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ABSTRACT

TheHerschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by
directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature
of galaxies have strongly evolved over the last 80 % of the ageof the Universe. We discuss possible consequences for the determination of star-
formation rates (SFR) and any evidence for a major change in their star-formation properties. We useHerschel deep extragalactic surveys from
100 to 500µm to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and
HerMES key programs). An extension to fainter luminositiesis done by stacking images on 24µm prior positions. We show that measurements
in the SPIRE bands can be used below thestatistical confusion limit if information at higher spatial resolution is used, e.g. at 24µm, to identify
”isolated” galaxies whose flux is not boosted by bright neighbors.
Below z∼1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40 % (0.15 dex), therefore similar to z∼0
galaxies, over three decades in luminosity below the regimeof ultra-luminous IR galaxies (ULIRGs, LIR≥1012 L⊙). This narrow distribution is
puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of
the 160µm, 250µm or 350µm bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints
around and above∼150µm (rest-frame) before Herschel on those templates. We also note that the dust temperature of luminous IR galaxies
(LIRGs, LIR≥1011 L⊙) aroundz∼1 is mildly colder by 10-15 % than their local analogs and up to20 % for ULIRGs atz∼1.6 (using a single
modified blackbody-fit to the peak far-IR emission with an emissivity index ofβ=1.5). Abovez=1.5, distant galaxies are found to exhibit a
substantially larger mid- over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a
hidden AGN. Two thirds of the AGNs identified in the field with ameasured redshift exhibit the same behavior as purely star-forming galaxies.
Hence a large fraction of AGNs harbor coeval star formation at very high SFR and in conditions similar to purely star-forming galaxies.
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1. Introduction

The mechanisms that govern star formation in galaxies are
poorly understood: recent evidence points to relatively steady–
state growth rather than episodic, merger–driven starbursts, with
a tight link between galaxy mass and star-formation rate (SFR;
Noeske et al. 2007, Elbaz et al. 2007, Daddi et al. 2007). To a
large degree, these uncertainties arise because observations to
date have only been sensitive to a small fraction of the bolomet-
ric energy emerging from dusty star formation. At high redshift,

⋆ Herschel is an ESA space observatory with science instruments pro-
vided by European-led Principal Investigator consortia and with impor-
tant participation from NASA.

most of the energy from star formation (SF) and active galac-
tic nuclei (AGN) is absorbed by dust (and gas) and re-radiated
at infrared wavelengths. ISO and Spitzer studies have suggested
that luminous IR galaxies (LIRGs, 1012>LIR/L⊙≥1011) domi-
nate global SF atz∼1 (Chary & Elbaz 2001 - hereafter CE01,
Le Floch et al. 2005, Magnelli et al. 2009), while submm
and Spitzer data demonstrate that ultra-luminous IR galaxies
(ULIRGs, LIR≥1012 L⊙) are equally important atz∼2 (Papovich
et al. 2007, Caputi et al. 2007, Daddi et al. 2007, Magnelli etal.
2009, 2010). Until the launch of theHerschel Space Observatory
(Pilbratt et al. 2010), these analyses relied strongly on substan-
tial extrapolation from the mid-IR or sub-mm or on even more
uncertain corrections of the UV luminosity (Buat et al. 2009,
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Daddi et al. 2007). Our aim is to determine how accurate these
extrapolations are and search for evidence of a major change
in the IR properties of galaxies with increasing redshift, using
the combined power of the PACS (Poglitsch et al. 2010) and
SPIRE (Griffin et al. 2010) instruments. Due to the effects of k-
correction and sensitivity limitations from source confusion, few
individual galaxies are detected in allHerschel bands, hence the
need to determine the robustness of extrapolations of totalIR
luminosities from one or more bands in the mid or far IR.

We will use below a cosmology withH0=70 kms−1Mpc−1,
ΩM = 0.3,ΩΛ = 0.7.

2. Sample and method

The sample consists of galaxies observed in the GOODS-North
field within the PEP1 and HerMES2 (Oliver et al., in prep.)
guaranteed time key programs. Measurements of the PACS-100,
160µm (PEP) and SPIRE-250, 350, 500µm (HerMES) flux den-
sities and S/N ratios were obtained from point source fitting on
24µm priors by S.Berta, B.Magnelli (PEP, Berta et al. 2010,
Magnelli et al. 2010) and I.Roseboom (HerMES, Roseboom et
al., in prep.) respectively.

Within a field of 10′×15′, which has coverage with Spitzer
and HST–ACS, there are a total of 1468 24µm sources which
meet the reliability criterion of S/N≥5 and F24≥20µJy (see
Magnelli et al. 2009). 95.6 % of them either have a spectro-
scopic (67.2 %, Cohen et al. 2000, Wirth et al. 2004, Barger etal.
2008) or photometric (28.3 %, from Le Borgne et al. 2009) red-
shift. Herschel detects a third of them (493 galaxies) in at least
one of the PACS or SPIRE passbands. PACS measurements are
used down to the 3-σ limits of 3mJy and 5.7mJy at 100µm and
160µm respectively. Both PACS passbands lie above the con-
fusion limit (Berta et al. 2010). We use SPIRE measurements
down to the 5-σ limits of the prior catalog of 4.4mJy, 4.8mJy
and 7.6mJy at 250µm, 350µm and 500µm respectively. We note
that these measurements lie below the SPIRE confusion limit
of 5.8mJy, 6.3mJy, 6.8mJy 1-σ (Nguyen et al. 2010). However,
this limit is a spatially averaged statistical limit which considers
that galaxies are homogeneously distributed in the field andare
all affected in the same way by close neighbors. Here we take
advantage of the higher spatial resolution at lower wavelengths
(24µm and PACS bands) to flag galaxies more ”isolated” than
others for which SPIRE flux densities can potentially be more
robust. To do this, we require at least one detection in one of
the PACS bands for all galaxies studied here and flag as ”clean”
galaxies those sources which have at most one bright neighbor
within 20′′ (close to the full width half maximum, FWHM, of
the centralHerschel wavelength of 250µm) with F24>50% of
the central 24µm source.

Below, all IR luminosities are extrapolated to the 8–1000µm
range, i.e.LλIR is the total IR luminosity estimated from only one
passband atλ. The reference total IR luminosity,Ltot

IR [Herschel],
was determined from the best fit of at least two photometric mea-
surements above 30µm (rest-frame), using the whole library of
SED templates from CE01 independently of their luminosity.We
did the same computation with the full Dale & Helou (2002,
DH02) library of template SEDs and found that bothLtot

IR agreed
within 12 %, with a median ratio of 1. Error bars onLtot

IR were
obtained by randomly selecting flux densities in theHerschel
bands within their associated error bars and fitting them again.
A total of 222 galaxies have two photometric measurements

1 www.mpe.mpg.de/ir/Research/PEP
2 hermes.sussex.ac.uk

above 30µm (rest-frame), among which 140 are ”clean” star-
forming galaxies, 55 are ”non-clean” and 27 show the signature
of an AGN. AGNs were identified from either LX [0.5-8.0 keV]
> 3×1042 ergs s−1, a hardness ratio (ratio of the counts in the 2-8
keV to 0.5-2 keV passbands) higher than 0.8, NH ≥1022 cm−2, or
broad/ high-ionization AGN emission lines (Bauer et al. 2004).
We then computed total IR luminosities from a single passband,
LλIR, using the CE01 technique, i.e. a fixed SED was attributed to
everyLIR and chosen to best fit the observed 24µm measurement
at the redshift of the source (L24µm

IR ). We used the same technique
to extrapolateLλIR for each one of the PACS or SPIRE passbands
at 100µm, 160µm, 250µm and 350µm. Only 10 galaxies with a
redshift were detected in one of the PACS bands and at 500µm.
For comparison, we computedLλIR with the libraries of DH02
and Lagache et al. (2004, LDP04). For DH02, a single SED was
attributed to a givenLtot

IR , after correlating the luminosity to the
60/100µm ratio (see Marcillac et al. 2006).

The analysis was extended below the PACS detection limits
by stacking the PACS-160µm images at the positions of 24µm
sources (on residual images after PSF-subtracting the PACS
sources above the 3-σ limit). Dust temperatures were computed
as in Hwang et al. (in prep.), i.e. we used a modified black-
body fit with aβ=1.5 emissivity index to the galaxies for which
Herschel measurements exist on both sides of the peak far-IR
emission. Error bars on Tdust were derived in the same way as
for LHerschel

IR .

3. Results and discussion

The direct comparison of the 8–1000µm luminosities derived
from the 24µm band alone (Ltot

IR [from 24µm]) and fromHerschel
above 30µm (rest-frame,Ltot

IR [Herschel]) shows a remarkable
consistency over a redshift range ofz=0–1.5 and over three
decades in luminosity up to ULIRGs (Fig. 1). The median trend
(filled black circles and plain line) remains within 10 % of the
one-to-one correlation and the envelope including 68 % of the
galaxies above and below the median (grey zone) has a width
of ±0.15 dex (40 %), which is similar to the dispersion mea-
sured locally (see CE01). Note a cloud of galaxies with an ex-
cess far-IR emission mostly composed of objects that we flagged
as ”non-clean”, i.e. with close bright neighbors (open symbols).
The largest excess is found for galaxies with SPIRE measure-
ments only (and at least two SPIRE fluxes, light grey open cir-
cles), suggesting that their SPIRE fluxes are boosted by close
neighbors. Very few ”clean” galaxies lie outside the 0.15 dex dis-
persion, which suggests that SPIRE flux densities can be trusted
even at very faint levels, i.e. below the statistical confusion limit.
The tight correlation remains even after combining detections
with stacked measurements in bins of 24µm derived luminosi-
ties (large open squares), except abovez=1.5 (red symbols).

The tight correlation betweenLtot
IR as derived from 24µm

andHerschel belowz=1.5, which extends over three decades in
luminosity, is puzzling because galaxies have strongly evolved
over the last 9 billion years (70 % of the Universe age) during
which most present-day stars formed (gas mass fraction, metal-
licity, compactness, dynamical status, e.g. mergers). It is as puz-
zling to see that AGNs follow a similar trend as star-forming
galaxies (open triangles in lower panel of Fig. 1). We note that
among the AGNs with a redshift (either spectro- or photo-metric
for 83 % of all AGNs in the field), 70 % are detected at 24µm
(arrows) and 31 % in at least one theHerschel bands (open tri-
angles). While it may be understood that at low redshifts, hence
at large wavelengths, the warm dust continuum heated by the
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Fig. 1. Ltot
IR [Herschel] versusLtot

IR [24µm] for galaxies with at least
2 Herschel detections and no AGN signature (filled dots in upper
panel) and AGNs detected at 24µm and in at least oneHerschel
passband (open triangles in lower panel). BothLIR cover 8–
1000µm. (Upper panel) ”clean” (filled dots) and ”non-clean”
(open circles: grey, no PACS detection; black, 1 PACS detection)
galaxies. Plain line, black dots and grey zone: median of clean
sample and 68 % envelope (∼0.15 dex rms). Stacking measure-
ments per 24µm luminosity bins: present study (open squares),
Nordon et al. (2010) forz = 1.5 − 2.5 galaxies (orange trian-
gles). Orange open stars: Daddi et al. (2007, based on UV cor-
rected for extinction).(Lower panel) 24µm AGNs detected in
oneHerschel band (open triangles) or withHerschel upper lim-
its (vertical arrows). Black open circles and dashed line: stacked
values combined with detections weighted with source numbers.

AGN remains negligible at 24µm (quasar spectra drop beyond
∼20µm which Netzer et al. 2007 interpret as the signature of a
minimum temperature of∼200 K), the star-formation activity in
AGNs could have been associated to more compact geometries,
e.g. due to a merger, and presented different IR signatures. But
whether IR galaxies harbor an AGN or not, their star-formation
activity produces a similar radiation pattern suggesting no major
differences in the coeval activity of star formation with respect
to purely star-forming galaxies. The combination of stacking and
detections (weighted by number of sources, large open circles in
Fig. 1-bottom) confirms the same trend as for the star-forming
galaxies.

Above z=1.5, Herschel confirms that the mid-IR overesti-
matesLtot

IR by factors of about 2–3 for the detected ULIRGs,
but up to 5–7 when stacking is combined to detections (see
Nordon et al. 2010, orange triangles in upper panel of Fig. 1).
This confirms the claim from previous works based on Spitzer
70µm stacking or UV corrected for extinction (Daddi et al.
2007, Papovich et al. 2007, Magnelli et al. 2010), but also pro-
vides a way to revise local IR SEDs accordingly. The upper panel
of Fig. 2 shows the region of the mid-IR SED that is sampled by
the 24µm Spitzer passband as a function of redshift. It is clear
that the mid-IR excess luminosities are found when the filteris

Fig. 2. Redshift evolution ofLIR derived from monochromatic
mesurements at 24µm, 100µm, 160µm, 250µm and 350µm
over LHerschel

IR [>30µm] (filled dots: clean, open dots: non clean
galaxies). Only 10 ”clean” galaxies have a 500µm measure-
ment. Black triangles: AGNs. Lines: median ratios for local
SEDs (CE01: plain, DH02: dashed, LDP04: dotted line). Upper
panel: SEDs of M82 (starburst) and NGC 1068 (type II AGN)
and MIPS 24µm filter atz=0.25,0.9,1.4,2.

centered on the 7.7µm PAH complex. The discrepancy could ei-
ther be explained by a larger PAH emission in distant ULIRGs
or instead by the hot dust heated by a buried AGN. We note
however, that part of this discrepancy could be due to uncertain
local SEDs templates (Takeuchi et al. 2005, Buat et al. 2009). In
Fig. 2, we followLλIR over Ltot

IR for eachHerschel band and for
the 24µm one. Again, AGNs (black open triangles) follow the
same pattern as purely star-forming galaxies (which may include
heavily obscured AGNs) and ”clean” galaxies (filled circles) are
less dispersed than ”non-clean” ones (open circles). The points
in Fig. 2 were computed using the CE01 SEDs. In order to see
the effect of using SEDs from DH02 or LDP04, we materialized
their median ratio and 68 % dispersion by dashed (DH02) and
dotted (LDP04) lines with error bars.

We note that the CE01 templates provide the bestLtot
IR from

24µm, 100µm and 160µm while DH02 is better in the SPIRE
bands. However, monochromatic derivations of IR luminosities
from the 160µm, 250µm or 350µm values alone tend to over-
estimate the trueLtot

IR with all three libraries of template SEDs
below z∼1–1.5 (e.g. factors of 1.25, 1.8 and 3 with CE01 at
z∼0.3). This enhanced emission above 150µm with respect to
existing templates suggests a colder dust temperature thanpre-
viously inferred due to the lack of constraints beforeHerschel
at these far-IR wavelengths (see below and Rowan-Robinson,in
prep.). To assess the evolution of far-IR color temperatures with
redshift, we selected all galaxies within a decade in luminos-
ity (L IR=1011.3–1012.3 L⊙), i.e.∼LIRGs, which span a redshift
range of 0.5<z<1.5 (Fig. 3). Tdust was measured assuming a sin-
gle modified blackbody-fit to their peak far-IR emission withan
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Fig. 3. Tdust versus redshift for galaxies with
11.3≤log(LIR/L⊙)≤12.3. Filled circles: ”clean” galaxies,
median in black with 68 % envelope. Triangles: AGNs, median
in black. Error bars on Tdust from Monte Carlo in Herschel error
bars (see Hwang et al., in prep.). Empty circles: median Tdust
of local galaxies (computed with the same technique i.e. MBB
with β=1.5, see Hwang et al., in prep.) for the median log(LIR)
in each z bin (values in upper x-axis) again with associated 68 %
envelope.

emissivity index ofβ=1.5. We found that the average color tem-
perature is∼35 K and within the dispersion does not show any
strong evolution with redshift but appears to be systematically
colder than a sample of local galaxies of similar median lumi-
nosities (Hwang et al., in prep.) by∼10–15% and up to∼20 %
(8K) at z∼1.6 forLtot

IR∼1012 L⊙.
We also note that AGNs (open triangles, and median in filled

black triangle) exhibit similar Tdust than purely star-forming
galaxies. This again shows that in the regime where star for-
mation dominates the IR emission of AGNs, this activity does
not differ from normal star-forming galaxies (see also Shao et al
2010, Hatziminaoglou et al. 2010).

4. Conclusion

We show that measurements in the SPIRE bands can be boosted
by bright neighboring galaxies due to the large beam size.
However, we were able to flag ”clean” sources in more isolated
environments for which fluxes below the statistical 5-σ confu-
sion limit appear to be robust. This may also apply to submm
measurements with ground-based telescopes whose PSF FWHM
is similar. Using such a ”clean” sample of galaxies we were able
to obtain the following results.

Below z∼1.5, extrapolations of the total IR luminosity of
galaxies based on mid-IR measurements agree with those mea-
sured directly withHerschel over three decades in luminosity
below the ULIRG regime, with a dispersion of only 40 % (0.15
dex), and are therefore similar to the local one. This narrowdis-
tribution is puzzling when considering the range of physical pro-
cesses (gas mass fraction, different geometries, grain size distri-
bution, metallicity) that could have affected the SED of these
galaxies which dominated the SFR density of the Universe over
80 % of the age of the Universe.

When used alone, each of the far-IR bands at 160µm,
250µm and 350µm tend to overpredict the total IR luminosity

by factors of 1.25, 1.8 and 3 respectively with e.g. the CE01 tem-
plates, due to the lack of constraints on those templates at far IR
wavalengths around and aboveλ∼150µm prior toHerschel. We
also note that the dust temperature ofz=1-1.5 LIRGs – estimated
from a modified blackbody-fit with an emissivity index ofβ=1.5
– is∼35 K, hence about 10-15 % colder than their local analogs
and 20 % colder for ULIRGs atz∼1.6.

At z>1.5, IR SEDs are substantially different from local ones
as suggested by previous studies (Daddi et al. 2007, Papovich et
al. 2007, Magnelli et al. 2010). LIR derived from 24µm alone
is overestimated by a factor 2–3 in the ULIRGs detected with
Herschel and up to∼7 from stacking (Nordon et al. 2010).

About a third of the AGNs with a redshift are detected with
Herschel and an extra 40 % at 24µm alone, allowing us to ex-
tend our study from stacking to 70 % of the AGNs. We find that
belowz∼1.5, AGNs exhibit a similar L24

IR/L
Herschel
IR ratio than star-

forming galaxies of similar LIR and that their dust temperature is
similar to that of purely star-forming galaxies. This suggests that
their IR emission is dominated by star formation, hence thatSF
and AGN activity happen concomitantly in these galaxies. This
result confirms that a large fraction of AGNs do harbor intense
star formation activity of several 10 or 100 solar masses peryear
in conditions similar to purely star-forming galaxies (seealso
Shao et al 2010, Hatziminaoglou et al. 2010).

Through deeper observations down to the 100µm confusion
limit with the GOODS-Herschel key program (P.I.: D. Elbaz),
we will be able to study the SED of galaxies to fainter luminosi-
ties and higher redshifts than undertaken in this paper.
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40127 Bologna, Italy

16 Dept. of Astrophysical and Planetary Sciences, CASA 389-UCB,
University of Colorado, Boulder, CO 80309, USA

17 National Optical Astronomy Observatory, 950 North Cherry
Avenue, Tucson, AZ 85719, USA

18 INAF-Osservatorio Astronomico di Roma, via di Frascati 33,00040
Monte Porzio Catone, Italy

19 Observational Cosmology Lab, Code 665, NASA Goddard Space
Flight Center, Greenbelt, MD 20771, USA

20 Astronomy Centre, Dept. of Physics & Astronomy, Universityof
Sussex, Brighton BN1 9QH, UK

21 Dipartimento di Astronomia, Università di Padova, vicolo
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