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Abstract. Many cerebellar learning theories assume that long-term depression 

(LTD) of synapses between parallel fibres (PFs) and Purkinje cells (PCs) 

provides the basis for pattern recognition in the cerebellum. Previous work has 

suggested that PCs can use a novel neural code based on the duration of silent 

periods. These simulations have used a simplified learning rule, where the 

synaptic conductance was halved each time a pattern was learned. However, 

experimental studies in cerebellar slices show that the synaptic conductance 

saturates and is rarely reduced to less than 50% of its baseline value. Moreover, 

the previous simulations did not include plasticity of the synapses between 

inhibitory interneurons and PCs. Here we study the effect of LTD saturation 

and inhibitory synaptic plasticity on pattern recognition in a complex PC model. 

We find that the PC model is very sensitive to the value at which LTD 

saturates, but is unaffected by inhibitory synaptic plasticity. 
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Introduction 

The cerebellum is a part of the brain involved in a multitude of tasks, including motor 

control, and its functioning is responsible for the smoothness and precision of 

movements. These skills are improved by a process called motor learning, which is 

often assumed to be implemented by a form of synaptic plasticity known as long-term 

depression (LTD). LTD is a long-lasting decrease in synaptic strength due to a loss of 

AMPA receptors in the postsynaptic membrane [1]. In the cerebellum, LTD has been 

shown to occur at the synapses between Purkinje cells (PCs) and their excitatory 

inputs: climbing fibres (CFs) and parallel fibres (PFs). More specifically, cerebellar 

LTD is an associative process in which the strength of a PF synapse onto a PC is 

depressed when the CF and PF are activated at the same time. 
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Classical cerebellar learning theories suggest that a PC can learn to discriminate 

between different activity patterns presented by its thousands of afferent PFs, due to 

LTD of the PF synapses [2]. It is assumed that as a result of LTD, the PC firing rate 

will be reduced when a learned pattern is presented again, and the PC will exert less 

inhibition on the deep cerebellar nuclei (Fig. 1). As a consequence, the cerebellar 

output should be increased, which could implement motor learning [1, 3]. 

 

Fig. 1. Schematic diagram of the cerebellar circuitry. Purkinje cells (PCs) receive excitatory 

inputs (+) from ~150,000 parallel fibres (PFs) and a single climbing fibre (CF), and inhibitory 

inputs (-) from inhibitory interneurons (II), and in turn inhibit the deep cerebellar nuclei (DCN). 

Also shown are: mossy fibres (MFs), granule cells (GCs) and the inferior olive (IO). 

Recent work on cerebellar pattern recognition has demonstrated that this view is 

too simple. A combined theoretical and experimental study suggested that PCs can 

use a novel neural code based on the duration of their silent periods, where shorter 

pauses are produced in response to learned patterns [4] (Fig. 2A). This form of neural 

coding diverges from the classical view that uses the number or timing of individual 

spikes to distinguish between novel and learned patterns. In the computer simulations 

and experiments, the pause was compared with other spike response features like the 

number of spikes in a fixed time window after pattern presentation and the latency of 

the first spike in the response, and it was shown that the length of the pause was the 

best criterion for cerebellar PCs to identify learned patterns (Fig. 2B). 

The previous simulations (see Methods) applied a simplified learning rule, where 

the AMPA receptor conductance was decreased by 50% each time a pattern was 

learned. After having stored a number of PF patterns, this could result in very small 

AMPA receptor conductances. However, experiments with LTD induction in 

cerebellar slices hardly ever result in mean AMPA receptor conductances of less than 

50% of the pre-induction baseline [5, 6]. We have therefore investigated a different 

learning rule with AMPA receptor conductances that saturate at varying values and 

have studied the effect of this learning rule in pattern recognition simulations. 
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Fig. 2. Responses of a model Purkinje cell to novel and learned patterns of PF input. (A) Upper: 

The pause evoked by a novel pattern is longer than that for a learned pattern. Lower: Raster 

plot showing the responses to 75 learned and 75 novel patterns. (B) Response distribution for 

three different spike features. Upper: Latency of first spike after pattern presentation. Middle: 

Number of spikes in the first 25ms. Lower: Length of pause (from [4]). 

Another contribution of the present work is to study the effect of LTD at the 

inhibitory synapses made by interneurons onto PCs (Fig. 1). It has recently been 

described that this inhibitory synaptic plasticity results in a mean depression of 

inhibitory inputs down to 75% of their original values [5]. We have run computer 

simulations to investigate the effect of different amounts of inhibitory synaptic 

plasticity on pattern recognition.  
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Methods 

Purkinje Cell Model 

The simulations were performed using the GENESIS neural simulator [7], with  

additional routines implemented in C++ and MATLAB. We simulated a multi-

compartmental PC model with active dendrites and soma, as described in detail in 

references  [8, 9]. The model morphology was based on a reconstruction of a guinea-

pig Purkinje cell [10]. Ten different types of voltage-dependent channels were 

modelled using Hodgkin-Huxley-like equations. The soma compartment had a fast 

and persistent Na
+
 conductance, a delayed rectifier, a transient A-type K

+
 

conductance, a non-inactivating M-type K
+
 conductance, an anomalous rectifier and a 

low-threshold T-type Ca
2+

 conductance. The dendritic compartments contained a 

Purkinje-cell specific high-threshold P-type and a low-threshold T-type Ca
2+

 

conductance, two different types of Ca
2+

-activated K
+
 (KCa) conductances and an M-

type K
+
 conductance. Each cell was originally modelled with 147,400 dendritic 

spines, which were activated randomly by a sequence of PF inputs at an average 

frequency of 0.28 Hz. The background excitation was balanced by tonic inhibition, 

which made the model fire simple spikes at an average frequency of 48 Hz. Due to the 

large number of dendritic spines, which made the simulations computationally 

expensive, a simplified version of the model was constructed by decreasing the 

number of spines to 1% of the original number. To compensate for this reduction, the 

rate of PF excitation was increased to an average frequency of 28 Hz. As this 

simplified model gave identical results as the full model, it was used in the 

simulations presented here. 

To study the effect of plasticity at inhibitory synapses, the model was provided 

with feed-forward inhibitory input by activating a variable number of inhibitory 

synapses onto the soma and main dendrite. The inhibitory input followed the 

synchronous activation of excitatory PFs synapses with a delay of 1.4 ms. 

Inhibition/excitation ratios were measured as ratios of the mean inhibitory 

postsynaptic current (IPSC) peak to the mean excitatory postsynaptic current (EPSC) 

peak when the model was voltage clamped to -40 mV. 

Pattern Recognition 

The pattern recognition simulations were performed in two steps. First, a number of 

random binary input patterns were generated, initially 200, and half of these patterns 

were learned by a corresponding artificial neural network (ANN). The ANN used was 

a modified version of an associative net with feed-forward connections between its 

inputs and output [11]  and was trained by applying a modified version of the LTD 

learning rule [12] (see below). The simulations of the ANN consisted of two phases: 

learning and recall.  

In the learning phase, the weights of all synapses that received a positive input 

during the presentation of a pattern were set to a constant value. This LTD saturation 

value was kept constant and unaffected by further pattern presentations, different 
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from the learning rule that had been used in the previous simulations [4]. During the 

recall phase, the response of the ANN was given by the sum of the weights of all 

synapses that were associated with active inputs, which resulted in responses of the 

ANN to stored patterns that were lower than those to novel patterns (Fig. 3).  

 

Fig. 3. Simplified schematic of the ANN model. Left side: during learning, three example PF 

patterns are stored by changing the synaptic weights that are associated with active input lines 

from their initial value of 1 to an LTD saturation value of 0.5 (this value is varied between 

different simulations).  Right side: during recall, the responses to a stored and a novel pattern 

are calculated as dot product of input vector and weight vector, resulting in values of 1 and 1.5, 

respectively (note the difference to the original diagram in [12]).  

In the second phase of the pattern recognition simulations, the vector of synaptic 

weights was transferred from the ANN onto AMPA receptor conductances in the 

multi-compartmental PC model. This represents learning the PF patterns by 

depressing the corresponding AMPA receptor conductances during LTD induction. 

To test the recall of learned patterns, the PC model was then presented with a 

corresponding pattern of synchronous AMPA receptor activation at the PF synapses. 

The discrimination between novel and learned pattern in the two models was 

evaluated by calculating a signal-to-noise ratio [13, 14]: 
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where µs and µn represent the mean values and σs
2
 and σn

2
 represent the variances of 

the responses to stored and novel patterns, respectively. In the PC model, three 

different features of the spike response were tested as criteria to distinguish stored 

from novel patterns: the latency of the first spike fired after pattern presentation, the 

number of spikes in a 25ms time window after pattern presentation, and the duration 

of a silent period that followed the pattern presentation (see response distributions for 

these three different metrics in Fig. 2B). In all cases studied, the pause duration was 

the best criterion, and only pause based signal-to-noise ratios are presented here.  



6      Giseli de Sousa, Rod Adams, Neil Davey, Reinoud Maex, Volker Steuber 

Results 

LTD Saturation and the Number of Active PF Inputs 

We initially investigated the effect of varying two parameters that were expected to 

affect the pattern recognition performance: the value at which LTD saturated and the 

number of active PFs for each pattern. 

 

Fig. 4. Pattern recognition performance of the two models for a range of LTD values. The 

performance was evaluated by calculating s/n ratios for the ANN (A) and the PC model (B). 

The relative decreases in s/n ratio are compared in (C), showing that the PC model is more 

sensitive to LTD saturation than the ANN.  Error bars indicate standard deviation (SD). 

To study the effect of LTD saturation, we varied the LTD saturation value over a 

range from zero to 0.8, while keeping the same numbers of active PFs (1000) and PF 

patterns (100 novel and 100 stored) as in previous work [4]. We found that the ANN 

was insensitive to the amount of LTD induced (Fig. 4A). In contrast, the pattern 

recognition capacity based on the duration of silent periods in the PC model improved 

when the LTD saturation value decreased, with an optimal performance when the 

synaptic weights of active PFs were set to zero (Fig. 4B). The relative sensitivities of 

the ANN and the PC model to the amount of LTD induced are compared in Fig. 4C. 

While the ANN was unaffected by varying the amount of LTD, increasing the LTD 

saturation value to 0.8 in the PC model reduced the signal-to-noise ratio down to 0.4 ± 

0.4% (n = 10) of the optimal value obtained by switching off the synapses completely. 
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For LTD saturation values below 0.5, the PC model performed as well as or better 

than the previous model with a non-saturating learning rule [4]. 

 

Fig. 5. Relationship between the LTD saturation value and the mean responses to stored and 

novel patterns in the ANN and the PC model. Although the difference between the mean 

responses to stored and novel patterns decreases with increasing LTD saturation values in both 

cases, in the ANN the variance of responses to novel patterns also decreases. This results in s/n 

ratios in the ANN that are independent of the LTD saturation value. Same simulation 

parameters as in Fig. 4. Error bars indicate SD. 

The reason for the difference in sensitivity of the ANN and the PC model to 

varying amounts of LTD became apparent when the mean responses of the two 

models to stored and novel patterns were plotted against the LTD saturation value 

(Fig. 5). In the PC model, increasing LTD saturation values reduced the difference in 

pause duration between stored and novel patterns, with standard deviations that were 

affected to a much lesser extent (Fig. 5B). This led to the drastic reduction in s/n ratio 

for weak LTD shown in Figure 4. In the ANN, the difference between the mean 

responses to stored and novel patterns was affected much less by the LTD saturation 

value, while the standard deviation of responses to novel patterns decreased with 

increasing LTD saturation values (Fig. 5A). Based on Equation (1), the constant 

signal-to-noise ratio of the ANN in the presence of varying amounts of LTD can be 

explained by a linear relationship between the squared difference of the mean 

responses to stored and novel patterns (µs – µn)
2
 and the variance of the responses to 

novel patterns σn
2
. 

In a second set of simulations, we measured the effect of varying the number of 

active PFs in each pattern for a range of LTD values. As expected, the performance of 

the ANN deteriorated for larger numbers of activated PFs, while being independent of 

the amount of LTD induced over the whole range of numbers of active PFs tested 

(500-5000, Fig. 6A). In contrast, the PC model showed the best pattern recognition 

capacity for a range between 1000 and 2000 active PFs and performed consistently 

worse for higher LTD saturation values (Fig. 6B). 



8      Giseli de Sousa, Rod Adams, Neil Davey, Reinoud Maex, Volker Steuber 

 

Fig. 6. Pattern recognition performance of the ANN (A) and PC model (B). The colour 

represents the resulting s/n ratio for each combination of a number of active PFs for each 

pattern (indicated on the x-axis) and an LTD saturation value (y-axis). 

Inhibitory Synaptic Plasticity 

To investigate the effect of plasticity at the synapses between inhibitory interneurons 

and PCs, we initially used an inhibition/excitation ratio of one (see Methods), which 

is in the range of experimentally observed data from cerebellar slices [5]. We then 

introduced LTD at the inhibitory synapses and evaluated the pattern recognition 

performance of the PC for different numbers of patterns. The effect of inhibitory LTD 

was examined by depressing the inhibitory conductance to values between 25% and 

75% of their pre-depression baseline. We used  four different simulation setups (Fig. 

7): no inhibition, plasticity at inhibitory synapse for stored and novel PF patterns, 

plasticity for stored patterns only and no plasticity for both patterns, that is, 

maintaining the baseline amplitude value for the original inhibition/excitation ratio 

[5]. 

We found that the pattern recognition performance of the PC model was unaffected 

by the presence of inhibitory LTD, even in the extreme case where the inhibitory 

plasticity was restricted to learned PFs patterns.  
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Fig. 7. Depression at inhibitory synapses. Three different inhibitory synaptic plasticity rules 

were applied for varying numbers of patterns. The first bar of each graph shows the s/n ratio 

when no inhibition is applied for both stored and novel patterns, resulting in the best pattern 

recognition performance. The others bars represent cases with inhibition present, with from left 

to right: plasticity for both stored and novel patterns, plasticity for stored patterns only and no 

plasticity for either type of patterns, using the original inhibitory conductances. Error bars 

indicate SD. 

Conclusion 

Previous computer simulations and experiments in cerebellar slices and awake 

behaving rats suggested that the cerebellum can use a novel neural code that is based 

on the duration of silent periods in neuronal activity [4]. These simulations used a 

complex multi-compartmental model of a cerebellar Purkinje cell that had been tuned 

to replicate a wide range of behaviours in vitro and in vivo [8, 9], but they applied a 

simplified LTD learning rule, which involved dividing the synaptic weights of active 

PF inputs by two every time a PF pattern was learned. This could result in very small 

synaptic weights and does not fit experimental data on LTD induction in cerebellar 

slices, where the mean AMPA receptor conductances saturate and are hardly ever 

depressed to less than 50% of their pre-depression baseline values [5, 6]. Moreover, 

the previous simulations did not include the plasticity at synapses between inhibitory 

interneurons and PCs that has recently been characterised [5]. 

We have studied the effect of inhibitory synaptic plasticity and saturating LTD in 

the complex PC model. We found that the ability of the PC model to discriminate 
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between learned and novel PF input patterns was unaffected by the presence of 

inhibitory plasticity for a wide range of parameter values.  

However, the pattern recognition performance of the PC model was very sensitive 

to the value at which LTD saturated. In contrast to a corresponding ANN, which was 

unaffected by the amount of LTD induced, the performance of the PC model was 

improved by lower LTD saturation values. The best performance resulted from LTD 

saturation values of zero, which corresponds to silencing the PF synapses completely. 

Interestingly, large numbers of silent PF synapses have been observed by monitoring 

microscopically identified PF–PC connections in cerebellar slices [15]. Our 

simulation results indicate that the discrepancy between the existence of these silent 

synapses and the apparent saturation of LTD in induction experiments needs to be 

resolved to understand the connection between LTD and cerebellar learning. 
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