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ABSTRACT

TheHerschel GASPS Key Program is a survey of the gas phase of protoplanetary discs, targeting 240 objects which cover a large range of ages,
spectral types, and disc properties. To interpret this large quantity of data and initiate self-consistent analyses ofthe gas and dust properties of
protoplanetary discs, we have combined the capabilities ofthe radiative transfer codeMCFOST with the gas thermal balance and chemistry code
ProDiMo to compute a grid of≈ 300 000 disc models (DENT). We present a comparison of the first Herschel/GASPS line and continuum data
with the predictions from the DENT grid of models. Our objective is to test some of the main trends already identified in theDENT grid, as
well as to define better empirical diagnostics to estimate the total gas mass of protoplanetary discs. Photospheric UV radiation appears to be the
dominant gas-heating mechanism for Herbig stars, whereas UV excess and/or X-rays emission dominates for T Tauri stars. The DENT gridreveals
the complexity in the analysis of far-IR lines and the difficulty to invert these observations into physical quantities. The combination ofHerschel
line observations with continuum data and/or with rotational lines in the (sub-)millimetre regime, inparticular CO lines, is required for a detailed
characterisation of the physical and chemical properties of circumstellar discs.

Key words. Astrochemistry; circumstellar matter; protoplanetary discs ; stars: formation; Radiative transfer; Methods: numerical; line: formation

1. Introduction

The dust phase of circumstellar discs has received a lot of at-
tention in the last few decades, giving us a clearer picture of
their structure and dust content through many continuum sur-
veys in various wavelengths regimes (e.g. Beckwith et al. 1990;
Andrews & Williams 2007; Evans et al. 2007), complemented
by detailed studies of individual objects, combining spectral
energy distributions (SEDs) and resolved maps in scattered
light and thermal emission (e.g. Pinte et al. 2008; Duchêneet al.
2010).

Although gas represents 99 % of the initial mass of discs,
it has been more difficult to observe and is mostly restricted to
millimetre lines probing the cold outer disc, where the freeze-out
of molecules is important (e.g. Dent et al. 2005; Schaefer etal.
2009), and near-IR lines which are only emitted from the hot
inner parts of discs (e.g. Najita et al. 2003; Brittain et al.2007).
The high sensitivity ofHerschel (Pilbratt et al 2010) opens an
opportunity to systematically probe the gas phase of discs,in
particular the warm atomic and molecular layer responsiblefor
the bright gas emission lines in the far-IR. The GASPS open time
key program (see Dent et al., in prep. and Mathews et al 2010)
is a large survey of gas in discs with a gas mass sensitivity com-

⋆ Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.

parable to the dust surveys. GASPS will observe several atomic
and molecular lines in about 240 protoplanetary disc systems
with ages in the critical 1 to 30 million year age range during
which planets form and the gas seems to dissipate.

The interpretation of gas observations is complicated by the
large number of processes at play: processing of radiation by
dust grains, disc thermal structure, chemistry, excitation and de-
struction of molecules, freeze-out and desorption on the dust
grains, etc. To estimate the relative importance of these mech-
anisms as a function of age, stellar properties, disc structure, and
dust content, we have computed a large grid of synthetic SEDs
and gas emission lines, named Disc Evolution with Neat Theory
(DENT, Woitke et al. 2010). Here, we confront the trends iden-
tified in the DENT grid with the first GASPS observations.

2. The DENT grid and initial GASPS data

The DENT grid is intended as a statistical tool to investigate the
influence of stellar, disc, and dust properties on the various con-
tinuum and line observables, and to study to what extent these
dependencies can be inverted to retrieve disc properties. The grid
relies on the combined capabilities of the 3D radiative trans-
fer codeMCFOST (Pinte et al. 2006, 2009) and the gas ther-
mal balance and chemistry codeProDiMo (Woitke et al. 2009;
Kamp et al. 2010). Spectral energy distributions and line fluxes
of [OI], [CII], 12CO, ortho-H2O and para-H2O are predicted for
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Fig. 1. [OI] 63µm line flux as a function of the stellar luminosity (left panel) and accretion luminosity (right panel). Red and blue
points, stars, triangles, and diamonds represents GASPS observations. Points are T Tauri stars while stars are Herbig stars. Diamonds
are sources with extended emission, which could originate from an outflow or envelope. Triangles are GASPS upper limits.Names
are only indicated for SDP sources (blue). Black pluses are ISO observations. Observations were scaled to a distance of 140 pc. The
crosses show the median values of the DENT models. The full vertical lines represent the 1-sigma range of models. Only models
with a gas mass larger than 10−4 M⊙ are plotted. Green and purple points are high- and low-UV models respectively (fUV = 0.1 and
0.001). Accretion luminosities from Hartmann et al. (1998)and Garcia Lopez et al. (2006).

more than 300 000 discs models. The DENT grid was built by
systematically exploring an 11-dimension parameter space(see
Woitke et al. 2010, table 1). In particular the DENT grid explores
the effect of varying the central star (age, mass, UV excess), disc
dust mass and gas-to-dust mass ratio, inner and outer radii,flar-
ing and surface density exponents, grain sizes, and presence of
dust settling. It is important to keep in mind that even with the
large number of calculated models, the sampling of each param-
eter remains coarse and that the DENT grid does not reflect the
statistics of objects in GASPS (each parameter has been sampled
uniformly and not following the distributions of the GASPS tar-
get list). We refer the reader to Woitke et al. (2010) for details
about the grid properties and computational implementation.

We include here data obtained during the science demonstra-
tion phase (SDP, Mathews et al 2010), as well as GASPS data
reduced prior to 2010 April 23, which will be presented in detail
in following papers. Due to the limited number of sources, sta-
tistical analyses remain premature, but initial comparisons with
the model predictions are necessary to ensure that the rangeof
models cover the GASPS observations.

3. Results and discussion

One of the main reasons to compute the DENT grid was to es-
timate the degeneracies between parameters, i.e. how they influ-
ence the various lines and how farHerschel line observations can
be inverted to assess the physical and chemical conditions of the
disc. Not surprisingly, the DENT grid revealed that many param-
eters affect the predicted line fluxes and SEDs, and degeneracies
between parameters are common and complex, which makes the
interpretation of lines fluxes difficult.

3.1. Gas heating processes

Figure 1 plots the [OI] 63µm line flux as a function of the stellar
luminosity and accretion luminosity. The DENT grid predicts a
correlation between the line flux and the stellar luminosity. All

observational points (except sources with a large outflow oren-
velope) lie within the 1-sigma envelope of the models.

For T Tauri stars, the detected line fluxes are well reproduced
by models with a high UV excess (fUV = 0.1, see Woitke et al.
2010), suggesting that UV emission produced by accretion onto
the star is one of the main gas-heating processes. The right panel
of Fig. 1 indeed suggests a trend between [OI] line flux and ac-
cretion luminosity. On the other hand, Herbig Ae/Be stars show a
strong correlation between the line flux and stellar luminosities,
with a much smaller scatter than for T Tauri stars. Large UV
excesses do not seem necessary to reproduce the Herbig obser-
vations (data points lie between models with high- and low-UV
excess). This suggests that stellar radiation is the dominant gas-
heating source for Herbig stars. Because these sources radiate
large phostospheric UV emission, the accretion luminosityrep-
resents a smaller fraction of the UV luminosity and is not as criti-
cal a gas heating mechanism as for T Tauri stars. This is also con-
sistent with the small fraction of large accretors (Lacc > 0.1 L∗)
among Herbig stars (Garcia Lopez et al. 2006).

X-ray irradiation, which is not yet included in the DENT
grid, can also contribute significantly to the gas heating and
chemistry for low-mass objects (e.g. Glassgold et al. 2004;
Semenov et al. 2004; Meijerink et al. 2008; Hollenbach & Gorti
2009; Ercolano & Owen 2010) and higher fluxes can be ex-
pected for sources with typical T Tauri X-ray emission. The
small number of sources observed by GASPS so far prevents us
from distinguishing between UV and X-rays for the main heat-
ing process for low mass objects. The full GASPS survey should
provide detailed answers on these aspects.

Figure 2 presents the [OI] 145µm and [CII] 158µm line
fluxes as a function of the [OI] 63µm line. The models are in
excellent agreement with the GASPS observations. The DENT
grid predicts a correlation between the [OI] 63 and 145µm
line fluxes. A regression fit of all the DENT points indicates
that both line fluxes are almost proportional (f ([OI] 145µm) ∝
f ([OI] 63 µm)0.98), with a [OI] 145/63 line ratio around 0.05
on average. The presence of scatter in the plot illustrates the
wide range of physical conditions encountered in the DENT
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Fig. 2. Correlations between line fluxes. Symbols as in Fig. 1.Left panel: [OI] 145µm as a function of [OI] 63µm.Right panel: [CII]
158µm as a function of [OI] 63µm. Small green points: DENT models. The full and dashed grey contours represent the regions
that contain 68 % and 99.7 % of the models respectively. The blue dot-dashed lines represent power law regression fits to the entire
DENT grid. The red dotted lines correspond to constant line ratios. In the left panel the line corresponds to the average ratio in the
DENT grid: 0.05. This ratio corresponds to the limit case foroptically thick lines at temperatures higher than a few hundred Kelvin
(Tielens & Hollenbach 1985).

grid. The correlation, however, is very strong (Pearson corre-
lation coefficient of 0.97) and holds for several orders of mag-
nitude in line flux. These results agree with the prediction of
Tielens & Hollenbach (1985) for a 1D photodissociation region
(see their Fig. 2). Our detailed line modelling of the 2D PDR disc
surface with varying density and irradiation confirms the picture
drawn from these 1D models: the oxygen lines are optically thick
and originate in a relatively high-temperature gas (≥ 100 K). As
a consequence, this line ratio does not provide constraintson the
local gas density and temperature in most cases.

Deviations from this average ratio of 0.05 are interesting
though. In particular, two Herbig Ae with known outflows ob-
served by GASPS present a small line ratio around 0.025.
According to Tielens & Hollenbach (1985), this value cannotbe
obtained for optically thick lines. This suggests that a significant
fraction of the line fluxes originates from an optically thinregion
above the bulk of the disc (potentially the outflow) with a tem-
perature between 40 and 200 K. These sources will be studied in
detail in following GASPS papers.

The [CII] 158µm line also presents a correlation with the
[OI] 63µm, but with a much larger scatter. A regression fit of
the DENT models indicates that on averagef ([CII] 158 µm) ∝
f ([OI] 63 µm)0.7, with a decreasing line ratio as the line flux in-
creases. This suggests an increasing gas temperature (Fig.3 in
Tielens & Hollenbach 1985) in the disc towards more luminous
objects. Most of the DENT models lie in a region where the line
ratio is between 0.01 and 1, suggesting gas temperatures higher
than 100 K. More detailed analyses of the [CII] line are com-
plicated by several factors: our disc models show that the line
originates from larger radii and lower density regions thanthe
[OI] lines, and it is very sensitive to the amount of UV radiation.

3.2. Gas mass and gas-to-dust mass ratio

In addition to the main trend of an increasing line flux with (UV)
luminosity, there is also a trend with gas mass, where the syn-
thetic line flux increases with mass, but the correlation seems to
saturate above 10−4 M⊙ (see also Woitke et al. 2010), preventing
direct inversion of the line flux into a gas mass (Fig. 3).

The right panel of Fig. 3 shows the correlation between the
[OI] 63µm line flux and the adjacent continuum. Because the
line and continuum emissions are optically thick in most cases,
these fluxes give an indication of the relative temperaturesand
projected surface area of the emitting regions (gas and dust). As
the stellar luminosity increases, the region of the disc which is
warm enough to contribute significantly to the emission alsoin-
creases, resulting in larger fluxes. This behaviour is observed for
most GASPS sources where the line flux roughly increases with
the continuum level, but with a significant scatter. As a conse-
quence, this indicates that a large fraction of discs with a sig-
nificant far-IR excess will be detected in [OI] byHerschel. The
separation of the DENT models according to their gas-to-dust
mass ratio suggests that most objects are gas-rich (gas/dust mass
ratio> 10). The large scatter in the models, and the optical depth
in the continuum and the line, precludes however, in most cases,
a precise estimate of the gas-to-dust ratio for individual sources.
For instance, no direct ratio (or upper limit for HD 181327)
can be estimated from this diagnostic alone for HD 169142 and
TW Hydra, for which the line fluxes can be reproduced by any
ratio between 1 and 1 000. In addition, the contribution of an
outflow to the line flux may affect the estimation of the disc gas-
to-dust ratio and needs to be accounted for.

Greater observational constraints and more detailed mod-
elling is required to estimate the gas mass and gas-to-dust ratio.
In particular, the combination of low rotational level transitions
of CO with oxygen lines offers a valuable proxy to estimate the
amount of gas in discs. Figure 4 plots the12CO J=3→2 line flux
as a function of the [OI] 63µm line flux. We stress that the ac-
curacy in the calculated CO abundances is limited by our ap-
proximate treatment of self-shielding (see Woitke et al. 2009),
but this does not affect our conclusions. For low-mass discs,
this diagram allows a clear distinction of the gas disc mass.As
the mass increases, lines become optically thick and the cor-
responding fluxes saturate, preventing determination of the gas
mass. Current CO surveys can only reach sources in this sat-
uration regime (see for instance data from Dent et al. 2005 in
Fig. 4), but this perspective is particularly interesting in the con-
text of ALMA, which will offer high sensitivity for CO lines
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Fig. 3. [OI] 63µm line flux as a function of the gas mass (left) and adjacent continuum (right). Symbols as in Fig. 1. The full and
dashed vertical lines represent the 1- and 3-sigma range of models. The values for the gas mass of the observed sources areindicative
only, they were estimated from millimetre emission and assuming a gas-to-dust ratio of 100. On the right panel, contoursrepresent
the regions that contain 68 % of the models as a function of thegas-to-dust mass ratio: red= 1000, orange= 100, green= 10, light
blue= 1, dark blue= 0.1.

(≈ 10−23 W.m−2). Similar diagrams combining13CO (not in-
cluded in DENT, but see Meeus et al 2010 and Thi et al 2010),
C18O and [OI] 145µm, which saturate at higher masses due to
lower optical depths, will further help to overcome this degen-
eracy. As oxygen lines are sensitive to warm gas in the inner
10-30AU (for T Tauri stars), they offer complementary views
to the low-J CO lines which probe regions outside of 20-40 AU,
especially when resolved maps of the CO emission are available.

4. Summary and conclusions

The GASPS survey will offer unique views of the gas and dust
phases of protoplanetary discs. In order to provide statistical
tools to help the interpretation of the survey results, we inter-
faced theMCFOST andProDiMo codes and calculated a large
grid of models sampling the range of discs observed by GASPS.
This will allow us to determine some of the physical condi-
tions within discs. The initial results from the GASPS survey
tend to confirm the predictions of the DENT grid, illustrating
the main parameters affecting the line fluxes, namely the UV ex-
cess and/or X-ray emission for T Tauri stars and the UV stellar
irradiation for Herbig stars. This is a highly relevant point to be
considered in subsequent open time programs on discs.

The interpretation of line results remains difficult and their
inversion into physical parameters must be performed with cau-
tion, because the DENT grid highlights considerable degenera-
cies between parameters and the complex interplay between var-
ious physical processes. The [OI] 63µm is crucial for break-
ing some of the degeneracies. By combining this line with con-
tinuum and/or (sub)mm rotational lines, we can possibly dis-
tinguish various parameters. Meeus et al (2010) and Thi et al
(2010) illustrate how far this inversion can be performed when
high quality data sets with a wide range of observational tech-
niques are available.
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