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Abstract  Climate change will affect both growth of agricultural crops and diseases that 

attack them but there has been little work to study how its impacts on crop growth influence 

impacts on disease epidemics. This paper investigates how impacts of climate change on 

wheat anthesis date will influence impacts on fusarium ear blight in UK mainland arable 

areas.  A wheat growth model was used for projections of anthesis dates, and a weather-based 

model was developed for use in projections of incidence of fusarium ear blight in the UK. 

Daily weather data, generated for 14 sites in arable areas of the UK for a baseline (1960-

1990) scenario and for high and low CO2 emissions in the 2020s and 2050s, were used to 

project wheat anthesis dates and fusarium ear blight incidence for each site for each climate 

change scenario.  Incidence of fusarium ear blight was related to rainfall during anthesis and 

temperature during the preceding 6 weeks. It was projected that, with climate change, wheat 

anthesis dates will be earlier and fusarium ear blight epidemics will be more severe, 

especially in southern England, by the 2050s.  These projections, made by combining crop 

and disease models for different climate change scenarios, suggest that improved control of 

fusarium ear blight should be a high priority in industry and government strategies for 

adaptation to climate change to ensure food security.  

 

Introduction 

Across the world, climate change is affecting growth of agricultural crops  (Metz et al. 2007; 

Stern, 2007) and the severity of epidemics of diseases that attack them (Chakraborty 2005; 

Garrett et al. 2006). Whilst there has been much work on the impact that climate change will 

have on crop yields, little has been done to project how climate change impacts on crop 

growth will affect impacts on diseases (Gregory et al. 2009). Although  elevated CO2 

concentrations under climate change may improve photosynthetic activity and increase crop 

yields in parts of Europe, including the UK (Ewert et al. 2002), this may be counteracted by 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 

increased stress on plants, for example heat or drought stresses (Semenov 2009), or by the 

increased severity of diseases as a result of climate change (Gregory et al. 2009). As 

changing temperature and rainfall patterns may produce serious disease epidemics 

(Chakraborty et al. 2000; Evans et al. 2008), detailed analysis of future crop production in 

relation to projected effects on the pathogens and their hosts is vital to allow strategic 

government planning relating to food security and to enable industry to plan ahead for 

adaptation to climate change (Barnes et al. 2010). This requires quantitative crop-disease-

climate models, although much previous work has focused on qualitative impacts of climate 

change on crop diseases (Coakley et al. 1999; Anderson et al. 2004) and there have been few 

attempts to produce combined crop-disease-climate models (Butterworth et al. 2010; Luo et 

al. 1995). 

 Climate change is predicted to impact on the growth of arable crops, including winter 

(autumn-sown) wheat (Semenov 2009), the most important arable crop grown in the UK, 

grown over 2M ha in 2008, with a value of £2.2 billion (www.ukagriculture.com). Its 

importance continues to grow, as wheat grain is a potential future source of UK-grown bio-

fuels (Tuck et al. 2006). The crop, sown in September/October and harvested the following 

August, is mostly grown on arable land in the east of England, due to poor terrain and soil 

conditions for arable agriculture in the west (Fig. 1). The wheat crop growth model Sirius 

(Jamieson et al. 1998; Jamieson and Semenov, 2000), used to estimate impacts of climate 

change on wheat yields (Semenov 2009), can also be used to estimate impacts on crop growth 

parameters such as anthesis date. However, it assumes that diseases are controlled and does 

not take into account effects of diseases on yield and grain quality. 

 The timing of wheat anthesis greatly influences the severity of wheat fusarium ear 

blight (also known as fusarium head blight or scab), since the disease is monocyclic (one 

disease cycle per cropping season) because the wheat is susceptible to infection only for a 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

short period around anthesis, when weather is warm and wet (Xu et al. 2007). The disease is 

caused by a number of pathogens (Xu and Nicholson 2009); of particular concern in the UK 

are Fusarium graminearum and F. culmorum of which some chemotypes produce 

mycotoxins that are hazardous to human health if affected grain is consumed 

(www.hgca.com; Goswami and Kistler 2004; Xu et al. 2008; Madden and Paul 2009). The 

disease symptoms include ear bleaching, formation of pink/orange conidial masses and dark 

necrotic lesions on spikelets. Severe fusarium ear blight epidemics have occurred in the USA 

(Windels 2000; Madden and Paul,2009), China (Yang et al. 2008) and Australia 

(Chakraborty et al. 2006). In the UK, incidence of fusarium ear blight has increased recently, 

with widespread epidemics in 2007 and 2008 (80% and 60%, respectively, of crops sampled 

at GS 75 with symptoms, by comparison with 20-30% in the previous few seasons, 

www.cropmonitor.com) but it is not clear whether climate change will continue to increase 

the severity of epidemics, with implications for food safety if mycotoxin production is also 

increased (Xu et al. 2008; Miraglia et al. 2009). Since associated global threats to food 

security will mean that there is a need to maximise cereal production in the UK (Stern, 2007; 

Mahmuti et al. 2009; Hughes et al. 2011), it is essential to project the impact of climate 

change on severity of epidemics. 

For projecting climate change impacts on fusarium ear blight, it is necessary to have a 

simple weather-based model that predicts fusarium ear blight incidence or severity using only 

a few weather variables as inputs (e.g. temperature, rainfall), like the statistical model used to 

describe the disease cycle of another monocyclic disease, phoma stem canker of oilseed rape 

(Evans et al. 2008). Such a fusarium model can then be combined with the Sirius model 

predicting wheat anthesis date and with local-scale weather for future climate scenarios to 

project impacts of climate change on the disease. The weather-based models developed to 

predict severity of fusarium ear blight epidemics to guide use of fungicides for disease 
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control in Europe, North America and South America (e.g. Moschini et al. 2001; De Wolf et 

al. 2003; Rossi et al. 2003; Del Ponte et al. 2005; De Wolf and Isard 2007; Prandini et al. 

2009; Table 1) all use as an input relative humidity, a parameter that is not always measured 

by UK synoptic weather stations and not easily included in projected weather for different 

climate change scenarios. This paper describes work to combine a simple, UK 

temperature/rainfall-based model for predicting fusarium ear blight with a wheat crop model 

and local-scale climate scenarios to project the direct impact of climate change on wheat 

anthesis date and incidence of fusarium ear blight epidemics. It does not assess direct impacts 

of changes in concentrations of CO2 (Chakraborty & Newton, 2011) or indirect impacts of 

climate change (e.g. through changes in cropping practice such as increasing maize 

production) on the severity of fusarium ear blight epidemics. 

 

Materials and methods 

Collation of the weather, winter wheat date of anthesis and fusarium ear blight severity data 

To project the impacts of climate change on the severity of fusarium ear blight epidemics, 

observed weather data (daily minimum and maximum temperature (
o
C), total rainfall (mm) 

and solar radiation (MJ day
-1

)) from synoptic weather stations around the UK (Fig. 2; Table 

2) were collated. Observed weather data were supplied by the UK Meteorological Office and 

Rothamsted. Rothamsted meteorological data were used for the development of the fusarium 

ear blight model. The other weather data, used for validation of the wheat anthesis date and 

fusarium ear blight incidence predictions, were from the synoptic weather stations closest to 

the locations of trials from which observed data for date of anthesis or fusarium ear blight 

incidence were collected.  
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Data for dates of anthesis for winter wheat cultivar (cv.) Consort were collated from 

HGCA Recommended List trials, wheat water use efficiency trials and a few other sources 

(Table 3) for many locations throughout the UK. Sowing date data for these trials were also 

collated. These anthesis date and sowing date data were used for validation of the predictions 

of anthesis date made by the wheat crop growth model Sirius for cv. Consort for harvest 

years 2004-2008. The model Sirius predicts growth stage 65 (this is mid-anthesis; anthesis 

starts at growth stage 60 and ends at growth stage 69 on the Zadoks scale, Lancashire et al. 

1991), but the data sets often differed in the exact growth stage measured (often it was 

growth stage 61 which is usually 2-3 days before growth stage 65) and how often the 

measurements were taken (some were taken daily, some every 2-3 days and some weekly). 

Cv. Consort was selected for use since it is one of the three cultivars available on the 2009/10 

HGCA Recommended List (available from www.hgca.com) for which Sirius has been 

calibrated and its resistance rating (ranging from 1-9, where 1 is susceptible and 9 is resistant) 

to fusarium ear blight (rated a score of 6) is intermediate between that of the other two 

available cultivars (Claire, rated 7, and Soissons, rated 5).  

 

Fusarium ear blight severity data were collated from the CropMonitor disease survey 

of mainly commercial crops and HGCA Recommended List trials, for up to 30 different 

winter wheat cultivars (www.cropmonitor.co.uk, Table 2).  These data were recorded as 

percent plants affected by fusarium ear blight approximately 3 weeks after anthesis. 

CropMonitor data over the period with harvest years 1994-2008 for sites within 80 km of 

Rothamsted were used in model construction and CropMonitor data from other areas and 

HGCA data for 2004-2008 were used for model validation. 

 

Validation of Sirius for prediction of dates of anthesis 

http://www.cropmonitor.co.uk/
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Predictions of anthesis date (for growth stage 65) were made with the wheat crop growth 

model Sirius using observed weather. To predict dates of anthesis using Sirius, it was 

necessary to input data for the cultivar, sowing date, minimum and maximum daily 

temperature, total daily rainfall and daily solar radiation. Further parameters such as fertiliser 

treatment and soil nitrogen distribution were set at default values. The anthesis dates 

generated by Sirius for cv. Consort were adjusted to fit observed data by adjusting input 

parameters (e.g. the phyllochron and thermal times between different stages in crop 

development). To validate anthesis date predictions produced by Sirius, predictions were 

compared to anthesis dates observed in trials in different areas of England that comprised a 

data set independent of data used in model construction (Table 3). The predictions were made 

with observed weather (daily data for minimum and maximum temperature (
o
C), total rainfall 

(mm), solar radiation (MJ day
-1

)) and sowing dates as inputs to the model. The deviation of 

predicted against observed validation data from the 1:1 line was analysed statistically. 

 

Construction of a UK fusarium ear blight model  

The CropMonitor data used in model construction were for incidence (%) of plants affected 

by fusarium ear blight for wheat crops located within an region up to 80 km from Rothamsted 

(Hertfordshire, England, that accounted for c. 15% of the UK mainland arable area and c. 

33% of the arable land where >25% is sown to wheat) for harvest years from 1994-2008 

(varying from 13-32 sites per year; total of 322 data points).  Disease data for all crops within 

an area near each of 11 synoptic weather stations (Table 2) were averaged for each year to 

decrease the overall variability in the data. Daily weather data from these 11 synoptic weather 

stations for the months April, May and June were summarized as were, separately, data for 

the first two weeks in June. These data were average temperature and total rainfall and these 

periods were chosen as those in which the weather was most likely to affect subsequent 
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fusarium ear blight incidence (Xu et al. 2007). This gave a set of 10 weather variables 

[average temperature for April, May and June, average rainfall for April, May and June and 

the corresponding weather measurements for the first and second weeks of June] to be tested 

alone or in combination in relation to disease incidence over the 15 year period.  

The main problem with the weather data from the individual stations was that some 

data sets were incomplete; consequently disease data for some station/year combinations 

were excluded. With 11 stations and 15 years, there were potentially a maximum of 165 

weather/fusarium data sets. When data sets with missing disease or weather data were 

excluded, it reduced the size of the data available to 88 data sets. However, by using weather 

data from Rothamsted that were complete over the period, the number of data sets increased 

to 117 (disease data associated with the synoptic weather stations were missing from 48 data 

sets). One simplification made was to assume that the same relationship between the weather 

variables and disease incidence was appropriate for all data sets. It was much easier to justify 

the same form of relationship if data from a single weather station were used. Therefore 

Rothamsted weather data were selected, since the data were complete and Rothamsted was 

central to the region used for constructing the model. 

Since disease incidence was expressed as a percentage, the association was 

investigated using a generalized linear model where the logit-transformed incidence was 

related to a linear combination of the weather variables using principles of step-wise 

regression. This meant that predictions were naturally evaluated to be between 0 and 100. 

Weather variables were selected for inclusion in the model on the basis of the percentage of 

‘deviance’ accounted for. The single best weather variable was total rainfall from the second 

week in June, the week at the end of which anthesis was observed, according to data for 

Rothamsted for 2006-2008.  The next best variable was average temperature in May (i.e. 

from 6 to 2 weeks before anthesis). 
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Validation of a UK fusarium ear blight model  

Validation was done using independent data for other regions of the UK mainland. Since 

crops in these areas have different anthesis dates from those near Rothamsted, it was 

necessary to express the model in a form related to anthesis date. Therefore, incidence of 

fusarium ear blight was related to rainfall for the week leading up to anthesis and to average 

temperature for the 4-week period from 6 to 2 weeks before anthesis. It was tested whether 

the same relationship was reasonable for different arable areas in the UK mainland. This was 

necessary because there was insufficient information at some weather stations to form 

separate relationships for different areas. Since the model was going to be used for 

extrapolation, a model based on averages was likely to be most robust. 

Predictions of fusarium ear blight incidence were validated using observed weather 

data and mean observed dates of anthesis (from trials in corresponding areas of the UK to 

allow the appropriate weather to be used when producing predictions, Table 3) as inputs to 

the fusarium ear blight model. As much of the weather data were incomplete, data from 

several weather stations in a region were collated to estimate missing information. 

Predictions, in terms of average % plants affected, were compared to observed fusarium ear 

blight incidence data, from several regions of the UK (Table 2). Data used for model 

validation were independent of data used for model construction. It was not appropriate to 

analyse the deviation of validation data from the 1:1 line statistically since the logit 

transformation used gives a non-homogeneous scale. 

 

Local-scale daily weather for climate change scenarios 
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Daily weather data (minimum and maximum daily temperature, total daily rainfall and daily 

solar radiation) specific to the 14 sites located in UK mainland arable areas (altitude, latitude 

and longitude, Table 4) were generated using LARS-WG stochastic weather generator 

(Semenov 2007), for each of the 14 sites selected from within the UK mainland arable area, 

for each of the five climate scenarios; baseline, 2020LO, 2020HI, 2050LO and 2050HI. The 

baseline scenario is based on LARS-WG site parameters derived from observed weather for 

the period 1960-1990. The other four climate scenarios relate to high (HI) and low (LO) CO2 

emissions for the 2020s and 2050s, based on the UKCIP02 projections (Semenov 2007). The 

values used for the CO2 concentration in the UK atmosphere were 334ppm (baseline), 

422ppm (2020LO), 437ppm (2020HI), 489ppm (2050LO), 593ppm (2050HI), taken from the 

IPCC emission scenarios. These projections are in turn based on the IPCC global emissions 

scenarios (Nakicenovic, 2000) and the HadCM3 global climate model (Collins et al. 2001; 

Hulme et al. 2002). For each of the 14 sites used and for each climate scenario, 50 yearly 

simulations of synthetic daily weather data (minimum and maximum temperature, rainfall 

and solar radiation) were produced. These data were then used as inputs for the wheat crop 

growth model Sirius and as inputs for the fusarium ear blight model, to allow average 

anthesis dates and average fusarium ear blight incidence to be generated for each site under 

each climate scenario. Only the arable area was included since it is unnecessary to produce 

projected fusarium ear blight incidence for areas of the UK where no wheat will ever be 

grown, for example in mountainous regions like the English Pennines or Scottish Highlands.  

 

Projection of wheat anthesis dates for the 2020s and 2050s 

Projected dates of anthesis were generated using projected weather from LARS-WG for all 

five of the climate change scenarios for each of the 14 sites as inputs into the Sirius model. 

Maps were drawn to illustrate how anthesis dates will change under the different climate 
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change scenarios by spatial interpolation between the 14 sites. The changes in the dates of 

anthesis under climate change were used to define the specific time periods for which 

simulated weather (from 6 to 2 weeks before anthesis for average temperature and week of 

anthesis for total rainfall) was required to input into the fusarium ear blight model.  

 

Projections of fusarium ear blight incidence for the 2020s and 2050s 

Using the LARS-WG generated weather for each of the five climate scenarios and the 

average anthesis date calculated (averaged over 50 dates projected from the generated 

weather data) for each site and each climate scenario, fusarium ear blight incidence 

projections were made for each site under each of the five climate scenarios. Maps were 

produced by spatial interpolation between the 14 sites. 

 

Results 

Validation of Sirius for prediction of dates of anthesis 

The predicted anthesis dates produced by Sirius with observed weather data and sowing dates 

as inputs were plotted against observed anthesis dates to show the relationship between them 

(Fig. 3). For predicting anthesis dates, since many sets of weather data were incomplete, data 

from several weather stations in a region were collated to estimate missing information. Thus 

the trial sites (for anthesis dates) and nearest synoptic weather stations were grouped into 

three regions; east England, southwest England and northeast England, for use in the 

validation. To illustrate the validation data, the east and southwest were then combined into 

south England. Although the observed dates of anthesis were not always for growth stage 65, 

no correction was made to equivalent predicted values, since the correction needed varied 

from site to site and year to year. Generally, the anthesis dates for south England were earlier 
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than those for north England and there was a reasonable relationship between predicted and 

observed values. The root mean squared value of deviation of validation data from the 1:1 

line was 5.75 days. This value is a result of several factors, including variation in the 

frequency of observations (some daily, some at 2-3 day intervals, some weekly) and in the 

observed growth stage at which anthesis date was measured (from GS 61 to GS 65, generally 

about 2-4 days in the UK) when compared to the Sirius model predictions for growth stage 

65. 

 

Construction of a UK fusarium ear blight model 

When weather variables were selected for inclusion in the model on the basis of the 

percentage of ‘deviance’ accounted for, the single best weather variable was total rainfall 

from the second week in June (i.e. time of anthesis at Rothamsted) while the next best 

variable was average temperature in May; they accounted for 22.5% and 19.0% of the 

deviance, respectively. Regression coefficients were 0.93 (0.199) and 0.08 (0.0133). The 

remaining 8 variables accounted for much less of the deviance and related to periods of 

weather that were considered less important to the development of the disease. The final 

model including these two variables accounted for 36.0% of the deviance and the 

corresponding coefficients were 0.941 (0.201) and 0.069 (0.012), respectively. This 

represents a substantial proportion of the variation in fusarium ear blight incidence associated 

with weather factors (generally estimated at about 50 %).The observation that the coefficients 

did not differ much if they were fitted separately or fitted in combination suggests that the 

variables were independent of each other.  The relationship determined between the May 

average temperature (mayavt), rainfall in the second week of June (jwktotrn) and fusarium 

ear blight incidence (feb) is shown in equation 1, which applies to the region within 80km of 

Rothamsted. Fusarium ear blight incidence is measured as percentage of plants affected. The 
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right hand side of this expression is the back-transformation for the logit transformation used 

in the model construction. 

 

     (Equation 1) 

 

 

Validation of a UK fusarium ear blight model  

Validation was done using independent data from other regions of the UK mainland (Fig. 4). 

Predicted fusarium ear blight incidence, estimated using observed weather data and observed 

average dates of anthesis, was plotted against observed fusarium ear blight incidence. The 

values were transformed using a logistic function in the same way as the model was 

constructed. The relationship between predicted and observed values was influenced by the 

many factors contributing to variation in the observed data. For example, the outlying point 

was for southwest England in 2007, which was very wet in May, June and July 

(www.metoffice.gov.uk/climate/uk) in that region of the UK, accounting for the greater 

incidence of fusarium ear blight observed than was predicted by the model. However, this 

simple model, based on a few weather parameters, was suitable for use in work to project 

impacts of climate change on fusarium ear blight epidemics. Whilst other factors (e.g. 

previous crop, especially if it was maize, and use of fungicides; www.hgca.com) undoubtedly 

affected the incidence of fusarium ear blight, it is difficult to model the impact of climate 

change on such factors and outside the scope of this paper. 

 

 

Projection of wheat anthesis dates for the 2020s and 2050s 
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The projections for anthesis dates suggest that as the weather in the UK changes, dates of 

anthesis will get progressively earlier, by about 11-15 days across the whole country (Fig. 5). 

This effect is slightly greater near the south coast of England than in the north of Scotland. 

The results suggest that the earliest dates of anthesis are expected in the southwest of 

England; c. 4 June in the 2020HI scenario and c. 28 May under the 2050HI scenario as 

opposed to c. 11 June in the baseline scenario. The results suggest that the latest anthesis 

dates are expected in the north of Scotland; c. 18 June for the 2020HI scenario, c. 13 June for 

the 2050HI scenario compared to c. 24 June in the baseline scenario. The anthesis dates are 

projected to be earlier in the high CO2 scenarios when compared to the corresponding low 

CO2 scenarios.  

 

Projections of fusarium ear blight incidence for the 2020s and 2050s 

The projections for changes in fusarium ear blight incidence (Fig. 6) are more complex than 

the projections for changes in anthesis dates, since the disease incidence is a function of both 

average temperature for the period from 6 to 2 weeks before anthesis and total rainfall for one 

week leading up to anthesis. Since the period of weather used to predict the disease incidence 

is related to the anthesis date and anthesis dates are projected to be earlier under climate 

change, weather at different periods was then used to project fusarium ear blight incidence. 

For Scotland and northern and central England, there is projected to be a gradual increase in 

fusarium ear blight incidence with time, with little difference between the HI and LO 

emissions scenarios (Fig. 6). If the increase in disease incidence for each climate scenario is 

measured as a percentage of the baseline scenario, the greatest increase is for Scotland. For 

Scotland, where there is currently little fusarium ear blight, there is a projected 333% increase 

in incidence from the baseline to the 2050HI scenario, compared to an increase of 104% from 

the baseline to the 2050HI scenario on the south coast of England. The projected increases in 
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incidence of fusarium ear blight are less for northern and central England. By contrast, across 

parts of southern England, fusarium ear blight incidence is projected to decrease slightly by 

the 2020s but then to increase from the 2020s to the 2050s, when compared to the baseline 

scenario.  In both the 2020s scenarios, the areas with the greatest projected incidence of 

fusarium ear blight are in central southern England, rather than in the south coastal area of 

England that has the greatest incidence in the baseline scenario. At some sites, the projected 

incidence is less in the 2050HI scenario than the 2050LO scenario. Since the results are 

averaged over 50 runs of generated weather, what is not taken into account is the number of 

extreme values that affect the mean. Most runs have a projected fusarium ear blight incidence 

of less than 3%, but the mean values are greater because there are a few runs with much 

greater projected incidences that skew the data. For example, the percentage of runs with 

projections greater than 10% plants affected increases two-fold between the baseline and 

2050HI scenarios across nearly the whole of the UK.  

 

Discussion 

The results suggest that climate change induced increases in temperature or rainfall during 

key periods in the disease cycle will directly increase risk of wheat fusarium ear blight 

epidemics across the whole of the UK by the 2050s. This suggests that there will be not only 

increased yield losses due to grain shrivelling but also an increased risk of mycotoxin 

contaminated grain (Xu et al. 2008; Miraglia et al. 2009). In the UK, there are currently strict 

limits on the amounts of mycotoxins that are acceptable in grain to be used for human 

consumption or animal feed, since they are hazardous to health if consumed 

(www.hgca.com). The results suggest that the number of crops for which permitted 

mycotoxin levels are exceeded will increase over the whole of the UK by the 2050s. In a 

world where more than one billion people do not have enough to eat (Anonymous, 2009) and 
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global food security means that there is a need to grow more food in northern Europe 

(Mahmuti et al. 2009; Stern, 2007), strategies to decrease the future threat from fusarium ear 

blight (Goswami and Kistler, 2004) should be a major priority for government and industry, 

as part of strategies for adaptation to climate change. There is a need to start programmes to 

breed new UK wheat cultivars that are more resistant to fusarium ear blight, and to optimise 

fungicide spray treatments to control the disease and decrease mycotoxin concentrations by 

developing for the UK fusarium and mycotoxin forecasting schemes like those that have been 

developed for North America (De Wolf et al. 2003; Schaafsma and Hooker 2007; De Wolf 

and Isard 2007; Prandini et al. 2009; http://www.wheatscab.psu.edu/) and some continental 

European countries (e.g. Rossi et al. 2003; Musa et al., 2007). 

These projections for fusarium ear blight demonstrate that it is important to combine 

crop and disease models with climate scenarios to produce more accurate projections of the 

impacts of climate change.  Whilst it is projected that the UK will have drier summer weather 

(Semenov, 2009) that would not favour fusarium ear blight (Xu et al. 2007), use of the Sirius 

wheat model suggests that climate change will cause dates of wheat anthesis to occur earlier 

in the UK.  This means that the critical time period when rainfall will favour fusarium ear 

blight infection (Xu et al. 2007) will be about 2 weeks earlier in the year, when weather is 

projected to be warmer and of similar wetness to the baseline (Semenov, 2009). This work 

suggests that incidence of fusarium ear blight can be predicted from total rainfall at anthesis 

and average temperature for a four-week period before anthesis. The importance of rainfall at 

anthesis confirms predictions of models produced outside the UK (Table 1; Moschini et al. 

2001; De Wolf et al. 2003; Del Ponte et al. 2005). The earlier effect of temperature may 

relate to production of pathogen inoculum, which probably limits epidemics more in the UK 

than it does in North America, South America and continental Europe where considerably 

more maize is grown (Paul et al. 2007). This work demonstrates that it is only when crop and 

http://www.wheatscab.psu.edu/


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17 

disease models are combined that it is possible to project whether severity of epidemics will 

be increased (Luo et al. 1995), as for phoma stem canker on oilseed rape (Evans et al. 2008; 

Butterworth et al. 2010), or decreased, as for light leaf spot on oilseed rape in the UK (Evans 

et al., 2010).  

To construct and validate such models, it is essential that long-term data sets for 

weather, crop growth and disease incidence are collated, as in the CropMonitor disease 

survey (www.cropmonitor.co.uk). Whilst there will inevitably be uncertainty in such 

projections of climate change impacts associated with uncertainty in projections of future 

weather and in the crop and disease models, that is no reason not to make them (Stern, 2007, 

www.climatecongress.ku.dk). This work demonstrates the importance of assessing impacts of 

climate change on crop disease epidemics to guide government and industry strategies for 

adaptation to climate change to decrease future threats to global food security (Chakraborty, 

2005; Garrett et al. 2006; Gregory et al. 2009).  
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Figure legends 

 

Fig. 1  Areas of arable land on the UK mainland, indicating areas where <25% (■), 25-40% (■) and >40% (■) 

of the area is currently sown to wheat. The majority of UK wheat is grown in east England, although some is 

grown in east Scotland or west England. None is grown in west Scotland, northwest England or Wales, because 

the terrain is unsuitable for arable agriculture (■). Also shown are the 14 sites located within the arable area 

included in the modelling exercise for which weather data were generated for the different climate scenarios. 

The sites, selected from UK synoptic weather stations (further information at www.bits.bbsrc.ac.uk/metweb) to 

give representative weather in different arable regions, are labelled in order of decreasing latitude (Table 4). 

Wheat and arable area information were from www.hgca.com/cerealsmap/version9.swf.  

 

Fig. 2  An illustration of how the different models were combined to produce projections of date of winter 

wheat anthesis (growth stage 65) and fusarium ear blight (FEB) incidence (% plants affected) for different 

climate change scenarios. (1) Observed data for weather (daily minimum and maximum temperature (oC), total 

rainfall (mm) and solar radiation (MJ day-1)), date of anthesis and fusarium ear blight incidence were collated 

from a number of sources for different regions of the UK for the years 1994-2008. (2) The dates of anthesis 

predicted using the wheat growth model Sirius were validated by comparing predicted anthesis dates for winter 

wheat cv. Consort, generated by Sirius using observed weather data, with observed anthesis dates for the same 

sites for the period 1997-2004. (3) A fusarium ear blight model was developed from data for fusarium ear blight 

incidence from sites within 80km of Rothamsted and observed weather for Rothamsted for the period 1994-

2008; the model related fusarium ear blight incidence to average May temperature and rainfall in the second 

week of June (time of observed anthesis dates for Rothamsted) (Equation 1). (4) Predictions of average 

percentage of plants affected by fusarium ear blight were validated by comparing predictions made using 

observed weather to observed fusarium ear blight incidence data for the period 1994-2008 for different regions 

of the UK (northeast, southwest and east England) which were plotted as north (northeast) and south (southwest 

and east) England on the validation graph (Fig. 5). (5) Weather data were generated using LARS-WG for each 

of the 14 sites (Fig. 1) for each climate scenario; baseline (based on the statistical variability (or patterns) in 

observed weather variables in the period 1960-1990) and high CO2 and low CO2 emissions scenarios for the 

2020s and 2050s (2020LO, 2020HI, 2050LO and 2050HI). (6) The dates of anthesis for cv. Consort were 

projected for each site for each climate scenario using Sirius, allowing maps to be generated to show the effect 
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of climate change on date of anthesis (Fig. 5). (7) Using the weather generated by LARS-WG and average date 

of anthesis projected using Sirius for each of the sites for each of the five climate scenarios, the fusarium ear 

blight model was used to project fusarium ear blight incidence for each site for each of the five climate scenarios 

(Fig. 6).  

 

Fig. 3  Validation of winter wheat (cv. Consort) dates of anthesis (growth stage 65) predictions made using the 

wheat growth model Sirius. The predictions made with observed weather (daily data for minimum and 

maximum temperature (oC), total rainfall (mm) and solar radiation (MJ day-1)) and sowing dates as inputs to the 

model were compared to observed anthesis dates for harvest years 2003-2008 for two regions of the UK; south 

England (●) and north England (○). As many sets of weather data were incomplete, data from several stations in 

a region were collated to estimate missing information for use in the validation. Predicted anthesis dates (y axis) 

were plotted against observed anthesis dates (x axis) and the line predicted anthesis date = observed anthesis 

date is shown for comparison. Sources of data for the date of anthesis and sowing date are listed in Table 3. The 

root mean squared value of deviation from the 1:1 line was 5.75 days, which can be accounted for by variability 

in the observed data (differences in the exact growth stage (GS 61-65) at which observations were made, some 

observations were taken daily, some every 2-3 days and some weekly). 

 

Fig. 4  Validation of wheat fusarium ear blight incidence (% plants affected) predictions. Predictions made 

using observed weather (daily data for minimum and maximum temperature (oC) and total rainfall (mm)) and 

observed anthesis dates (from trials in two regions of the UK, north England (○) and south England (●), to allow 

the appropriate weather to be used when producing predictions) were compared to observed fusarium ear blight 

incidence in the period 2004-2008. Crop fusarium data were divided into three regions, northeast, east and 

southwest England (the weather data from the nearest synoptic weather stations were combined for these regions 

in order to estimate missing information and these data were used to make predictions (the east and southwest 

were combined into south England for plotting the graph)). For each year/region, disease data available were 

averaged across all trials and cultivars to give one observed value for each year/region. Since the model was 

developed using approximately 30 cultivars, the validation was also done using an average of all trials and 

cultivars. The values have been transformed using a logistic function; the same method was used in the 

development of the model. Sources of fusarium ear blight incidence data used in the model construction and 
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validation are listed in Table 2. It was not appropriate to analyse the deviation from the 1:1 line statistically as 

the logit transformation used gives a non-homogeneous scale. 

 

Fig. 5  Average dates of anthesis (growth stage 65), for winter wheat cv. Consort projected by the wheat growth 

model Sirius, for each of the five climate scenarios; (a) baseline, (b) 2020LO, (c) 2020HI, (d) 2050LO and (e) 

2050HI. The baseline scenario is based on the patterns in observed weather factors from 1960-1990 and the 

other scenarios are high CO2 (HI) and low CO2 (LO) emissions scenarios for the 2020s and 2050s. The maps 

were produced by spatial interpolation between the 14 sites.  

 

Fig. 6  Maps showing the projected average fusarium ear blight incidence (% plants affected) generated by the 

fusarium ear blight model using the average anthesis dates shown in Fig. 5 for each of the five weather 

scenarios; (a) baseline, (b) 2020LO, (c) 2020HI, (d) 2050LO and (e) 2050HI. The baseline scenario is based on 

the patterns in observed weather from 1960-1990, and the other scenarios are high CO2 (HI) and low CO2 (LO) 

emissions scenarios for the 2020s and 2050s. The maps were produced by spatial interpolation between the 14 

sites.  
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a There is an additional model from Brazil (Del Ponte et al. 2005) that was investigated but it is very complex and requires 
the calculation or knowledge of many additional factors such as anther extrusion rate (to calculate the area of available 
tissue for infection), spore cloud density and infection frequency to produce an overall risk of FEB infection. 

b As these models were produced outside the UK, the disease is referred to as fusarium head blight in the original papers (not 
fusarium ear blight). 

c From a statistical viewpoint, the relative humidity is difficult to work with since it cannot be greater than 100%, so that any 
formula developed using relative humidity as an input would need to take this into account. 

d Moschini et al. 2001 
e De Wolf et al. 2003. Field disease severity is the mean percentage of ear area with FEB symptoms in the crop (including all 

plants with/without symptoms) 
f Rossi et al. 2003. Field disease severity is the mean percentage of ear area with FEB symptoms (www. ext. nodak.edu) 
g Notation used in the equations: 

DD926 – 926 degree days accumulated 
DD1026 – 1026 degree days accumulated 
DPPT7 – Duration of precipitation (hours) in the 7 days before anthesis 
MaxT – Maximum daily temperature >26°C 
MinT – Minimum daily temperature <9°C or <10°C 

NP2 – Number of 2 day periods with precipitation ≥0.2mm and RH >81% 
NP12 – Number of NP2 periods plus the total number of days with precipitation ≥0.2mm and RH >83% 
PI% – Predictive index 
RFE – Risk of a FEB epidemic (epidemic if FEB field disease severity ≥10%) 
T15307 – Duration (hours) of 15≤T≤30°C in the 7 days before anthesis 
TRH9010 – Duration (hours) 15≤T≤30°C and RH ≥90% during anthesis 

h FHB risk is calculated daily and accumulated until harvest; equations for each of the components (SPO, sporulation rate; 
DIS, dispersal rate; INF, infection rate; GS, empirical weight) are given in Rossi et al. (2003). The model assumes that 

inoculum is always present. 

Table 1  Models produced in Argentina, the USA and Italy to predict the severity/risk of fusarium ear blight (FEB) from 
observed weather variables at critical crop growth stages; relative humidity (RH), daily rainfall, temperature and solar 

radiation. These twoa models can be used to determine the optimum timing of fungicide sprays for control of FEB. 

Reference 
country 

Factor 
predicted 

Weather 
inputs 

Critical weather 
period (crop growth 
dependent) 

Equationsg 

Argentinad  
(2 models) 

Percentage 
of ears with 

FEBb 

RHc, daily 
rainfall, daily 

temperature 

From 8 days before 
ear emergence 

(growth stage 50) 
until 550 degree 
days have elapsed 

PI% = 20.37 + 8.63 NP2 – 0.49 DD926 

DD926 = ∑[(MaxT – 30)] + (9 – MinT)] 

PI% = 18.34 + 4.12 NP12 – 0.49 DD1026 

DD1026 = ∑[(MaxT – 30)] + (10 – MinT)] 

USAe  

(4 models) 
Risk of a 
FEB 
epidemic 
(field 
disease 
severity 

≥10%) 

RHc, daily 
rainfall, daily 
temperature 

From 7 days before 
the start of anthesis 
(growth stage 60) to 
10 days after the 
start of anthesis 

RFE = - 3.38 + 6.81 TRH9010 
RFE = - 3.73 + 10.5 T15307 TRH9010 
RFE = - 1.06 - 14.2 T15307 DPPT7 + 39.5 
T15307 DPPT7 TRH9010 
RFE = - 1.54 + 31.8 T15307 DPPT7 TRH9010 - 
5.81 DPPT7 

Italyf Risk of a 
FEB 
epidemic 
(field 
disease 
severity) 

RHc, daily 
rainfall, daily 
max./min. 
temperature,  

From ear emergence 
(heading) until 
harvest 

FHB_risk = ∑SPO DIS INF GSh 
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Table 2  Sources of the observed fusarium ear blight incidence (% plants affected) data used to construct and validate the 

weather-based model for predicting the incidence of wheat fusarium ear blight equation.  Separate sets of CropMonitor data 

were used for construction and validation of the model and the HGCA recommended list trial data were used only in model 

validation. For validation see Fig. 4. The observed data were averaged for areas near each weather station for each year to 

smooth out the very high and very low levels recorded, even near the same weather station. 

Location 
Harvest 

year(s)d No. of points Source of data Reference 

Data used for model 

construction: 

    

Various sitesa 1994-2008 322 CropMonitore www.cropmonitor.co.uk 

Independent data 

used for model 

validation: 

    

Various sitesb 2004-2008 165 CropMonitore www.cropmonitor.co.uk 

Various sitesc 2004-2008 65 HGCA Recommended List trialsf www.hgca.com 

a Disease data for sites in a region within 80km of Rothamsted in south England were averaged for groups of sites in areas 

near each of the synoptic weather stations at Andrewsfield, Bedford, Benson, Bracknall, Brize Norton, Charlwood, High 

Wycombe, South Farnborough, Wittering, Redhill and Heathrow (i.e. 11 weather stations and 15 years, 165 data sets). For 

each set of disease data, daily total rainfall and average temperature for April, May and June were collated.  
b Data for sites in southwest and northeast England for which the nearest synoptic weather station was given. Sites in 

southwest England were near St Mawgan, Dunkeswell Aerodrome, Yeovilton, Chivenor, Camborne, Plymouth and Hurn. 

Sites in northeast England were near Linton on Ouse, Leeming, Church Fenton, Fylingdales, Bridlington, Boulmer and 

Loftus.  
c Sites are Cranwell and Binbrook in Lincolnshire. 
d Fusarium ear blight incidence (% plants affected) was assessed approximately 3 weeks after the start of anthesis on a range 

of winter wheat cultivars. 
e CropMonitor survey sites are mostly commercial farms but some are dedicated trial sites. The survey is coordinated by 

Fera, with funding provided by Defra, HGCA and Bayer Crop Science. 
f The trials are funded by HGCA for the purpose of selecting cultivars most suitable for planting for the UK Recommended 

List. 
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Table 3  Sources of the observed date of anthesis and sowing date data for winter wheat cv. Consort used to validate 

predictions made using observed weather and sowing date data with the wheat growth model Siriusa. Some of the observed 

values were for growth stage 61 rather than growth stage 65 that the model predicts for. 

Location Harvest 

year(s)d 
No. of points  Source of data Reference 

Various sitesb 2003-2007 25 HGCA Recommended List trialse www.hgca.com 

Rothamsted 2006-2007 12 PhD thesis, EU project  BioExploit  Sarah Holdgate (2009)g 

Rothamsted 2008 1  Rohan Lowe, personal 

communication  

Various sitesc 2006-2008 10 Water use efficiency trials (Defra-

funded Sustainable Arable LINK 

project) 

www.defra.gov.uk 

Rosemaund 2006 1 CropMonitorf www.cropmonitor.co.uk 

a For validation of the Sirius wheat growth model see Fig. 3. The data used for validation of Sirius anthesis data were 

independent of the data used for model construction. 
b Sites are Dunmow and Stebbing in Essex and Bramham in West Yorkshire, for several different sowing dates.  
c Sites are Shelford, Grantchester and Trumpington in Cambridgeshire, Clopton in Suffolk, Malden in Essex and Riseholme 

in Lincolnshire.  
d To determine anthesis dates, trials were assessed regularly in late May and June (daily, every 2-3 days or weekly). 
e The trials are funded by HGCA for the purpose of selecting cultivars most suitable for planting for the UK Recommended 

List. 
f CropMonitor survey sites are mostly commercial farms but some are dedicated trial sites. The survey is coordinated by 

Fera, with funding provided by Defra, HGCA and Bayer Crop Science. 
g Holdgate, S. (2009). Improving the diversity of race-non-specific resistance mechanisms available in wheat to combat 

fusarium ear blight disease. PhD thesis, Cranfield University, UK. 
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Table 4  Site location information for each of the 14 sites selected for generation of simulated weather for the five 
climate change scenarios, distributed around the UK mainland in arable areas. Sites were chosen at the location of 
synoptic weather stations and altitude, latitude and longitude data from each site were obtained from 
http://www.bits.bbsrc.ac.uk/metweb/. 

Sitea
  Altitude 

(metres above sea level) 
Latitude 
(degrees) 

Longitude 
(degrees) 

1 Kinloss 5 57.646 -3.562 
2 Mylnefield 31 56.457 -3.072 
3 Haddington 41 55.580 -2.450 
4 Durham 102 54.768 -1.585 
5 Askham Bryan 34 53.950 -1.080 

6 Crosby 10 53.776 -3.037 
7 Cranwell 62 53.031 -0.501 
8 Newport Salop 66 52.779 -2.428 
9 Morley St Botolph 48 52.550 1.050 
10 Cheltenham 65 51.900 -2.050 
11 Rothamsted 128 51.806 -0.358 
12 East Malling 33 51.287 0.451 
13 Cannington 28 51.090 -3.040 

14 Porton 111 51.070 -1.420 

a The locations of sites 
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