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ABSTRACT 

This paper explores the evolution of a simple traffic convention concerning the side of the 
road on which to drive. This agent-based simulation probes some of the deeper conceptual 
issues involved in the evolution of conventions, particularly the nature of rational decision-
making and its possible reliance upon habit. The simulations show that the systemic 
convergence to a left/right convention is often improved or sustained by habit, alongside other 
“intelligent” and calculative attributes of agents. We show that habit formation is part of a 
possible mechanism of “reconstitutive downward causation” among agents where the 
preferences of each agent are partly malleable. 
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1. Introduction1

The evolution of conventions and institutions has become the subject of much analysis, 
modeling and discussion.2 We raise here some further analytical and conceptual issues on the 
basis of a heuristic, agent-based simulation with heterogeneous agents. The general outcome 
of the simulation is relatively uncomplicated because we choose one of the most 
straightforward of decisions and conventions: whether to drive on the right or on the left of 
the road.3 In our model, artificially intelligent “drivers” in “cars” are programmed to negotiate 
a circular road configuration along with a number of other, similar vehicles. We show that the 
emergence of a convention is possible but by no means guaranteed. Furthermore, some 
manipulation of the decision processes through which these “drivers” decide to move to the 
left or the right provides a basis to consider some of the deeper conceptual issues that are 
involved in the evolution of conventions, such as the nature of rational decision-making and 
its possible reliance upon habit.  

Each driver is boundedly rational. To negotiate the track and avoid collision, it would seem 
to be rational for each driver at least to consider conformity with the perceived distribution of 
traffic to the left and right and avoidance of cars that are immediately ahead. To these factors, 
our model adds habit. 

Any left/right convergence outcome in this model is likely to depend on initial conditions 
and circumstances. Strong path dependence is likely, but we are more interested in the degree 
and resilience of any emergent convention than whether it is on the left or the right. 

We show that in following or avoiding other traffic in some circumstances, strength of habit 
and processes of habituation can play a vital role alongside rational deliberation and selection 
pressure. This outcome not only raises important questions concerning the role of habit in 
decision-making, but also it challenges the frequent assumption that preference functions 
should always be taken entirely as exogenously given. 

This paper is structured in eight parts. As well as defining some key terms, the second part 
considers the theoretical background and points to some important differences of view 
concerning the manner in which institutions and conventions evolve. The heuristic model is 
presented in the third part. In the fourth part the results of the simulations are reported. The 

                                                 

1 The authors wish to thank Brian Arthur, Kenneth Binmore, Nathalie Lazaric, Axel Leijonhufvud, Paul 
Ormerod, J. Barkley Rosser, Jr., Koye Somefun, Robert Sugden, Margherita Turvani, Viktor Vanberg, 
Kumaraswamy Velupillai, Ulrich Witt, three anonymous referees and others for their comments on earlier 
drafts of this paper. 

2 See, for example, Marimon et al (1990), Wärneryd (1990b), Young (1993), and Howitt and Clower (2000). 

3 Young (1996) provides an interesting historical account of the evolution of traffic conventions. 
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fifth part considers a different model with “inertia” and shows that it does not aid convergence 
as strongly as habit. The implications of the simulations concerning the concept of habit and 
regarding the concept of “downward causation” are discussed in the sixth and seventh parts, 
respectively. The eighth part concludes the essay. 

2. The Evolution of Conventions and Institutions 

We follow widespread practice and define institutions as durable systems of established and 
embedded social rules that structure social interactions. Language, money, law, systems of 
weights and measures, traffic conventions, table manners, firms (and other organizations) are 
all institutions. A convention is a particular instance of an institutional rule (Sugden, 1986; 
Searle, 1995). For example, all countries have traffic rules, but it is a matter of (arbitrary) 
convention whether the rule is to drive on the right or on the left. 

In a book first published in German in 1871, Carl Menger (1981) pioneered the basic 
analysis of how institutions evolve. His chosen example was money. Menger saw the 
institution of money as emanating in an undesigned manner from the communications and 
interactions of individual agents. Traders look for a convenient and frequently exchanged 
commodity to use in their exchanges with others. Once such regularities become prominent, a 
circular process of institutional self-reinforcement takes place. Emerging to overcome the 
difficulties of barter, money is chosen because it is convenient, and it is convenient because it 
is chosen.4

In this Mengerian approach, individual preference functions are taken as given. Menger 
thus inspired a central, unifying project in the “new institutional economics”: to explain the 
existence of political, legal, or social institutions by reference to a model of given, individual 
behavior, tracing out its consequences in terms of human interactions.5

However, theoretical analyses or simulation of the evolution of institutions have proved to 
be remarkably problematic. For example, in the work of Ramon Marimon et al. (1990) an 
attempt is made to model the emergence of money with artificially intelligent agents. Their 
results are qualified and partially inconclusive. A single monetary unit does not always 
readily emerge. Menger’s discursive analysis of an emergent convention has proven to be 
remarkably difficult to replicate in a computer simulation. Our simulations also show the 
difficulties in reaching convergence even with a very simple convention. 

The central hypothesis behind the present paper is that there is often more to the emergence 
of real world institutions than mere matters of convenience and calculation by individual 
agents. Additional psychological factors intervene. A verbal exposition of this basic idea can 
be found in the writings of the neglected tradition of “old” institutionalism. For instance, 
arguing that the evolution of money cannot be understood simply in terms of cost reduction 
and individual convenience, Wesley Mitchell maintained that money “stamps its pattern upon 

                                                 

4 Despite the apparent simplicity of this monetary argument, analyses, experiments and simulations based upon it 
are extraordinarily complex (Jones, 1976; Kiyotaki and Wright, 1989; Oh, 1989; Wärneryd, 1989, 1990a; 
Hodgson, 1993; Marimon et al, 1990; Duffy and Ochs, 1999). Realizing this, we chose a simpler institution as 
the object of the present study in which each agent has a choice between only two behavioral options at any 
stage. Our intention was to illustrate the hypothesized results in the simplest possible institutional set up. 

5 For discussions of the limits of this approach see Field (1979, 1984), Knight (1992), Sened (1997), Hodgson 
(1998) and Aoki (2001). 
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wayward human nature, makes us all react in standard ways to the standard stimuli it offers, 
and affects our very ideals of what is good, beautiful and true” (Mitchell, 1937, 371). 
Accordingly, the evolution of money changed the mentality, preferences and thinking patterns 
of individuals themselves. This does not necessarily mean that Menger’s account is wrong, 
but that it is sometimes inadequate. At least in some circumstances, it may have to be 
supplemented by an analysis of how institutions can change individual perceptions and 
preferences. 

The idea of the malleability of individual preferences pervades the “old” institutional 
economics, from Thorstein Veblen to John Kenneth Galbraith. However, it has not yet been 
shown why some preference malleability may be necessary for the emergence and 
sustainability of institutions. In this article we begin to fill this gap by showing how a limited 
form of preference malleability can improve the possibility and stability of an equilibrium 
convention. 

What is at issue here is the adequacy of the standard account of the emergence of 
institutions. Just as individuals constitute institutions, individuals may also be partially 
reconstituted by institutions. Once we raise this possibility, however, we encounter some 
conceptual problems concerning the specification of such preference endogeneity. It is not our 
intention to replicate a widely criticized picture of individuals as puppets of institutions, roles 
or cultural values. To avoid such pitfalls, we have to specify adequately the limits, nature and 
mechanisms of this reconstitution.  

It is here that we come to the concept of habit. The simulation outlined in the next section 
shows how habit can be significant for institutional evolution, especially in circumstances of 
limited information. Circumstances help to form the predispositions of individuals by forming 
and changing their habits. Of course, several attempts have been made to accommodate a 
notion of habit within relatively sophisticated rational choice models.6 In these models, any 
habit is seen as ultimately an outcome of a rational choice. In contrast, in the pragmatist 
tradition of Charles Sanders Peirce, William James, George Herbert Mead and John Dewey, 
any rational deliberation is always seen as grounded on habit. The question then is whether 
rational choice is the foundation of habit, or whether the reverse is true (Becker, 1992; 
Hodgson, 1998, 2003, 2004). The discussion of the simulation, in section six, addresses this 
dilemma. It is shown that the concept of habit developed in the cited rational choice models is 
not the same as the concept in our model and in the tradition of pragmatist thought. 

Our intention is not to treat habit as some kind of psychological panacea, but to investigate 
its significance in the “experimental” context of a simulation. The model shows that in some 
circumstances habit can assist convergence to a left/right convention but it also depends upon, 
and interacts with, other variables and processes. We do not argue that habit is the only factor 
involved in convergence, but under frequent conditions it is important when allied with other 
factors. We also find that in some circumstances habit can be disruptive. 

                                                 

6 See, for example, Pollak (1970), Winston (1980), Blanciforti and Green (1983), Phlips and Spinnewyn (1984), 
Becker and Murphy (1988), Alessie and Kapteyn (1991), Becker (1992),  
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3. The Simulation Model 

3.1 The decision problem and the environment of choice 

In our model,7 40 agents drive around a 100×2 grid, arranged in a ring, with two lanes and 
100 zones. We use the terms “agent,” “driver,” and “car” synonymously. The drivers are 
unique individuals, born to drive either clockwise or counter-clockwise around the ring, 
referred to as lengthways movement. Half of the agents drive clockwise and the other half 
counter-clockwise. For each car, the direction of its lengthways movement cannot be changed. 

At time t=0, the drivers are randomly assigned a zone and a position on one of the two sides 
of the ring. The cars then move in turn. During each move, each driver must decide whether 
to drive on the left or the right side of the ring when making their next lengthways movement. 
This left/right movement is the driver’s only choice variable. Each driver performs an 
incremental lengthways movement, placing itself in the next zone ahead, on either its left or 
its right lane. 

The left/right decision is partly based on information about the traffic in front of the driver. 
The driver looks 10 increments ahead and counts in that region the number of cars in each 
lane and the number of cars going in each direction. Based on this information and given its 
behavioral and cognitive dispositions (defined below), the driver will decide on which side of 
the ring to drive in its next move. Each car drives around the ring until it is involved in a 
collision. A collision occurs when a car moves into a zone occupied by another car that is also 
in the same lane, irrespective of the direction of movement of the cars. Then both drivers die 
and new cars and drivers replace them. As a result, the number of cars on the grid is always 
40. The replacement routine also ensures that the number of cars moving clockwise and 
counter-clockwise is always 20. 

3.2 Behavioral and cognitive dispositions 
Initially our objective was to make the drivers as “intelligent” as possible, subject to the 
constraint of a limited number of cognitive and behavioral variables. After numerous runs 
with additional cognitive parameters, we found that a highly parsimonious model was very 
effective.8 Additional decision parameters had little effect in enhancing the survival of 
individual cars or the convergence characteristics of the model.9

                                                 

7 The simulations described here were performed using Matlab software. All random numbers are generated 
from a multiseed generator with the theoretical lower limit of 21492 before the number will repeat itself. 

8 Given the relative simplicity of the decision environment, and the effectiveness of our “parsimonious” decision 
algorithm, it seemed neither necessary, appropriate nor fruitful in this model to incorporate more complex 
learning procedures such as the “elaboration likelihood model” of Petty and Cacioppo (1986) and the non-
linear models of attitude change by Eiser et al. (2001). However, more complex learning algorithms would 
clearly be appropriate in decision environments involving more learning parameters and behavioral choices 
than are present in our model. 

9 Earlier versions of this paper included three “inertia” parameters and an additional “avoidance” variable 
applied to the area two zones ahead of the driver. The inertia parameters gave each driver a disposition to 
continue stubbornly with an inclination it has assumed in the recent past. The discussion of inertia in section 
five below shows that its effects are generally weaker than those of habit. The effect of the second 
“avoidance” variable was at best marginal and often insignificant. Accordingly, the more parsimonious model 
was chosen, with the omission of these parameters. 
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When first placed on the ring, each driver receives a unique set {SSensitivityn, OSensitivityn, 
Avoidancen, Habitgenen, Habituationn,t} of five cognitive and behavioral dispositions. The first four of 
these dispositions are randomly assigned and cannot be changed. These variables are 
randomly chosen according to normal distribution with mean 1 and standard deviation δ 
(referred to as the mutation variable). Negative numbers are truncated to zero, but there is no 
upper bound.10 The only disposition that can be changed during the life of the car is the car’s 
acquired habits (Habituationn,t). Furthermore, for all original or newborn drivers, the initial level 
of the habituation variable is zero (Habituationn,0 = 0). 

Note that the terms “left” and “right” are relative to the driver involved. A car driving 
clockwise on the right will not collide with a car driving counter-clockwise on the right. The 
same applies to two cars both on the left, likewise moving in opposite directions. The terms 
“ahead” and “behind” are also relative to the car and its movement. A car may collide with 
another car moving in the same direction, but only if that other car is one zone ahead and does 
not move first, or if that other car is one zone behind and does move first.  

(i) Same-direction sensitivity. Each driver looks forward and observes the number of cars 
going in the same direction as itself up to and including 10 zones ahead, and calculates the 
proportion of this number driving on the left (or right) hand side of the road. (If no car is 
going in the same direction as itself, up to and including 10 zones ahead, then the proportion 
is taken as 0.5.) The variable SSensitivityn indicates the degree to which driver n takes account of 
this ratio in determining its next move. If this variable is high then the car will tend to 
conform to the pattern of behavior of the cars ahead of itself and moving in its own direction. 

(ii) Opposite-direction sensitivity. Each driver n looks forward and observes the number 
of cars going in the opposite direction to itself, up to and including 10 zones ahead, and 
calculates the proportion of this number driving on their left (or right) hand side of the road. 
(Again, if no car is going in the opposite direction as itself, up to and including 10 zones 
ahead, then the proportion is taken as 0.5.) The coefficient OSensitivityn indicates the degree to 
which car n takes account of this ratio in determining its next move. As well as a rationale to 
conform to the convention established by others, there is an incentive to avoid this traffic 
coming in the opposite direction. 

(iii) Avoidance. This coefficient captures a tendency for each driver n to avoid collision 
with close, oncoming traffic. Each driver looks forward and observes the number of cars 
going in both directions, one zone ahead, and calculates the number on the left and right hand 
side of the road, relative to the driver. Because each car moves in turn, another car that is 
positioned one zone ahead of driver n poses a collision danger, regardless of its direction of 
movement: cars moving in both directions threaten driver n with immediate collision. Driver 
n’s avoidance is captured by the coefficient Avoidancen, referring to the situation one zone 
ahead. 

(iv) Habit Gene. A driver’s habit gene must be distinguished from its habituation. The 
habit gene is the instinctive tendency that a driver has to take account of its acquired 
habituation. The habit gene cannot change but habituation can. The role of the habit gene is 
explained in the discussion of habituation below. Driver n’s habit gene is captured by the 
coefficient Habitgenen. 
                                                 

10 The probability that a negative number will be drawn is extremely small (7.43*10-6). An alternative method of 
selecting the first four parameters would be to draw them randomly from a uniform distribution in a specified 
interval. Instead, a normal distribution was selected because it was found that it reduced the death rates in the 
simulation. Selection along an interval will typically create a larger number of drivers with less fit parameters. 
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Every driver receives a unique personal profile in which the values of the above four 
behavioral and cognitive variables are randomly assigned. However, the following variable 
can change through the course of a driver’s life. 

(v) Habituation. Every driver starts with a habituation variable set initially at zero. As 
time goes on, this variable will be revised according to the car’s movements. For instance, if a 
car has a history of moving on the left hand side of the road then the habituation variable is 
likely to be positive, and if a car has generally moved on the right hand side of the road then 
the habituation variable is likely to be negative. A more precise account of the habituation 
process is given below. The habit gene coefficient expresses the degree to which driver n 
takes its habituation into account. Driver n’s habituation at time t is captured by the 
coefficient Habituationn,t. 

3.3 Calculation, habituation, decision and movement 
Each car is addressed and moves sequentially. With no simultaneous moves, some associated 
problems of interpretation of the intentions of others are thus avoided. In each period, all 
drivers in turn make a (subjective) decision based on the (objective) information about the 
traffic ahead. Again the purpose was to make the drivers as “intelligent” as possible, making 
use of the most important information for their survival, subject to reasonable computational 
constraints. As each car can only move one zone ahead, there is no reason to take account of 
traffic to its rear. As noted above, at time t, each driver calculates the following variables: 

SL,n = the proportion of all cars, going in the same direction as driver n, up to and including 10 
zones ahead, that are driving on the left hand side of the road, where 0 ≤ SL,n ≤ 1. If no 
car is going in the same direction as driver n, up to and including 10 zones ahead, 
then SL,n = 0.5. 

OL,n = the proportion of all cars, going in the direction opposite to driver n and up to and 
including 10 zones ahead, that are driving on their left hand side of the road, where 0 
≤ OL,n ≤ 1. If no car is going in the opposite direction as driver n, up to and including 
10 zones ahead, then OL,n = 0.5. 

CL,n = the number of very close cars, going in any direction, exactly one zone ahead of driver 
n, that are driving on the left hand side of the road relative to driver n, where CL,n = 0 
or 1. 

CR,n = the number of very close cars, going in any direction, exactly one zone ahead of driver 
n, that are driving on the right hand side of the road relative to driver n, where CR,n = 
0 or 1. 

After having gathered this information and calculated the above ratios, the driver then updates 
its habit function according to the following formula: 

Habituationn,t = Habituationn,t-1 + LRn,t / (K + Movesn,t), 

where LRn,t is the situation of car n at time t, whether it is on the left (LRn,t = 1) or on the right 
(LRn,t = -1) hand side of the road. K is an arbitrary positive constant and Movesn,t is the total 
number of moves the driver has undertaken, up to and including the present move at time t. In 
addition, Habituationn,t is bounded between -1 and 1. Clearly the tendency to change habit 

- 7 - 



 

decreases with the number of moves; the habit function is cumulative with a decreasing 
increment. The driver uses the above equation to update its habituation variable.11

To make a decision to go left or right, the value of the following expression is calculated: 

LREvaluationn  =  wSdirection × SSensitivityn × (2SL,n,t – 1) + 
wOdirection × OSensitivityn × (2OL,n,t – 1) + 
wAvoidance × Avoidancen × (CR,n,t – CL,n,t) + 
wHabit × Habitgenen × Habituationn,t . 

The wX coefficients (wSdirection, wOdirection, wAvoidance, and wHabit) are fixed, non-negative weights 
common to all 40 drivers. The weights determine how much the components of every driver’s 
unique set of cognitive and behavioral dispositions will influence the driver’s subjective 
evaluation and thus its choice to go left or right at time t. The coefficient wHabit is referred to 
as the “habit weighting.” The term wHabit×Habitgenen× Habituationn,t is referred to as “the strength 
of habit” of a car. 

Note that each term on the right hand side of the equation above includes two positive 
elements plus one element with expected values equally distributed around zero, all multiplied 
together. Hence each term on the right hand side has expected values equally distributed 
around zero. As a result, there is no bias to the right or the left in the model. 

The subjective evaluation of each car is given by the variable LREvaluationn. If LREvaluationn is 
greater than zero then the car intends to move to the left. Otherwise it intends to move to the 
right. The final element to be taken into consideration is the possibility of error. An error 
probability variable ε is pre-set at the beginning of the simulation. A random number 
generator is used to determine whether each car, with probability ε, makes the move opposite 
to its subjective evaluation. At this final stage, the left or right inclination of the car in the 
upcoming move is determined. 

The car then moves one increment forward onto the next zone, on the left or right as 
determined. If there is no other car on the same side of the road and in the same zone, then 
there is no collision. In each period, all drivers in turn go through these steps. 

The drivers in the model are boundedly rational. Taking account of the most important local 
information, each car responds and maneuvers in order to survive. The decision algorithm 
combines decision elements that vary according to the cognitive personality of the driver and 
the global parameter weights. The population of varied decision algorithms itself evolves due 
to selection pressure, leading to surviving decision algorithms of some fitness value. 

3.4 Replacement of colliding drivers 
If there is neither birth nor death, then the pool of fixed characteristics among the population 
cannot change. At least a small amount of death and replacement is necessary to select the 
combinations of fixed cognitive and behavioral dispositions that are conducive to survival. 

                                                 

11 Experiments were performed using different habit functions, with similar but slightly weaker results. Perhaps 
the main rival alternative habit function would be similarly cumulative, but with geometrically decreasing 
increments, as in the classic work of Hull (1943). However, in the present context, a Hull function has the 
disadvantage that the sum of a suitable geometric series of increments (with a geometric coefficient between 
zero and unity) is always finite. As a result, the indefinite reversibility of an acquired habit from one extreme 
to the other and back again would not be possible. In contrast, the chosen increments in the habit function in 
the present work decline at a rate that permits in principle the indefinite reversal of habituation from one 
extreme value to the other: no sign nor degree of habituation is ever irreversible. 
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However, this means that a replacement routine is necessary for new cars and its form can 
influence the outcomes in the model. It should be emphasized, however, that the 
overwhelming majority of deaths generally occur in the early, transition phase of the 
simulations. 

If there is a collision, then – regardless of blame or circumstances – the two drivers die and 
are replaced by two new cars and drivers. The weights wX are common to all agents and also 
used by the newborn drivers. However, the two newborn drivers require a new set of four 
fixed cognitive and behavioral dispositions {SSensitivityn, OSensitivityn, Avoidancen, Habitgenen}. These 
were chosen randomly in the same manner as the cars in the population at the beginning of the 
simulation, with the habituation level {Habituationn,t} always set initially to zero. 

Their cognitive and behavioral characteristics being determined, each new car is allocated 
to a random position on the track. However, to reduce the frequency of immediate collisions, 
no new car is allocated to a zone occupied by another car. 

3.5 Design adjustments and parametric searches 

Experiments were performed with different values of the mutation variable δ. Although a 
convention emerged with many runs with a higher value, a relatively low value of 0.2 was 
chosen in order to achieve a lower and more plausible degree of mutation. Different values of 
K in the function above for Habituationn,t were also tried. Clearly, as K decreases to zero, the 
left/right choice by the car in its first move will increasingly dominate its strength of habit. 
The outcomes were relatively insensitive to variations in this coefficient, but habit had a 
slightly improved positive effect on convergence with values of K in the region of 10. This 
value ensured that habituation adjusted at a significant but modest rate. 

The decision horizon is the number of zones ahead that a driver scans to estimate the traffic 
pattern. This data affects the driver’s ‘conformist’ calculations concerning same-direction and 
opposite-direction sensitivity. As summarized in Appendix 2 below, a number of simulations 
were performed with various decision horizons greater than 10 zones ahead, including the 
possibility that drivers see all 100 zones of the entire ring. It was found that habit significantly 
improves convergence for values of the horizon from zero up to and including 25 zones. The 
maximum habit effect appears with a horizon of 10, which is the value used in the standard 
runs reported in the main text below. 

After all the design adjustments were complete, the values of the first three non-negative 
weights {wSdirection, wOdirection, and wAvoidance} were considered by searching through their 
multidimensional parametric space, with progressively decreasing increments of search, with 
wHabit always set at zero. The three positive weights were always normalized according to the 
rule that their average was unity. The convergence performance, death rates and other aspects 
of the model were monitored during these searches. At each search point, a sample of at least 
100 repeated simulations were made to obtain mean values. Also at each point, error was 
increased uniformly from zero to 0.02, across the set of 100 or more samples. This search of 
parameter space identified the point of maximum convergence {wSdirection = 1.4, wOdirection = 
0.9, and wAvoidance = 0.7} with wHabit = 0.12

                                                 

12 Searches in parameter space confirmed that this was a global rather than a local maximum. However, the 
convergence optimization zone is almost flat, making accuracy to more than one decimal place superfluous. 
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4. Simulation Results for the Standard Model 

4.1 Preliminary remarks 
The principal aim of the simulations is to gauge the degree of left/right convergence in 
multiple runs of the model, exploring different points of parameter space and assessing the 
impact of different levels of habit and error. 

Generally, when an equilibrium outcome emerges, the resulting convention, whether drive-
to-the-right or drive-to-the-left, can be highly sensitive to initial conditions. Once the system 
begins to swing decisively and permanently one way or the other and a convention begins to 
emerge, then it can become locked into a process that is the cumulative result of tiny initial 
movements (Arthur, 1994). 

However, two factors can disturb this process of convergence to a left/right convention. The 
first, and more ubiquitous, is error. The effects of error can be particularly disruptive in the 
early phases of this process. However, even in later phases, errors can trigger deaths that lead 
to replacements that are ill-adapted for the road conditions, leading to further collisions, and 
so on. It is possible for such processes of positive feedback to destroy an established 
convention. 

The second disturbing factor emerges under specific conditions only. It is prevalent in a 
relatively small neighborhood of parameter space. In some circumstances agile drivers can 
evolve, typically with a low but positive level of the habit gene. These drivers are sufficiently 
agile to avoid the traffic ahead, by moving repeatedly from one side of the road to the other if 
required. A “cycling” pattern can occur, when cohorts of agile drivers repeatedly move safely 
and laterally to avoid other oncoming groups. There may be a degree of local convergence in 
each group, but the conventions in different groups may be different. If there are no further 
collisions then replacement and mutation through death cannot occur. Consequently, a 
unanimous convention will not emerge among the population as a whole. 

 
  

wX = (0.5, 0.5, 2.0, 0.2), ε = 0.01.  C =0.9056 wX = (0.5, 2.0, 0.5, 0.1), ε = 0.  C =0.6641 

Figure 1: Two Illustrative Runs 
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4.2 Some illustrative simulations 
Illustrative results from two different runs are displayed in figure 1. The vertical scale 
measures the average inclination of the cars to the left or right. The horizontal scale measures 
the number of car moves enacted through time. In Figures 1 and 2, a value of unity on the 
vertical scale would correspond to the unanimous use of either the right or the left hand side 
of the road by all cars. A value of 0.5 on the vertical scale would indicate that the cars were 
equally distributed on the right or the left. The expected value at the start of the run is 0.5. 
With a run of 20,000 car moves, the mean of the 20,000 vertical values is computed. 

In order to compare results whether the drivers happened to converge on the left or the 
right, we used the following standardization procedure. If this average is less than 0.5, then it 
is subtracted from 1, ensuring that the overall convergence outcome (C) is always greater than 
or equal to 0.5 and less than or equal to 1. With this measure of convergence success, higher 
values indicate a greater degree of convergence. A figure of 0.95 would indicate that on 
average, for one entire run, 95 per cent of the cars were on one particular side of the road. 

Hence the degree of convergence (C) for m moves with c cars is the total number of moves 
in which a car is on the left/right, divided by c×m. In this calculation all cars are considered 
for each individual move of every car through the entire run. The choice of left or right in this 
definition is made to ensure that C ≥ 0.5. Hence 0.5 ≤ C < 1. 

In the run displayed on the left of figure 1 there is imperfect and incomplete convergence to 
one side of the track. The small amount of error slightly disturbs the emergent convention and 
prevents complete convergence. The death rate (not illustrated) is fairly steady and does not 
greatly subside. In the run displayed on the right of figure 1, complete convergence to a 
left/right convention is prevented by a minority cohort of 18 cars that defy convention and 
have a disposition to drive on the other side. When they meet oncoming cars they are able to 
maneuver to avoid collision. Partly because the error coefficient is zero in this case, no 
collisions or deaths occur after the first few moves. Consequently, no further evolution of the 
model in this run is possible and the “cycling” pattern becomes permanent. 

Many thousands of distinct runs were tried. In some simulations, the habit weighting 
(wHabit) took the values of 0, 0.5, 1.0, 1.5 and 2.0 in turn. The purpose was to show the effects 
of increasing weightings to the habit term in the decision function for every car. For each 
level of wHabit, the error probability ε took the values of 0.000, 0.005, 0.010, 0.015 and 0.020. 
This meant that 25 combinations of different levels of wHabit and ε were explored. We tried 
200 runs, each with 20,000 car moves, for each of the 25 different combinations of the values 
for wHabit and ε. This meant a total of 5,000 runs and 100 million car moves.13

We found that the degrees of convergence, the death rates, the effects of error, and the 
impact of habit can vary substantially, depending on the values of the three parameters 
{wSdirection, wOdirection, and wAvoidance}. In some regions of parameter space, with a given level of 
error, increases in the overall strength of habit in the population as a whole (formed by the 
terms wHabit×Habitgene×Habituation) can often help to improve the speed of convergence to a 
left/right convention. In addition, wHabit can sometimes help the system cope with error and 
subvert “cycling” behavior. In other parts of parameter space, the impact of habit on 
convergence is small or negative. 
                                                 

13 Experiments with a greater number of car moves are reported in Appendix 2 for this article in the Elsevier 
website. Convergence to the left or right was monitored in all runs, confirming that the model had no bias 
towards one side of the road rather than the other. 
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However, it is important to emphasize that convergence is never achieved by the force of 
habit alone. Furthermore, convergence can sometimes occur with low or zero levels of habit. 
Crucially, habit helps convergence only when it is combined with selection pressure on the 
fixed “instincts” in the population of cars. 

The results of a multiple simulation with different levels of wHabit and ε are reported in 
Figure 2 below. The three weights in this model are from the point in parameter space where 
convergence is maximized with zero habit. The vertical axis on Figure 2 shows the degree of 
convergence to a left/right convention. The higher the value the greater the degree of 
convergence. 
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Figure 2: Degrees of Convergence with 200 Runs for Each Level of Habit and Error 

wX = (1.4, 0.9, 0.7, wHabit) 

 

A striking outcome displayed in Figure 2 is the sensitivity of convergence to the habit 
weighting (wHabit) and strength of habit. As wHabit increases, at least from zero to unity, mean 
convergence levels improve for all levels of error (ε). Habit generally improves 
convergence.14

                                                 

14 More data from this set of simulation results are presented in Appendix 1, available on the Elsevier website 
for this article. 
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4.3 Multiple simulations in parameter space 
The simulation reported in the previous section is from a point in parameter space where the 
convergence is maximized with zero habit. The question is raised whether other parts of 
parameter space exhibit the same positive habit effect, and if so, to what degree. 

The first three parameter weights define locations in parameter space. The normalization 
procedure (where the sum of these weights is always averaged to unity) reduces this to two 
dimensions. Figure 3 shows the effect of increasing the habit weight (wHabit) from zero to 
unity in parameter space. At each point in parameter space, the probability of error was 
increased uniformly from zero to 0.02, across a set of 200 samples. The increase in the habit 
weight (wHabit) had a positive effect on convergence over the whole of parameter space. 

The habit effect is defined as the degree of convergence with wHabit as unity, minus the degree of 
convergence with wHabit as zero. In other words, the habit effect is C1 – C0, where C0 and C1 are 
the degrees of convergence for zero and unitary values of the habit weight. Figure 3 shows 
values of three wX coefficients (wSdirection, wOdirection, wAvoidance) and the habit effect in the whole 
parameter space. 

 

 

 wX = (3, 0, 0) 

wX = (1.5, 1wX = (1.5, 0, 1.5) 

 wX = (0, 0, 3) wwX = (0, 1.5, 1.5) 

 

Figure 3: The Habit Effect in Parameter Space 

 

In another set of simulations, thirty random points were chosen within
At each point, wHabit took the successive values 0, 0.5, 1 and 1.5, and ε
values of 0, 0.01 and 0.02, providing 12 observations at each point
observations overall. At each observation 100 standard runs of the mode
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car moves) and average figures obtained. The following paragraphs identify the variables that 
emerge as statistically significant effects in the parameter space.15

Based on the data from the 360 observations in parameter space, habit emerged as the most 
significant factor determining the degree of convergence. A dummy regression (equivalent to 
ANOVA) was estimated (Regression 1 in Table 1), using wHabit as the independent variable 
and convergence as the dependent variable. According to this regression, the adjusted R2 was 
0.62 and the standardized coefficient was 0.79 (t = 24.09) for habit. That is, the linear effect 
of habit generally increases convergence throughout the parameter space, and the linear effect 
of habit explains 62% of the variation in convergence. A further regression (Regression 2 in 
Table 1) was estimated, including the randomly generated wX coefficients (wSdirection, wOdirection, 
wAvoidance) and ε as independent variables. Adding these effects marginally increased the 
explained variation in convergence to 65%. Whereas ε, wOdirection, and wAvoidance generally 
decrease convergence, wSdirection has no general significant effect. In summary, higher levels of 
habit significantly improve convergence and higher levels of error have a significant and 
opposite effect.  

 
 

 Regression 1 Regression 2 Regression 3 Regression 4 

Dependent 
variable ⇒ Convergence (C) Convergence (C) Mean death rate Mean death rate

Independent 
Variables ⇓ Beta t p Beta t p Beta t P Beta t p 

Constant  80.91 0.00  46.47 0.00  13.03 0.00  4.52 0.00

wHabit 0.79 24.09 0.00 0.79 25.31 0.00 -0.15 -2.86 0.00 -0.15 -4.61 0.00

Error (ε)    -0.15 -4.89 0.00    0.57 17.56 0.00

wSdirection    0.00 -0.01 1.00    0.38 11.35 0.00

wOdirection    -0.08 -2.39 0.02    -0.13 -3.67 0.00

wAvoidance    -0.13 -3.99 0.00    -0.36 -10.48 0.00

Adj. R2 0.62   0.65   0.02   0.62   

 
Each regression is based on 360 observations, each an average of 100 simulations of 20,000 iterations; 

t is the t-statistic; p is the p-value; and Beta is the standardized coefficient. 

Table 1: Regression Analyses in Parameter Space 

The mean death rate is the expected number of drivers to die when all 40 cars move once, 
averaged over the whole run. As can be seen in Table 1, avoidance emerges unsurprisingly as 

                                                 

15 We consistently use a significance level of 0.05. 
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the most important effect for the reduction of death rates, but the habit effect also marginally 
decreases death rates throughout the parameter space. Thus, habit generally improves 
convergence, but not at the cost of increased death rates.16

No other variable emerged in general to improve convergence in our simulations. For 
instance, while the avoidance coefficient can help the drivers to survive, it does not 
significantly assist convergence. 

We conclude that in this boundedly rational situation, where drivers cannot see the whole of 
the ring, habit emerged as the single most significant factor improving convergence. If drivers 
can see further ahead (see Appendix 2), habit still has a positive effect. In addition, when the 
decision horizon is greater than 10, and hence there is more information concerning the traffic 
ahead, “conformist” factors related to the wSdirection and wOdirection, coefficients become 
significant and more important in aiding convergence. The relative importance of habit is 
inversely related to omniscience. 

5. Replacing Habit by Inertia 

Are there alternative mechanisms to habit that can aid convergence? To address this question 
we considered a modified model where habit is replaced by what we call inertia. As well as 
the SSensitivityn, OSensitivityn and Avoidancen coefficients, we added Inertia0n, Inertia1n,and Inertia2n. As 
before, for each driver, these coefficients cannot be changed and are randomly assigned (in a 
normal distribution with mean 1 and standard deviation δ, with negative numbers truncated to 
zero). With inertia coefficients, each driver n may be equipped with a disposition to continue 
stubbornly with an inclination it has assumed in the recent past. Each driver may take into 
account its current (left/right) position in time t and – with a two-period memory – it may also 
take into account its actions at times t-1 and t-2. Driver n’s inertia with respect to times t, t-1 
and t-2 is captured by the three inertia coefficients, respectively: Inertia0n, Inertia1n and Inertia2n. 

To make a decision to go left or right in this modified model, the value of the following 
expression is calculated: 

LREvaluationn  =  wSdirection × SSensitivityn × (2SL,n,t – 1) + 
wOdirection × OSensitivityn × (2OL,n,t – 1) + 
wAvoidance × Avoidancen × (CR,n,t  – CL,n,t) + 
wInertia0 × Inertia0n × LRn,t + 
wInertia1 × Inertia1n × LRn,t-1 + 
wInertia2 × Inertia2n × LRn,t-2. 

                                                 

16 Further analyses showed a non-linear relation between habit and convergence. Increasing the habit effect 
generally increases the degree of convergence but at a decreasing rate. For low levels of error, the habit effect 
is less important. To obtain better estimates of the variance explained, a mixed effects design (ANCOVA) 
included wHabit and ε as fixed effects and the randomly generated wX coefficients (wSdirection, wOdirection, wAvoidance) 
as covariates. Convergence was included as the dependent variable. According to the ANCOVA analyses the 
habit effect explains 84% of the variation in convergence. Adding the wX coefficients (wSdirection, wOdirection, 
wAvoidance) and ε as independent variables marginally increased the explained variation in convergence to 88% 
(main effects). Including all interaction effects in a full factorial design further increased the explained 
variation in convergence to 94%. The explanatory power of habit thus remains as the generally most 
important convergence improving effect throughout parameter space. 
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Hence the three inertia terms replace habit in the former model. An error factor is included, as 
before. In this and all other respects the models are identical. 

Runs of this model showed that inertia has generally a significantly weaker convergence 
improving effect than habit.17 Figure 4 shows the effect in parameter space of increasing the 
inertia weights (Inertia0n, Inertia1n and Inertia2n) from a state where they are all zero to a state where 
they take the values 0.17, 0.33 and 0.50 respectively.18 Note that these three values sum to 
unity, so the maximum absolute value of the sum of the inertia terms in the left/right decision 
computation is equal to the maximum absolute value of habit in the standard model. As 
before, at each point in parameter space, error was increased uniformly from zero to 0.02, 
across a set of 200 samples. The addition of inertia had a positive effect on convergence over 
the whole of parameter space. The inertia effect is defined and measured as the degree of 
convergence with Inertia0n = 0.17, Inertia1n =0.33, and Inertia2n = 0.50, minus the degree of 
convergence with zero inertia. In other words, the inertia effect is C1 – C0, where C0 and C1 
are the respective degrees of convergence for zero and the aforementioned positive values of 
the inertia weights. Figure 4 shows the whole parameter space, with values of three wX 
coefficients (wSdirection, wOdirection, wAvoidance). Comparing Figure 4 with Figure 3, it is clear that 
for most of the parameter space the habit effect is greater than the inertia effect. 

 

 

 wX = (3, 0, 0) 

wX = (1.5, wX = (1.5, 0, 1.5) 

 wX = (0, 0, 3) wX = (0, 1.5, 1.5) 

 

Figure 4: The Inertia Effect in Parameter Space

                                                 

17 A statistical analysis of many runs, supporting this conclusion, is available from the

18 The inertia values of 0.17, 0.33 and 0.50 were determined by maximizing the degre
wSdirection=1.4, wOdirection=0.9, wAvoidance=0.7, wHabit = 0, and with Inertia0n+Inertia1n+Iner
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e of convergence (C) with 
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It is also useful to consider the conceptual similarities and differences between habit and 
inertia. Inertia values reflect a memory vector of behavior in a finite set of present and past 
periods. By contrast, habit in the model is a single-value, weighted summation of behaviors in 
an unbounded set of present and past periods. Habits are like a crude, summarized memory. 
Habits are built up steadily once a repeated behavior emerges. Once acquired, they are more 
difficult (but not impossible in our model) to reverse.19

It would be possible to extend the number of preceding periods in the calculation of the 
inertia values from two to a much higher number. A (weighted) summation of a larger number 
of these values could then approximate to habit, but with inertia (unlike habit), any 
informational significance in the values of the individual elements in the inertia vector is 
retained. However, the cost is an increase in memory and computational capacity. 

Crucially, in a more complex world, the number of scalar values represented by multiple 
inertia vectors relating to multiple past behaviors and behavioral variables would be vastly 
increased. The storage limits of any finite memory could be readily challenged. By contrast, 
habit is a cruder summary of past behavior but requires much less memory. This issue of 
memory and computational limitations is raised again below. 

6. Discussion – The Nature of Habit 

The most important result of the simulations described in section four concerns the effect of 
introducing processes of habituation into the modeling of agent behavior. In a substantial 
region of parameter space, strength of habit can increase the systemic rate of convergence 
towards a left/right convention. In some circumstances it can also enhance systemic resistance 
to error. 

In the above model, each car is programmed by three parameters (SSensitivityn, OSensitivityn, 
Avoidancen) governing its sensitivity to traffic patterns ahead and its propensity to make an 
avoidance maneuver. A fourth parameter (Habitgenen) governs the tendency that a driver has to 
take account of its acquired habituation. The values of these four exogenously given 
parameters are akin to instincts: they are fixed for the lifetime of each car. By contrast, a fifth 
parameter (Habituationn,t) governing the particular habitual disposition to go left or right is an 
outcome of the actual behavior of the car. The value of this parameter is not given and is 
literally path dependent. 

The conception and role of habit in this model contrasts greatly with a definition of habit 
elsewhere. Gary Becker (328) writes: “I define habitual behavior as displaying a positive 
relation between past and current consumption.” Becker here defines habit not as a behavioral 
propensity but as sequentially correlated behavior. A car may maneuver to the left to avoid 
oncoming traffic, but its propensity may still be to drive to the right. If there is an observed 
succession of left-driving behavior, this is not necessarily the underlying disposition of the 
agent. Becker’s definition conflates propensity with actuality. However, if past behavior were 

                                                 

19 As well as comparing the effects of habit (alone) with inertia (alone), we considered their interaction in 
models where both habit and inertia were present. They jointly influenced convergence outcomes, but in 
different ways. For low levels of habit, increases in inertia further improve convergence. For high levels of 
habit, increases in inertia decrease convergence. This further statistical analysis is also available from the 
authors. 
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taken to mean a potentially infinite sequence of past events, then a propensity acquired 
through habituation could approximate to mean past behavior. In this extreme case, 
propensity with actuality could coincide, but in general, and in contrast to Becker, we 
distinguish between habit and behavior by defining habit as a disposition or propensity, rather 
than correlated behavior. 

Becker (331) is on stronger ground when he writes: “Habit helps economize on the cost of 
searching for information, and of applying the information to a new situation.” It is true that 
habit removes some actions from conscious deliberation and helps the agent to focus on other, 
more strategic or immediate decisions. However, the model here suggests that there is 
something more to habit than economizing on decision-making. After all, each car in the 
model makes only one simple binary decision at each point of time. Habit is doing much more 
in our model than simply economizing on the time taken to search for and process 
information. 

The model suggests that a crucial role played by habit is to build up and reinforce an 
enduring disposition in each agent concerning the appropriate side of the road on which to 
drive, especially in a situation where information concerning the traffic ahead is limited. A 
sequence of similar and repeated behaviors creates in each agent a habitual predilection, 
which can stimulate a “belief” or “conviction” that a particular behavior is appropriate. 

Again this is reminiscent of the arguments of the pragmatists, who saw acquired habits as 
the basis of firmly held beliefs. For Peirce (1878, 294) the “essence of belief is the 
establishment of habit.” Similarly, in our model, habit creates stubborn “beliefs” in the 
appropriateness of an action that weigh heavily in the decision-making process of each agent. 
The evolution of an equilibrium convention depends largely on one set of stubborn “beliefs” 
triumphing over the other. Once a stable convention forms, it is encoded in the dispositions of 
the majority, and it can resist the intrusion of a substantial amount of erratic behavior. As 
James (1981, 125) wrote in 1893: “Habit is thus the enormous fly-wheel of society, its most 
precious conservative agent.” Accordingly, habit is more than a means of economizing on 
decision-making for individuals; it is a means by which social conventions and institutions are 
formed and preserved. 

Our model raises questions concerning the distinction between preference exogeneity and 
endogeneity. By introducing the concept of meta-preferences, Becker and others have argued 
habit-formation is not an example of meta-preference endogeneity. Becker’s (340) argument 
is that habits and addictions can be placed within a meta-preference function in which data 
concerning “different variables and experiences,” pertaining to different time periods, enter as 
arguments. These 

meta preferences are stable. … The message is not that preferences at time t for different 
people depend in the same way on their consumption at time t. Rather, it is that common 
rules determine the way different variables and experiences enter the meta preferences 
that motivate most people at most times. (340) 

It is instructive to consider the scale of the mental operation that is implied here. Note that as 
the number of time periods increases, the number of arguments in Becker’s meta-preference 
function must increase proportionately. Essentially, Becker argues that utility is a function of 
the following type: 

U = f(x1, x2 … xi … xt) 

where U is utility and each xi is a vector of “variables and experiences” at time i. In each 
complete standard run of our model, each surviving agent moves 500 times, meaning that its 
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preference function would have to have 500 arguments for each of the five variables involved. 
However, ours is an extremely simple model, running overall for only 500 iterations per 
surviving agent. Assume that a nearer-to-human individual lives for 30,000 days, and makes 
104 decisions each day, governing 104 variables. If so, the Beckerian meta-preference function 
must have 3×1012 arguments. It is likely that the demands of the Beckerian meta-preference 
function significantly exceed the computational capacities of the human brain. To use the 
words of Roy Radner (1970, 457), the unboundedly rational agent requires “capabilities of 
imagination and calculation that exceed reality by many orders of magnitude.” 

Habit, in the sense that we are using the term, makes computation manageable by vastly 
reducing the computational and memory requirements of the agent. Habit works not simply or 
principally by reducing the “cost of searching for information” but also by reducing the 
memory and computational capacity required to make any decision to act. In formal terms, 

U = f(h, mt-s, mt-s+1 … mt-1, xt) 

where h is the vector of habits and mt-s … mt-1 constitute the selective memories of past 
events, where s is less than t. The number of elements in the vector h and in any vector mi are 
each less than the number of “variables and experiences” in xt. 

The attribution of a Beckerian preference function to each driver in our model would mean 
that each driver would have to remember simultaneously, and for every one of its moves, at 
least three computed variables (SL,n,t, OL,n,t, CR,n,t – CL,n,tt) plus all of its past left/right 
positions. If the maximum number of moves were 500, then each agent would require a 
mental storage for at least 2,000 scalar variables. With a greater number of moves the memory 
requirement increases in proportion. Instead, in our model, only two scalar variables (current 
habituation, plus the number of past moves) have to be stored in the memory of each car at 
any point in time, for any length of run. 

Another aspect of Becker’s treatment of individual preferences is also questionable. Becker 
continues, in the same passage as above, 

forward-looking rational actors maximize the utility from their meta preferences, not 
from current preferences alone, because they recognize that choices today affect their 
utilities in the future (340) 

In contrast, it could be argued that many actions of agents in the real world, in this respect like 
the actions of drivers in our model, are not forward-looking in the sense that they consider the 
full consequences of present actions in the future. Habit is a disposition, sometimes even 
reinforced by ethical conviction; it does not typically involve a detailed or extensive 
consideration of future outcomes. No agent in the model considers whether the future 
emergent convention will be to the left or to the right. It just acts, in part to survive the traffic 
maelstrom and in part according to its acquired propensity or “belief” that one type of 
behavior is more appropriate. Of course, things are much more complicated in the real world. 
People do make decisions based on forward-looking considerations. However, the suggestion 
here is that forward-looking decisions cannot account for all of behavior, including behavior 
that is habit-driven. Habit is a past-driven propensity, and not necessarily the outcome of a 
forward-looking calculation. 
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For these reasons it is preferable to regard habit formation as an endogenous change of 
preferences rather than an outcome of decisions governed by a meta-preference function that 
deals with a number of variables over a series of time periods.20

7. Discussion – Downward Causation 

Another heuristic use of our model is that it provides a framework to consider the nuanced 
interpretations and meanings of the concept of “downward causation,” a concept largely 
unfamiliar to economists but quite well known in the philosophy of psychology and the 
philosophy of biology (Campbell, 1974; Sperry, 1969, 1991; Popper and Eccles, 1977; Mayr, 
1985). 

The concept of downward causation depends upon the ontological notion that any complex 
system has “higher level” systemic properties as well as “lower level” components. At the 
systemic level there may exist “emergent properties” that are, by definition, additional 
properties that depend upon but are not explicable or predictable from an analysis of the 
components at the lower level. The concept of emergent properties has recently become 
prominent in discussions of the complex simulations, pioneered in Santa Fe and elsewhere 
(Lane, 1993).21

Downward causation refers to possible effects of higher-level properties on lower-level 
components. The term “downward causation” originates in psychology in the work of Roger 
Sperry (1969). In the literature, the notion of “downward causation” has weak and strong 
forms. In a relatively weaker case, Donald Campbell sees it in terms of evolutionary laws 
acting on populations, arguing that all processes at the lower levels of an ontological 
hierarchy are restrained by and act in conformity to the laws of the higher levels. In other 
words, if there are systemic properties and tendencies, then individual components of the 
system act in conformity with them. For example, a population of individual organisms is 
constrained by processes of natural selection. Here evolutionary processes help to reconstitute 
populations but not necessarily individuals. 

In our model, this weaker form of downward causation is clearly present. As a left/right 
driving convention begins to be formed, more and more cars drive in conformity with that 
emerging convention. If a convention begins to emerge, then those that survive tend to be 
those that conform. Evolutionary selection acts on the population of agents, causing a shift in 
                                                 

20 There is closer relation between our concept of habit and the idea of reinforcement in the works of Ido Erev 
and Alvin Roth (Erev and Roth, 1998; Roth and Erev, 1995). In their reinforcement model and our habit 
model, past behavior influences current behavior through more than expectations. Our habit function is thus 
closer in spirit to the function typically used to model simple reinforcement, but it is not identical. Crucially, 
the force of the past in our habit function does not decay due to forgetfulness as in Roth and Erev (1995). By 
contrast, in our formulation of habituation the force of the past accumulates as time unfolds. Erev and Roth 
(1998) later generalized their reinforcement model to unify reinforcement learning and probabilistic fictitious 
play. In this generalization, they defined a “subjective reinforcement” of a player’s initial beliefs as the sum of 
initial expectations and accumulated experience. According to the function used to model this idea, the initial 
expectations were modified by a time-dependent term defined as the average return of action k at time t 
divided by the number of times that the strategy associated with k has been played up to t. This formulation is 
quite close to the habit function used in our model where habits are built up steadily, and once acquired they 
are more difficult to reverse. Consequently, our concept of habituation is close to that of reinforcement in 
their generalized model. 

21 On the concept of emergent properties and its history see Blitz (1992) and Humphreys (1997). 
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the characteristics of the population as a whole. This is an outcome of “natural selection” and 
amounts to weak downward causation. 

In the population as a whole, this evolutionary selection works on both the four fixed 
parameters and the single variable expressing habit. The set of values in the population as a 
whole changes by means of the death of the unsuccessful and the birth of the new agents. 
However, for any individual agent, evolutionary selection does not cause a change in the 
values of the four fixed parameters.  

A stronger notion, which can be described as “reconstitutive downward causation,” 
involves changes acting on individuals as well as populations as a result of causal powers 
associated with higher levels (Hodgson, 2003, 2004). Sperry (1991, 230-1) also suggests a 
strong interpretation of downward causation. He recognizes, for example, that “higher cultural 
and other acquired values have power to downwardly control the more immediate, inherent 
humanitarian traits.” Sperry also recognizes that explanations based on downward causation 
should be carefully focused on real causal mechanisms. This is the problem: while it is 
tempting to explain the behavior of units in terms of collectives or wholes, the precise causal 
mechanism is difficult to determine. 

If there is some mechanism whereby an actual or emerging convention can affect or 
“reconstitute” the characteristics of the individual units, then this would amount to 
reconstitutive downward causation. System-wide outcomes (at a “higher” level) would affect 
the characteristics of individual units (at a lower level). 

In our model, this stronger form of downward causation is also present and is associated 
with a discernible causal mechanism because as the left/right convention begins to emerge, 
more and more surviving cars develop the habit to drive on the left or the right, according to 
that convention. Strength of habit is based on two of the five variables that form the 
“preference function” of each agent. For each individual, one of these preference elements 
(Habituationn,t) can change. In this way, emerging and enduring systemic properties reconstitute 
“downwards” the preferences of the agent. Part of the achievement here is to show that both 
forms of downward causation can be represented in an agent-based model. In particular, we 
can identify a specific causal mechanism of reconstitutive downward causation. 

Another crucial point to recognize is the specific mechanism by which reconstitutive 
downward causation operates. It is on habits rather than merely on behavior, intentions or 
other preferences. Clearly, the definitional distinction between habit (as a propensity or 
disposition) and behavior (or action) is essential to make sense of this statement. Long ago 
Thorstein Veblen (1899, 190) similarly identified habit as the psychological mechanism by 
which circumstances change preferences or dispositions: “The situation of today shapes the 
institutions of tomorrow through a selective, coercive process, by acting upon men’s habitual 
view of things” (emphasis added). 

The existence of a viable mechanism of reconstitutive downward causation contrasts with 
other, untenable “top down” or “methodologically collectivist” explanations in the social 
sciences where there are unspecified “structural,” “cultural,” or “economic” forces controlling 
individuals. Crucially, the mechanism of reconstitutive downward causation that is outlined 
here affects the dispositions, thoughts, and actions of human actors. People do not develop 
new preferences, wants or purposes because mysterious “social forces” control them. What 
does happen is that the framing, shifting and constraining capacities of social institutions give 
rise to new perceptions and dispositions within individuals. Upon new habits of thought and 
behavior, new preferences and intentions emerge. 
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Hence the concept of reconstitutive downward causation does not rely on new or 
mysterious types of cause or causality. As Sperry (1991, 230) rightly insists, “the higher-level 
phenomena in exerting downward control do not disrupt or intervene in the causal relations of 
the downward-level component activity.” Sperry’s maxim excludes any version of 
methodological collectivism or holism where an attempt is made to explain individual 
dispositions or behavior entirely in terms of institutions or other system-level characteristics. 
Instead, we are obliged to explain particular human behavior in terms of causal processes 
operating at the individual level, such as individual aspirations, dispositions or constraints. 

It is a central tenet of the pragmatist philosophical and psychological perspective to regard 
habit and instinct as foundational to the human personality. Reason, deliberation and 
calculation emerge only after specific habits have been laid down; their operation depends 
upon such habits. In turn, the development of habits depends upon prior instincts. Instincts, by 
definition, are inherited. Accordingly, reconstitutive downward causation upon instincts is not 
possible. However, as noted above, the weaker form of downward causation does operate on 
whole populations and on its pool of habits and instincts. 

The ongoing acquisition and modification of habits is central to human existence. All action 
and deliberation depend on prior habits that we acquire during our individual development. 
For example, much deliberative thought is dependent on, as well as being colored by, 
acquired habits of language. In addition, to make sense of the world, we have to acquire habits 
of classification and habitually associated meanings. To act in and adapt to the world, our 
complex nervous system has to be developed and rehearsed. Habit is a crucial and neglected 
element in cognition, deliberation and reason. 

As long as we can explain how institutional structures give rise to new or changed habits, 
then we have a possible and acceptable mechanism of reconstitutive downward causation. Of 
course, institutions may directly affect our intentions by providing incentives, sanctions or 
constraints. In contrast, a reconstitutive causal mechanism involves factors that are 
foundational to purposes, preferences and deliberation as a whole (Margolis, 1987). This is 
where habits come in. By affecting habits, institutions can indirectly influence our intentions 
(Hodgson, 2003, 2004). 

8. Conclusion 

The model discussed in this article shows how a left/right traffic convention may emerge in an 
agent-based model. The main factor inhibiting this convergence is error. Also, in limited 
circumstances, agile avoidance behavior can lead to recurrent, cycling patterns of behavior 
with no emergent left/right convention. The simulation results show that increases in the 
“strength of habit” of agents in the model when combined with evolutionary selection 
pressure can help to suppress both of these disturbing factors. 

This simulation points to some of the deeper conceptual issues involved in the evolution of 
conventions, particularly the nature of rational decision-making and its reliance upon habit. 
Overall, the simulations show that the systemic convergence to a left/right convention is often 
improved and sustained by strength of habit. Accordingly, habit plays an important part 
alongside the “intelligent” and calculative aspects of agent behavior, particularly in cases 
where information is limited. 

In contrast the analyses of Stephen Jones (1984) and Ekkehart Schlicht (1998) maintain that 
conventions and customs emerge principally because individuals have a preference for them. 
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In our simulations, this is not generally the case where information is limited. In these 
circumstances, habit is additionally and vitally important because it can often enhance stable 
behavior and help to create stable outcomes. 

The specification of habit in the model is redolent of the concept in the works of pragmatist 
philosophers such as Peirce and James. Habit acts in the model as if it were the foundation of 
a “conviction” or firmly held “belief.” This suggests that the evolution of conventions may 
depend not only on the rational calculations of actors but also on the widespread development 
of convictions or norms concerning appropriate behavior. 

This model also has implications for an understanding of the nature and role of habit. In the 
specification here, the conception of habit is clearly distinguished from serially correlated 
behavior. This definition contrasts significantly with that in the work of Becker and others. 

We also identify a mechanism of “reconstitutive downward causation” among agents. 
Although each car has four inert “instincts,” the fifth variable concerning habituation changes 
as agent behavior changes. As a left/right convention emerges among the population as a 
whole, this provides a channel of movement for every individual. Accordingly, individual 
habits reflect the emergent convention among the whole population. As a result, the formation 
of individual habits is guided by systemic conventions. This is tantamount to a change of 
preferences, and it results from a “downwards” causal process from the emergent institution 
to the individual. 

A possible criticism of this thesis could stem from a Beckerian approach where each agent 
has a meta-preference function with arguments representing all relevant temporal and other 
variables. We have shown that this approach comes up against the problem of computational 
limitations of agents required to deal with large and increasing amounts of information 
concerning their past. It makes more sense to treat preferences as partially endogenous and 
malleable. Furthermore, in contrast to the idea of a meta-preference function, the conception 
of habit defined here greatly reduces the number of variables that each agent has to take into 
account. 

Given the powerful effect of habituation in our model, reconstitutive downward causation 
may provide a degree of durability and stability in institutional structure that is not explained 
adequately in standard models. The circular, positive feedback from institution to individuals 
and from individuals to institutions can help to enhance the durability of the institutional unit. 
There may be stable emergent properties that exist not despite, but because of, endogenous 
preference formation. 

With the theoretical framework proposed here, it may also be possible to overcome the 
dilemma between methodological individualism and methodological collectivism. By acting 
not directly on individual decisions, but on habitual dispositions, institutions exert 
reconstitutive downward causation without reducing the role of individual agency. Upward 
causation, from individuals to institutions, is still possible, without assuming that the 
individual is given or immanently conceived. Explanations of socio-economic phenomena are 
reduced neither to individuals nor to institutions alone. 
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Appendix 1: Further Results from Simulations With the Standard Model 

 

In this appendix the results of the standard model simulations outlined in the text and shown 
in Figure 2 are reported in more detail. All Tables show results for twenty-five combinations 
of error (ε) and habit weight (wHabit): five levels of error and five levels of habit weight. The 
value shown for each of these twenty five levels is based on the average of 200 standard runs, 
and each run was based on 20,000 iterations. 

Table 2 shows the mean values and standard deviations for the degrees of convergence to a 
left/right convention. The mean values from this table are presented in Figure 2 above. As 
noted already, with these mean values, 1.0 would indicate that all cars were on the left or right 
for the entire run, and 0.5 would indicate that there was no mean inclination towards either 
side of the road. According to a t-test, the convergence values for wHabit =1.0 are significantly 
higher than the convergence values for wHabit =0.5, and the convergence values for wHabit = 0.5 
are significantly higher than the convergence values for wHabit =0. Higher values of wHabit (1.5 
and 2.0) do not lead to higher convergence values than wHabit =1.0.  

Table 2: Degrees of Convergence to a Left/Right Convention 

Mean Values wHabit  Std. Dev. wHabit  
ε 0 0.5 1 1.5 2  ε 0 0.5 1 1.5 2 

0.000 0.638 0.966 0.975 0.974 0.971 0.000 0.123 0.056 0.032 0.032 0.036
0.005 0.599 0.899 0.962 0.968 0.967 0.005 0.075 0.109 0.032 0.034 0.034
0.010 0.592 0.843 0.946 0.959 0.962 0.010 0.064 0.135 0.055 0.033 0.028
0.015 0.572 0.827 0.931 0.941 0.951 0.015 0.058 0.125 0.069 0.049 0.032
0.020 0.577 0.778 0.902 0.932 0.944 0.020 0.056 0.128 0.082 0.053 0.032

Table 3 shows data on the average proportion of time in each case where all cars were on the 
same side of the road. Generally, this proportion of time at unanimity increases as the habit 
weight increases from zero to 1.5. According to a t-test, the unanimity values for wHabit =1.5 
are significantly higher than the unanimity values for wHabit =1.0, the unanimity values for 
wHabit =1.0 are significantly higher than for wHabit =0.5, and the unanimity values for wHabit = 
0.5 are significantly higher than for wHabit =0. There are no significant differences in the 
unanimity values for wHabit =1.5 and wHabit =2.0. 

Table 3: Proportion of Time at Unanimity 

Mean Values wHabit  Std. Dev. wHabit  
ε 0 0.5 1 1.5 2  ε 0 0.5 1 1.5 2 

0.000 0.363 0.908 0.921 0.920 0.909 0.000 0.198 0.115 0.077 0.075 0.084
0.005 0.233 0.630 0.713 0.730 0.728 0.005 0.064 0.113 0.061 0.074 0.072
0.010 0.156 0.449 0.550 0.572 0.579 0.010 0.042 0.092 0.066 0.057 0.053
0.015 0.108 0.325 0.416 0.439 0.450 0.015 0.032 0.064 0.052 0.054 0.049
0.020 0.078 0.222 0.306 0.342 0.354 0.020 0.025 0.056 0.051 0.043 0.043

Table 4 shows the expected number of drivers to die when all 40 cars move once, averaged 
over the whole run. However, as noted below, these death rates are much higher in the earlier 
phase of each run. Mean death rates generally increase with error. In addition, for any level of 
error, an increase in the weight of habit, up to 1 or more, significantly reduces the death rate. 
According to a t-test, all differences in death rates between successive levels of wHabit are 
significant. 
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Table 4: Death Rates for Whole Run 

Mean Values wHabit  Std. Dev. wHabit  
ε 0 0.5 1 1.5 2  ε 0 0.5 1 1.5 2 

0.000 0.831 0.125 0.107 0.112 0.130 0.000 0.279 0.106 0.074 0.079 0.093
0.005 1.343 0.571 0.445 0.414 0.430 0.005 0.216 0.167 0.104 0.111 0.120
0.010 1.788 0.959 0.769 0.738 0.737 0.010 0.220 0.200 0.134 0.141 0.118
0.015 2.175 1.354 1.129 1.068 1.065 0.015 0.229 0.208 0.158 0.142 0.151
0.020 2.534 1.730 1.454 1.381 1.380 0.020 0.231 0.235 0.192 0.171 0.169

However, death rates fall dramatically once convergence is established. Table 5 shows the 
expected number of drivers to die when all 40 cars move once, for the second half of every 
simulation. Note that the death rates are much lower than in Table 4. Generally, the majority 
of deaths occur in the early, transition phase of the simulation. With low levels of error, death 
rates are very low for all levels of habit. Once again, death rates increase with error. 
According to a t-test, death rates for the second half of each run differ significantly for wHabit 
=0 and wHabit =0.5, and for wHabit =1.0 and wHabit =1.5. There are no significant differences in 
the second half death rates for the other successive values of wHabit. 

Table 5: Death Rates for the Second Half of Each Run 

Mean Values wHabit  Std. Dev. wHabit  
ε 0 0.5 1 1.5 2  ε 0 0.5 1 1.5 2 

0.000 0.177 0.001 0.000 0.000 0.000 0.000 0.087 0.009 0.000 0.000 0.002
0.005 0.319 0.112 0.084 0.076 0.079 0.005 0.078 0.054 0.028 0.024 0.024
0.010 0.430 0.218 0.166 0.157 0.154 0.010 0.072 0.062 0.041 0.038 0.037
0.015 0.533 0.323 0.258 0.238 0.235 0.015 0.079 0.075 0.051 0.041 0.042
0.020 0.624 0.408 0.337 0.315 0.317 0.020 0.084 0.080 0.060 0.048 0.051

Appendix 2: Different Decision Horizons and Longer Runs 

The decision horizon affects the calculations concerning the pattern of traffic ahead. The 
standard results reported above were obtained in simulations in which each driver had a 
decision horizon of 10 and each car made 500 moves. With a horizon of 20 rather than 10, but 
no increase in the number of iterations, the importance of SL,n increases substantially and the 
effect of habituation on improving convergence becomes insignificant. Then typically the 
degree of convergence is significantly related to wSdirection and error, where increases in 
wSdirection improve convergence. With these shorter runs, habituation is significant where the 
decision-making horizon is smaller and information concerning the general pattern of traffic 
is limited. Habit becomes more significant as rationality is bounded. 

However, supplementary analyses were conducted to determine whether the effect of habit 
was significant when the drivers’ horizons and the length of the runs were both increased. 
Long runs of 100,000 iterations were used, noting that the selection dynamics became stable 
for at least half of the runs of this length. It was examined whether habit had a significant 
convergence improving effect when the horizon was increased in steps up to 100. A horizon 
of 100 is the point of omniscience, where the whole ring is in view. 

We again sampled random weights within the parameter space, as described previously 
above. In every instance, the wSdirection, wOdirection, and wAvoidance coefficients were assigned 
randomly generated and then normalised values. A number of samples of 30 at each point was 
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sufficient, since the standard deviations of the convergence outcomes are lower when a longer 
decision horizon is used.  

At each randomly generated point, wHabit took the successive values 0.0, 0.5, 1.0 and 1.5, 
and ε took the successive values of 0.00, 0.01 and 0.02. This provided 12 observations at each 
point and a total of 360 observations overall. We continued to use the levels of error (ε) 
between 0.00 and 0.02. 

As defined in the main text, the habit effect is the degree of convergence with wHabit as 
unity, minus the degree of convergence with wHabit as zero. In statistical terms, a t-test of the 
difference between the convergence means for wHabit =0 and wHabit =1 (error ranging uniformly 
across the sample from 0 to 0.02 for both values of wHabit) was used to determine whether the 
habit effect was significant.  

The key result shown in Table 6 is that habit significantly improves the mean degree of 
convergence for horizons from zero up to and including 25 zones of the ring. The maximum 
habit outcome is at a horizon of 10, which is the value used in the standard runs reported in 
the main text. 

However, with horizons above 25, in the absence of habit (wHabit = 0) the degree of 
convergence exceeded 0.98. In this 30-100 range, the habit effect was insignificant. 
Nevertheless, even in cases where habit did not significantly increase convergence, there was 
not a significant decrease of convergence. 

Table 6: Degrees of Convergence and Death Rates in Long Runs with Different Horizons 

 Degrees of Convergence Death Rates 

Horizon wHabit =0 wHabit =1 
Habit 
effect 

p-value 
effect wHabit =0 wHabit =1 

Habit 
effect 

p-value 
effect 

0 0.50 0.53 0.03 0.00 0.27 3.56 -3.29 0.00
5 0.51 0.80 0.30 0.00 1.15 0.69 0.46 0.00

10 0.56 0.88 0.32 0.00 1.68 0.86 0.82 0.00
15 0.69 0.95 0.26 0.00 0.72 0.63 0.09 0.33
20 0.85 0.98 0.13 0.00 0.59 0.58 0.01 0.95
25 0.94 0.98 0.04 0.00 0.43 0.53 -0.10 0.12
30 0.98 0.98 0.00 0.15 0.51 0.56 -0.05 0.43
50 0.99 0.99 0.00 0.77 0.53 0.56 -0.03 0.65

100 0.98 0.98 0.00 0.36 0.51 0.59 -0.07 0.29
Random 0.97 0.98 0.01 0.00 0.55 0.61 -0.06 0.45
Mutating 0.50 0.84 0.33 0.00 1.35 1.08 -0.27 0.05

The results for each value of the decision horizon are mean values of convergence based on 360 observations, 
each based on the mean of 30 samples. The p-value of the habit effect is the p-value of the t-test, comparing the 

mean for wHabit =0 and wHabit =1. 

In the analyses reported so far, all drivers were endowed with fixed identical values of 
horizon (0, 5, 10, 15, 20, 25, 30, 50, and 100). Further analyses were conducted to assess the 
effect of variations in horizon among drivers. The results were based on 360 observations of 
30 samples each, and the number of iterations was 100,000. Horizon values in the range from 
zero to 100 were randomly assigned to each driver with an equal probability. Runs of this 
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model with random assignment and replacement of values for horizon, the selection dynamics 
only led to a slight change in the value of drivers’ horizon. See the results in the row marked 
‘Random’ in Table 6. After 100,000 iterations the mean horizon in the population was 51.67, 
only slightly above the initial expected mean value of 50. However, habit significantly 
improved the mean degree of convergence even at this relatively high average value of 
horizon.  

As can be seen from Table 6, habit does not generally increase death rates. When the 
horizon is at a value of 5 or 10, habit not only increases convergence, but also significantly 
decreases death rates. Death rates are not significantly influenced either by habit when the 
horizon is above 10 or by drivers being allocated a random horizon.  Only at the extreme limit 
of drivers scanning zero zones does habit increase death rates. 

Finally, we tested a model with a mutating random assignment in order to determine 
whether habit supported the evolution of higher values of the decision horizon. A value of 
horizon was initially randomly assigned to each driver. With probability 0.4 they received a 
horizon of 0, and with probability 0.6 they received a horizon between 1 and 100. The values 
above 0 followed a Poisson distribution with mean approximately 20. The expected horizon 
value was approximately 12 zones for this model. When drivers crashed, the decision horizon 
was replaced according to the same random assignment procedure. The results show that habit 
significantly increased the mean horizon of the population of drivers that had evolved after 
100,000 iterations. For wHabit= 0.0, the mean value of the drivers’ horizon was 8.29. When 
wHabit was increased to 0.5, there was a significant increase (p=0.00) of the mean value of the 
drivers’ horizon to 10.70. Further increases in wHabit to 1.0 (and 1.5) resulted in further 
significant increases (p =0.00) of the mean value of the drivers’ horizon to 12.41 (and 12.65). 
Habit thus supported the evolution of a higher decision horizon, which in turn significantly 
improved convergence. See the results in the row marked ‘Mutating’ in Table 6. Other test 
runs show that this result is general for a number of distributions of horizon.  

Since drivers have more information as the value of horizon increases, the wider 
implication is that habit must be viewed as a complement to, rather than a detractor from, 
deliberative rationality. This is because habit does not decrease convergence even in the case 
where drivers scan all 100 zones of the entire ring. As can be seen from Table 6, neither does 
habit come at a cost of significantly increased death rates, unless the drivers’ are endowed 
with a zero horizon.  
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