0 (B.114)

aving in mind that the stability limit is controlled by λmin the parameter s becomes

s =
m∆t
ρ2

{
δW ′′

I+ 1
2 ,n

T
(

cos
2π∆X
λ

− 1
)

+
ρ0 K W ′

2m

(
cos

4π∆X
λ

− 1
)}

2∆X = λmin ⇒ s = −
2m∆tW ′′T

ρ2

(B.115)

herefore, a sufficient condition for unstable growth of the shortest wavelength (twice the particle spacing) is

W ′′T < 0 (B.116)

here T is negative in compression and positive in tension. On the other hand, if

W ′′T > 0 (B.117)

he system is conditionally stable, which means that the time step must be limited in order to achieve stability.
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