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Abstract—Memristors have recently demonstrated great
promise in constructing memristive neural networks with com-
plex dynamics. This paper proposes a memristive Hopfield neural
network with three memristive coupling synaptic weights. The
complex dynamical behaviors of the triple-memristor Hopfield
neural network (TM-HNN), which have never been observed
in previous Hopfield-type neural networks, include space multi-
structure chaotic attractors and space initial-offset coexisting
behaviors. Bifurcation diagrams, Lyapunov exponents, phase
portraits, Poincaré maps, and basins of attraction are used to
reveal and examine the specific dynamics. Theoretical analysis
and numerical simulation show that the number of space
multi-structure attractors can be adjusted by changing the
control parameters of the memristors, and the position of space
coexisting attractors can be changed by switching the initial
states of the memristors. Extreme multistability emerges as a
result of the TM-HNN’s unique dynamical behaviors, making
it more suitable for applications based on chaos. Moreover, a
digital hardware platform is developed and the space multi-
structure attractors as well as the space coexisting attractors
are experimentally demonstrated. Finally, we design a pseudo-
random number generator to explore the potential application
of the proposed TM-HNN.

Index Terms—Hopfield neural network (HNN), memristor
synapse, multi-structure attractor, initial-offset behavior, coex-
isting attractors, field-programmable gate array (FPGA) imple-
mentation

I. INTRODUCTION

B IOLOGICAL brain is a highly complex nonlinear system
with chaotic dynamical behaviors [1, 2]. Artificial neural

networks have received a lot of attention for their design and
research in an effort to imitate the structure and characteristics
of the biological brain [3, 4]. Among them, Hopfield neural
network (HNN) with brain-like network structure and brain-
like dynamics is an especially significant model [5]. On one
hand, some brain functions can be well understood through
the study of the dynamics of the HNN, for example, memory
[6], neuroregulation [7], and so on [8]. On the other hand, the
HNN with complex dynamics can be widely applied in the
field of artificial intelligence to solve practical issues, such
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as pattern recognition [9], image processing [10], as well as
combinatorial optimization [11]. Over the past few decades,
an enormous number of improved HNN models have emerged
to generate complex dynamical behaviors such as chaos [12],
coexisting behaviors [13], and synchronization [14]. These
research results not only help to further understand how the
brain works, but also to promote the development of artificial
intelligence.

Based on the symmetry theory of fundamental circuit
variables, Chua proposed the memristor concept in 1971 [15].
Hewlett-Packard Lab produced the first physical memristor
successfully in 2008 [16], which significantly increased appli-
cations of memristors. The unique nonvolatility and nonlin-
earity of the memristor, which bridges the gap between charge
and flux, makes it a novel circuit element [17]. Last twenty
years, the memristor has been widely applied to construct
memristive chaotic systems [18] and memristive neural net-
works [19-21]. Especially, it can be used to build memristive
Hopfield neural networks (MHNNs) [22, 23], which makes the
artificial neural networks closer to the biological brain. On one
hand, the memristor can be used to describe electromagnetic
induction effect in biological nervous systems because of
its characteristic of magnetic flux. Under electromagnetic
radiation, for instance, the MHNNs can be constructed using
the HNNs [24, 25]. Furthermore, memristive electromagnetic
induction effects between neurons can also be used to model
the MHNNs [26, 27]. The memristor, on the other hand,
is typically used to emulate biological synapses due to its
unique nonlinearity and nonvolatility. For example, memristor
synapses can be used to replace resistor synapses in HNNs to
create MHNNs [28-30]. Numerous MHNN models based on
these strategies have been proposed over the past ten years.
The MHNNs have been found to have a variety of complex
dynamical behaviors, such as hyperchaos [31], hidden attrac-
tors [32], chimera [33], and multistability [34, 35].

Recently, several works on complex multi-scroll attractors
have been reported in the MHNNs. Multi-scroll attractors are
complex chaotic behaviors [36, 37], which have special scroll
trajectories. Compared with single-scroll attractors, multi-
scroll attractors have higher adjustability and complexity.
The multi-scroll dynamics of the MHNN, for example, has
been first revealed in Ref. [38]. The authors found four-
scroll and six-scroll attractors after investigating the effect
on the dynamical behaviors of the neural network under
electromagnetic radiation. Multi-double-scroll attractors in the
MHNN have been reported in Ref. [39]. In an HNN with three
neurons, the authors demonstrated that the memristive self-
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connection synaptic weight can encourage the formation of
multiple double-scroll attractors. Besides, plane multi-scroll
attractors have been observed from an MHNN with two
memristor synapses [40]. In the meantime, some similar multi-
scroll MHNNs have been proposed and successfully applied
in the information security field [41-43]. More recently, Ref.
[44] proposed an MHNN which can generate multi-structure
chaotic attractors that are more complex than multi-scroll at-
tractors. However, the MHNN realized only single-directional
multi-structure chaotic attractors. Is it possible to achieve
plane or space multi-structure attractors in an MHNN?

Additionally, the work on initial-offset behavior in the
MHNNs has become a hot topic. Following multistability and
extreme multistability, a new type of complex dynamics is the
initial-offset behavior [45, 46]. It refers to the existence of
an infinite number of attractors with identical topologies but
distinct positions. In particular, the initial-offset behavior has
the potential to produce stable and robust chaotic sequences
with oscillating amplitudes that can be non-destructively con-
trolled by flexibly switching initial states. In Ref. [47], the
initial-offset behavior of the MHNN has been examined. Line
initial-offset coexisting attractors can be seen in the MHNN
with a single memristive self-connection synaptic weight,
according to the findings of the study. Ref. [48] demonstrates
that the MHNN with a single memristor synapse can produce
hidden chaotic attractors with identical initial offsets. And the
dynamics of initial-offset coexisting hyperchaotic attractors
have been revealed in a coupled MHNN [49]. Furthermore,
in Ref. [50], the plane initial-offset coexisting behaviors in the
MHNN have been discovered. The authors demonstrated that
two memristive self-connected synaptic weights can make the
HNN with two neurons produce plane initial-offset coexisting
attractors. Space initial-offset behaviors in the MHNN have
not yet been documented, however.

Drawing inspiration from the above analyses, this pa-
per presents a triple-memristor HNN (TM-HNN), which is
constructed by substituting three resistive coupling synaptic
weights with three memristive coupling synaptic weights.
Wonderfully, the TM-HNN not only can exhibit space multi-
structure attractors by adjusting the memristors’ control pa-
rameters, but also can exhibit space initial-offset behavior by
switching the memristors’ initial states. As far as the authors
know, the space multi-structure attractors and the space initial-
offset behavior in the HNN have not been reported in the
literature.

This article’s novelty and major contributions can be
summarized as follows:(1) We design a multistable locally
active memristor and propose a TM-HNN with four neurons.
Unlike other MHNN models, the TM-HNN is constructed
considering three memristive coupling synaptic weights. (2)
The space multi-structure attractors and space initial-offset
coexisting behaviors are demonstrated through theoretical
analysis and numerical methods. Emphatically, by altering the
control parameters and initial conditions of the memristors,
respectively, one can conveniently control the number of space
multi-structure attractors and the position of the space initial-
offset coexisting attractors. (3) A FPGA-based hardware plat-
form is developed and the space multi-structure attractors
and space initial-offset coexisting attractors are experimentally
reproduced. Experimental results show that the TM-HNN is

capable of producing highly random numbers.
The following is how the rest of this paper is laid out.

Section II designs a multistable locally active memristor
and presents a TM-HNN model. Section III investigates the
space multi-structure attractors and the space initial-offset
behavior. The hardware platform based on an FPGA is made
to check the numerical results in Section IV. Finally, Section
V concludes with a few conclusions.

II. DESCRIPTION OF TRIPLE-MEMRISTOR HOPFIELD
NEURAL NETWORK

First, a multistable locally active memristor model is de-
signed in this section. The designed memristor is then used
to construct a triple-memristor Hopfield neural network.

A. Design Of Multistable Locally Active Memristor

Memristors with nature nonlinearity and memory are typi-
cally accustomed to emulating neural synapses. Recently, Lai
et al. [41] designed a robust hyperbolic tangent memristor to
simulate the neural synapse in a memristive neural network.
Due to its adjustable parameters, this memristor has signifi-
cantly more adjustability and diversity than other memristor
models. Unfortunately, the memristor is not locally active.
Inspired by this memristor model, we design a multistable
locally active memristor as follows{

i =W (ϕ)v = bϕv
dϕ/dt = cv−dh(ϕ) , (1)

where h(ϕ) contains two parts h1(ϕ) and h2(ϕ):

h1(ϕ)=


ϕ,N = 0

ϕ −
N
∑

i=1
(tanh(p(ϕ +(2i−1)))+ tanh(p(ϕ − (2i−1))))

N = 1,2,3, . . .
(2)

h2(ϕ)=


ϕ − tanh(pϕ),M = 0

ϕ − tanh(pϕ)−
M
∑

j=1
(tanh(p(ϕ +2 j))+ tanh(p(ϕ −2 j)))

M = 1,2,3, . . .
(3)

where b, c, and d are three memristor parameters, p=104 is
a fixed coefficient, and N, M are two control parameters.
The intrinsic properties including pinched hysteresis loop,
nonvolatility, multistability, and local activity of the designed
memristor are analyzed as follows. Setting b=0.01, and c=d=1,
taking M=2 as an example, when a sinusoidal voltage v =
Asin(2πFt) with signal amplitudes A=8 and different signal
frequencies F (10, 20, 100) is applied in the memristor, it
exhibits classical pinched hysteresis loop on the v− i plane, as
shown in Fig.1(a). Especially, with the increase in frequency,
the area of the pinched hysteresis loop of the memristor
decreases gradually, which implies that the proposed model
is a memristor device.

According to the memristor theory [51], the power-off plot
(POP) can be used to verify the nonvolatility of the memristor.
For the memristor state equation in equation (1), let v=0, it
can be reduced as

dϕ/dt =−dh(ϕ). (4)

The dynamic route of the dynamical equation (4), namely
POP, is drawn in Fig.1(b). As we can see, when dϕ/dt=0,
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Fig. 1: Characteristics of the multistable locally active memristor with
b=0.01, c=d=1, p=104, and M=2. (a) Pinched hysteresis loops related to
frequency, where A=8, ϕ0=0. (b) POP. (c) Pinched hysteresis loops related
to initial states, where A=6, F=10. (d) DC V -I loci.

there are six stable equilibrium points (E1-E6) with a negative
slope. Therefore, the designed memristor has the characteristic
of non-volatile memory. Meanwhile, the memristor can exhibit
coexisting six pinched hysteresis loops with A=6, F=10, and
different initial values (-5, -3, -1, 1, 3, 5), as shown in Fig.1(c).
In fact, further study shows that the memristor can generate
coexisting (2N+1) or (2M+2) pinched hysteresis loops, which
means that the designed memristor is multistable. The local
activity of the designed memristor can be proved by using the
direct current voltage-current (DC V -I) loci [51]. In equation
(1), letting dϕ/dt=0, it can be rewritten as{

I = bϕV
V = dh(ϕ)/c . (5)

where V and I denote input DC voltage and output DC current.
Considering equation (5), the input voltage V value changes
from -1.2 V to 1.2 V and the variable ϕ value varies within
[-6, 6], the DC V -I loci of the memristor can be derived,
as shown in Fig.1(d). From Fig.1(d), when the state variable
ϕ < 0, the slope of the V -I loci is negative, which shows
that the designed memristor is locally active. To sum up, the
designed multistable locally active memristor has synapse-
like features of multistability, non-volatile memory, and local
activity, which means that it is very appropriate for emulating
neural synapses.

B. Construction Of Triple-Memristor Hopfield Neural Net-
work

Hopfield neural networks are widely studied because of
their brain-like network structure and complicated chaotic dy-
namics. It can be described by a set of differential equations:
[5]

Ciẋi =− xi

Ri
+

n

∑
j=1

wi j tanh(x j)+ Ii (i, j ∈ N∗), (6)

where xi, Ci, and Ri represent the membrane voltage, mem-
brane capacitance, and membrane resistance of the i-th neu-
ron, respectively. Besides, tanh(.) and Ii are the neuron acti-
vation function and external input current, respectively. wi j
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Fig. 2: Connection structure for the TM-HNN.

denotes synaptic weight between neuron i and neuron j.
Usually, the synaptic weight is a resistive synaptic weight
that is realized by a resistor. When the resistor is replaced
with a memristor, the synaptic weight becomes a memris-
tive synaptic weight and a memristive neural network can
be constructed thereby [23]. According to this strategy, a
TM-HNN is constructed by using three memristive synaptic
weights to substitute three resistive synaptic weights in a four-
neuron-based HNN, as shown in Fig.2. Where the memristive
synaptic weights are realized with the designed multistable
locally active memristors. Combined with the original HNN
model (6) with Ri=1, Ci=1, and Ii=0 (i=1, 2, 3, and 4), the
mathematical model of the TM-HNN can be described as
follows

ẋ1 =−x1 +0.7tanh(x1)+ k2W2(ϕ2) tanh(x2)+2tanh(x3)−11tanh(x4)
ẋ2 =−x2 − tanh(x1)+1.5tanh(x2)+7tanh(x3)+ k3W3(ϕ3) tanh(x4)
ẋ3 =−x3 + k1W1(ϕ1) tanh(x1)−4tanh(x2)+1.8tanh(x3)+4tanh(x4)
ẋ4 =−x4 +0.6tanh(x1)−0.4tanh(x3)+2tanh(x4)
ϕ̇1 = c1 tanh(x1)−d1h1(ϕ1)
ϕ̇2 = c2 tanh(x2)−d2h2(ϕ2)
ϕ̇3 = c3 tanh(x4)−d3h3(ϕ3)

(7)
where W1, W2, and W3 are three memristive coupling synaptic
weights, k1, k2, and k3 are three coupling coefficients, and
c1, c2, c3, d1, d2, and d3 are parameters of the memristor
synapses.

III. INVESTIGATION OF DYNAMICAL BEHAVIORS

The study on dynamical behaviors of artificial neurons
and neural networks is significant to better understand brain
functions and to develop new neuromorphic systems [52-54].
This section analyzes the dynamical behaviors of the TM-
HNN, including distribution and stability for the equilibrium
points, reveals the space multi-structure chaotic attractors, and
investigates the space initial-offset behavior.

A. Distribution And Stability Of Equilibrium Points

Letting equation (7) equal to 0, the equilibrium points of the
TM-HNN can be solved by calculating the following equation

−x1 +0.7tanh(x1)+ k2W2(ϕ2) tanh(x2)+2tanh(x3)−11tanh(x4) = 0
−x2 − tanh(x1)+1.5tanh(x2)+7tanh(x3)+ k3W3(ϕ3) tanh(x4) = 0
−x3 + k1W1(ϕ1) tanh(x1)−4tanh(x2)+1.8tanh(x3)+4tanh(x4) = 0
−x4 +0.6tanh(x1)−0.4tanh(x3)+2tanh(x4) = 0
c1 tanh(x1)−d1h1(ϕ1) = 0
c2 tanh(x2)−d2h2(ϕ2) = 0
c3 tanh(x4)−d3h3(ϕ3) = 0

(8)
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Fig. 3: Distribution of equilibrium points of the TM-HNN with
N1=N2=N3=1. (a) ϕ1-ϕ2 plane. (b) ϕ2-ϕ3 plane. (c) ϕ1-ϕ3 plane.

Obviously, equation (8) is difficult to solve with common
methods because of its higher-order characteristics. Thus,
the solutions will be obtained by using the graphic analysis
method. First, equation (8) is changed as

x1 = atanh(d1h1(ϕ1)/c1)
x2 = atanh(d2h2(ϕ2)/c2)
x4 = atanh(d3h3(ϕ3)/c3)
x3 = atanh((x1 −0.7tanh(x1)− k2W2(ϕ2)+11tanh(x4))/2)
f1(ϕ1,ϕ2,ϕ3) =−x2 − tanh(x1)+1.5tanh(x2)+7tanh(x3)

+k3W3(ϕ3) tanh(x4)
f2(ϕ1,ϕ2,ϕ3) =−x3 + k1W1(ϕ1) tanh(x1)−4tanh(x2)

+1.8tanh(x3)+4tanh(x4)
f3(ϕ1,ϕ2,ϕ3) =−x4 +0.6tanh(x1)−0.4tanh(x3)+2tanh(x4)

(9)
Then, the parameters are set to b=0.01, c1=2.42, c2=4.75,
c3=1.3, d1=2.42, d2=4.736, d3=0.6, k1=2, k2=1, and k3=-0.1,
respectively. Taking N1=N2=N3=1 as an example, according
to equation (9), the distribution of the equilibrium points on
the ϕ1-ϕ2, ϕ2-ϕ3, and ϕ1-ϕ3 planes are drawn in Fig.3(a),
(b), and (c), respectively. As we can see, each phase plane
has nine equilibrium points. Namely, the TM-HNN has 27
equilibrium points. It should be noted that there are some
non-equilibrium point intersections due to the boundedness
of the hyperbolic tangent function. From the distribution of
equilibrium points, the equilibrium point P0 is synchronously
extended along the ϕ1-axis, ϕ2-axis, and ϕ3-axis, respectively.
That is to say, with the increase of control parameters Ni and
Mi, the number of equilibrium points will be extended along
multiple directions including ϕ1-axis, ϕ2-axis, and ϕ3-axis.
The number of equilibrium points is determined by further
investigation to be equal to ((2N1+1) or (2M1+2))×((2N2+1)
or (2M2+2))×((2N3+1) or (2M3+2)). In addition, numerical
calculations show that all the equilibrium points are unstable
saddle-focus equilibrium points, which means that the TM-
HNN can generate self-excited chaotic attractors. Notably, the
increase of the control parameters in the TM-HNN leads to
the extension of the equilibrium points, which could generate
the phenomenon of chaotic attractor reconstruction.

B. Parameter-Related Space Multi-Structure Attractors

The phenomenon of the space multi-structure chaotic at-
tractors is demonstrated by using bifurcation diagrams, Lya-
punov exponents, phase portraits, and Poincare maps. Taking
N1=N2=N3=0 as a basic example, setting k1=2, k2=1, k3=-
0.1, c1=2.42, c2=4.75, c3=1.3, d1=2.42, d2=4.736, d3=0.6, and
initial states (x10, x20, x30, x40, ϕ10, ϕ20, ϕ30)=(0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1), the bifurcation diagram related to parameter
b is plotted in Fig.4(a). As can be seen from the bifurcation
diagram, the TM-HNN generates chaotic behavior in three
discontinuous intervals, namely, b ∈[0, 0.2], b ∈[0.24,0.25],
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and b ∈[0.29, 0.46]. The corresponding Lyapunov exponents
are shown in Fig.4(b), which further verifies the chaos char-
acteristics. Meanwhile, by selecting b=0.01, a self-excited
chaotic attractor with complex structure can be generated
from the TM-HNN, as shown in Fig.5. The phase portraits
in Fig.5 directly show that the self-excited chaotic attractor
has a complex non-scroll/wing structure. So, it is known as
a chaotic attractor with a single structure. There is no doubt
that an attractor with multiple single structures is considered
a multi-structure attractor.

Interestingly, with the increase of the control parameters
Ni/Mi, the single-structure chaotic attractor is reconstructed
along ϕ1-, ϕ2-, and ϕ3-axes, respectively. As a result, a
space multi-structure chaotic attractor is formed in the TM-
HNN. For example, when M1=M2=M3=2, keeping the above
parameter values unchanged, the single-structure attractor
is reconstructed 6 times along the ϕ1-, ϕ2-, and ϕ3-axes,
respectively. The corresponding phase portraits on the ϕ1-x2
plane, ϕ2-x2 plane, and ϕ3-x2 plane are given in Fig.6(a1),
(a2), and (a3), respectively. Clearly, the TM-HNN generates
a 6×6×6-structure chaotic attractor in ϕ1-ϕ2-ϕ3 phase space.
Furthermore, in this case, the dynamical behaviors related to
the coupling coefficients are studied. Taking k1, k2, and k3
as adjustable parameters, three groups of different bifurcation
diagrams are drawn in Fig.6(b1),(b2), and (b3), respectively.
As we can see, that each bifurcation diagram has six clear
bar-type areas, which shows that the TM-HNN generates 6-
structure chaotic attractors on ϕ1-, ϕ2-, and ϕ3-directions,
respectively. Also, it illustrates that the space multi-structure
chaotic attractors occur over a wide range. Meanwhile, the
corresponding Lyapunov exponents in Fig.6(c1)-(c3) further
verify the chaos characteristic.
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and k3, respectively. (c1)-(c3) Corresponding Lyapunov exponents (LEs).
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To further verify the complex dynamical behavior of the
space multi-structure attractors, taking control parameters
N1=N2=N3=1 as another example, a space 3×3×3-structure
chaotic attractor can be obtained from the TM-HNN. Its plane
views are shown in Fig.7(a1)-(a3). As we can see, the TM-
HNN generates 3×3-structure chaotic attractors on ϕ1-ϕ2, ϕ2-
ϕ3, and ϕ1-ϕ3 planes, respectively. At the same time, the cor-
responding Poincaré maps with x3=0 are drawn in Fig.7(b1)-
(b3) to further prove the chaos property of the space 3×3×3-
structure attractor. The Poincaré maps exhibit complex irregu-
lar multi-structure phase trajectories on different phase planes,
implying that the TM-HNN generates extremely complex
space multi-structure chaotic attractors. Furthermore, different
numbers of space multi-structure chaotic attractors in ϕ1-ϕ3-
ϕ2 phase space are obtained with different control parameters,
as shown in Fig.8. Fig.8 shows that the number of the structure
on ϕ1-, ϕ2-, and ϕ3-directions can be easily controlled by
control parameters N1/M1, N2/M2, and N3/M3, respectively.
And the number of the space multi-structure chaotic attractors
is ((2N1+1) or (2M1+2))×((2N2+1) or (2M2+2))×((2N3+1) or
(2M3+2)). Consequently, the TM-HNN can generate arbitrary
number of space multi-structure chaotic attractors.
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Fig. 8: Phase space view of the space multi-structure chaotic attractors.
(a) Space 2×2×2-structure attractor with M1=M2=M3=0. (b) Space 2×3×2-
structure attractor with M1=M3=0, N2=1. (c) Space 2×2×3-structure attractor
with M1=M2=0, N3=1. (d) Space 2×3×3-structure attractor with N2=N3=1,
M1=0. (e) Space 3×3×2-structure attractor with N1=N2=1, M3=0. (f) Space
3×3×3-structure attractor with N1=N2=N3=1.

C. Initial-Related Space Initial-Offset Behaviors

Keeping the parameters b=0.01, k1=2, k2=1, k3=-0.1,
d1=2.42, d2=4.736, d3=0.6, unchanged, setting c1=2, c2=4,
c3=1, the dynamical characteristic of the initial-offset space
coexisting behaviors is investigated by adopting bifurcation
diagrams, Lyapunov exponents, phase portraits, and basins
of attraction. First, taking M1=M2=M3=3 as an example,
three bifurcation diagrams related to initial values ϕ10, ϕ20,
and ϕ30 as well as their corresponding first four Lyapunov
exponents are given in Fig.9. As can be seen in Fig.9(a1)-(a3),
the bifurcation diagrams exhibit multiple long strip-shaped
regions with the same dynamical amplitude but different
positions. Each of the long strip regions can evolve to be
a single-structure chaotic attractor. Therefore, the position of
the chaotic attractors can be controlled by initial states ϕ10,
ϕ20, and ϕ30, respectively. In other words, the TM-HNN can
generate coexisting chaotic attractors in ϕ1-, ϕ2-, and ϕ3-
directions, respectively. When the initial value ϕ10 is set as
-1, -3, -5, 1, 3, 5, respectively, and other initial values are
fixed as 0.1, the TM-HNN generates coexisting six chaotic
attractors on ϕ1–direction, as shown in Fig.9(c1). Adopting a
similar method, coexisting six chaotic attractors on ϕ2- and
ϕ3-directions are given in Fig.9(c2) and (c3), respectively. And
these coexisting chaotic attractors have the same structure but
different positions, which have a one-to-one correspondence
with the bifurcation diagram in Fig.9(a1)-(a3). Fig.9 shows
that the TM-HNN can generate coexisting multiple chaotic
attractors distributed along the ϕ1-, ϕ2-, and ϕ3-directions,
respectively. Therefore, the TM-HNN generates space initial-
offset coexisting behaviors.

To further reveal the space characteristic of the initial-
offset coexisting behaviors, taking N1=N2=N3=1 as another
example, the local attraction basins in the ϕ10-ϕ20, ϕ20-
ϕ30, and ϕ10-ϕ30 planes are drawn in Fig.10(a1)-(a3). It can
be seen that each of basin of attraction has nine different
regions painted with different colors. Hence, the initial-offset
coexisting behavior occurs along ϕ10, ϕ20, and ϕ30 directions,
simultaneously. Namely, the TM-HNN exhibits space initial-
offset coexisting behaviors. Meanwhile, by setting (ϕ10, ϕ20,
ϕ30)=(-2/0/2, -2/0/2, -2/0/2), coexisting nine chaotic attractors
can be obtained in the ϕ1-ϕ2, ϕ2-ϕ3, and ϕ1-ϕ3 plane, respec-
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Fig. 9: Dynamical behaviors related to initial states of the TM-HNN with
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Fig. 10: Basins of attraction and space initial-offset coexisting attractors,
where N1=N2=N3=1. (a1) Basins of attraction on ϕ10-ϕ20 plane. (a2) Basins
of attraction on ϕ20-ϕ30 plane. (a3) Basins of attraction on ϕ10-ϕ30 plane.
(b1) Space coexisting 3×3×3 attractors on ϕ1-ϕ2 plane. (b2) Space coexisting
3×3×3 attractors on ϕ2-ϕ3 plane. (b3) Space coexisting 3×3×3 attractors
on ϕ1-ϕ3 plane.

tively, as shown in Fig.10(b1)-(b3). Obviously, the positions
of the coexisting attractors on ϕ1-, ϕ2-, and ϕ3-directions
can be determined by changing initial states ϕ10, ϕ20, and
ϕ30, respectively. Accordingly, the TM-HNN generates space
initial-offset coexisting behaviors. Moreover, different posi-
tions and numbers of space coexisting chaotic attractors in
ϕ1-ϕ3-ϕ2 phase space are given with different initial states and
control parameters, as shown in Fig.11. To better understand
the coexisting behavior, the relationship between the initial
values and attractors is given in Table I. Fig.11 shows that
the position and number of the coexisting attractors can be
controlled by changing the memristors’ initial conditions and
control parameters, respectively.

IV. HARDWARE VERIFICATION AND APPLICATION

In this section, a digital hardware platform based on FPGA
is developed for physically implementing the proposed TM-
HNN to verify its various dynamical behaviors. Subsequently,
the TM-HNN is applied in the pseudorandom number gener-
ator.
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Fig. 11: Phase space view of the space initial-offset coexisting behaviors.
(a) Space coexisting 2×2×2 attractors with M1=M2=M3=0. (b) Space coex-
isting 2×3×2 attractors with M1=M3=0, N2=1. (c) Space coexisting 2×2×3
attractors with M1=M2=0, N3=1. (d) Space coexisting 2×3×3 attractors with
N2=N3=1, M1=0. (e) Space coexisting 3×3×2 attractors with N1=N2=1,
M3=0. (f) Space coexisting 3×3×3 attractors with N1=N2=N3=1.
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Fig. 12: FPGA-based digital hardware platform. (a) Block diagram of the
hardware platform. (b) Flow diagram of the TM-HNN implementation.

A. FPGA-Based Hardware Implementation

Due to the hyperbolic tangent nonlinearity, the hardware
implementation of the TM-HNN using an analog circuit
is extremely complex. Additionally, the space initial-offset
coexisting behaviors in the TM-HNN are highly dependent on
the initial states, but the initial states can not be preconfigured
in the analog circuit. Different from the analog circuit, the
initial states in the digital circuits based on FPGA can be
controlled accurately by the software [55]. Thus, the TM-
HNN is implemented by using FPGA technology. As shown in
Fig.12(a), the block diagram of the FPGA hardware platform
is composed of four parts: algorithm module, FPGA module,
DAC module, and display module. Among them, the function
of the algorithm module is to solve the TM-HNN. The
function of the FPGA module is to implement the TM-HNN
chaotic oscillator. The DAC (digital-to-analog converter) is
used to convert digital signals into analog signals. And the
display module aims to capture the experimental results with
an oscilloscope.

The key step for the FPGA hardware implementation is
to numerically solve the TM-HNN in the algorithm module.
Here, the TM-HNN is solved by using the fourth-order Runge-
Kutta (RK4) algorithm on the Vivado 2017.4 platform. As
shown in Fig.12(b), the key step consists of two modules: TM-
HNN chaotic oscillator and floating-to-fixed unit. The chaotic
oscillator module contains four input signals and seven output
signals, where the system clock ”CLK” and the reset signal
”RST” are two 1-bit control signals, h and the initial values
(x10, x20, x30, x40, ϕ10, ϕ20, ϕ30) are both 32-bit input signals.
The seven 32-bit output signals (x1 out, x2 out, x3 out, x4 out,
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TABLE I: THE RELATIONSHIP BETWEEN ATTRACTORS AND INITIAL VALUES.
Initial values-ϕ10 -1 1 0 -2 2

Attractors

(a)-(1-4);
(b)-(1-6);
(c)-(1-6);
(d)-(1-9)

(a)-(5-8);
(b)-(7-9);
(c)-(7-8);
(d)-(10-12)

(e)-(7-9);
(f)-(10-12)

(e)-(1-6);
(f)-(1-9)

(e)-(10-12);
(f)-(13-15)

Initial values-ϕ20 -1 1 0 -2 2

Attractors (a)-(2,4,6,8);
(c)-(2,4,6,8)

(a)-(1,3,5,7);
(c)-(1,3,5,7)

(b)-(2,5,8);
(d)-(2,5,8,11);
(e)- (2,5,8,11);
(f)-(2,5,8,11,14)

(b)-(3,6,9);
(d)-(3,6,9,12);
(e)-(3,6,9,12);
(f)-(3,6,9,12,15)

(b)-(1,4,7);
(d)-(1,4,7,10);
(e)-(1,4,7,10);
(f)-(1,4,7,10,13)

Initial values-ϕ30 -1 1 0 -2 2

Attractors
(a)-(3-6);
(b)-(4-9);
(e)-(4-12)

(a)-(1,2,7,8);
(b)-(1-3);
(e)-(1-3)

(c)-(3-4);
(d)-(4-6);
(f)-(4-6)

(c)-(5-8);
(d)-(7-12);
(f)-(7-15)

(c)-(1,2);
(d)-(1-3);
(f)-(1-3)

DAC

(AN9767) FPGA

(ZYNQ-XC7Z020)

Oscilloscope

(GDS-1102-AU)

DELL T3630

(Intel Core
TM

 i7-8700)

Algorithm Design

(Vivado 2017.4)

Fig. 13: Hardware implementation devices.

ϕ1 out, ϕ2 out, ϕ3 out) are used as the initial values of
the next iteration of the chaotic oscillator. Meanwhile, these
output signals are also input to the floating to fixed unit and
are further converted into a 14-bit fixed-point number (x2 out,
ϕ1 out, ϕ2 out, ϕ3 out). The two modules are programmed
with Verilog HDL language as well as the IP cores of addition,
subtraction, multiplication, and hyperbolic tangent operation
in Vivado software. The IEEE 754-1985 high precision 32-bit
floating point standard is used and the discretization step is
set as 0.001.

The proposed TM-HNN is physically realized based on
the above digital hardware platform. As shown in Fig.13,
the hardware devices contain a workstation (DELL T3630
with Intel CoreTM i7-8700 CPU 3.2GHz), an FPGA devel-
opment board (Xilinx ZYNQ-XC7Z020), a DAC converter
(AN9767) and a digital oscilloscope (GWINSTEK GDS-
1102-AU). The developed program is loaded into the FPGA
development board, which is connected to the oscilloscope
via a DAC converter. The experiment results can be observed
from the digital oscilloscope. The experimental results of
the space multi-structure chaotic attractors and the space
initial-offset coexisting attractors are given in Fig.14 and
Fig.15, respectively. It is worth noting that the experimentally
captured results are in agreement with those of Fig.6(a1)-(a3),
Fig.7(a1)-(a3), Fig.9(c1), and Fig.10(b2) obtained from the
Matlab platform. This shows the correctness and feasibility
of the FPGA hardware implementation and also provides
experimental proof of the proposed TM-HNN.

B. Application in Pseudorandom Number Generators

Chaotic systems are often used to generate pseudorandom
numbers in the industrial field [56, 57]. Because the presented
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Fig. 14: The experimental results of the space multi-structure attractors. (a1)
Space 6×6×6-structure attractor on ϕ1-x2 plane. (a2) Space 6×6×6-structure
attractor on ϕ2-x2 plane. (a3) Space 6×6×6-structure attractor on ϕ3-x2 plane.
(b1) Space 3×3×3-structure attractor on ϕ1-ϕ2 plane. (b2) Space 3×3×3-
structure attractor on ϕ2-ϕ32 plane. (b3) Space 3×3×3-structure attractor on
ϕ1-ϕ3 plane.

TM-HNN can generate chaotic behaviors highly dependent
on initial states, it can achieve good performance in this
application. Thus, a TM-HNN-based PRNG is designed to
investigate its application. First, a chaotic sequence S=(s1, s2,
. . . , sn, . . . ) is produced by the TM-HNN. Second, each value
sn in S is transformed into a 32-bit float number according
to the IEEE 754 float-point standard. Third, the 17th-32nd
bits from the float number are truncated as pseudorandom
numbers. The designed pseudorandom number generator can
be represented by

Pi = B(sn)17:32, (10)

where B(.) is to transform a value to be a 32-bit float number.
Hence, sixteen binary numbers are produced for each output
of the chaotic sequence.

Here, the chaotic sequences generated by the membrane
voltages (x1, x2, x3, x4) in the original HNN and the TM-
HNN are used to generate pseudorandom numbers. Firstly, a
set of chaotic sequence with length 107 are obtained from the
original HNN without memristor synapse. Meanwhile, a set of
chaotic sequence with length 107 are obtained from the space
coexisting 3×3×3 attractors in the TM-HNN with initial
states (0.1, 0.1, 0.1, 0.1, -2, 2, -2), as shown in Fig.16. Next,
according to the above generation method, each set chaotic
sequence is processed to produce 160 binary sequences with
106 bits, where the first 10 binary sequences are discarded.
Finally, the remaining 150 binary sequences are used for
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Fig. 16: Four sets of chaotic sequences generated by FPGA-based TM-
HNN.

testing. Here, the NIST SP800-22 is used to test the produced
random numbers [58]. It is a convinced and all-side test
standard that contains 15 sub-tests. In tests, both the P-value
larger than 0.01 and the proportion (pro.) larger than 0.96 are
considered to pass the related sub-test. Table II lists the test
results of the chaotic sequences in the original HNN and TM-
HNN. One can see that the results generated by the original
HNN can not pass the test because the proportion of the
subtests 2, 6, and 15 is less than 0.96. However, the TM-HNN
can pass all the sub-tests of the NIST SP800-22 test suite.
This means that the TM-HNN produces random numbers
with higher randomness. Thus, the proposed TM-HNN has
complex chaotic behavior and can be further applied in chaos-
based engineering scenarios, such as security communication
[59], signal detection [60], and so on.

TABLE II: NIST SP800-22 TEST RESULTS FOR THE ORIGINAL HNN
AND TM-HNN

HNN TM-HNNNo. Sub-tests P-value Pro. P-value Pro.
1 Frequency 0.5341 0.98 0.8343 0.99
2 Block Frequency 0.0098 0.95 0.8677 0.99

Cum.Sums*(F) 0.4559 0.98 0.8343 0.993 Cum.Sums*(R) 0.7531 0.98 0.4195 0.99
4 Runs 0.5207 0.98 0.6579 1.00
5 Longest Runs 0.2075 0.99 0.5493 1.00
6 Rank 0.8284 0.94 0.2757 0.99
7 FFT 0.2896 0.98 0.9943 0.98
8 Non-Ovla.Temp.* 0.3191 0.98 0.5544 0.99
9 Ovla.Temp. 0.6717 0.98 0.9879 1.00
10 Universal 0.2450 0.98 0.7792 0.98
11 Appr.Entropy 0.9199 0.99 0.7598 1.00
12 Ran.Exc.* 0.3325 0.99 0.3541 0.99
13 Ran.Exc.Var.* 0.4071 0.99 0.5954 0.99

Serial (1st) 0.2803 0.98 0.6579 0.9914 Serial (2nd) 0.9357 0.98 0.2622 0.99
15 Linear Complexity 0.0076 0.92 0.4373 0.99

V. CONCLUSION

Memristors can be used to construct memristive neural
networks closer to biological nervous systems. In this paper,
we first design a multistable locally active memristor, then
present a TM-HNN by using three of the designed memristors
to emulate three coupled neural synapses in an HNN with
four neurons. The dynamical behaviors of the proposed TM-
HNN are investigated by theoretical analysis and numerical
simulation. Research results show that the TM-HNN not only
can generate space multi-structure chaotic attractors, but also
can exhibit space initial-offset coexisting behaviors. Particu-
larly, the number of the space multi-structure attractors and
the position of the space coexisting attractors can be flexibly
controlled by switching the memristor’ control parameters and
initial conditions, respectively. Meanwhile, the space multi-
structure attractors and the space coexisting attractors in the
TM-HNN are further verified by the FPGA-based hardware
platform. In addition, a pseudorandom number generator is
designed to explore the application of the TM-HNN, and
the experimental results show that the chaotic sequences
generated by the presented TM-HNN have high randomness.
Clearly, these special dynamical behaviors in the TM-HNN
lead to the emergence of extreme multistability, which could
gain much attention for its potential chaos-based applications
by providing greater flexibility. Therefore, it is of great
importance to explore neural networks with three or more
memristor synapses. The dynamical behaviros in the neural
networks with more memristive synaptic weights are thus
worth further study.
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