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Abstract. Empowerment is a promising concept to begin explaining
how some biological organisms may assign apriori values expectations
to states in taskless scenarios. Standard empowerment samples the full
richness of an environment and assumes it can be fully explored. This
may be too aggressive an assumption and here we explore impoverished
versions achieved through a limit on the bandwidth of the empowerment
generating action sequences. It turns out that limited richness of actions
concentrate on the “most important” ones with the additional benefit
that the empowerment horizon can be extended drastically into the fu-
ture. This may indicate a path towards and intrinsical preselection for
preferred behaviour sequences and may help to suggest more biologically
plausible approaches.

1 Introduction

Methods to provide an embodied agent with strategies to behave intelligently
in an previously unknown environment or without specific goals or tasks are of
great interest in Artificial Life. However, in order to do this embodied agents
require some method by which they can differentiate available actions and states
in order to decide on how to proceed. In the absence of no specific tasks or goals
it can be difficult to decide what is and is not important to an agent.

One set of approaches examines processing and optimising the Shannon-type
information an agent receives from it’s environment (Attneave, 1954; Barlow,
1959, 2001; Atick, 1992), following the hypothesis that embodied agents benefit
from an adaptive and evolutionary advantage by informationally optimising their
sensoric and neural configurations for their environment.

Information based predictions could provide organisms/agents with intrinsic
motivation (Prokopenko et al., 2006; Bialek et al., 2001; Ay et al., 2008); each
use similar approaches based on predictive information. In this paper we will
concentrate on empowerment (Klyubin et al., 2005b,a), an information theoretic
measure for the efficiency of a perception-action loop.

One shortcoming of empowerment is that whilst it provides behaviours and
results which seem to align it with processes that may have resulted from evolu-
tion they tend not to operate using an equally plausible process. In an artificial
setting empowerment is calculated with the Blahut-Arimoto algorithm, but the



problem remains that it implicitly retains a notion of the richness and full size
of the space it searches whatever process creates it. In this paper we assume a
limit on the richness of the action repetoire.

1.1 Information Theory

Here we give a very brief introduction to information theory, introduced by
Shannon (1948). The first measure is entropy, a measure of uncertainty given by
H(X) = =Y p(x)logp(xz) where X is a discrete random variable with values
x € X and p(z) is the probability mass function such that p(z) = Pr(X = z).
We use base 2 logarithm and measure in bits.

If Y is another random variable jointly distributed with X the conditional
entropy is H(Y'|X) = =3, p(z)>_, p(y|z) log p(y|z). This measures the remain-
ing uncertainty about the value of Y if we know the value of X. Finally, this
also allows us to measure the mutual information between to random variables:

I(X;Y) = H(Y) — H(Y|X). (1)

Mutual information can be thought of as the reduction in uncertainty about
the variable X or Y, given that we know the value of the other.

1.2 Empowerment

Essentially empowerment uses the channel capacity for the external component
of a perception-action loop to identify areas that are advantageous for an agent
embodied within an environment. It assumes situations with a high efficiency
of the perception-action loop should be favoured by an agent. Based entirely on
the sensors and actuators of an agent, empowerment intrinsically encapsulates
an evolutionary perspective; namely that evolution has selected which sensors
and actuators a successful agent should have, which in turn implies which states
are most advantageous to be visited.

Empowerment is based on the information theoretic perception-action loop
formalism introduced by Klyubin et al. (2005b,a, 2004), as a way to model
embodied agents and their environments. The model views the world as a com-
munication channel; when the agent performs an action, it is injecting Shannon
information into the environment, which may or may not be modified, and sub-
sequently the agent re-acquires part of this information from the environment
via its sensors.

Fig. 1. Bayesian network representation of the perception-action loop.



In Fig.1 we can see the perception-action loop represented by a Bayesian
network, where the random variable R; represents the state of the environment,
S, the state of the sensors, and A; the actuation selected by the agent at time ¢.
It can be seen that R;y; depends only on the state of the environment at time
t, and the action just carried out by the agent.

By modelling this as a communication channel, we can employ information-
theoretic methods, which are the basis for empowerment. Empowerment mea-
sures the maximum potential information flow, this can be modelled by the
channel capacity (Shannon, 1948) for a discrete memoryless channel:

C(p(sla)) = max I(4; S). (2)
p(a)

The random variable A represents the distribution of messages being sent
over the channel, and S the distribution of received signals. The channel capacity
is measured as the maximum mutual information taken over all possible input
distributions, p(a), and depends only on p(s|a), which is fixed. One algorithm
that can be used to find this maximum is the iterative Blahut-Arimoto algorithm
(Blahut, 1972).

Empowerment can be intuitively thought of as a measure of how many ob-
servable modifications an embodied agent can make to his environment, either
immediately, or in the case of n-step empowerment, over a given period of time.

In the case of n-step empowerment, we first construct a compound random
variable of the last n actuations, labelled A}'. We now need to maximise the
mutual information between this variable and the sensor readings at time ¢ 4 n,
represented by Sii,. Here we consider empowerment as the channel capacity
between these:

€ = Cplseenlar)) = max I(AY; Siin). 3)
play”
An agent that maximises its empowerment will position itself in the environ-
ment in a way as to maximise its options for influencing its relationship with the
environment (Klyubin et al., 2005a).

2 Empowerment with limited action bandwidth

2.1 Goal

We wanted to introduce a bandwidth constraint into empowerment, specifically
n — step empowerment where an agent must look ahead and possible outcomes
for sequencess of actions, and even with a small set of actions these sequences
can become very numerous.

An agent’s empowerment is bounded by that agent’s memory; empowerment
measures the agent’s ability to exert influence over it’s environment and an agent
that knows only 4 distinct actions can have no more than 2 bits of empowerment
per step. However, there are two factors which normally prevent empowerment
from reaching this bound:



— Noise - A noisy / non-deterministic / stochastic environment means that
from a given state an action has a stochastic mapping to the next state.
This reduces an agents control and thus it’s empowerment.

— Redundancy - Often there are multiple actions available which map from a
given state to the same resultant state. This is especially true when consid-
ering multi-step empowerment. e.g Moving North then West or moving West
then North.

Therefore in many cases bandwidth for actions can be reduced with little
or no impact on achievable information flow. Beyond this there may be scenar-
ios where a reduction in empowerment /utility is acceptable and is desirable to
achieve further reductions in action bandwidth.

2.2 Scenario

To run tests we constructed a simple scenario; an embodied agent is situated
within a 2 dimensional infinite gridworld and has 4 possible actions in any single
time step. The actions the agent can execute are North, South, East and West
and provided the cell in the corresponding direction is free; it may be that the
target cell is occupied by a wall, in which case the action is executed but the
agent does not move from its current cell. In the scenario the state of the world
is solely the position of the agent, and this is all that is detected by the agent’s
sensors.

2.3 Approach

We hypothesise, given that for short sequences of actions it is manageable to
cheaply examine all sequences, that we could approach an agent’s bandwidth
divided into two parts; a ‘working’” memory and a ‘long term’ memory. The
constraints we were to apply should be on an agent’s ‘long term’ memory.

The agent to examines all possible options for n — step empowerment for
small values of n (typically n < 6) and then selects a subgroup of the available
sequences to be retained (the number of which corresponding to the bandwidth
limit).

To do this we use the information bottleneck method (Tishby et al., 1999) to
select which actions to retain. Having calculated the empowement we have two
distributions; p(a) is the capacity achieving distribution of actions and p(s|a) is
the channel that represents the results of an agent’s iteractions with the envi-
ronment.

We now look for a new “compact” distribution p(g|a), where g are groups
of alike action sequences and |G| < |A| where the cardinality of G corresponds
to our desired bandwidth limit. A colloquial, though not entirely accurate, way
to think of this is as grouping action sequences that have similar outcomes (or
represent similar ‘strategies’).

The information bottleneck is used to select p(gla) and from this mapping
of action sequences to groups we select a new distribution p(@) where @ is the
reduced set of action sequences (for implementation details see section 4).
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Fig. 2. Selected trajectories in a 3-step scenario showing redundancy elimination. On
the left 16 selected action sequences, on the right 12 selection action sequences.

In section 2.1 we discussed redundancy as one factor which should be elim-
inated first in order to maintain empowerment whilst reducing bandwidth. In
fig. 2 we can see a scenario in which the agent uses sequences of 3 actions; there
are 4> = 64 possible actions that can reach 16 different end states. The walls
are represented by patterned grey, the starting position of the agent is the light
center square, and the selected trajectories by the dark lines with black marking
their end.

On the left we see results for an agent with a bandwidth of 4 bits resulting
in the selection of 16 sequences; the best result is successfully achieved with a
single trajectory to each of the 16 possible end states. We will present another
example before returning to the right side of this figure.
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Fig. 3. Typical behaviours where 4 action sequences were selected from 4° possibilities.

Fig. 3 shows two further typical outcomes of this algorithm; in this example
we have a bandwidth constraint of 2 bits, operating on sequences of 6 actions.
What can be seen as to have emerged is of interest; the sequences chosen can
immediately be seen to be non-trivial and a brief examination reveals that the
end points each have only a single sequence (of the available 4,096) that reaches
them.

Returning to fig. 2, the righthand result is the same setup exactly as the
left, but now the bandwidth has been reduced to 3.58 bits corresponding to 12



allowed action sequences. We can see that, of the 16 sequences from before, the
agent now ‘forgets’ the 4 which led to the states having higher redundancy.

If we extrapolate this process of eliminating trajectories to ‘easier to reach’
states then it follows that, exactly as in fig. 3, the last states the agent will retain
are the entirely unique states that have only a single sequence that reaches them.

It appears that choosing to retain a limited number of explored sequences
and this tendency for the agent to value ‘unique’ sequences indicates a first step
towards a solution for extending the sequences beyond what was computationally
possible before. This in turn indicates that it may point to a plausible process
for a biological organism to undertake. We discuss this in section 3.

2.4 Noise induced behvaiour modifications

Fig. 4. Randomly selected behaviours; 4 steps with a 2 bit bandwidth constraint.

Fig. 4, a 4-step scenario with a bandwidth constraint of 2 bits corresponding
to 4 actions, shows there is not always a neat division of the world into what we
would probably recognise as the 4 main ‘strategies’ (one trajectory into each of
the 4 rooms). However, there is no push for the agent to do this or to consider
the geographical distinctions between states.
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Fig. 5. Two randomly selected behaviours in a 4-step scenario with a 2 bit bandwidth
constraint and 5% noise per step.



However, with the introduction of noise this changes. Fig. 5 shows two more
randomly selected behaviours from the same scenario but with the introduction
of noise, where each action has a 5% probability of being replaced with a random
action. In order to maintain as much empowerment as possible, the agent must
ensure that in attempting one strategy it doesn’t accidentally employ another,
and in this environment that translates to being ‘blown off course’ and adds a
push for a geographical distinction between end states.

Note in this figure that 5 of the 8 sequences shown appear to be only 3 steps
long. However, this appears to be a strategy employed by the agent, and what
is actually happening is the agent uses an action to push against the wall while
passing through the doorway.

3 Building long action sequences

The current formulation for n — step empowerment utilises an exhaustive search
of the action space for n — steps. It can be seen that this is a highly unlikely
approach for biological organisms to employ, especially for large values of n and
in rich environments.

Following the result above from bandwidth limited empowerment it became
apparent that retaining only a small subset of investigated action sequences lends
itself to the idea of then searching further from the final states of such sequences.

To begin, this is obvious when applied to the cases where the bandwidth has
been constrained just enough to retain empowerment but eliminate all redun-
dancy; it is essentially realising the Markovian nature of such sequence based
exploration. Having arrived at a state to explore then how you arrived is not of
consequence to further exploration.

However, the results seem to suggest that even beyond this point of retained
empowerment, where the bandwidth is severely limiting to the achievable em-
powerment and selection of sequences the iterative build up still produce note-
worthy behaviours.

The approach was to set a target length for a sequence, for example 15-step
empowerment, then the problem is broken down in to ¢ iterations of n — step
empowerment where ni = 15. Standard n — step empowerment is performed,
and then the above presented bandwidth-reduction algorithm is run to reduced
the action set to a small subset. Each of these action sequences is then extended
with n additional steps. These are then again passed through the bandwidth-
reduction algorithm and this repeated a total of i times.

If we selected n =5, i = 3 and a bandwidth limit of 4 bits (16 actions) then
the total states searched in our gridworld scenario would be reduced from 4'° to
33,792, which is a search space over 3 - 10* times smaller.

Fig. 6 shows the results of such a scenario with the selected action sequences
and there are several important aspects to note. Firstly, the agent continues to
reach certain states that are of obvious consequence, most notably the 4 cardinal
directions, but also over half of the 8 further corner points. Further more the
pattern of trajectories has a somehwat ‘fractal’ nature and appear to divide
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Fig. 6. Iteratively built sequences of 15 steps, with a bandwidth constraint of 4 bits.

the search space up systematically. These results are of interest because these
states and behaviours are far beyond the horizon of a single iteration of standard
n — step empowerment. Space does not permit but initial results also indicate
that interesting locations of the environment, such as door and bridges, are also
handled by such iterative sequence building.

4 Algorithm details

We chose to implement the Information Bottleneck combined with a secondary
algorithm to ‘decompose’ the produced conditional distribution p(g|a) into a
new distribution for p(a) which has an entropy within the specified bandwidth
limit (and usually contains only a subset of the original actions).

Using the information bottleneck we were able to reduce entropy of our ac-
tions by choosing a cardinality for G and then maximising I(G;S) (the empow-
erment of the reduced action set) using A as a relevancy variable. This results
in retaining empowerment whilst compressing the action sets entropy.

However, this does not result in a one to one mapping of a subset of A to G,
but rather results in a conditional probability distribution. Therefore, in order to
end up with a subset of our original actions to form a new action policy for the
agent, we must apply some method of selecting an a for each value of g (which
are essentially meta actions).

As stated, in the spirit of empowerment, for each g we want to select the
actions which are most likely to map to that g (i.e the highest value of p(g|a)
for the given g). This results in collapsing strategies to their dominant action
sequence and maximises an agent’s ability to select between strategies.

5 Discussion

We have identified several challenges to the recently introduced concept of em-
powerment which endows an agent’s environmental niche with a concept distin-



guishing desirable from less desirable states. Empowerment essentially measures
the range in environmental change imprinted by possible action sequences whose
number grows exponentially with the length of the sequence. It is virtually im-
possible to compute it algorithmically for longer sequences, and, likewise, it is
implausible that any adaptive or evolutionary natural process would be able to
indirectly map this whole range.

Therefore, here we have, consistently with the information-theoretic spirit of
our study, applied informational limits on the richness of the action sequences
that generate the empowerment. In doing so, we found that: 1. the information
bottleneck reduces redundant sequences; 2. in conjunction with the complexity
reduction through the collapse of action sequences, particularly “meaningful”
action sequences that explore important features of the environment, e.g. prin-
cipal directions, doors and bridges, are retained, and finally, that significantly
longer action sequences than before can be realistically handled. This promises
important insights for understanding the possible emergence of useful long-term
behavioural patterns. Note that in this study we have relinquished the com-
putation of empowerment as measure for the desirability of states in favour of
filtering out desirable action patterns.
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