
FACTORS AFFECTING THE
PERFORMANCE OF TRAINABLE

MODELS FOR SOFTWARE DEFECT
PREDICTION

by

DAVID HUTCHINSON BOWES

Submitted to the University of Hertfordshire in partial fulfilment
of the requirements of the degree of

DOCTOR OF PHILOSOPHY

School of Computer Sciences
University of Hertfordshire

June, 2013

Acknowledgements

My first and foremost acknowledgement goes to Tracy Hall. It is while working with Tracy that I have
learnt the dogma: the need for RIGOUR and the concept of FOCUS; how can I do better. Rigour means
that every word has to be justified and consistent1. Focus means that this dissertation is not the original
500 pages. How can I do better? means that although this dissertation has ended, the work has not.

My second acknowledgement goes to my other supervisors, Neil Davey and Bruce Christianson. It has
bean a pleasure working with them and learning the different ways of doing and thinking about research.
My third acknowledgement goes to my parents who provided a stimulating and thought provoking en-
vironment in my formative years which I constantly reflect on while bringing up my own son.

My fourth acknowledgement goes to Kath Walley, my A’level physics teacher who introduced me to the
problem of measurement error.

My fifth acknowledgement goes to my examiners (Prof. Barbara Kitchenham, Prof. Mark Harman and
Dr. Nathan Baddoo) who have rigorously checked every equation and detail which makes this final
version better than the last.

My penultimate acknowledgement goes to Jenny Jeffery for her proof reading of this dissertation and
for the professionalism that she taught me while sharing an office and managing a Sixth Form in a large
Secondary School.

My last acknowledgement is to the other colleagues who I have worked with while teaching and re-
searching. Their contribution has been inspirational and usually good fun.

Finally, when my Dad died he left me his collection of books. Included in his collection was a handwrit-
ten book which contained a dissertation of all the answers to the questions I had asked him, but he had
never answered. I had always thought it strange that he would not answer some questions even though
he was more than capable of answering them. I have come to the conclusion that he thought it better
for me to work out the answers myself rather than being fed someone else’s answer. It is probably his
dogma, that has made me continue asking why. At the end of his dissertation he included a glossary of
all of his favourite sayings which as a child I had heard him repeat many times. However, at the start of
the list was one saying I had never heard him say :

“If you have time to waste, don’t waste it on those who are busy!” D.C.Bowes.

1Any lack of consistency in this dissertation is down to me!

iii

ABSTRACT

Context. Reports suggest that defects in code cost the US in excess of $50billion per year to put right.
Defect Prediction is an important part of Software Engineering. It allows developers to prioritise the
code that needs to be inspected when trying to reduce the number of defects in code. A small change in
the number of defects found will have a significant impact on the cost of producing software.

Aims. The aim of this dissertation is to investigate the factors which affect the performance of
defect prediction models. Identifying the causes of variation in the way that variables are computed
should help to improve the precision of defect prediction models and hence improve the cost effective-
ness of defect prediction.

Methods. This dissertation is by published work. The first three papers examine variation in the
independent variables (code metrics) and the dependent variable (number/location of defects). The
fourth and fifth papers investigate the effect that different learners and datasets have on the predictive
performance of defect prediction models. The final paper investigates the reported use of different
machine learning approaches in studies published between 2000 and 2010.

Results. The first and second papers show that independent variables are sensitive to the mea-
surement protocol used, this suggests that the way data is collected affects the performance of defect
prediction. The third paper shows that dependent variable data may be untrustworthy as there is no
reliable method for labelling a unit of code as defective or not. The fourth and fifth papers show that the
dataset and learner used when producing defect prediction models have an effect on the performance of
the models. The final paper shows that the approaches used by researchers to build defect prediction
models is variable, with good practices being ignored in many papers.

Conclusions. The measurement protocols for independent and dependent variables used for de-
fect prediction need to be clearly described so that results can be compared like with like. It is possible
that the predictive results of one research group have a higher performance value than another research
group because of the way that they calculated the metrics rather than the method of building the model
used to predict the defect prone modules. The machine learning approaches used by researchers need
to be clearly reported in order to be able to improve the quality of defect prediction studies and allow a
larger corpus of reliable results to be gathered.

Contents

1 Introduction 1
1.1 Aim . 1
1.2 Introduction . 2
1.3 Thesis and Research Questions . 3
1.4 Contributions to Knowledge . 3
1.5 Structure of this Dissertation . 5

2 A Summary of Defect Prediction 7
2.1 Introduction . 7
2.2 What is a Defect? . 7

2.2.1 What is the Purpose of Defect Prediction? . 7
2.2.2 What is Defect Prediction? . 8
2.2.3 Code Defects . 8

2.3 Variables Used in Defect Prediction Studies . 10
2.3.1 Independent Variables . 11
2.3.2 Dependent Variables . 11

2.4 Modelling Techniques . 11
2.4.1 Continuous Techniques . 12
2.4.2 Categorical Techniques . 14

2.5 Data Quality and Data Cleaning . 20
2.6 Model Building Approaches . 20

2.6.1 Building Generalisable Models . 20
2.6.2 Testing the Generalisability of Models . 21

2.7 Issues of Model Building Specific to Machine Learning 21
2.7.1 Dealing with Datasets which are Unbalanced 22
2.7.2 Machine Learning Model Optimisation . 22
2.7.3 Model Tuning . 23
2.7.4 Reordering the Training Data . 23

2.8 Measuring the Performance of a Model . 25
2.8.1 Measuring the Performance of Categorical Prediction Models 25

2.9 Summary of Techniques . 28
2.10 Conclusion . 28

3 Contribution of Papers 31
3.1 Introduction . 31
3.2 RQ1: Does the measurement protocol for the independent variables affect the metric

values produced? . 31
3.3 RQ2: Is there an effective method for deriving the dependent variables for defect pre-

diction? . 33
3.4 RQ3: Which factors (dataset, learner) affect the performance of defect prediction studies? 34
3.5 RQ4: Are the results of machine learning studies reliable/trustworthy? 35
3.6 Summary of my Contribution to each Main Paper . 36

vi Contents

4 Papers 39
4.1 Paper 1: Calibrating program slicing metrics for practical use. 41
4.2 Paper 2: The Inconsistent Measurement of Message Chains. 45
4.3 Paper 3: Evaluating Three Approaches to Extracting Fault Data from Software Change

Repositories. 55
4.4 Paper 4: A Systematic Literature Review on Fault Prediction Performance in Software

Engineering. 67
4.4.1 Corrigendum . 67

4.5 Paper 5: Comparing the performance of fault prediction models which report multiple
performance measures: recomputing the confusion matrix. 99
4.5.1 Corrigenda . 99

4.6 Paper 6: The State of Machine Learning Methodology in Software Fault Prediction. . . . 111

5 Conclusion 119
5.1 Reflection on the Research Questions . 119
5.2 Main Findings . 121

5.2.1 Analysis . 122
5.3 Future Work . 123

5.3.1 Statistical Analysis of the Impact of Different Measurement Protocols on being
able to Predict Defects . 124

5.3.2 Measurement Protocols . 124
5.3.3 Reporting Protocols . 124
5.3.4 The Need for Replication Studies . 124
5.3.5 Ensuring Consistency in Machine Learning Approaches 125
5.3.6 Building Repositories of Comparable Data . 125
5.3.7 Why not What! . 125

5.4 Final Remarks . 126

References 127

Appendices 134

A Reviewers’ Comments for
[Bowes et al. 2012b] 135

B Additional Papers 137
B.1 Cohesion metrics: the empirical contradiction. 137
B.2 Using program slicing data to predict code faults. 145
B.3 Program slicing-based cohesion measurement: the challenges of replicating studies us-

ing metrics. 163
B.4 Developing fault-prediction models: What the research can show industry. 171
B.5 SLuRp: a tool to help large complex systematic literature reviews deliver valid and

rigorous results. 177
B.6 DConfusion: A technique to allow cross study performance evaluation of fault predic-

tion studies. 183

List of Published Papers

Main Papers

This thesis is by publication. The following 6 papers form the main contents of my submission:

Paper 1: Bowes D, Counsell S, Hall T (2008) Calibrating program slicing metrics for practical
use. Proceedings of TAIC PART, Windsor, UK

Paper 2: Bowes D, Randall D, Hall T (2013) The inconsistent measurement of message chains.
In: Proceeding of the 4th International Workshop on Emerging Trends in Software Metrics,
ACM (accepted paper)

Paper 3: Hall T, Bowes D, Liebchen G, Wernick P (2010a) Evaluating three approaches to
extracting fault data from software change repositories. In: International Conference on
Product Focused Software Development and Process Improvement (PROFES), Springer, pp
107–115

Paper 4: Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature re-
view on fault prediction performance in software engineering. Software Engineering, IEEE
Transactions on 38(6):1276 –1304

Paper 5: Bowes D, Hall T, Gray D (2012b) Comparing the performance of fault prediction
models which report multiple performance measures: reconstructing the confusion matrix.
In: Proceedings of the 8th International Conference on Predictive Models in Software Engi-
neering. *Best Paper in Conference Award.*

Paper 6: Hall T, Bowes D (2012) The state of machine learning methodology in software fault
prediction. In: Machine Learning and Applications (ICMLA), 2012 11th International Con-
ference on, vol 2, pp 308 –313

viii Contents

Additional Papers in Appendix B

The following papers are also published works and can be found in Appendix B. They are included in
the dissertation because they extend the work in this thesis by either using the data from the main papers
or they describe extra work as a result of the main papers.

Counsell S, Bowes D, Hall T (2009) Cohesion metrics: the empirical contradiction. In: The Psychol-
ogy of Programming Interest Group, Open University

Bowes D, Hall T (2010) Using program slicing data to predict code faults. In: The 3rd CREST Open
Workshop, KCL

Bowes D, Hall T, Kerr A (2011) Program slicing-based cohesion measurement: the challenges of
replicating studies using metrics. In: Proceeding of the 2nd International Workshop on Emerging
Trends in Software Metrics, ACM, pp 75–80

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011a) Developing fault-prediction models: What
the research can show industry. Software, IEEE 28(6):96 –99

Bowes D, Hall T, Beecham S (2012a) SLuRp: a tool to help large complex systematic literature
reviews deliver valid and rigorous results. In: Proceedings of the 2nd International Workshop on
Evidential Assessment of Software Technologies, ACM, pp 33–36

Bowes D, Hall T, Gray D (2013) DConfusion: A technique to allow cross study performance evalua-
tion of fault prediction studies. Automated Software Engineering Journal (In Review)

List of Figures

2.1 A Diagram Showing How Dependent and Independent Variables are used to Build and
Evaluate Models . 9

2.2 J48 Tree for the Simple Defect Data Found in Table 2.4. The values in brackets e.g.
(9.0/1.0) shows the number of items in the group and the number which are incorrectly
classified. 19

2.3 Layout of Perceptrons in a Fully Connected Feed Forward Artificial Neural Network. . . 19

5.1 The Improvement in Image Quality by Changing the Measurement Protocol of the Hub-
ble Space Observatory. http://upload.wikimedia.org/wikipedia/commons/1/
12/Improvement_in_Hubble_images_after_SMM1.jpg 119

5.2 The KDD Cycle. From Fayyad et al. [1996] . 123

http://upload.wikimedia.org/wikipedia/commons/1/12/Improvement_in_Hubble_images_after_SMM1.jpg
http://upload.wikimedia.org/wikipedia/commons/1/12/Improvement_in_Hubble_images_after_SMM1.jpg

List of Tables

1.1 Research Questions . 4

2.1 Demonstration Data Where Each Line is for a Method Labelled as Defective or Not with
Independent Variables: Method Return Type and Method Parameter Count. 12

2.2 Conditional Standard Deviation using Return Type . 14
2.3 Conditional Standard Deviation using Parameter Count 14
2.4 Table of Methods Labeled as Defective or Not Based on the Return Type and Parameter

Count. 16
2.5 Summary Table of Methods Labeled as Defective or Not Based on the Return Type and

Parameter Count. 16
2.6 Hyper-Parameters for Some Learners. 23
2.7 Summary Statistics for NASA Datasets before Cleaning 24
2.8 A Binary Confusion Matrix . 25
2.9 Compound Performance Measures from a Binary Confusion Matrix 27
2.10 Summary of Defect Prediction Modelling Techniques. 29

Chapter 1

Introduction

1.1 Aim

Defects in code cost in excess of $50billion per year to put right in the US [Levinson 2001, Runeson and
Andrews 2003]. Defect prediction is an important part of software engineering. It allows developers to
prioritise the code that needs to be tested and inspected when trying to reduce the number of defects in
code [Li et al. 2006]. Weyuker and Ostrand [2008] demonstrate that a small change in the number of
defects found will have a significant impact on the cost of producing software.

Defect prediction techniques typically use training data to train a model which then predicts the defect
proneness of a unit of code (module). Initially regression techniques were used to predict defects in code
using static code metrics as the independent variables [Munson and Khoshgoftaar 1990]. More recently,
Lessmann et al. [2008] demonstrate machine learning techniques being applied to predicting defects.
With each new technique, the number of studies increases resulting in more than two hundred academic
studies into defect prediction over the last ten years [Paper 4]1.

The aim of this dissertation is to demonstrate that the results of individual defect prediction studies risk
not being comparable to other studies if not enough consideration has been given to how the dependent
and independent variables have been computed. This dissertation will show that even when using the
same source code to provide the independent variables and defect tracking data to produce the dependent
variables, the way the defect data is extracted and processed may be different, which in some cases could
be affecting the prediction results. Further, this dissertation aims to demonstrate that the performance
measures used to justify the significance of the results can be confusing. Some reported performance
values appear to be ‘good’, even though they could have been achieved by randomly predicting modules
as defective [Shepperd 2013]. Finally, this dissertation will demonstrate that machine learning good
practices are not always being applied which has a significant effect on the predictive performance of
the models being built. The conclusion of this dissertation is that although the performance of defect
prediction seems to have currently reached the limits of being able to predict defects [Menzies et al.
2008], many retrospective updates to previous experiments are needed in order to improve the reliability
of the corpus of knowledge that already exists. In this dissertation I propose new techniques which allow
researchers to analyse more easily the relative merit of the predictive performance of defect prediction
studies.

1[Paper n] refers to the n’th paper which is part of the main argument of this thesis. A list of the 6 main papers can be
found in Chapter 4

2 Chapter 1. Introduction

1.2 Introduction

Defects2 in software are a side effect of creating a piece of code. Releasing code which contains defects
can be costly and may threaten the confidence that users have in a system. This is exemplified by the
recent problems which the Royal Bank of Scotland suffered with a system upgrade [Scott 2012].

The cost of fixing defects varies depending on the defect itself. It has been estimated that the cost of
fixing defects in the US is between 50 and 78 billion dollars per year [Levinson 2001, Runeson and
Andrews 2003]. Some defects are easier to fix than others, for example typos are relatively easy to find
and easy to correct. Defects involving infrequently used pieces of code which require a high level of
expertise to write may be more difficult to find than typos. The system domain also affects how easy
defects are to fix. Defects in embedded systems tend to be more expensive to fix than defects in desktop
applications [Turhan et al. 2009]. The size of the application is also likely to affect the ease with which
defects can be found [Oram and Wilson 2010]. Part of the cost in fixing a defect is in the initial step of
finding the defect. Historically, defects have been found during many stages of software development
processes, including development and testing. Once a piece of software has been released, users may
report defects. Locating where defects are will then involve many techniques, including automated
methods and manual inspection which is costly. In summary, defects will occur, may need fixing and
require varying amounts of time (and hence money) to fix.

Predicting where defects occur in software is an important area for research. Studies using automated
techniques to determine where defects are have been published widely [Paper 4]. The aim of defect
prediction is to reduce the amount of code that a software engineer needs to review in order to find a
defect. Early techniques relied on simple regression techniques to associate code characteristics such as
the number of Lines of Code (LOC) with the number of defects found. These studies have shown that
relationships exist between code features and the presence of defects and have resulted in a continuous
search for better ways to predict where defects are. Recently, machine learning has become a popular
way of predicting which modules of code are defect prone. There have been more than 200 defect
prediction studies carried out in the last decade [Paper 4]. These recent (2000 to 2010) studies are
dominated by machine learning techniques3.

Menzies et al. [2008; 2010] suggest that current defect prediction techniques have reached a limit to the
percentage of defective code units that can be reliably predicted. This indicates that the field of defect
prediction has matured and cannot be improved any further. This dissertation argues that although the
results published by previous studies may have reached a ceiling, the results themselves may not be a
true reflection of the ability of learners to identify where defects are with any degree of certainty. I will
confirm the conjecture made by Kitchenham et al. [1990] that there are many factors which can cause
variation in the values of variables used in defect prediction studies. As a result of the variation, it may
be necessary to re-work the published corpus of knowledge in defect prediction to gain a more precise
understanding of the ability to reliably predict where defects are using different code characteristics.

This dissertation will demonstrate that the measurement problems identified by Fenton and Neil [1999],
Kitchenham et al. [1990], Rosenberg [1997] are still current with regards to defect prediction studies:

“manual collection of data is itself error-prone...

2The term ’defect’ is used interchangeably in this dissertation with the terms ’fault’ or ’bug’ to mean a static fault in
software code. It does not denote a ’failure’ (i.e. the possible result of a defect occurrence while the system is executing).

3I will describe the difference/ similarity between regression techniques and machine learning techniques in Chapter 2.

1.3. Thesis and Research Questions 3

it is unreasonable to place much significance on relatively small effects, ... ”
Kitchenham et al. [1990]

“Proper measurement based studies are the key to objective methods evaluation,”
Fenton and Neil [1999]

1.3 Thesis and Research Questions

The thesis of this dissertation is that there are many factors which may affect the predictive performance
of trainable models for software defect prediction. This thesis will be demonstrated by considering the
following factors:

1. The independent variables. These are measures derived from the code and may include the number
of lines of code (LOC) or the number of branch points in the module.

2. The dependent variables. These are usually either the number of defects in a module or a boolean
value indicating if a module is defective or not defective.

3. The datasets and machine learners. The datasets are the combination of independent and depen-
dent variables for a piece of software. The machine learner is the technique for building a model
which can predict the dependent variables based on the independent variables.

4. The accepted machine learning approaches. These include the methods of calibrating the machine
learners and measuring the performance of the model.

The main arguments of this thesis can be addressed by considering the research questions in Table 1.1.

1.4 Contributions to Knowledge

This dissertation makes the following contributions to knowledge:

Theoretical contributions
This dissertation makes two major theoretical contributions. The first contribution is the demonstration
that the way that some independent variables (for example program slicing metrics) are computed affects
the metric value (see [Paper 1], Bowes et al. [2011]4 and [Paper 2]). This contribution means that it
is necessary for studies to report how the metrics have been calculated if they are to be used in cross
study comparisons. It also means that systematic literature reviews based on current work may need to
exclude studies which have not reported the technique for gathering metric data. The second theoreti-
cal contribution is imputing the observation that some machine learning practices (for example feature
reduction techniques or data cleaning) do not appear to be being used systematically in recent defect
prediction studies [Paper 6]. This may be due to poor reporting and means that it is important to report
the detailed protocol used when performing defect prediction experiments using machine learning.

4Citations in italics refer to relevant papers which I have co-authored which are found in Appendix B.

4 Chapter 1. Introduction
Table

1.1:R
esearch

Q
uestions

R
esearch

Q
uestion

M
otivation

Paper(s)

1
D

oes
the

m
easurem

ent
protocol

forthe
independentvariables

af-
fectthe

m
etric

values
produced?

Shepperd
[1995]

dem
onstrates

that
the

m
easurem

ent
protocolfordifferentm

etrics
can

affectthe
value

ofthe
m

etric.
Itis

possible
thata

change
in

m
etric

value
w

ill
im

pacton
the

ability
to

predictdefects
in

code.

[Paper
1]

[Paper
2]

C
ounsell,B

ow
es,and

H
all[2009]

2
Is

there
an

effective
m

ethod
for

deriving
the

dependentvariables
fordefectprediction?

B
eing

able
to

predictw
here

defects
are

likely
to

be
re-

quires
us

to
have

sam
ples

w
here

w
e

‘know
’

w
here

the
defects

are
in

orderto
be

able
to

assess
the

ability
ofde-

fectprediction
m

odels
to

predictdefects.T
his

question
addresses

the
problem

that
labelling

code
as

defective
ornotm

ay
introduce

noise
w

hich
m

ay
ham

perthe
abil-

ity
ofthe

learnerto
find

patterns
in

the
data.

[Paper
3]

3a
D

o
differentlearnershave

an
im

-
pact

on
the

perform
ance

of
de-

fectprediction
m

odels?

W
ith

each
new

m
achine

learning
technique,w

e
are

pro-
vided

w
ith

evidence
thattechnique

z
has

an
im

pacton
aspectY

.
Is

there
any

evidence
using

published
results

w
hich

dem
onstrates

that
different

approaches
are

im
-

proving
the

ability
to

predictdefects?
A

dditionally,are
som

e
datasets

producing
better

predictive
perform

ance
than

others
because

of
the

language
they

are
w

ritten
in

ortheirsize?

[Paper
4]

B
ow

es
and

H
all[2011]

[Paper
5]

B
ow

es,H
all,and

G
ray

[2013]

3b
D

o
differentdatasetshave

an
im

-
pacton

prediction
m

odels?

4
A

re
the

results
ofm

achine
learn-

ing
studies

reliable/trustw
orthy?

M
achine

learning
and

defect
prediction

practices
have

evolved
overtim

e.T
his

should
m

ean
thatm

odern
stud-

ies
include

all
of

the
‘good’

practices
and

the
results

should
be

‘better’.Is
there

any
evidence

thatthe
‘good’

practices
w

hich
are

know
n

to
im

prove
predictive

per-
form

ance
are

being
adopted?

[Paper
6]

K
ey:Papers

in
italics

are
included

in
the

m
ain

body
ofthis

dissertation.T
he

restofthe
papers

are
included

in
the

A
ppendix

because
they

assist
the

argum
entofm

y
thesis

and
Ihad

m
ade

a
contribution

tow
ards

them
.

1.5. Structure of this Dissertation 5

Methodological contribution
This dissertation makes one major methodological contribution for generating a common set of pre-
diction performance measures for binary classification predictions based on a wide range of measures
reported in different studies (see [Paper 5]). This means that the performance results of current defect
prediction studies can be compared even though they have not reported the same set of performance
measures. It enables researchers to decide which performance measures to report in their studies if they
want their results to be incorporated into a larger corpus of knowledge.

Practical contributions
This dissertation makes two minor practical contributions by providing two tools: (DConfusion see
[Bowes et al. 2013] in Appendix B) for recomputing the confusion matrix and (SLuRp see Bowes et al.
[2012a] in Appendix B) for carrying out a systematic literature reviews. The first tool allows other
researchers to check the consistency of their own results. The first tool also allows reviewers of defect
prediction research papers to validate the reported results. The second tool is a web based tool which
helps to manage the SLR process. SLuRp allows the reliable recording and moderation of researchers’
assessment of papers. SLuRp also integrates the tool for generating a common set of prediction perfor-
mance measures extracted from the papers.

Data contribution
The secondary data collected from published defect prediction studies is reported in [Paper 4]. The
dataset in [Paper 4] will allow researchers to study other factors such as the impact that research group
has on the performance on defect prediction studies.

1.5 Structure of this Dissertation
The thesis of this dissertation is derived from a set of published papers which have been peer reviewed.
Each paper makes a contribution to this dissertation by demonstrating either how different measure-
ment protocols lead to variation in the metrics they produce or how variation in the machine learning
approaches used impact on the predictive performance of defect prediction studies. The initial chapter
gives a background to defect prediction. Later chapters describe the contributions of the published work
to this dissertation.

The remaining part of this dissertation is organised as follows:

Chapter 2 gives an introduction to defect prediction and a brief summary of the current state of research
in defect prediction.

Chapter 3 describes how the different published papers contribute to answering the research questions
for this thesis. Chapter 3 ends with a description of my contribution to each paper. The contribution of
the co-authors of each paper is also included.

Chapter 4 provides the peer reviewed published papers. Chapter 4 is composed of six sections, one for
each of the main published papers.

Chapter 5 discusses the overall conclusion of the work and provides suggestions for future work.

Chapter 2

A Summary of Defect Prediction

2.1 Introduction

This chapter is a review of defect prediction. It describes what a defect is, and why we should be
interested in predicting where defects are. This chapter then details the data needed to build prediction
models and the process of building models and measuring model performance.

2.2 What is a Defect?

The definition of a defect is best described by using the standard IEEE definitions of error, de f ect and
f ailure [IEEE 1990]. An error1 is an action by a developer that results in a de f ect. A de f ect is the
manifestation of an error in the code whereas a f ailure is the incorrect behaviour of the system during
execution.

In summary: errordeveloper → defect→ f ailureruntime

2.2.1 What is the Purpose of Defect Prediction?

The practical purpose of defect prediction is to help identify modules of code which are defective by
highlighting those modules which are defect prone in order to remove defects and hopefully reduce fail-
ures2. When a failure is reported, programmers and/or testers may carry out manual inspection of the
source code to find the defect(s). Code review is an expensive process on large systems. Weyuker and
Ostrand estimate that on the large commercial systems they have studied, only 20% of a system can be
effectively reviewed at a time [Oram and Wilson 2010]. The amount of code which has to be manually
inspected can be reduced by using a variety of techniques. These techniques include program execution
traces, source code visualisation (including program slicing) and defect prediction. Execution traces can
help to identify the code running when the failure occurs and hence the code which is likely to be defec-
tive. Program slicing can reduce the code comprehension problem further by allowing programmers to
see the impact of code which leads up to a variable, and the impact a variable will have on future code
execution [Weiser 1981; 1979]. Defect prediction uses code features such as code complexity measures
to predict areas of code which are more likely to be defect prone. The purpose of defect prediction is
therefore to focus the programmer on potential hot spots in the code which are likely to contain defects.

1A developer error can also be defined as a mistake [IEEE 1990].
2The removal of a defect may not remove any failure, because the end user may not use the functionality provided by the

piece of code that was ‘fixed’

8 Chapter 2. A Summary of Defect Prediction

Correctly identifying hotspots should improve the efficiency of programmers fixing defects and therefore
improve the quality of the code.

2.2.2 What is Defect Prediction?
Defect prediction is the method of predicting where defects MAY be in a piece of code. When we talk
about a defect predictor we are usually talking about a set of formulas or rules which allow us to assess
how prone a unit of code is to having a defect in it.

There are three main components of defect prediction: the independent variables which describe the
code and what has happened to it (also known as the metrics), the dependent variable which describes
the defectiveness of the code (sometimes called the label) and the model which is used to associate the
independent variable to the dependent variable. The model is the part of the predictor which contains
the equations and/or rules for predicting the dependent variable from the independent variables. The
model is trained using historic data and an algorithm which derives the coefficients and decision rules.
A function which determines how well the model fits the provided data is also required in order to be able
to provide feedback to the trainer on how well the model fits the training data (see Fig 2.1). A prediction
function is used to predict dependent variables when presented with a set of independent variables from
a test set with known labels for the defectiveness of each item. A second error function may be used to
evaluate the performance of the model which can be used to compare one model against another. This
second function does not have to be the same as the first error function used during training. In summary,
the learner trains a model using training data, and the performance of the model is tested by predicting
the defectiveness of test data which has not been used in the training set. Keeping the training and test
data separate allows us to asses the ability of the model to predict future items with which the model has
not previously been presented with.

2.2.3 Code Defects

Not all defects are the same. The set of defects which result from errors during coding are a subset of
all possible defects which may cause a piece of software to fail. Defects can be characterised by where
they come from, for example: code, configuration settings, hardware settings etc. Basili and Selby
[1987] show that some defects are harder to find than others during testing. This suggests that some
defects never leave the production line and are caught before the product is released. The post-release
defects should have passed many of the tests created to trap defects before release and may therefore
have different characteristics to pre-release defects [Radjenović et al. 2013].

In this dissertation, I scope the definition of a defect to be: “in the source code”, because other defects
are related to factors over which I had no control and were not discussed while carrying out the original
studies reported in the main papers of this dissertation.

errorprogrammer → defect′code → f ailureruntime

The scope of this dissertation is limited to defects in code which the developer can modify. I intend
ignoring defects which are due to errors involving configuration files or any other settings for the soft-
ware including the absence of: supporting libraries, an appropriate operating system or hardware. It may
not however be possible to limit the scope of this dissertation to defects in code because much research
uses data derived from software systems which is not under the control of the researcher. Catal and Diri
[2009] report that 60% of defect prediction datasets are based on commercial software. Companies are

2.2. What is a Defect? 9

Figure 2.1: A Diagram Showing How Dependent and Independent Variables are used to Build and
Evaluate Models

reluctant to release source code for reasons of confidentiality and commercial advantage. Commercial
companies are however occasionally happy to provide the software metrics which have been computed
from the source code on the companies premises. For example, the NASA datasets3, currently located

3NASA datasets were originally available from http://mdp.ivv.nasa.gov.

http://mdp.ivv.nasa.gov

10 Chapter 2. A Summary of Defect Prediction

in the PROMISE repository4 , contain code metrics and the number of defects reported for closed source
systems. Without the original source code or a detailed description of the measurement protocol of the
closed source systems, it is not clear if the reported defects are code metrics or configuration defects.
Hence it is not always possible to restrict the definition of defects to defect′code

5.

2.3 Variables Used in Defect Prediction Studies

The aim of defect prediction is to predict if a module of code is defect prone. As described earlier, the
variables used to make the prediction (Lines of Code etc.) are called the independent variables and the
predicted variable (defective or not, or the number of defects) is called the dependent variable. Both sets
of variables need to be discussed further in order to be able to understand how they may impact on the
models built and the performance of the models.

For the purpose of brevity, this dissertation will be limited to discussing variables as being either discrete
or continuous. This is an oversimplification of variable types and the theory of scales of measurement
which was first proposed by Stevens [1946] and applied to software metrics by Fenton and Pfleeger
[1997], Fenton [1991], Kitchenham et al. [1995], Morasca and Briand [1997], Shepperd [1988] and
many others. Stevens [1946] proposed four types of measurement: nominal, ordinal, interval and ra-
tio. Nominal measurement identifies items as belonging to a group or category. Ordinal measurement
identifies items as belonging to a group, each of which can be placed in an order. Interval measurement
identifies items as belonging to a group, each group can be ranked and the intervals between groups are
the same. Ratio measurement is similar to nominal measurement with the added restriction that there
is a zero value. Nominal, ordinal and interval measures together form the discrete measures and ratio
measures form the continuous measures.

The measurement of software code was intensively studied during the 1970’s and the 1990’s by Baker
et al. [1990], Fenton and Pfleeger [1997], Fenton [1991], Halstead [1977], Kitchenham et al. [1995],
McCabe [1976], Morasca and Briand [1997], Shepperd [1988] and others. Baker et al. [1990] sum-
marises the debate about software measurement and proposed a distinction between software measures
and software metrics: metrics map the computed number to an ordering of the units, whereas measures
result in values which are understandable and interpretable and consistent across different measurement
protocols for the same measure. Baker et al. [1990] therefore allow length of a program to be considered
as a measure because we have an intuitive understanding of what it means, and the length of different
programs written in the same language can be compared and ordered. In this dissertation, I use the
term metric rather than measure because the things being computed do not have a well defined common
meaning. For example, in [Paper 2], we study how ‘code bad smells’ are identified and show that there
is not a common understanding of what is meant by some of the common code bad smells.

4PROMISE is a well know repository of data used for defect prediction studies. The PROMISE repository [Menzies et al.
2012] http://code.google.com/p/promisedata/ contains defect data for 40 projectsAs of 23/08/2012. Previous versions
of the repository can be found using Boetticher et al. [2007], Shirabad and Menzies [2005].

5In this dissertation, I have been able to use the restricted definition (defect′code) in [Paper 3] because the project being
studied was open source. [Paper 4] and [Paper 6] use the less restrictive definition because they are secondary studies.

http://code.google.com/p/promisedata/

2.4. Modelling Techniques 11

2.3.1 Independent Variables

Independent variables are the set of variables used as the input for a model to make a prediction. They
can be as simple as the number of Lines of Code, or as complicated as program slicing metrics such as
tightness6 [Weiser 1979]. The independent variables are not confined to those which can be computed
directly from the source code (sometimes referred to as static code metrics). Nagappan and Ball [2005]
use a feature of software development called ‘churn’ which describes the amount of change in the code
over time. Pinzger et al. [2008] describe how metrics based on the network of developers can be used to
successfully predict defects. Many different independent variables have been used in defect prediction
studies which are summarised in [Paper 4] and explained in detail in [Fenton and Pfleeger 1997].

2.3.2 Dependent Variables

The dependent variable, i.e. ‘defectiveness’ of the code being analysed, should be the output of defect
prediction models. The variable can either be continuous (the ‘number of defects’ is frequently used
by Weyuker et al. [2010]) or discrete (not defect prone or defect prone7). It is possible to convert a
continuous variable into a discrete variable by splitting the data into ranges. For example, Menzies et al.
[2007] binarises the NASA datasets into two ranges by labelling a module as not defect prone if the
number of defects reported is zero otherwise the module is labelled as defect prone.

The initial labelling of the defectiveness of a module of code is perhaps the most difficult part of ac-
quiring defect prediction data. There are many reasons which lead to defects being discovered in code
including: manual inspection of code, failure of a test, failure report in a defect tracking system. Code
inspection and test failure tend to happen pre-release and are dependent on developer effort. Identifica-
tion of a defect due to a failure report happens post-release by users. The number of post-release defects
will depend on how long the product has been released8 and the number and diversity of users using the
software. Latent defects will remain in the source code as long as either the failure is not reported or the
code is not executed.

2.4 Modelling Techniques

The modelling technique is the method of building a model which associates the independent variable
with the dependent variable. This allows a prediction of the unknown dependent variable of a new
instance to be made. There are many different techniques available. Some techniques can deal with
continuous data such as regression techniques and others can deal with categorical data such as Naïve
Bayes . This next section describes a subset of techniques used in defect prediction studies. The subset
of techniques presented here have been selected because they were used in the 36 studies identified in
[Paper 4].

6Program Slicing metrics are defined later in [Paper 1].
7Other discretisation systems have been employed, for example Khoshgoftaar et al. [2005] uses a three way classification

of {not defect prone | low defect prone | high defect prone}
8For consistency, Weyuker counts the number of defects found due to failures reported in the first two months.

12 Chapter 2. A Summary of Defect Prediction

2.4.1 Continuous Techniques

There are a number of techniques which can predict the number of defects. Predicting the number of
defects allows the developer to rank the modules by those which have the potential to have the most
defects. Weyuker reports the Pareto effect [Newman 2005] is common with 20% of files containing 80%
of defects [Oram and Wilson 2010, Chap. 9]. Weyuker also reports that inspecting 20% of the code is
achievable in large systems. Therefore, as a software engineering exercise, ranking the modules by the
number of defects and inspecting the top 20% is both practically achievable and likely to remove the
greatest number of defects.

For the rest of the discussion on modelling techniques I will use a dummy data set to explain some of the
techniques. The data is not real and has been constructed for demonstration purposes only. The data is
based on a hypothetical analysis of some JAVA code where we are trying to predict the defect proneness
of code by looking at the return type of a method and the number of parameters in the method signature.
The data is presented in Table 2.1.

Table 2.1: Demonstration Data Where Each Line is for a Method Labelled as Defective or Not with
Independent Variables: Method Return Type and Method Parameter Count.

RowId Return Type Parameter Count Defect Count
1 void 1 0
2 void 2 0
3 void 1 0
4 void 2 0
5 void 2 0
6 void 2 0
7 void 4 0
8 void 2 0
9 int 0 0
10 boolean 1 0
11 void 1 2
12 int 4 4
13 ArrayList 8 8
14 JFrame 0 100

2.4.1.1 Regression

Regression techniques are based on a single mathematical equation. The equation has the dependent
variable on one side and the independent variables on the other. A simple example of a regression model
would be:

D = c0 + c1 × PC (2.1)

Where D is the predicted number of defects, PC is the number of parameters passed to the method. c0
and c1 are constants and can be estimated using:

2.4. Modelling Techniques 13

c0 =
(
∑

D)(
∑

PC2) − (
∑

PC)(
∑

D × PC)
n(

∑
PC2) − (

∑
PC)2 (2.2)

c1 =
n(

∑
D × PC) − (

∑
PC)(

∑
D)

n(
∑

PC2) − (
∑

PC)2 (2.3)

Equations 2.2 and 2.3 produce values of c0 and c1 which minimise the following error function

S umsO f S quares =
∑

(PC − D)2 (2.4)

Multiple regression involves variables being added to the right of Equation 2.5 e.g.:

D = c0 + c1 × PC + c2 × r (2.5)

Where r is 1 if the return type is void and 0 if the return type is not void. The constants can be calibrated
to reduce the error by reformulating the above equation for each instance i of the training data:

Di = c0 + c1 × PCi + c2 × ri + εi (2.6)

Where ε is an error term for the particular instance. When i > v (v=the number of variables), it becomes
possible to determine the coefficients r0...rv by solving the set of simultaneous equations.

Negative Binomial Regression (NBR) is an especially useful regression technique for studies which use
the number of defects per module as the dependent variable [Oram and Wilson 2010, Weyuker et al.
2010]. NBR is based on linear regression but uses a log transformation of the dependent variable, i.e.
the log of the number of defects against the linear form from above, for example Equation 2.7.

loge (D) = c0 + c1 × PC + c2 × r (2.7)

2.4.1.2 Regression Decision Trees

Regression decision tree techniques are based on a simple tree model. A decision tree is composed of
nodes which contain decision logic. The decision may be made on a single attribute of the independent
data for example LOC > 4 which splits the data into different ranges. For each range the node will
either lead to another node or to a final decision for example 5 defects. A tree is used by presenting the
independent variables to the starting root node which then makes a decision. The attributes are passed
down to other nodes until a final decision is made.

Choosing the variable to split the data on is done by observing the standard deviation of the dependent
variable before the split and comparing it to the combined standard deviations of the data after the split
using one of the independent variables.

Equation 2.8 is the usual equation for calculating the standard deviation of the original population:

S (x) =

√√√
1
N

N∑
i=1

(xi − µ)2 (2.8)

14 Chapter 2. A Summary of Defect Prediction

Where

µ =
1
N

N∑
i=1

xi (2.9)

The combined standard deviation of the data after a potential split is calculated as follows:

S (T, X) =
∑
c∈X

P(c)S (c) (2.10)

Using the data from Table 2.1. S = 25.5730

If we split on the return type we get a standard deviation of 0.6898 (Table 2.2).

Table 2.2: Conditional Standard Deviation using Return Type

Return Type Probability Std.Dev. Combined
void 9/14 0.6285 0.4041
int 2/14 2.0000 0.2857

boolean 1/14 0.0000 0.0000
ArrayList 1/14 0.0000 0.0000
JFrame 1/14 0.0000 0.0000

Total 0.6898

Splitting the data on the number of Parameters>0, we get a standard deviation of 9.1783 (Table 2.3).

Table 2.3: Conditional Standard Deviation using Parameter Count

Parameter Count Probability Std.Dev. Combined
0 2/14 50.0000 7.1429
> 0 12/14 2.3746 2.0354

Total 9.1783

This shows that the standard deviation after splitting on Returntype is less than the standard deviation
after splitting on Parametercount. The lower standard deviation for Returntype indicates that it would
be better to split on Returntype than Parametercount because the items in the groups formed by splitting
on Returntype are more alike than items found in groups by splitting on Parametercount. When the data
can no longer be split, the average value of the dependent variable is reported.

2.4.2 Categorical Techniques

Sometimes we do not know the number of defects, we only know if the module is defective or not
defective. Fortunately categorical techniques can predict variables with values on the nominal scale. In
the case of defect prediction, this would be either not defect prone or defect prone. Many techniques
exist for solving this problem which are detailed below.

2.4. Modelling Techniques 15

2.4.2.1 Statistical Methods

Logistic regression is a technique which produces a probability that the output is either 0 or 1. It uses a
non linear equation based on the sigmoid function (see Equation 2.11).

g(z) =
1

1 + e−z (2.11)

The probability that the output is 1 is given by:

Pr[y = 1|x; θT] =
1

1 + e− f (x,θT)
(2.12)

Where f (x, θT) is an expression such as θ0 + θ1x1 + θ2x2 + θ3x3 and θT is a vector of constants and x is
a vector of variables with x0 = 1 (i.e. the intercept).

θT is found by repeatedly updating the coefficients using Equation 2.13 until the change in error after
updating the coefficients is less than a pre-determined threshold value.

θ′j := θ j + α

m∑
i=1

(f (X(i), θT) − Y (i))X(i)
j (2.13)

For clarity:
X is a vector of vectors of independent variables.
θ j is the j’th value of θ.
α is a constant which defines the learning rate.
m is the number of X vectors.
i is a variable to indicate which of the m vectors of X is being used.
Y is the label for the i’th vector.

Naïve Bayes is a statistical technique based in the probability theories of Thomas Bayes. It uses the
following probability equation:

Pr[H|E] =
Pr[E|H]Pr[H]

Pr[E]
(2.14)

Where Pr[H|E] means the probability of class H based on the probability of classes E.

Naïve Bayes assumes that the independent variables are independent of each other (which is rarely the
case) and that the presence of each independent variable has a different contribution to the probability
of each dependent category (from now on called the class9). A simple example will help at this point.
Consider the problem of predicting if a module is defective. We will use the data in Table 2.1 which
is further summarised Table 2.4 and Table 2.5. Note that Naïve Bayes can only deal with categorical
variables, therefore the count of the number of parameters has been binarised with a threshold of 3 or
more, and defectiveness has been binarised with a threshold of 1 or more indicating defectiveness.

If we have a new method with a return type of void and 5 parameters in the method call we do not know
Pr[E]. We can however compute the probability of the method being defective using Equations 2.15
and 2.16 resulting in Equations 2.17 and 2.18:

9Class and label are used interchangeably in this dissertation.

16 Chapter 2. A Summary of Defect Prediction

Table 2.4: Table of Methods Labeled as Defective or Not Based on the Return Type and Parameter
Count.

RowId Defective Return void Parameter count > 2
1 N Y N
2 N Y N
3 N Y N
4 N Y N
5 N Y N
6 N Y N
7 N Y Y
8 N Y N
9 N N N
10 N N N
11 Y Y N
12 Y N Y
13 Y N Y
14 Y N N

Table 2.5: Summary Table of Methods Labeled as Defective or Not Based on the Return Type and
Parameter Count.

Return void Parameter count > 2
Y N N Y

Defective
N 8 2 9 1 10
Y 1 3 2 2 4

9 5 11 3 14

likelihoodo f NOT De f ective =
8

10
×

1
10
×

10
14

= 0.03571 (2.15)

likelihoodo f De f ective =
1
4
×

2
4
×

4
14

= 0.05714 (2.16)

Probabilityo f NOT De f ective =
0.03571

0.03571 + 0.05714
= 0.38462 ≈ 38% (2.17)

Probabilityo f De f ective =
0.05714

0.03571 + 0.05714
= 0.61538 ≈ 62% (2.18)

Showing that the probability of a method with a void return and more than two parameters being de-
fective is 62%. On the balance of probability, we will predict this method as being defective. Naïve
Bayes does give us some idea of the certainty that the method will be defective which is lost in the final

2.4. Modelling Techniques 17

classification based on the balance of probability. Naïve Bayes uses categorical data for all variables
which is incompatible with LOC for example. This incompatibility is overcome by discretising none
categorical data.

2.4.2.2 Classification Decision Trees

Classification decision tree techniques are another example of a tree model. Classification decision
trees use InfoGain [Quinlan 1993] or Gini [Breiman et al. 1984] as the measure of how much a split is
better when using a particular variable to split the data on. There are many implementations of decision
classification decision tree techniques such as c4.5, J48, and rpart [Breiman et al. 1984, Quinlan 1993,
Witten and Frank 2002].

For the rest of this section we will consider c4.5 as our example. c4.5 is a tree technique developed by
Quinlan [1993]. c4.5 uses the measure called information entropy to decide which variable should be
used at a node to divide up the data. The variable which results in the highest InfoGain is used at a node
to split the data. InfoGain is the difference between the entropy of the original data and the conditional
entropy of the data using a particular variable. Information entropy is a measure of how uniformly
distributed different classes are in a population and was first proposed by Shannon and Weaver [1948].
For example, if we have a dataset with 10 instances and 5 are defective and 5 are not defective, the
entropy is 1. If all of the values are the same, entropy is 0. The formula for entropy is:

H(X) = −

n∑
j=1

p jlog2(p j) (2.19)

Consider the example data in Table 2.4, there are 10 none defective items and 4 defective items. The
entropy of this data is:

H(De f ective) = −
10
14

log2

(
10
14

)
−

4
14

log2

(
4
14

)
= 0.3467 + 0.5164 = 0.8631 (2.20)

If we decide to split the data into two groups using the Return is void variable, we get:

H(De f ective|ReturnIsVoid) = −
8
9

log2

(
8
9

)
−

1
9

log2

(
1
9

)
= 0.1510 + 0.3522 = 0.5033 (2.21)

H(De f ective|ReturnIsNotVoid) = −
2
5

log2

(
2
5

)
−

3
5

log2

(
3
5

)
= 0.5288 + 0.4422 = 0.9710 (2.22)

The conditional entropy is the combined entropy of the two groups formed by splitting the data using
the Return type variable. A low conditional entropy indicates that the groups are uniform, i.e. the items
in the group are similar to each other. For the Return type, the conditional entropy is given by:

H(De f ective|ReturnType) = 0.5033
(

9
9 + 5

)
+ 0.9710

(
5

9 + 5

)
= 0.6703 (2.23)

If we consider splitting the data using the Parameter count variable we get:

H(De f ective|ParameterCount ≤ 2) = −
9

11
log2

(
9
11

)
−

2
11

log2

(
2
11

)
= 0.2369 + 0.4472 = 0.6840

(2.24)

18 Chapter 2. A Summary of Defect Prediction

H(De f ective|ParameterCount > 2) = −
1
3

log2

(
1
3

)
−

2
3

log2

(
2
3

)
= 0.5283 + 0.3900 = 0.9183 (2.25)

The conditional entropy using Parameter count variable is given by:

H(De f ective|ParameterCount) = 0.6840
(
11
14

)
+ 0.9183

(
3
14

)
= 0.7342 (2.26)

InfoGain is a measure of how much information has been gained by splitting the data using a variable.
InfoGain is the difference between the original entropy (Equation 2.20) and the conditional entropy for
the variable (for example Equation 2.26).

In f oGain(ReturnType) = 0.8631 − 0.6703 = 0.1928 (2.27)

The InfoGain using Parameter count variable is given by:

In f oGain(ParameterCount) = 0.8631 − 0.7342 = 0.1289 (2.28)

This suggests that the best variable to split the data on is the Return type = void decision. Having split
the data, the above technique is applied to both sub groups until the entropy of the group is 0 or some
other stopping condition is met. This repetitive splitting is called recursive partitioning.

A c4.5 learner can also try to simplify the tree produced using a technique called pruning, so that there
are fewer branches or nodes with single items. c4.5 can use continuous independent variables by deter-
mining a threshold value of the variable to split on. J48 is a JAVA implementation of c4.5. J48 produces
the tree seen in Fig. 2.2 for the data found in Table 2.4.

Random ForestTM is an ensemble technique which uses a collection of decision trees [Breiman 2001].
The dataset for each tree is created using a technique called bagging. Bagging involves randomly select-
ing a subset of independent variables from the original data set and then randomly selecting instances
from the dataset with replacement. This creates a variety of models which perform differently for an
item of data drawn from the original dataset. When a new item of data is presented to the Random For-
est model, the predictions for each tree are aggregated together to form a collective decision. Random
Forest techniques have been shown to work well for defect prediction studies [Lessmann et al. 2008].

2.4.2.3 Other Techniques

Artificial Neural Networks (ANN) are a technique which use parallel decision units which take input
data and produce an output which may form the input of other decision units. A typical ANN uses a
unit called a perceptron as the decision unit. The input to a perceptron is multiplied by a coefficient
called a weight. The output of a perceptron is a function of the sum of the weighted inputs. An ANN is
trained by repeatedly presenting input data to the ANN and then adjusting the weights using a method
called back propagation. This is similar to the updating of coefficients described for logistic regression.
Different arrangements of networks exist, the most common is a feed forward network with three layers:
the input layer, the hidden layer and the output layer (see Fig. 2.3). It should be noted that the number
of perceptrons in the hidden layer can be altered. Altering the size of the hidden layer has been observed
to alter the ability of the network to predict the required outputs [Hertz et al. 1991]. The learning rate,
the momentum of learning and the number of times the data is presented to the network for learning
(epochs) are also known to have an impact on the ability to predict new items [Salehi et al. 1998].

2.4. Modelling Techniques 19

Figure 2.2: J48 Tree for the Simple Defect Data Found in Table 2.4.
The values in brackets e.g. (9.0/1.0) shows the number of items in the group and the number which are
incorrectly classified.

Figure 2.3: Layout of Perceptrons in a Fully Connected Feed Forward Artificial Neural Network.

20 Chapter 2. A Summary of Defect Prediction

Support Vector Machines (SVM) were developed by Vapnik [1963]. SVMs identify a separating plane
which maximises the ‘distance’ between the plane and the vectors which are closest to it for linear
separation problems. Boser et al. [1992] introduced the kernel trick which extended the capability of
SVMs to allow solutions for non-linear problems. The kernel trick uses different functions to map the
original data to a higher number of dimensions which when projected onto the original space form non
linear surfaces. Such tricks usually require hype-parameters, for example the radial base function has a
γ coefficient. Cortes and Vapnik [1995] extended the technique to allow the misclassification of some
items by adding a cost coefficient C. High values of C result in fewer training items being misclassified
by building a more complex model. SVMs work best when the coefficients for example C and γ (for
radial base kernel function) are optimised. Optimisation may involve a grid search which builds models
using a grid of C and γ values. Tabu searches [Glover 1989; 1990, Glover and McMillan 1986] have
been used with success recently to find the optimal coefficients for SVM coefficients [Corazza et al.
2010].

K-Nearest Neighbour (kNN) is a simple technique which takes the average label for the k nearest neigh-
bours. For continuous independent data the Euclidian distance is used to measure the distance from
the test item to the possible nearest neighbours. For categorical independent variables, the Hamming
distance can be used as a measure of distance. Producing a good kNN model requires finding the best
value of k which can be achieved by increasing the value of k from 1 to some maximum value.

2.5 Data Quality and Data Cleaning

Witten and Frank [2005] states that machine learning should be tolerant of noise in the data. Some
learners such as Naïve Bayes can make predictions in the presence of noise. It is possible to use this
argument that learners can cope with noise to justify ignoring the need for data cleaning. Recently,
Gray et al. [2012] identified noise in the NASA datasets which could not have been computed from the
raw data (for example 1.1 LOC) and should have been removed before being used in defect prediction
studies. NASA data has been used by over 30 different studies, with only one other study [Boetticher
2006] making any comment about the incorrect data items. Data cleaning and simply eye-balling the
data appears to have become a forgotten part of the researchers’ protocol. Gray et al. [2012] describes a
sensible approach to cleaning the static code metrics of datasets used for defect prediction.

2.6 Model Building Approaches
This section describes the approaches used to build models which will work on data which has not been
used to build the model. Model building approaches involve creating training and test data, as well as
dealing with issues such as data quality.

2.6.1 Building Generalisable Models

Building a model which can correctly label the training set is important, however good models should
have additional characteristics. Fenton and Neil [1999] describes the two aims of building prediction
models as 1) building models which will correctly predict ‘new’ data (generalisability) and 2) building
models which are understandable (comprehensibility). Some models are able to generalise the predic-
tion problem to correctly predicting modules they have never seen before. Building models which can
generalise well will depend on what data is used to train the model and what error function is used to

2.7. Issues of Model Building Specific to Machine Learning 21

determine how well the model performs and how the model is built [Gray 2013, Witten and Frank 2005].
Different leaners produce models of different comprehensibility. Decision trees are simple to interpret
and SVMs are difficult10.

Feature reduction is sometimes applied to the independent variables to simplify the learning process, to
remove highly correlated data and to build more generalisable models. Menzies et al. [2007] demon-
strated that it is possible to achieve relatively good performance on a highly reduced set of independent
variables. Feature reduction can be achieved by removing attributes which have a low entropy (see
Equation 2.19) and/or a high correlation with other independent variables.

2.6.2 Testing the Generalisability of Models

Testing the generalisability and hence the validity of a model involves testing it on some ‘new’ data. If
the model can continue to perform well on ‘new’ data it can be considered to have been able to generalise
the problem.

In software engineering, the new data could come from the next release of a software product [Weyuker
et al. 2010]. Using the next release to check the model is called cross-release validation.

Some researchers also assess the performance of their models on data from different system because they
want to know if a model is transferable to a wider range of environments. Testing models on different
systems is called cross project validation and in defect prediction rarely works well [Turhan et al. 2009,
Zimmermann et al. 2009].

The availability of data for performing cross project validation is has increased with the availability
of online repositories. The PROMISE repository has made available defect data from many different
systems which should allow cross project validation. Some datasets, for example, those for the Eclipse
JAVA IDE development tool are available for different releases allowing cross-release validation to take
place.

In the absence of data for different systems and different releases, it is possible to perform model val-
idation by splitting the entire dataset into folds (sets of instances) and keeping one fold as the test set
and the rest as the training set. This splitting of the data into folds in order to produce training and
testing sets is called n-fold cross validation (where n is the number of folds). Problems can occur when
forming the folds with highly imbalanced data. It is possible that some folds may not have any instances
of the minority class. Having no instances of a particular class causes problems when measuring the
performance of a model because the divisor of some measures is the total number of that class, hence
the performance measure has a divide by zero problem (see Table 2.9 for the formula for different per-
formance measures). To overcome this, the folds should have roughly the same distribution of each class
as the original population, i.e the folds are stratified.

2.7 Issues of Model Building Specific to Machine Learning

Machine learning techniques are affected by both internal settings and the charactersistic of the data they
are being trained on. The major issues are discussed below.

10The use of Support Vector Inductive Logic Programming combines SVMs with a technique called inductive logic pro-
gramming which allows the patterns within the SVM model to be interpreted.

22 Chapter 2. A Summary of Defect Prediction

2.7.1 Dealing with Datasets which are Unbalanced

Most datasets used by defect prediction studies have few instances of the defective class in them (i.e.
they are unbalanced). We would hope that this would be the case since defects are normally a bad thing.
If we look at the NASA datasets in Table 2.7 we can see that the percentage of defective instances
ranges from 0.4% in PC2, to 48.8% for KC4. The imbalance of most datasets changes after cleaning
(see Table 2.7). Unfortunately the lack of instances which are labelled as defective does not help the
learner. The learner c4.5 is thought to struggle with imbalanced data ([Japkowicz and Stephen 2002]
and [Liu et al. 2010]) and this may explain the poor performance of models found in Arisholm et al.
[2007; 2010]. For techniques which are sensitive to imbalanced datasets, there are two ways of making
the training set11 more balanced. These include under-sampling the majority class or oversampling the
minority class. Under-sampling involves selecting all items from the minority class and then randomly
picking the same number of items from the majority class. Over-sampling involves synthetically
creating extra examples from the minority class. SMOTE is an over-sampling technique which creates
new items from the minority class by taking two ‘close’ items a third synthetic item with independent
variable values which lie between the independent variables of the two items [Chawla et al. 2002].

2.7.2 Machine Learning Model Optimisation

Model optimisation is the process of finding the set of parameters for a learner which achieves a good
predictive performance on the training set (for example the cost coefficient of SVMs needs to be opti-
mised for different datasets Gray et al. [2010]) . During model optimisation, the algorithm which trains
the model has to ‘know’ what is good performance and what is bad performance. Model optimisation
algorithms search for models which minimise an error function such as Mean Magnitude of Relative
Error (Equation 2.30) for continuous dependent variables or Accuracy (Equation 2.31) for categorical
dependent variables. Different error functions can be used depending on the purpose of the model. Some
error functions are not always appropriate. Miyazaki et al. [1994] show that MMRE is lower for models
which underestimate, and Foss et al. [2003] show that MMRE can lead to counterintuitive examples.
Lokan [2005] studied different error functions and concluded that functions which minimise actual error
perform better than functions which minimise relative error. Port and Korte [2008] show that MMRE
(see Equation 2.30) is more sensitive to outliers than PRED (see Equation 2.32) as a measure of er-
ror. Accuracy (see Equation 2.31) should not be used as an optimisation function with imbalanced data
because good values of accuracy can be achieved by simply predicting the majority class. A model opti-
mised for Recall can be produced by making every prediction the preferred class (e.g. defective). Recent
work by Shepperd [2013]12 would recommend using Mathews Correlation Coefficient (MCC see Table
2.9) as a measure of model accuracy because it is less biased to measuring the predictive capability on
a particular class. Rezwan et al. [2013] also show that a binary classifier achieves better results when
optimised on the same performance measure that will be used for the final performance measure.

MRE =
|yi − prediction(xi)|

yi
(2.29)

11Only the training set needs to be adjusted, because the performance of the final model should be representative of the
original data.

12The recent work by Shepperd [2013] is based on the data we have extracted from [Paper 4]. Both Myself and Tracy Hall
have worked with Martin to formulate the usefulness of MCC.

2.7. Issues of Model Building Specific to Machine Learning 23

Technique Coefficients to Tune
Naïve Bayes Can be used without setting any initial coefficients.
Random Forest Depth of Tree and min nodes per leaf
SVM C and γ
kNN k the number of nearest neighbours

Neural Networks
The number of nodes in each hidden layer, the number of hidden layers,
the level of connectivity between layers.

Table 2.6: Hyper-Parameters for Some Learners.

MMRE =
1
N

N∑
i=1

(
|yi − prediction(xi)|

yi

)
(2.30)

Accuracy =
itemscorrect

N
(2.31)

2.7.3 Model Tuning

In order to produce good performance, some learners need tuning. Some learners (SVMs, RandomFor-
est) have hyper-parameters which can be altered and will affect the ability to effectively learn a particular
data set. Tuning involves searching for the best hyper-parameters either in a systematic manner for ex-
ample a grid search or some other way such as a Tabu search [Corazza et al. 2010]. During the search,
the training data is split into folds. Each fold is then used in turn as a validation fold, with the other
folds being used to train a learner with a set of hyper-parameters. The performance on each validation
set is then measured and averaged for all validation folds. The hyper-parameters which produce the
highest average performance (or least error) are then chosen to build a model on the entire training set.
Algorithm 1 is taken from Rezwan et al. [2013] and succinctly describes a typical tuning setup for a
SVM. Note that in the algorithm, data items which have the same values for the independent variables
but different labels for the dependent variable13 are removed because they hinder SVMs in their ability
to produce a suitable separating hyperplane. Table 2.6 describes some of the meta-parameters which can
be altered for different learners.

2.7.4 Reordering the Training Data

Some learners will produce different results with the same dataset because the order in which the items
are presented to the learner will affect the model. Witten and Frank [2005] report that the clusters
produced for the famous Iris (plants) dataset are highly dependent on the ordering of the items presented
to the learner. It is therefore common for the training set to be reordered after creating the training and
testing sets from the different folds (as seen in Algorithm 1).

13Due to mislabelling or the absence of information in the metrics which explains the difference in labels.

24 Chapter 2. A Summary of Defect Prediction

Algorithm

Remove all inconsistent and repeated data points;
Split the data into two-third training from the new data set, one-third test from the original data set.
Split the training data into 5 partitions;
This gives 5 different training (four-fifth) and validation (one-fifth) sets. The validation set is drawn
from the original data set;
Use sampling to produce more training sets with equal numbers of each class;
for each pair of C/γ SVM hyper-parameters do

for each of the 5 training sets do
Train an SVM;
Measure performance on the corresponding validation set, exactly as the final test will be
measured. So use the Performance Measure, after the predictions on the validation set have
been filtered;

end
Average the Performance Measure over the 5 trials;

end
Choose the hyper-parameter C/γ pair with the best average Performance Measure;
Pre-process the complete training set and train an SVM with the best C/γ combination Test the trained
model on the unseen test set;
Post-processing the final prediction ;
Algorithm 1: Finding the best hyper-parameters with modified cross-validation method taken from
[Rezwan et al. 2013].

Table 2.7: Summary Statistics for NASA Datasets before Cleaning

Dataset Language
Total

KLOC

No. of
Mod-

ules
(pre-

cleaning)

No. of
Mod-

ules
(post-

cleaning)

%Loss
Due to

Cleaning

%Faulty
Modules

(pre-
cleaning)

%Faulty
Modules

(post-
cleaning)

CM1 C 20 505 503 0.4 9.5 9.3
KC1 C++ 43 2109 1843 12.6 15.4 16.3
KC3 Java 18 458 456 0.4 9.4 9.2
KC4 Perl 25 125 116 7.2 48.8 50.0
MC1 C & C++ 63 9466 9171 3.1 0.7 0.4
MC2 C 6 161 159 1.2 32.3 32.1
MW1 C 8 403 396 1.7 7.7 7.1
PC1 C 40 1107 1094 1.2 6.9 6.4
PC2 C 26 5589 5360 4.1 0.4 0.4
PC3 C 40 1563 1554 0.6 10.2 10.0
PC4 C 36 1458 1396 4.3 12.2 12.6
PC5 C++ 164 17186 15278 11.1 3.0 3.1

2.8. Measuring the Performance of a Model 25

2.8 Measuring the Performance of a Model

Having produced a model on a dataset, we would like to know how it performs on ‘new’ data. Cross-
validation described earlier provides a mechanism for providing the ‘new’ test sample, but does not
give us an indication of the performance. Measuring the performance of a learner on the test set is
an important aspect of defect prediction because it gives us some idea of how good a model/technique
is on a particular dataset. The performance measures which have commonly been used in the past to
measure model performance can be categorised into two groups based on whether the dependent variable
is continuous or categorical.

Continuous performance measures are usually based on the difference between the value of the predic-
tion and the original label. MMRE described earlier (Equation 2.30), measures the relative error on
values from a ratio scale. Foss et al. [2003] suggests other measures such as PRED(N) are also affected,
they recommend using residual sum of squares as a less biased performance measure.

PRED(n) =
1
T

T∑
i=1

1 , if MREi ≤
n

100
;

0 , otherwise;
(2.32)

2.8.1 Measuring the Performance of Categorical Prediction Models

Categorical performance measures describe the level of agreement between the labelled value and the
predicted value. Unlike with continuous variables, there is either a match between what was expected
or not which can be best described in a confusion matrix. For binary classification, a confusion matrix
is composed of a two by two grid with the following labels : TP, TN, FP and FN.

True Positives (TP) is the number of items where the actual label is the true class (defective) which is
the same as the prediction.

True Negatives (TN) is the number of items where the actual label is the false class (not defective) which
is the same as the prediction.

False Positives (FP) is the number of items where the actual label is the false class and the model
predicted the positive class.

False Negatives (FN) is the number of items where the actual label is the true class and the model
predicted the negative class.

Table 2.8 summarises the confusion matrix for binary classification.

Table 2.8: A Binary Confusion Matrix

observed true observed false
predicted true TP FP
predicted false FN TN

From the confusion matrix, it then becomes possible to compute a range of compound performance
measures which are described in Table 2.9. Some of the frequently used compound performance mea-

26 Chapter 2. A Summary of Defect Prediction

sures will be briefly described in relation to defect prediction. A note of caution is required at this point
because computing the confusion matrix can be achieved in different ways during cross-validation. For-
man and Scholz [2010] describes how some tools compute the compound performance measure for each
fold and then average the performance measures, compared to adding up all of the instances into a sin-
gle confusion matrix and computing a single compound performance measure from the final confusion
matrix.

Some common performance measures are described below:

• Accuracy is the ratio of the correctly predicted items compared to the total number of items.

• Recall is a measure of how many defects were correctly identified.

• Precision is a measure of how good the prediction of defective classes is.

• F-measure is the harmonic mean of precision and recall.

• Matthews Correlation Coefficient is a compound performance measure which includes all quad-
rants of the confusion matrix and is not biased towards an understanding of the defective class. It
can have a statistical interpretation as χ2 = N × (MCC)2 where N is the number of instances in
the data set.

2.8. Measuring the Performance of a Model 27

Table 2.9: Compound Performance Measures from a Binary Confusion Matrix

Measures Defined As

Accuracy (a) / Correct Classification Rate (CCR)
T P + T N

T P + T N + FP + FN

Error Rate
FP + FN

T P + T N + FP + FN

Recall (r)/ True Positive Rate / Sensitivity /

Probability of Detection (pd)

T P
T P + FN

True Negative Rate / Specificity (spec)
T N

T N + FP

False Positive Rate / Type I Error Rate (t1)/
Probability of False Alarm (pf)

FP
T N + FP

False Negative Rate / Type II Error Rate (t2)
FN

FN + T P

Precision (p)
T P

T P + FP

F-Measure / F-Score
2 × Recall × Precision

Recall + Precision
=

2T P
2T P + FP + FN

Balance 1 −

√
(0 − p f)2 + (1 − pd)2

√
2

G-mean
√

Recall × Precision

Matthews Correlation Coefficient (MCC)
T P × T N − FP × FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

28 Chapter 2. A Summary of Defect Prediction

2.9 Summary of Techniques

To summarise, the data for defect prediction can be both categorical and/or continuous. Depending on
the type of data a range of models can be built using either statistical or machine learning techniques.
Table 2.10 summarises the techniques and data type for building defect prediction models.

2.10 Conclusion

There are many possible ways of performing defect prediction. Menzies [2011] describes the many
defect prediction studies reported in [Paper 4] as permutations of solving which combination of
model × dataset × metrics performs ‘best’. To some extent, I agree that many studies are trying to
find the best combination of model × dataset × metrics, however, there is little discussion of the mea-
surement protocols for capturing the data in the first place; the calibration of the measurement protocols
for defect prediction; the contribution of the different good practices that should take place in binary
defect prediction classification using n-fold cross validation. It is evident that many of the 208 studies
reported in [Paper 4] have not reported adequately the measurement protocols or the contextual infor-
mation which is needed for other researchers to be able to interpret the reported results in the context of
other results. It is therefore appropriate that this thesis explores measurement protocols and the adoption
of good practices in defect prediction studies.

2.10. Conclusion 29

Ta
bl

e
2.

10
:S

um
m

ar
y

of
D

ef
ec

tP
re

di
ct

io
n

M
od

el
lin

g
Te

ch
ni

qu
es

.

Te
ch

ni
qu

e
St

at
is

tic
al

or
M

ac
hi

ne
L

ea
rn

in
g

In
de

pe
nd

en
t

V
ar

ia
bl

e
Ty

pe
s

D
ep

en
de

nt
V

ar
ia

bl
e

Ty
pe

s
C

om
m

en
t

L
in

ea
rR

eg
re

ss
io

n
St

at
is

tic
al

3
1

A
si

m
pl

e
te

ch
ni

qu
e

w
hi

ch
ha

s
be

en
w

id
el

y
us

ed
fo

r
m

an
y

ye
ar

s
an

d
ha

s
w

el
l

de
fin

ed
ch

ar
ac

te
ri

st
ic

s.
It

ha
s

th
e

ad
va

nt
ag

e
th

at
m

an
y

te
ch

ni
qu

es
ha

ve
be

en
de

ve
lo

pe
d

to
te

st
th

e
st

at
is

tic
al

si
g-

ni
fic

an
ce

of
th

e
m

od
el

s
pr

od
uc

ed
.

N
eg

at
iv

e
B

in
om

ia
lR

eg
re

ss
io

n
St

at
is

tic
al

3
1

A
te

ch
ni

qu
e

us
ed

w
he

n
th

e
de

pe
nd

en
tv

ar
ia

bl
e

re
pr

es
en

ts
co

un
t

da
ta

su
ch

as
th

e
nu

m
be

ro
fd

ef
ec

ts
.

L
og

is
tic

R
eg

re
ss

io
n

St
at

is
tic

al
3

2
A

st
at

is
tic

al
te

ch
ni

qu
e

fo
rd

ea
lin

g
w

ith
da

ta
w

he
re

th
e

de
pe

nd
en

t
va

ri
ab

le
ca

n
be

pl
ac

ed
in

on
e

of
tw

o
ca

te
go

ri
es

.

R
eg

re
ss

io
n

D
ec

is
io

n
Tr

ee
St

at
is

tic
al

3
1

A
te

ch
ni

qu
e

w
hi

ch
pr

od
uc

es
ru

le
ba

se
d

de
ci

si
on

s
w

hi
ch

in
so

m
e

ca
se

s
m

ay
be

ea
si

ly
in

te
rp

re
ta

bl
e.

N
aï

ve
B

ay
es

St
at

is
tic

al
2

2
A

si
m

pl
e

te
ch

ni
qu

e
fo

rd
ea

lin
g

w
ith

ca
te

go
ri

ca
ld

at
a.

C
la

ss
ifi

ca
tio

n
D

ec
is

io
n

Tr
ee

s
M

ac
hi

ne
L

ea
rn

in
g

3
2

A
te

ch
ni

qu
e

ba
se

d
on

in
fo

rm
at

io
n

th
eo

ry
w

hi
ch

pr
od

uc
es

ru
le

s
fo

ra
tr

ee
w

ith
ca

te
go

ri
ca

ld
ep

en
de

nt
va

ri
ab

le
s.

R
an

do
m

Fo
rr

es
t

M
ac

hi
ne

L
ea

rn
in

g
3

2
A

n
en

se
m

bl
e

of
de

ci
si

on
tr

ee
s

w
hi

ch
ha

s
sh

ow
n

to
pr

od
uc

e
go

od
ge

ne
ra

lis
ab

le
m

od
el

s.

Su
pp

or
tV

ec
to

rM
ac

hi
ne

M
ac

hi
ne

L
ea

rn
in

g
3

2
A

te
ch

ni
qu

e
w

id
el

y
us

ed
in

m
ac

hi
ne

le
ar

ni
ng

w
hi

ch
pr

od
uc

es
go

od
re

su
lts

w
he

n
tu

ne
d.

A
rt

ifi
ca

lN
eu

ra
lN

et
w

or
ks

M
ac

hi
ne

L
ea

rn
in

g
3

3
A

m
ac

hi
ne

le
ar

ni
ng

te
ch

ni
qu

e
ba

se
d

on
th

e
co

nc
ep

to
fa

bi
ol

og
i-

ca
ln

eu
ro

ne
.S

om
e

su
cc

es
s

ha
s

be
en

ac
hi

ev
ed

w
ith

th
is

te
ch

ni
qu

e
bu

tr
eq

ui
re

s
tu

ni
ng

fo
rg

oo
d

re
su

lts
.

K
ey

:V
ar

ia
bl

e
Ty

pe
s:

1
=

ca
te

go
ri

ca
l,

2
=

co
nt

in
uo

us
an

d
3

=
bo

th

Chapter 3

Contribution of Papers

3.1 Introduction

In this chapter I summarise the work that has been published by myself which supports my thesis that
there are many factors which affect the performance of trainable models for software defect prediction.
The motivation for most of the papers is derived from the work carried out as part of an EPSRC funded
project (EP/E055141/1) which set out to determine if program slicing metrics can reliably predict defects
in code. Some of the additional papers relating to the EPSRC funded work are included in Appendix B
because they may help to answer interesting questions raised by the main published work.

The published work is described in the following sections. In Section 3.2 I describe the work which
relates to determining the variation in independent variables as a result of using different measurement
protocols. In Section 3.3 I describe the work which relates to the variability in the dependent variable
by studying the most accurate way of labelling a module as defective or not. In Section 3.4 I outline
a secondary empirical study which investigates the factors which affect the performance of defect pre-
diction models reported by different published defect prediction studies. In Section 3.5 I describe a
meta-analysis of the defect prediction approaches which have been reported by defect prediction studies
which have used the NASA datasets. In Section 3.6 I describe my contribution and the contribution of
my co-authors to each paper.

3.2 RQ1: Does the measurement protocol for the independent variables
affect the metric values produced?

Two main papers are included in this section which relate to RQ1.

[Paper 1] Bowes D, Counsell S, Hall T (2008) Calibrating program slicing metrics for practical
use. Proceedings of TAIC PART, Windsor, UK

[Paper 2] Bowes D, Randall D, Hall T (2013) The Inconsistent Measurement of Message Chains.
In: Proceeding of the 4th international workshop on Emerging trends in software metrics,
ACM (accepted paper)

The two papers were motivated by studies we have been carrying out related to defect prediction.
The first paper was motivated by the need to compute program slicing metrics as part of the EPSRC
(EP/E055141/1) funded project. The aim of the EPSRC funded project was to establish if program slic-
ing metrics could be used to predict the defectiveness of modules. The hypothesis that program slicing
metrics could be used to predict defects was first described by Black et al. [2006].

32 Chapter 3. Contribution of Papers

The first [Paper 1] is a short paper which tried to replicate the program slicing metric values of Meyers
and Binkley [2007]. [Paper 1] addresses RQ1 by computing metrics using 15 different measurement
protocols.

[Paper 1] shows that when computing program slicing metrics, the metric values vary depending on
the protocol used. This is confirmed in Bowes et al. [2011] which shows that without knowing the
protocol used, it can be difficult to replicate the work of other researchers. Reproducing the results
or even the protocols of others is not a new phenomenon. Kitchenham et al. [1990] also describes
difficulties in replicating the protocol for measuring Henry and Kafura information flow metrics because
the description of the metrics were ambiguous and some of the count data that the metrics depend on
were difficult to obtain manually. Kitchenham et al. [1990] had already described the need to report fully
the measurement protocol for acquiring independent variables.

We can conclude that the measurement protocol does affect the metric values. During the 3rd CREST
workshop1 I presented defect prediction results using program slicing metrics computed using different
protocols. The results (see Appendix B.2) show that the different protocols appear to impact on the
predictive performance which can be achieved.

The second paper is motivated by an ongoing piece of research into the relationship between ‘code bad
smells’ (described by Beck et al. [1999]) and defects in code as reported by Zhang et al. [2011]. The
second, [Paper 2] studies the protocols for identifying the bad smell called ‘message chains’2. The aim
of this work was to try to define how to identify message chains in code. [Paper 2] demonstrates that
there is little agreement between three different protocols for measuring the presence of code bad smells.
The lack of agreement between techniques for identifying bad smells demonstrates that researchers need
to come to some agreement about how concepts are defined if they are to be measured. The contribution
of [Paper 2] to my thesis is that when different protocols are used for detecting code bad smells, the
profile of modules which are labelled as having a bad smell will be different.

There are three supporting papers for RQ1:

Counsell S, Bowes D, Hall T (2009) Cohesion Metrics: The Empirical Contradiction. In: The Psychol-
ogy of Programming Interest Group, Open University.

Bowes D, Hall T (2010) Using program slicing data to predict code faults. In: The 3rd CREST Open
Workshop, KCL.

Hall T, Bowes D (2011) Issues of consistency in defining slices for slicing metrics: ensuring compara-
bility in research findings. In: The 10th CREST Open Workshop, UCL.

Counsell et al. [2009] shows that cohesion metrics for a function based on program slicing improve over
different releases. This was not what we had expected because Izurieta and Bieman [2008] describes
how good design patterns acquire ‘grime’ during the development of a program. The addition of ‘grime’
is likely to have a negative impact on code cohesion.

The results of our program slicing work was also presented at two CREST workshops: Bowes and Hall
[2010] and Hall and Bowes [2011]. The second presentation was a pre-cursor to Bowes et al. [2011].
During Bowes and Hall [2010] we repeated the findings of [Paper 1]. Bowes and Hall [2010] also

1http://crest.cs.ucl.ac.uk/cow/3/
2Fowler and Beck [1999] identified 22 patterns in code which they identified as poor ‘quality’. Message Chains are usually

identified by a long list of getThis() method calls.

http://crest.cs.ucl.ac.uk/cow/3/

3.3. RQ2: Is there an effective method for deriving the dependent variables for defect
prediction? 33

included a report that the ability to predict defects depended on the choice of variables used to compute
the program slicing metrics. The relationship between program slicing metrics and defects presented
in [Bowes and Hall 2010] are preliminary because the open source project chosen (Barcode) was very
small and provided fewer than 200 items on which to build a defect prediction model.

3.3 RQ2: Is there an effective method for deriving the dependent vari-
ables for defect prediction?

One main paper is included in this section which relates to RQ2.

[Paper 3] Hall T, Bowes D, Liebchen G, Wernick P (2010a) Evaluating three approaches to
extracting fault data from software change repositories. In: International Conference on
Product Focused Software Development and Process Improvement (PROFES), Springer, pp
107–115

Collecting reliable dependent variable data is essential to building defect prediction models. Collecting
such data requires identifying or labelling units of code as defective or not. The problem of labelling
modules as defective or not was a critical problem in our EPSRC funded project which was trying to
establish if program slicing metrics could be used to predict defects. If we were to be able to use program
slicing metrics to predict defects, we needed a dataset which contained a set of modules which had been
correctly labelled as defective or not. In [Paper 1] we had already identified Barcode as an open source
project that we could compute program slicing metrics from. The work in [Paper 3] contributes to the
EPSRC funded project by trying to establish the most effective way of automatically labelling modules
as defective or not. [Paper 3] investigates the techniques used to label a change in code as either defect
fix or enhancement. Being able to determine if a change is a fix or an enhancement allows us to establish
changes where the code before hand was defective and the code afterwards was not defective (or at least
less defective because the code may still contain other defects which have not yet been fixed). [Paper 3]
evaluates three different approaches which had been used previously by other researchers. [Paper 3]
was part of a trial, with the assumption that once we had found an effective way of labelling modules as
defective or not, we could then apply it to other larger open source projects.

In [Paper 3] we tried to identify the types of changes (i.e. defect fix or enhancement) that occurred to
code by developers. If we could identify the type of change, we would be able to identify releases of
code which had been defective which were now not defective. [Paper 3] used three different techniques
for identifying the type of code change: manual inspection, analysis of commit messages and the num-
ber of changes per commit. The conclusion of [Paper 3] is that no two techniques analysed had a high
agreement with each other for identifying the type of change. Although this was a disappointing conclu-
sion because we again had a low confidence in the accuracy with which changes were labelled, we again
realised that it is important to report the protocol for measuring the technique for labelling code change
types. Finding the change type has been an ongoing problem. Śliwerski et al. [2005] first proposed an
automated technique for labelling modules as defective or not based on identifying the change types of
a commit. Recently, Bird et al. [2009] re-implemented the protocol in [Śliwerski et al. 2005] and were
able to discover more changes that were defects. The results of [Bird et al. 2009] indicate that the defect
datasets made available by Zimmerman et al.3 may contain a relatively high proportion of items which
are incorrectly labelled.

3http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/

http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/

34 Chapter 3. Contribution of Papers

During the 3rd CREST workshop4 I presented a second set of results which predict what type of code
change5 had occurred using program slicing metrics as the independent variable. The results (see Ap-
pendix B.2) show that the values produced by different protocols for computing the program slicing
metrics do impact on the ability to predict defect fixing changes. The results in Appendix B.2 were in-
teresting because they show that for some protocols there is an apparent large difference in the accuracy
of predicting the change type. The discrepancy in being able to predict the change type may be due to an
interesting relationship between the variables used to form the program slices and the types of changes
identified by the different techniques for labelling the changes. Statistical analysis of the differences
were not carried out because of a lack of data and because the data was based on a single project. Per-
forming a replication study which would allow statistical analysis of the relationship between program
slicing metrics and change type is the subject for future work.

The conclusion that we come to is that there is no single effective approach for identifying defective
units of code using version control systems and source code and so the dependent variables used in
defect prediction studies are likely to be unreliable.

3.4 RQ3: Which factors (dataset, learner) affect the performance of de-
fect prediction studies?

Two main papers are included in this section which relate to RQ3.

[Paper 4] Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature re-
view on fault prediction performance in software engineering. Software Engineering, IEEE
Transactions on 38(6):1276 –1304

[Paper 5] Bowes D, Hall T, Gray D (2012b) Comparing the performance of fault prediction
models which report multiple performance measures: reconstructing the confusion matrix.
In: Proceedings of the 8th International Conference on Predictive Models in Software
Engineering.

Best Paper in Conference Award.

The work in [Paper 4] was motivated again by the EPSRC funded project into establishing the ability
of program slicing metrics to predict modules which are defect prone. The aim of the [Paper 4] was
to identify from published studies, the learners and datasets which had resulted in good predictive per-
formance results. The aim was to compute program slicing metrics for the datasets identified and then
to use the same learners to see if program slicing metrics could improve on the predictive performance
which had already been achieved.

[Paper 4] addresses the issue of comparing the performance of different defect prediction studies. The
aim of this paper is to investigate how the context of models, the independent variables used, and the
learners influence the performance of fault prediction models.

The analysis in [Paper 4] shows that there are many factors which are impacting on the predictive per-
formance of defect prediction studies. Notably, the type of independent variables used has an impact on
the predictive performance as does the data used. The type of classifier appears to have less of an impact

4http://crest.cs.ucl.ac.uk/cow/3/
5A code change was either classified as a defect fix or an enhancement.

http://crest.cs.ucl.ac.uk/cow/3/

3.5. RQ4: Are the results of machine learning studies reliable/trustworthy? 35

on the predictive performance, with simple techniques tending to perform as well as complicated tech-
niques. The results of Lessmann et al. [2008] are in general agreement with respect to which classifier
does best. It should be noted that some classifiers which require extensive tuning (such as SVMs) are
reported to perform less well even though in other disciplines, this is not the case.

[Paper 5] addresses the issue of being able to convert the performance measures reported in studies to a
common comparable set of performance measures. The aim of this paper is to demonstrate the ability to
re-compute the confusion matrix. This paper also reports inconsistencies in the performance measures
of published papers. [Paper 5] supports [Paper 4] by showing that the results of some studies are not
correctly presented (notably Elish and Elish [2008]) which can then be used to demonstrate that SVMs
are not performing well when no tuning is carried out. [Paper 5] also demonstrates that results reported
by studies need to be validated, either by checking that values reported are possible or by replication of
the original studies.

There are three supporting papers for RQ3:

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011a) Developing fault-prediction models: What
the research can show industry. Software, IEEE 28(6):96 –99

Bowes D, Hall T, Beecham S (2012a) SLuRp: a tool to help large complex systematic literature reviews
deliver valid and rigorous results. In: Proceedings of the 2nd international workshop on Evidential
assessment of software technologies, ACM, pp 33–36

Bowes D, Hall T, Gray D (2013) Dconfusion: A technique to allow cross study performance evaluation
of fault prediction studies. Automated Software Engineering Journal (In Review)

[Bowes et al. 2012a] describes the tool SLuRp which was built in order to reliably collate the data for
[Paper 4]. [Hall et al. 2011] is a paper published in IEEE Software which summarises the findings
of [Hall et al. 2012] for practitioners. [Bowes et al. 2013] is an extended version of [Paper 5] which
demonstrates the reliability of the recomputation technique from the results of m × n cross validation
experiments.

3.5 RQ4: Are the results of machine learning studies reliable/trustwor-
thy?

One main paper is included in this section which relates to RQ4.

[Paper 6] Hall T, Bowes D (2012) The state of machine learning methodology in software fault
prediction. In: Machine Learning and Applications (ICMLA), 2012 11th International Con-
ference on, vol 2, pp 308 –313

This last section includes one published paper [Paper 6]. While working on [Paper 4], we realised that
many different machine learning approaches were being used by researchers when carrying out machine
learning experiments (for example did the researchers deal with imbalanced data or was feature reduction
performed?). [Paper 6] analyses the machine learning approaches described in a subset of 21 papers
from [Paper 4] which had used only the NASA datasets. We had assumed that more good approaches

36 Chapter 3. Contribution of Papers

would be included as the year of publication increased. It is already known that some of the approaches
will affect the performance of classifiers [He and Garcia 2008, Japkowicz and Stephen 2002, Kohavi
et al. 1995], so the presence or absence of these approaches will affect the predictive performance of
defect studies.

We found that recent studies were not systematically using good machine learning approaches.

It was clear that a few papers [He and Garcia 2008, Liebchen and Shepperd 2008, Menzies et al. 2007]
were using the majority of good approaches, however, the other 18 studies that were analysed did not do
as well.

The absence of key machine learning approaches (for example n-fold cross validation, feature reduc-
tion, data cleaning, dealing with imbalance) will have an effect on the predictive performance of defect
prediction studies [He and Garcia 2008, Japkowicz and Stephen 2002, Kohavi et al. 1995]. I therefore
conclude that the presence and absence of approaches used in defect prediction will be having an effect
on predictive performance.

[Paper 6] demonstrates that the approaches themselves are factors which may affect the performance
of trainable models for software defect prediction. The impact of these factors on the predictive perfor-
mance of defect prediction studies is an ongoing piece of research.

3.6 Summary of my Contribution to each Main Paper

Paper 1: Calibrating program slicing metrics for practical use.

Bowes D, Counsell S, Hall T (2008) Calibrating program slicing metrics for practical use. Pro-
ceedings of TAIC PART, Windsor, UK

I formulated the methodology and collected the entire data-set. I wrote the initial draft of the paper.
Tracy Hall provided direction for the work. Steve Counsell and Tracy Hall assisted in the analysis and
write up of the published work.

Paper 2: The Inconsistent Measurement of Message Chains

Bowes D, Randall D, Hall T (2013) The inconsistent measurement of message chains. In: Proceed-
ing of the 4th International Workshop on Emerging Trends in Software Metrics, ACM (accepted
paper)

I modified StenchBlossom6 so that metrics could be reported automatically. I provided the ArgoUML7

data and processed it using StenchBlossom. I developed a website to allow manual inspection of the
source code by reviewers. I supervised the MSc thesis of David Randall who performed the manual
inspection of the ArgoUML source code and the capture of metrics using DECOR8. Tracy Hall assisted
in the direction and write up of this work.

This paper will be presented at the 4th International Workshop on Emerging Trends in Software Metrics

6StenchBlossom is a tool for identifying code bad smells.
7ArgoUML is an open source application for developing UML models.
8DECOR is a technique for identifying code bad smells.

3.6. Summary of my Contribution to each Main Paper 37

(WETSoM 2013) co-located with ICSE.

Paper 3: Evaluating three approaches to extracting fault data.

Hall T, Bowes D, Liebchen G, Wernick P (2010a) Evaluating three approaches to extracting fault
data from software change repositories. In: International Conference on Product Focused Soft-
ware Development and Process Improvement (PROFES), Springer, pp 107–115

Tracy Hall was the main architect for this study. Gernot Liebchen carried out the experiment to label
modules as defective using key words and files per change-set techniques. I devised the bandwidth
sliding window technique to identify change-sets. Paul Wernick, Gernot Liebchen and I performed the
manual inspection of the Barcode source code. Tracy, Gernot and I devised the protocol to produce the
agreed defect labels for each module. Gernot calculated the Cohen Kappa statistics. Tracy Hall and I
jointly wrote the paper.

Paper 4: A systematic literature review on fault prediction performance in software engi-
neering.

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault
prediction performance in software engineering. Software Engineering, IEEE Transactions on
38(6):1276 –1304

Tracy Hall, Sarah Beecham and Sue Black carried out a preliminary study to map when and where defect
prediction studies were carried out during the period 2000 to 2009. Sarah Beecham carried out the initial
searches and initial refinement which identified 256 papers for the period 2000 to 2010.

Myself, Tracy Hall, Sarah Beecham, David Gray and Steve Counsell devised a set of exclusion criteria
based on good software engineering information and good machine learning approaches. Myself, Tracy
Hall, Sarah Beecham, David Gray and Steve Counsell reviewed the 208 papers in pairs and applied a set
of contextual exclusion criteria. I created a database driven website [Bowes et al. 2012a] called SLuRp
which allowed the exclusion criteria to be refined. SLuRp allowed researchers to independently apply
and moderate the exclusion criteria for each accepted paper. I extracted the performance values from
the final set of 36 papers which passed the exclusion criteria. I devised the method of re-computing
the confusion matrix which is the key to being able to compare the performance results of studies using
binary classifiers. Tracy Hall and Steve Counsell extracted extra contextual and summary findings for
the 36 papers. I produced the synthesis and analysis of the performance results with Tracy Hall. The
paper was mainly authored by Tracy Hall, Sarah Beecham and myself.

Paper 5: Comparing the performance of fault prediction models which report multiple
performance measures: reconstructing the confusion matrix.

Bowes D, Hall T, Gray D (2012b) Comparing the performance of fault prediction models which
report multiple performance measures: reconstructing the confusion matrix. In: Proceedings of
the 8th International Conference on Predictive Models in Software Engineering.

I developed the technique for recomputing the confusion matrix. I developed a JAVA library which was
used in SLuRp to re-compute precision, recall and precision for a subset of papers in Hall et al. [2012].

38 Chapter 3. Contribution of Papers

I extended the desktop tool J-Confusion (originally written by D. Gray) to allow researchers to be able
to input performance measure values and re-compute a confusion matrix. I jointly wrote the paper with
Tracy Hall. David Gray contributed the original J-Confusion and reviewed the paper.

Paper 6: The state of machine learning methodology in software fault prediction.

Hall T, Bowes D (2012) The state of machine learning methodology in software fault prediction.
In: Machine Learning and Applications (ICMLA), 2012 11th International Conference on, vol 2,
pp 308 –313

Tracy Hall provided direction for this work. Martin Shepperd and Tracy Hall assisted in the analysis of
the published work. I formulated the methodology and the analysis which was included in the write up
of the paper.

Chapter 4

Papers

Introduction

This chapter presents the six main papers of this thesis.

Paper 1 41

4.1 Paper 1: Calibrating program slicing metrics for practical use.

Bowes D, Counsell S, Hall T (2008) Calibrating program slicing metrics for practical use. Pro-
ceedings of TAIC PART, Windsor, UK

Calibrating program slicing metrics for practical use

David Bowes Steve Counsell Tracy Hall
Hertfordshire University Brunel University Brunel University
d.h.bowes@herts.ac.uk steve.counsell@brunel.ac.uk tracy.hall@brunel.ac.uk

Abstract
Program slicing metrics are an important addition
to the range of static code measures available to
software developers and researchers alike.
However, slicing metrics still remain under-utilized
due partly to the difficulty in calibrating such
metrics for practical use; previous use of slicing
metrics reveals a variety of calibration approaches.
This paper reports on the effect of including
different variables in the calibration (and collection)
of slicing metrics. Findings suggest a variety of
different results depending on the level of
abstraction at which the metrics are collected
(system or file), the inclusion or exclusion of
‘printf’ statements, formal ‘ins’, ‘outs’ and global
variables in the metrics’ calculation..

1. Introduction
Weiser [12, 13] and Ott and Thuss [9] defined a set
of slice based metrics including Tightness,
Coverage, Overlap, Min. Coverage and Max
Coverage (see Table 1). These metrics could,
potentially, be an important addition to the current
range of static code metrics used by developers.
Although slicing metrics have been studied in
relation to code cohesion [7, 8, 9] they are rarely

used by developers. Previous studies exploring the
efficacy of slice-based metrics [2, 3, 4, 5, 6, 7, 8, 9,
10, 11] have tended to use different sets of variables
in specifying the slices on which the metrics are
based. This wide variety of approaches to data
collection has made it difficult for developers (and
indeed researchers) to interpret and subsequently use
slice-based metrics. The aim of this paper is to
provide a standard baseline upon which future use
and research into slice-based metrics can be based.

2. Results
We investigated how each of the four categories of
principal variables shown in Table 2 contributes
empirically to the slice-based metrics of: Tightness,
Overlap, Coverage, Min Coverage and Max
Coverage for the Barcode Open Source Project. The
results are shown in Table 3, from which a number
of features emerge. First, inter-module effects are
reduced significantly by slicing files individually
compared to slicing on a whole project. The values
on the right-hand side of Table 3 (Figure 2) are
generally smaller than those on the left-hand side
(Figure 1). The most notable reduction is for the
Tightness metric, whose computation is heavily
influenced by the cardinality of slice intersections.

Table 1. Weiser’s slice-based metrics

Metric Formula Key

Tightness
SLint

length(M)

Line Line of code

Overlap
1

Vo

SLint

SLii1

Vo

M Set of program lines in a module

NB length(M) M

Coverage
1

Vo

SLi

length(M)
i1

Vo

V0 Set of variables used to slice a module

Min
Coverage

min
i

SLi

length(M)

SLi Set of program lines in the slice for the i’th variable in V0

Max
Coverage

max
i

SLi

length(M)

SLint Intersection of all slices formed from each V0

(Tightness measures the proportion of the module which is common to all slices; Overlap is the average proportion
of common slices compared to each slice; Coverage is the average length of each slice compared to the length of
the module; Min Coverage is ratio of the shortest slice compared to the length of the module and Max Coverage is
the ratio of the longest slice compared to the length of the module; Vo is the set of output variables)

Table 2. Categories of principal variables and their use frequency (#) in previous studies

Categories Description # Studies
Formal ins Input parameters for the function specified in the module declaration 6

Paper 1 43

Formal outs The set of return variables 8
Global variables The set of variables which are used or may be affected by the module 9

Printfs Variables which appear as formal outs in the list of parameters in an
output statement (e.g. printf)

7

NB: ‘Module’ is a function or method not a set of functions or files acting together.

Table 3. Average module metrics for different combinations of variables
Average module metrics

Variables
Sliced as a project Files sliced individually

I O G pF
Over-
lap

Tight-
ness

Cover-
age

Min
C

Max C Over-
lap

Tight-
ness

Cover-
age

Min C Max C

 0.859 0.814 0.919 0.828 0.984 0.649 0.481 0.691 0.523 0.901

 0.861 0.820 0.926 0.833 0.984 0.643 0.482 0.705 0.524 0.901
 0.903 0.857 0.917 0.870 0.984 0.712 0.551 0.717 0.588 0.898
 0.905 0.852 0.926 0.863 0.977 0.759 0.563 0.712 0.587 0.892
 0.898 0.837 0.918 0.842 0.966 0.745 0.519 0.671 0.543 0.845

 0.911 0.869 0.929 0.881 0.984 0.728 0.560 0.743 0.590 0.898
 0.891 0.840 0.927 0.852 0.981 0.772 0.518 0.653 0.538 0.820

 0.947 0.895 0.928 0.905 0.975 0.839 0.672 0.764 0.694 0.885
 0.920 0.844 0.915 0.847 0.953 0.767 0.521 0.653 0.544 0.761

 0.911 0.869 0.929 0.881 0.984 0.728 0.560 0.743 0.590 0.898
 0.949 0.883 0.914 0.886 0.956 0.820 0.591 0.688 0.610 0.792

 0.972 0.929 0.951 0.933 0.975 0.944 0.823 0.856 0.832 0.885
 1.000 0.897 0.897 0.897 0.897 1.000 0.612 0.612 0.612 0.612
 0.907 0.859 0.941 0.866 0.971 0.851 0.538 0.639 0.547 0.717

 0.917 0.851 0.896 0.866 0.968 0.749 0.464 0.597 0.496 0.778

I = Formal Ins, O = Formal Out, G = Globals, pF=printf; NB: Both forward and backward slices were used in all cases.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Va r ia bl e C ombi na t i on

Over lap

Tightness

Coverage

Min C.

Max C.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 1 11 1 1 1 15

V ariab le C o mb inat io n

Overlap

Tightness

Coverage

M in C.

M ax C.

Figure 1. Sliced as a project

The least sensitive metrics appear to be those for
Max Coverage, a metric influenced only by the size
of the maximum slice. Second, exclusion of global
variables (G) seems to cause a rise in the values of
many of the metrics, both on the left and right-hand
side of Table 3. This may be explained by the need
to consider extra module inter-relationships induced
by the use of global variables (which tend to push
down the values of the metrics). The same effect can
not be said of the inclusion or exclusion of printfs or
formal ins (I) and outs (O), none of which seem to
significantly influence the values of the metrics.

3. Acknowledgements
This research is kindly supported by grant from the
EPSRC of the UK (EP/E055141/1).

References
[1] S. Counsell and D Bowes “A Theoretical and Empirical
Analysis of Slicing Metrics for Cohesion Based on Matrices”,
submitted to CSMR 2008.
[2] J. Bieman, L. Ott. “Measuring functional cohesion.” IEEE
Trans. on Soft Eng., 20(8)::644–657, 1994.

Figure 2. Files sliced individually

[3] M. Harman, S. Danicic, B. Sivagurunathan, B. Jones, and Y.
Sivagurunathan. “Cohesion metrics.” International Software
Quality Week, San Francisco, CA, USA, 1995.
[4] M. Harman. “Cleaving together - program cohesion with
slices.” EXE., Vol. 11 Iss. 8 pp. 35–42, 1997.
[5] A. Lakhotia. “Rule-based approach to computing module
cohesion.” International Conf. on Software Engineering,
Baltimore, USA, 1993. pp. 35–44.
[6] T. M. Meyers and D. Binkley. “A longitudinal and
comparative study of slice-based metrics.” International Software
Metrics Symposium, Chicago, USA, 2004.
[7] T. M. Meyers and D. Binkley. “Slice-based cohesion metrics
and software intervention.” Working Conference on Reverse
Engineering, pp. 256–265, 2004.
[8] T. M. Meyers and D. Binkley. “An empirical study of slice
based cohesion and coupling metrics.” ACM Trans. on Software
Engineering and Methodology, 2007.
[9] L. Ott and J. Thuss. “The relationship between slices and
module cohesion.” International Conference on Software
Engineering, pp. 198–204, 1989.
[10] K. Pan, S. Kim, and E. J. Whitehead Jr. “Bug classification
using program slicing metrics.” IEEE Workshop on Source Code
Anal and Manip., 31–42, 2006.
[11] M. Weiser. Program Slices: Formal, psychological, and
practical investigations of an automatic program abstraction
method. PhD Thes., Univ. Mich., MI, 1979.
[12] M. Weiser. “Program Slicing” Intl. Conference on Software
Eng., San Diego, USA, 1981. pp. 439–449.
[13] Grammatech Inc. The CodeSurfer slicing system, 2000.

44 Chapter 4. Papers

Paper 2 45

4.2 Paper 2: The Inconsistent Measurement of Message Chains.

Bowes D, Randall D, Hall T (2013) The Inconsistent Measurement of Message Chains. In: Pro-
ceeding of the 4th international workshop on Emerging trends in software metrics, ACM
(accepted paper)

The Inconsistent Measurement of Message Chains
David Bowes

School of Computer Science
University of Hertfordshire

Hatfield, UK
+44(0)1707 286431

d.h.bowes@herts.ac.uk

David Randall
School of Computer Science
University of Hertfordshire

Hatfield, UK
+44(0)1707 280000
david@ranfam.org

Tracy Hall
Dept. of Information Systems &

Computing
Brunel University

Uxbridge, UK
tracy.hall@brunel.ac.uk

Abstract—Fowler and Beck defined 22 Code Bad Smells.

These smells are useful indicators of code that may need to be
refactored. A range of tools have been developed that measure
smells in Java code. We aim to compare the results of using two
smell measurement tools (DECOR which is embedded in the
Ptidej tool and Stench Blossom) on the same Java code
(ArgoUML). This comparison identifies the code each tool
identifies as containing Message Chains. We evaluate the results
from these two tools using human judgment on the smells that
the code contains. We look in detail at how and why the results
differ. Our results show that each tool identified very different
code as containing Message Chains. Stench Blossom identified
very many more code instances of Message Chains than DECOR.
We found three reasons why these discrepancies occurred. First
there are significant differences in the definitions of Message
Chains used by each tool. Second, the tools use very different
measurement strategies. Third, the thresholds embedded in the
tools vary. This measurement inconsistency is a problem to
practitioners as they may be applying refactoring ineffectively.
This inconsistency is also a problem for researchers as it
undermines the reliability of making cross study comparisons
and prevents mature knowledge the impact of smells being
developed.

Index Terms—Code Bad Smells, Message Chains,
measurement tools, performance, measurement.

I. INTRODUCTION
Code smells were first proposed by Beck and Fowler in

1999 [2]. Code can be described as ‘smelly’ when it contains
one of the 22 poor coding structures identified by Fowler et al.
[6]. These structures are low level localized instances of bad
coding practices which may also be symptomatic of higher
level design problems. Some of these poor code structures are
very simple and are relatively easy to identify (e.g. Switch
Statements), others are more complex and more difficult to
identify (e.g. Speculative Generality). Smelly code is said by
Fowler et al. [6] to have detrimental affects on software. Many
of these affects are associated with smelly code being difficult
to maintain with a higher likelihood of introducing faults
during maintenance. Fowler et al. [6] provide refactoring
strategies for the 22 code smells.

The aim of this paper is to investigate how consistently
two smell measurement tools (DECOR and Stench Blossom)
measure Message Chain bad smells in code. Our previous
experience investigating smells [18, 19] suggests that smell
tools are not always reliable or consistent in the smells they
measure. Different tools seem to identify different code as
containing a particular smell. Fontana et al. [5] have reported

similar experiences of tool inconsistencies, though they did
not investigate Message Chains.

In the investigation reported here we used DECOR and
Stench Blossom on a large open source project (ArgoUML).
We compared measurement consistency across the two tools.
We analyse in detail where, how and why the code identified
as containing Message Chains differs between the two tools.
We evaluate these results against our manual measurement of
Message Chains.

The effective measurement of code smells is important to
practitioners. A variety of tools are used by practitioners to
measure bad smells in order to apply appropriate refactoring.
It is important that these tools perform effectively in
measuring code bad smells. In particular these tools should not
generate a large number of false positives (i.e. label code as
containing a bad smell which turns out not to contain that
smell) nor identify a large number of false negatives (i.e. label
code as not containing a bad smell which turns out to contain
that smell). Ineffective smell measurement tools reduce the
cost effectiveness to practitioners of refactoring as: 1. time is
wasted on code that is not smelly; 2. smelly code is not
identified and not refactored.

Effectively measuring code bad smells is also important to
researchers. Many researchers have studied the impact of code
smells on software systems. The impact of smells on the
maintenance and fault-proneness of code has been
investigated. For example Li and Shatnawri [8] studied the
relationship between six smells and fault-proneness; Olbrich
et al. [12, 13] studied the impact of three smells on software
evolution. To build a mature knowledge of the impact that
particular smells have it is important that: 1. results reported
by studies are valid, i.e. the smell data used must actually
contain smelly code; 2. cross study comparisons must be
possible across studies. Underpinning both of these pre-
cursers to mature knowledge is that tools used by studies
reliability and consistently measure smelly code. We
investigate whether Stench Blossom and DECOR reliably and
consistently measure Message Chains in ArgoUML.

The rest of the paper is structured as follows: In the next
section we discuss Code Bad Smells, in particular Message
Chains. In Section III we describe our research methods. In
Section IV we present our results. In Section V we discuss our
results and in Section VI we draw some conclusions.

Paper 2 47

II. BACKGROUND

A. Code Smells
Fowler et al. [6] identified 22 code smells. In this paper we

particularly focus on the measurement of Message Chains as
this smell is measured by both tools we use.

The Message Chains smell is found in code where a client
asks one object for another object, which the client then has to
access through another object, which in turn it then has to
access through yet another object, and so on. Message Chains
are usually identified by a long list of getThis() methods (as
below), or as a sequence of temporary objects.

Example Message Chain:
a.getB().getC().getD().getE().getTheData();

Message Chains are considered a poor coding practice as
they entail the coupling of the methods in the navigation chain
and any change in the relationships may cause the client to
have to change. As the example above shows, the problem is
that although A only needs to access the data from Class E it
becomes unnecessarily coupled to classes B, C, D in order to
achieve this. We have previously reported on the relationship
between Message Chains and higher numbers of faults in code
[19].

In some circumstances such delegation can be justified,
and consequently Message Chains with only a couple of links
are often considered harmless. The exact number of links such
a chain can reasonably have is often related to other factors
and is dependent upon context. Message Chains occur because
objects must cooperate with others in order to perform any
non-trivial operation. Problems can occur when this coupling
becomes unnecessarily involved and complex.

B. Code Smell Measurement
Beck and Fowler [6] gave brief descriptions of each of

their 22 bad smells alongside some refactoring techniques for
their mitigation. However these explanations are fairly
informal - more generally descriptive than rigorous and
definitive - and do not give clear, unambiguous rules for
measurement. Any process for measuring smells requires
some means of definitively specifying what exactly is being
looked for. Fowler et al.’s original smell descriptions do not
provide such specification rules. This means that different
approaches have been used by different smell measurement
tools. Some approaches use standard metric measurements
(e.g. [10]), some approaches use specific object oriented
metrics (e.g. [7]), some approaches take into account inter-
class relationships (e.g. [9]), some approaches use ad-hoc
algorithms (e.g. [17]), some approaches work directly on
source code (e.g. [11]), and some approaches work on system
models (e.g. [9]). Our previous systematic literature review
shows that considerable research effort has been dedicated to
smell definition and measurement [20].

A recent approach to smell measurement is the DECOR
approach [9]. Given the high number of citations for [9] (76
up to Dec 2012 according to Google Scholar), this approach is
likely to be influential in smell measurement. DECOR
measures well known, pre-defined smells and also provides a
domain specific language allowing for the definition of other
smells, based on code metrics as well as structural and lexical

code properties. This extensibility potentially provides flexible
and useful code smell measurement.

C. Code Smell Measurement Tools
A wide variety of smell measurement tools have been

developed. Most of these are open source e.g. Stench
Blossom. Such open source tools are useful as access to the
tool’s source code is possible. Such access means that the
exact smell definitions implemented by the tool can be
exposed. However some of these tools are commercial closed
source tools e.g. Borland Together. The tools most commonly
reported in the literature have been reported on by Fontana et
al. [5]. Fontana et al. [5] suggest inconsistencies in the results
of using these tools in terms of very different numbers of
smells identified by different tools. Although Fontana et al. [5]
provide a very useful preliminary study, they did not
investigate the reasons for measurement differences nor
compare in detail which smell instances were identified by
which tool.

III. METHODS

A. ArgoUML
This study is based on measuring smells in the open source

project ArgoUML. This system is easily accessible
(http://argouml.tigris.org/) and is written in Java; this is
essential as the tools we use analyse only Java code. It is a
fairly large project (1,963 class files). The size of the system
means that it is reasonable to assume that plenty of code bad
smells exist in the system. The project is also small enough to
make it practical for us to use all 1,963 classes. ArgoUML has
also been used in a number of previous studies of smells (e.g.
[1, 9, 14, 16]) and so comparisons with previous results are
possible.

B. The Smell Measurement Tools Used
In this study we used the Ptidej tool and the Stench

Blossom tool. We selected Ptidej because this tool suite was
developed by the Ptidej Team at the University of Montreal
and is the system used both to specify the DECOR smell
definition rule cards and run the associated smell measurement
analysis on the target system. The DECOR approach is well
recognised and we thought it important to include this tool in
our evaluation. We selected Stench Blossom as it is a
relatively easy to access and install open source tool and its
use is well documented [11].

Ptidej is a Java application run within the Eclipse IDE. The
Ptidej tool suite is an amalgam of various Java packages
integrated to provide a comprehensive analysis tool for object-
oriented systems. Ptidej uses a model of the software system
derived by analysis of the compiled class files rather than
direct examination of the source code. The first step in any
Ptidej analysis process is the creation of the system model.
Once this is accomplished all further investigative procedures
are run against this model. Ptidej is set up to measure the
following Fowler smells: Data Class, Large Class, Lazy Class,
Long Method, Long Parameter List, Message Chains, Refused
Bequest, Speculative Generality. We generally refer to Ptidej
as DECOR throughout this paper.

48 Chapter 4. Papers

Stench Blossom is an Eclipse plug-in which produces a
graphical indication of the presence of certain code smells and
their respective strength. The smells Stench Blossom measures
[5]-Data Clumps, Feature Envy, Large Class, Large Method,
Message Chain, Switch Statement. Stench Blossom enables a
graphical representation of the smells present in code to be
presented 'on the fly' in the edit window of Eclipse. This is in
the form of a semi-circular area in the middle, right-hand side
of the screen. This semi-circle, referred to as a flower, is
divided in to 8 segments each representing a smell. As smells
are measured in the source code being edited their
corresponding petal is coloured in with the proportion of the
area filled being an indication of its strength. If the cursor is
placed over a petal the name of the smell represented is
displayed and if clicked on a full explanation of the smell and
the value of the relevant metrics defining it is revealed.

The smells are computed using metrics derived from the
source code itself and not from class file models, as is the case
with DECOR. The methods and metric calculations used are
fairly simple by the creator's own admission [11] in order to
allow for real time calculation without impinging on the
performance of the IDE.

Both Ptidej and Stench Blossom identify both Message
Chains and Large Class smells. We focused on Message
Chains because Large Class is easily defined by a size metric.
Message Chains are more complicated and therefore more
difficult to define and measure. This means that the study of
Message Chains should allow us to investigate how different
measurement interpretations have been implemented. We also
focused on Message Chains as Fontana et al. [5] do not
investigate Message Chains.

C. Message Chain Thresholds
Bad smell tools usually use thresholds to measure whether

or not code contains a smell. Thresholds are based on a variety
of mechanisms and are often set differently depending on the
tool and its underlying measurement strategy. These
thresholds are of crucial importance to measuring smells and
to understanding the basis on which different tools consider
code to contain a smell or not. Tool users can vary these
thresholds depending on their particular requirements (though
this is not usually possible using closed source software like
Borland Together).

Despite the importance of these thresholds they are often
poorly documented making it difficult to know the default
thresholds implemented by specific tools. Thresholds are also
often very difficult to vary as doing so requires understanding
and changing the code on which the tool is based. It is difficult
to understand the reasons for any inconsistencies in
measurement results without understanding the thresholds
implemented by tools.

DECOR measures Message Chains by comparing a code
metric, NOTI or number of transitive invocations (i.e how
many successive method calls through different objects)
against a set threshold. This approach has the advantage of
differentiating between successive method calls to different
objects and successive method calls on the same object (not
Message Chains) as is common with string manipulations such
as: string.toLowerCase().trim(). NOTI is computed by
analysis of the reverse engineered byte-code model and is

compared against a threshold level set on a rule card. The
default threshold for Message Chains in DECOR is 4. This
threshold can be changed by altering the rule card (which we
did in this study). A lower NOTI lowers the threshold at which
the number of transitive invocations are required for the code
to be recognised as a Message Chain. We lowered NOTI to 3
for some runs of DECOR presented in the Results Section.

Stench Blossom uses a simpler method of parsing the
source code for successive method calls and when it finds
them reports back a ‘strength’ value ranging in the case of
Message Chains between 0.12 and 1.1 for ArgoUML. When it
does not identify a Message Chain, it reports a strength of 0.0.
We have used the value of 0.12 as the lower (or default)
threshold for the presence of Message Chains. We have used a
strength of >0.3 for the ‘higher’ threshold (at which a greater
number of successive method calls are needed to identify a
Message Chain).

Fowler specifies no trigger value for the number of method
object transitions which constitutes a Message Chain and so
the ‘right’ threshold is open to interpretation.

D. The Manual Approach
To further evaluate the measurement performances of

Stench Blossom and Ptidej we also manually identified
Message Chains. This manual measurement was done on a
large sample of ArgoUML class files (454 class files were
manually evaluated). Manually measuring Message Chains in
all 1,963 class files would have been too time consuming and
was not practical.

We based our measurement of Message Chains on our
own interpretation of Fowler et al.’s [6] description. We
interpreted Fowler et al.’s [6] description of Message Chains
very widely so that we were unlikely to miss any Message
Chains. We counted any call which appeared to access data
through method calls in an object not directly contacted by
itself (i.e. completely through at least one intermediary object)
as a Message Chain. One researcher with significant
experience of Java development identified classes that
contained Message chains. Measurement of Message Chains
was done at the class level as DECOR only measures Message
Chains at the class level.

Cohen's Kappa analysis was then used to calculate
agreement rates between the three approaches (i.e. the two
tools and the manual approach). Cohen’s Kappa is a statistical
measure of the level of agreement between two ratings of the
same set of data. It is considered to be an improvement upon
just using the percentage agreement rates, as it takes into
account the level of agreement which could be expected
purely by chance. Kappa values range from 0 (no agreement)
to 1.00 (total agreement), with larger values indicating better
reliability. A Kappa value of greater than 0.70 is considered
satisfactory.

E. Limitations to Our Study
Use of ArgoUML. We measured Message Chains only in the
ArgoUML system. This system is not likely to be
representative of all systems and so our results may not
generalize across systems. However no one system is likely to
be generally representative. A large sample of systems is
needed to generate representative results. Our future work
involves extending this study to additional systems.

Paper 2 49

Use of DECOR and Stench Blossom. We evaluated results
from only two smell measurement tools. This was because
setting up, running and performing a detailed analysis of
results is extremely time consuming for each tool. It may be
that there is more agreement in the results from other tools
than we found in these two tools. Our future work involves
extending this study to additional tools.
Use of Message Chains. We measured only Message Chains
and no other smells. We focused on Message Chains as it was
the one smell that both of the tools we selected measured. No
existing tool measures every smell. Each tool measures a
different (and usually small) sub-set of the 22 Fowler et al. [6]
smells. It is therefore not easy to identify a range of smells
that can be evaluated across several tools. There is little
overlap in the smells the tools measure. It may be that there is
less inconsistency in the definition and measurement of smells
other than the Message Chains smell. Our future work
involves extending this study to additional smells.

IV. RESULTS
We now present the results obtained from running the

DECOR and Stench Blossom tools on all 1,963 classes in the
ArgoUML Open Source project. We identify and compare the
classes each tool measures as containing Message Chains. We
also compare the classes identified as containing Message
Chains by each tool to those classes we manually identify.

TABLE I. MESSAGE CHAINS IDENTIFIED BY BOTH TOOLS IN ARGOUML

Tool

Result

Classes
identified
(n=1,963)

Percentage of
classes identified

DECOR

Smell
found 182 9%

Smell not
found 1781 91%

Stench Blossom

Smell
found 1065 54%

Smell not
found 898 46%

 Table I gives an overview of the classes identified as
containing Message Chains by each of the tools. Each tool
was run using the default threshold settings. Table I shows
that Stench Blossom measures many more classes as
containing Message Chains than does DECOR. Table I shows
that 54% of all 1,963 ArgoUML classes are identified by
Stench Blossom as containing Message Chains. This is
compared to only 9% of classes similarly identified by
DECOR. We then investigated the overlap in the classes
identified by each tool.
Table II shows the agreement between the tools in measuring
classes as containing (or not containing) Message Chains.
Table II shows a low level of agreement on the classes
identified. The table also shows that the relatively small
number of classes identified by DECOR, are not a sub-set of
the large set of classes identified by Stench Blossom.
Although 145 classes out of the 182 identified by DECOR
were also identified by Stench Blossom as containing Message

Chains, 37 classes identified by DECOR were not identified
by Stench Blossom (20% of the total identified by DECOR).

TABLE II. MEASUREMENT COMPARISON BETWEEN THE TWO TOOLS USING
DEFAULT THRESHOLDS

 Stench Blossom

 MC not
identified

MC
identified

Total
Classes

DECOR

MC not
identified 861 920 1781

MC
identified 37 145 182

Total
classes 898 1065

 NB: Cohen’s Kappa = 0.09

Table II also confirms that 920 classes were identified by
Stench Blossom that were not identified by DECOR. This is
either potentially a very high number of false positives
identified by Stench Blossom or a very high number of false
negatives identified by DECOR. The very low overall
agreement levels shown in Table II have a correspondingly
low Cohen’s Kappa result (0.09). To investigate possible
reasons for the different results produced by each tool we
varied the thresholds used by each tool.

TABLE III. MEASUREMENT COMPARISON BETWEEN THE TWO TOOLS WITH
A DEFAULT STENCH BLOSSOM THRESHOLD AND A REDUCED DECOR

THRESHOLD

 Stench Blossom (default)

 MC not
identified

MC
identified

Total
classes

DECOR

(NOTI=3)

MC not
identified 815 779 1594

MC
identified 83 286 369

Total
classes 898 1065

 NB: Cohen’s Kappa = 0.17

Table III compares the classes identified by each tool
when using a reduced measurement threshold for Message
Chains in DECOR. We implemented this reduced threshold by
changing the number of methods in the navigation chain
required to decide if a class contained a Message Chain. We
reduced this number from the default NOTI threshold of 4 to
3. Table III shows that this threshold reduction increased the
number of Message Chains identified by DECOR to 396
(from 182 shown in Table III). However the overall agreement
between the tools does not significantly improve, and still has
a very low Cohen’s Kappa score of 0.17 (up slightly from the
previous 0.09 score). Table III also shows that although a
larger subset of the classes identified by Stench Blossom are
now also identified by DECOR (286), 83 classes now
identified by DECOR are not identified by Stench Blossom.
This means that 20% of classes identified by DECOR remain
unidentified by Stench Blossom. So although the number of
agreements has increased with the reduced threshold, the

50 Chapter 4. Papers

proportion of agreements has not. To further investigate the
impact of thresholds on agreement levels we then reduced the
threshold used by Stench Blossom.

TABLE IV. MEASUREMENT COMPARISON BETWEEN THE TWO TOOLS WITH
AN INCREASED STENCH BLOSSOM THRESHOLD

 Stench Blossom (strength=high)

 MC not
identified

MC
identified

Total
classes

DECOR

(default:
NOTI = 4)

MC not
identified 1171 610 1781

MC
identified 61 121 182

Total
classes 1232 731

 NB: Cohen’s Kappa = 0.14

Table IV shows the classes each tool measures using the
default DECOR threshold and an increased Stench Blossom
threshold. We increased the threshold of Stench Blossom by
only identifying a Message Chain only when its strength was
high (a strength value of > 0.3). This change should reduce the
number of Message Chains identified by Stench Blossom.
Table IV shows that increasing Stench Blossom’s threshold
reduces the number of classes identified as containing
Message Chains to 731 (from 1065 using the default
threshold). However the overall agreement levels remain very
low with a Cohen’s Kappa score of 0.14. We then compared
the performance of each tool when varied thresholds were
used in each tool.

Table V shows the results of using a higher threshold in
Stench Blossom and a lower threshold in DECOR. This
variation increases the number of Message Chains identified
by DECOR and reduces the number identified by Stench
Blossom. The overall agreement levels shown in Table V are
the highest of all the tables presented. However the overall
agreement level remains low at 0.19. Table V shows that even
using these varied thresholds Stench Blossom still measures
about double the number of classes as containing Message
Chains than does DECOR. About 40% of classes identified as
containing Message Chains by DECOR are not identified by
Stench Blossom. This percentage doubled when the thresholds
are varied.

TABLE V. MEASUREMENT COMPARISON BETWEEN THE TWO TOOLS WITH A
REDUCED DECOR THRESHOLD AND AN INCREASED STENCH BLOSSOM
THRESHOLD

 Stench Blossom (strength = high)

 MC not
identified

MC
identified

Total
classes

DECOR

(NOTI = 3)

MC not
identified 1080 514 1594

MC
identified 152 217 369

Total
classes 1232 731

 NB: Cohen’s Kappa = 0.19

The results suggest that differences in what each tool
measures as a Message Chain are not fully explained by
differences in thresholds. Consequently we investigated the
differences in the classes identified by each tool using a
manual analysis of 454 ArgoUML classes.

TABLE VI. COMPARISON BETWEEN STENCH BLOSSOM USING
DEFAULT THRESHOLD AND MANUAL MEASUREMENT IN 454 CLASSES

 Manual

 MC not
identified

MC
identified

Total
classes

Stench

Blossom

MC not
identified 152 4 156

MC
identified 35 263 298

Total
classes 187 267

 NB: Cohen’s Kappa = 0.82

Table VI shows the results of our manual measurement of
Message Chains compared to those of Stench Blossom.
Default threshold values are used in Stench Blossom. Table VI
shows that the overall levels of agreement between our
manual approach and Stench Blossom are very much
improved. A Cohen’s Kappa score of 0.82 is achieved. which
is the highest level of agreement in this study. Table VI shows
that not only do we identify similar numbers of classes
containing Message Chains as Stench Blossom in this sample
of 454 classes, but only 4 classes that we identify are not
identified by Stench Blossom. The results shown in Table VI
suggest that the measurement strategy used by Stench
Blossom is similar to that used by humans.

Table VII shows the results of our manual measurement of
Message Chains compared to those of DECOR. Default
threshold values are also used in DECOR.

TABLE VII. COMPARISON BETWEEN DECOR USING DEFAULT THRESHOLD
AND MANUAL MEASUREMENT IN 454 CLASSES

 Manual

 MC not
identified

MC
identified

Total
classes

DECOR

MC not
identified 148 124 272

MC
identified 39 143 182

Total
classes 187 267

 NB: Cohen’s Kappa = 0.31

Table VII shows that the overall levels of agreement
between our manual approach and DECOR are better than
when DECOR is compared to Stench Blossom with a Cohen’s
Kappa score of 0.31. However there remains significant
disagreement between us and DECOR on which classes
contain Message Chains. In particular 20% of classes that
DECOR measures as containing Message Chains we do not
similarly identify. This is the same percentage difference in
measurement as between DECOR and Stench Blossom.

Paper 2 51

To investigate further this 20% of Message Chains
identified by DECOR that Stench Blossom and our manual
approach do not identify we performed further tests. We tested
whether DECOR was measuring more sophisticated Message
Chains than the other two methods. In particular whether
DECOR was measuring Message Chain occurrences
containing intermediate results which, although still Message
Chains do not necessarily have the classic a.b().c().d() source
code format and are harder to detect. To test this we wrote a
simple test program and used DECOR to identify Message
Chains in this test program. This program, instead of making a
call by an obvious chain of method calls in the main test class,
transferred the major part of the chain to the second Continent
class level and invoked it by a method call to the Continent
class as below:

In the TestMain class:
String tempGreeting =
getContinent(continent).getContinentGreeting();

In the Continent class:

public String getContinentGreeting() {

return
countries.get(0).getLanguage().getGreeting(); }

This code effectively performs exactly the same function -
returning data to TestMain by successive method calls through
all the objects - but the Message Chain, although still present,
would not necessarily be located in TestMain by a brief
inspection of the source code. DECOR still identified this as a
Message Chain and, equally importantly, still gave its location
as TestMain.

This suggests that although DECOR measures fewer
Message Chain occurrences than other techniques, its use of a
reverse-engineered byte-code model and metric evaluation,
may well identify significant instances that other techniques
miss.

V. DISCUSSION
Our results show that DECOR and Stench Blossom differ

significantly in the classes they measure as containing
Message Chains. Stench Blossom measures very many more
instances of Message Chains (54% of all classes) than does
DECOR. This measurement difference suggests that either
DECOR has a high rate of false negatives or that Stench
Blossom has a high rate of false positives. Identifying false
negatives is bad as this means that smells are not being
identified that should be identified. And this means that poorly
structured code is likely to remain in the system as it is not
identified for refactoring. False positives are also bad as this
means that code is being identified as poorly structured that is
not poorly structured. Falsely identifying such code wastes
developers’ time and may result in unnecessary refactoring.

The results of our manual measurement of Message Chains
were very similar to the results of Stench Blossom. Both
approaches measured relatively high numbers of Message
Chains. It is debatable (and the subject of further work)
whether all Message Chains in this large set will actually
create the detrimental affects on software mentioned by
Fowler et al. [6]. It is likely that many of these Message
Chains exist at a minimal level and are unlikely to have

significantly detrimental affects on the system. The thresholds
at which a coding structure is considered to be a Message
Chain may need to be higher both in our manual approach and
in Stench Blossom.

Our results suggest that Stench Blossom identifies the
Message Chains developers are also likely to identify. Given
that an implicit aim of automatic measurement is to mimic
manual measurement, one conclusion of this finding could be
that Stench Blossom is the ‘better’ tool. However our further
analysis suggests that DECOR actually identifies legitimate
Message Chains that both Stench Blossom and our manual
approach missed. In particular we show DECOR measuring
Message Chains based on method calls which use intermediate
results. DECOR uses a measurement strategy based on a
reverse-engineered byte-code model and metric evaluation.
This measurement strategy means that semantic structures can
more easily be identified by DECOR than by the direct code
analysis strategy used by Stench Blossom and by our manual
approach. This difference between the strategies means there
is an implicit difference in the definitions of Message Chains
used by Stench Blossom and DECOR.

VI. CONCLUSION
Our findings show that the different measurement

strategies used in DECOR and Stench Blossom mean that
each tool considers different code structures as a Message
Chain. There is inconsistency in the definition of Message
Chains in the tools. Definition inconsistencies in software
metrics and the consequences of those inconsistencies (e.g. for
KLOC [4]) were first reported many years ago [3]. Despite the
importance of definition consistency long being known, our
results suggest that progress in achieving consistency in the
definition of code smells remains slow.

The differences we report in measurement results have
important implications for practitioners and researchers. The
accuracy of smell measurement tools determines the
effectiveness with which practitioners are able to apply
refactoring. Practitioners do not want to waste time
considering code that does not contain bad smells and does not
require refactoring. Therefore accurate tools are important for
practitioners.

The variations we report in measuring smells are very
important to researchers. To build a mature understanding of
the impact of smells on systems it is necessary that a corpus of
evidence is developed. Studies in this corpus need to be based
on smell data collected using the same smell definitions.
Studies presenting smell data based on different definitions of
smells are not comparable and any comparisons made are not
likely to be valid. The studies reported so far on the impact of
smells use a wide range of measurement approaches and tools
[20]. These tools are likely to be based on different
measurement strategies and definitions. Consequently it is
very dangerous to compare across these studies. Until
thorough and commonly used smell definitions are established
we are a long way from developing a mature knowledge of the
impact of smells on software systems.

52 Chapter 4. Papers

REFERENCES
[1] T. Arendt and G. Taentzer. Uml model smells and model

refactorings in early software development phases. Universita ̈t
Marburg, 2010.

[2] K. Beck, M. Fowler, and G. Beck. Bad smells in code.
Refactoring: Improving the design of existing code, pages 75–
88, 1999.

[3] N. Fenton and M. Neil. A critique of software defect prediction
models. Software Engineering, IEEE Transactions on, 25(5):675
–689, sep/oct 1999.

[4] N. Fenton and S. Pfleeger. Software metrics, volume 1.
Chapman & Hall London, 1991.

[5] F. Fontana, E. Mariani, A. Morniroli, R. Sormani, and A.
Tonello. An experience report on using code smells
measurement tools. In Software Testing, Verification and
Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on, pages 450 –457, march 2011.

[6] M. Fowler and K. Beck. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

[7] M. Lanza and R. Marinescu. Object-oriented metrics in
practice.. Springer, 2006.

[8] W. Li and R. Shatnawi. An empirical study of the bad smells
and class error probability in the post-release object-oriented
system evolution. Journal of Systems and Software, 80(7):1120
– 1128, 2007

[9] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur.
Decor: A method for the specification and measurement of code
and design smells. Software Engineering, IEEE Transactions on,
36(1):20 –36, jan.-feb. 2010.

[10] M. Munro. Product metrics for automatic identification of “bad
smell” design problems in java source-code. In Software
Metrics, 2005. 11th IEEE International Symposium, page 15,
sept. 2005.

[11] E. Murphy-Hill and A. P. Black. An interactive ambient
visualization for code smells. In Proceedings of the 5th
international symposium on Software visualization, SOFTVIS
’10, pages 5–14, New York, USA, 2010. ACM.

[12] S. Olbrich, D. Cruzes, V. Basili, and N. Zazworka. The
evolution and impact of code smells: A case study of two open
source systems. In Empirical Software Engineering and
Measurement, 2009. ESEM 2009. 3rd International Symposium
on, pages 390 –400, oct. 2009.

[13] S. Olbrich, D. Cruzes, and D. Sjoberg. Are all code smells
harmful? a study of god classes and brain classes in the
evolution of three open source systems. In Software
Maintenance (ICSM), 2010 IEEE International Conference on,
pages 1 –10, sept. 2010.

[14] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk, and A. De
Lucia. Identifying method friendships to remove the feature
envy bad smell. In Software Engineering (ICSE), 2011 33rd
International Conference on, pages 820–823.

[15] D. Randall. A study of techniques for the definition and
measurement of design and code bad smells. Master’s thesis,
Computer Science, University of Hertfordshire, 2012.

[16] D. Schaffhauser. measuring Design Violations and Code Smells
by Bug-Impact Analysis. PhD thesis, 2006.

[17] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based
refactoring. In Software Maintenance and Reengineering, 2001.
Fifth European Conference on, pages 30 –38, 2001.

[18] M. Zhang, N. Baddoo, P. Wernick, and T. Hall. Improving the
precision of fowler’s definitions of bad smells. In Software
Engineering Workshop, 2008. SEW ’08. 32nd Annual IEEE,
pages 161 –166, oct. 2008.

[19] M. Zhang, N. Baddoo, P. Wernick, and T. Hall. Prioritising
refactoring using code bad smells. In Software Testing,
Verification and Validation Workshops (ICSTW), 2011 IEEE
International Conference on, pages 458 –464, 2011.

[20] M. Zhang, T. Hall, and N. Baddoo. Code bad smells: a review of
current knowledge. Journal of Software Maintenance and
Evolution: Research and Practice, 23(3):179–202, 2011.

Paper 2 53

Paper 3 55

4.3 Paper 3: Evaluating Three Approaches to Extracting Fault Data
from Software Change Repositories.

Hall T, Bowes D, Liebchen G, Wernick P (2010a) Evaluating three approaches to extracting fault
data from software change repositories. In: International Conference on Product Focused
Software Development and Process Improvement (PROFES), Springer, pp 107–115

M. Ali Babar, M. Vierimaa, and M. Oivo (Eds.): PROFES 2010, LNCS 6156, pp. 107–115, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Evaluating Three Approaches to Extracting Fault Data
from Software Change Repositories

Tracy Hall1, David Bowes2, Gernot Liebchen1, and Paul Wernick2

1 Brunel University, Department of Information Systems & Computing, Uxbridge,
Middlesex, UK

{tracy.hall,gernot.liebchen}@brunel.ac.uk
2 University of Hertfordshire, School of Computer Science, Hatfield, Hertfordshire, UK

{d.h.bowes,p.d.wernick}@herts.ac.uk

Abstract. Software products can only be improved if we have a good under-
standing of the faults they typically contain. Code faults are a significant source
of software product problems which we currently do not understand suffi-
ciently. Open source change repositories are potentially a rich and valuable
source of fault data for both researchers and practitioners. Such fault data can
be used to better understand current product problems so that we can predict
and address future product problems. However extracting fault data from
change repositories is difficult. In this paper we compare the performance of
three approaches to extracting fault data from the change repository of the Bar-
code Open Source System. Our main findings are that we have most confidence
in our manual evaluation of diffs to identify fault fixing changes. We had less
confidence in the ability of the two automatic approaches to separate fault
fixing from non-fault fixing changes. We conclude that it is very difficult to re-
liably extract fault fixing data from change repositories, especially using auto-
matic tools and that we need to be cautious when reporting or using such data.

Key words: Software, fault, data, prediction.

1 Introduction

Identifying and fixing faults in software is a major software development cost. Pre-
venting and removing faults is reported to cost the US between $50 and $78 billion
per year [1,2]. Code faults remain a significant source of problems in software with a
great deal of resources dedicated to software testing and debugging [3]. Identifying
where faults are before testing could lead to higher quality software and better use of
resources [4,5,6].

It is important that we understand more about the nature and cause of faults in code
so that we can target our search for faults more effectively both before and during
testing. Research indicates that about 60-80% of software faults are found in about
20% of the code modules (eg. [7]), with around half of code modules usually fault
free [8]. Clearly there are potential resource savings if fault handling efforts are fo-
cussed on the code that actually contains faults.

Paper 3 57

108 T. Hall et al.

Many previous researchers have explored how faults in code can be targeted and
identified, with a variety of code fault prediction models reported in the literature.
Building reliable fault prediction models depends on the availability and dependabil-
ity of historical fault data. Most models are built on the assumption that the causes of
faults in the past are similar to the causes of faults in the future. This means that mod-
els built on historical fault data should enable unfound future faults to be located.

However identifying historical fault data is not straightforward in either commer-
cial or open source projects. The first difficulty is that it is impossible to identify all
faults. Residual faults always remain in the system. Consequently previous work pre-
dominately uses fault fixing data as a proxy for faults and clearly this represents only
a sub-set of faults in the system. This is a problem we do not address in this study.
The second difficulty is that recording and documenting fault data is an overhead that
many developers avoid. Consequently fault data is rarely maintained and very few
projects use bug reporting tools like Bugzilla. Where fault data is maintained it has
been reported to not be terribly reliable. As a result most researchers extract fault data
from change data (eg from CVS records). Although change data accurately represents
changes implemented to the system, these changes include not only fault fixes but all
enhancements, improvements and refactorings made to the system. Consequently it is
important to identify only those changes that represent fault fixes.

The aim of the paper is to identify the most reliable approach to identifying fault
fixing changes from a change repository. We compare the effectiveness of three ap-
proaches to identifying fault fixing data using the change repository of the Barcode
open source system. In the first approach we manually analyse change diffs (textual
changes in code between revisions) and classify each as either a fault fixing diff or
not. The other two approaches we investigate automatically analyse CVS records. The
first searches the change repository for fault related key words, and the second
searches for small sized changes.

In the next section we outline related previous work extracting fault data from
change repositories. In Section Three we explain our methodology and describe the
open source system used in this study. Section Four presents the results of collecting
fault fixing data using each of the three approaches compared in this study. In Section
Five we conclude and summarise our findings.

2 Background

The most common automatic method for extracting fault fixing change data from pro-
ject repositories is based on searching for fault related key words in comment fields.
This approach has been extensively evaluated by Zimmermann et al (eg [9,10,11]).
Their work is mainly in the context of open source projects and is based on the use of
CVS records and Bugzilla records. Although they report promising results they also
acknowledge that natural language ambiguities reduce the success rate of the approach.

Weyuker and Ostrand [12] compare the performance of two approaches to using
keywords to identify fault fixes within an industrial context. First, a system’s change
comments are searched through automatically for keywords indicating if a change
was the result of a fault fix or if it was the result of a change of functionality. Second
a change is categorised as a fault fix if an additional fault identifying field was set by

58 Chapter 4. Papers

 Evaluating Three Approaches to Extracting Fault Data 109

developers during testing or once deployed. Their study showed that the technique
using the additional field performed better than the keyword approach. Again, natural
language ambiguities limited the performance of the keyword search technique.

A less common approach to identifying fault fixing changes has been proposed by
Ostrand et al [13]. Following a suggestion made by developers they introduced the
idea that fault fixing changes are only likely to affect one or two files. They tested this
approach on a sample of 50 change submissions by reading manually through change
messages [13]. Their results are promising and Ostrand et al report that they perform
better than the key word search. However they applied and tested this approach only
within a graphical systems development environment.

Unfortunately implementing Ostrand et al’s [13] number of files involved in a
change approach is hard if CVS is the only tool used to manage changes. This is be-
cause CVS does not clearly identify the set of individual changes making up one
change. Other change control systems such as Subversion automatically maintain re-
cords of change sets, whereas with CVS these change sets must be reconstructed.
Consequently methods for recognising the constituent changes in change sets have
been developed. Zimmermann et al [14] identify a change set by either adopting a
fixed window or a sliding window approach. Both techniques rely on the assumption
that file submissions in a change set are carried out by the same author and within a
certain time frame. The fixed window approach uses a 200 second time frame in
which related submissions must occur to be part of a given change set. The sliding
window approach moves the frame along after each file to see if the next file should
be included. This results in a variable time frame in which submissions in a change
set can be made.

3 Methodology

3.1 The Barcode Open Source System

In this study we use the change repository for the Barcode open source system
(http://ar.linux.it/software/#barcode). We chose this system because initially we
wanted to replicate Meyers and Binkley’s program slicing metrics work [15], as our
overall aim was to investigate the relationship between program slicing data and fault
data. To do this we needed to extract fault data from the Barcode system and compare
it to our program slicing metrics data.

Barcode is a small open source system (approx 9 KLOC) written in the C lan-
guage. The program slicing tool that we use (CodeSurfer) only analyses C and C++
code, so language is a key consideration for us. Barcode is a tool for the conversion of
text strings to printed bars. The Barcode project started in 1999 and a change history
is available as CVS data. Although several developers participate in the project, all
entries into the CVS system are carried out by one person. The Barcode project does
not employ an automated fault reporting system, such as Bugzilla, but a file contain-
ing additional information about CVS submits, including pointers to issues in source
code (the changelog), is maintained.

Paper 3 59

110 T. Hall et al.

3.2 Procedures for Implementing the Three Approaches

Manual classification of change diffs. We use a manual analysis of Barcode’s diffs
to classify changes made to the system as either fault fixing or non fault fixing
changes. Our aim is to use this classification as a baseline with which to compare the
two automatic approaches. Our assumption is that manual classification of changes
for a small project like Barcode is likely to be more accurate than automatic methods.
However this manual classification approach is highly resource intensive and is only
practical for small studies.

For manual classification we first extracted 199 module level diffs from the CVS
repository for Barcode. Each diff contains the code and comments logged with the
checked-in change. This data was then given to 3 researchers to independently clas-
sify each of these diffs as either: a fault fix; not a fault fix; don’t know.

After this independent classification of the diffs, an inter-rater reliability analysis
and a Cohen’s Kappa score was calculated to measure classification agreement
between the three researchers (described in Section 3.3). Disagreements in the classi-
fication of diffs were then discussed by all three researchers, the basis of these dis-
agreements were resolved and the diffs classified for a second time.

Key word searching. We identified fault fixing changes from Barcode’s change re-
pository using a key word search based on previous studies (eg [14]) We searched the
change comments logged in CVS for keywords: “bug”, “fix(ed)” and “update(d)”.
The resulting classification of fault fixing and non fault fixing changes was compared
to the manual classification of diffs using an inter rater reliability measure (described
in Section 3.3).

Identifying changes involving only 1 or 2 files. We applied Ostrand et al’s [13] ap-
proach to identifying fault fixing changes as those involving only one or two files. To
identify how many files are involved in a given change all changes in a change set
must be first identified. Identifying change sets is not straightforward for Barcode
which maintains its change records only under CVS control.

In addition to implementing a fixed window approach to identifying change sets
we also introduce an enhanced sliding window approach. Our sliding window ap-
proach estimates the bandwidth of an upload (bytes per second) to determine the size
of the sliding window rather than use the conventional constant sized sliding window.
This then allows us to calculate a more accurate variable timeframe for a particular
author downloading a particular change set.

The resulting classification of fault fixing and non fault fixing changes is compared
to the manual classification of diffs using an inter rater reliability measure (described
in Section 3.3).

3.3 Inter Rater Reliability Measurement

We compare the performance of all 3 fault fix finding approaches using inter rater
reliability scores using the Cohen’s Kappa statistic. We report both the value of
this statistic together with its categorical scale, as proposed by Landis and Koch:

60 Chapter 4. Papers

 Evaluating Three Approaches to Extracting Fault Data 111

 < 0 No agreement
0.00 — 0.20 Slight agreement
0.21 — 0.40 Fair agreement
0.41 — 0.60 Moderate agreement
0.61 — 0.80 Substantial agreement
0.81 — 1.00 Almost perfect agreement

3.4 Limitations of the Study

The limitations of this study are mainly related to the quality of data on which it is
based. As in many change repositories CVS comment fields are not always completed
and when they are not always accurately or comprehensively. However this is no dif-
ferent to any metrics data, as in the real world most metrics data is noisy and has
missing values and our methods must be able to cope with this. In addition because
each of the methods that we are evaluating tries to indirectly identify fault fixing
changes, the classification will never be 100% accurate. For example there will be
misclassifications in our manual diff method; ambiguity and idiosyncrasy in natural
language will mean we miss keywords in our key work search; check-in variations
will also mean that we will misclassify some changes involving one or two files as a
fault fix when they were not. Furthermore Ostrand et al’s approach may not work as
well with program that do not have a graphical user interface.

4 Results

4.1 Manual Classification of Change Diffs

Table 1 shows how each researcher manually classified each of the 199 Barcode diffs.

Table 1. Overall diff classifications

FF==FFaauulltt ffiixx;; DDKK==DDoonn’’tt kknnooww;; NNFF==nnoott ffaauulltt ffiixx

Table 1 shows the different classification levels of each researcher and Table 2
shows the spread of those disagreements across the categories.

Paper 3 61

112 T. Hall et al.

Table 2. Comparison of diff classifications between researchers

FF==FFaauulltt ffiixx;; DDKK==DDoonn’’tt kknnooww;; NNFF==nnoott ffaauulltt ffiixx
111144//119999 aaggrreeeemmeennttss KKaappppaa ..2288 ((ffaaiirr)) 7744//119999 aaggrreeeemmeennttss KKaappppaa ..002277 ((sslliigghhtt)) 110022//119999
aaggrreeeemmeennttss kkaappppaa ..1177 ((sslliigghhtt))

Table 2 shows substantial classification disagreement between the 3 researchers.
This is likely to be the result of several factors. The first factor is the decision that
Researcher 1 made to allow no Don’t Know classifications and instead to assign diffs
to the most likely class. The second factor is varying programming experience. Al-
though all 3 researchers are familiar with C programming, two of them have extended
experience of C programming due to working on projects in industry and academia.
The other researcher’s knowledge was based on being taught C during his first degree.
The third factor may also be related to the difficulty of interpreting the intentions of a
programmer based only on diffs.

As a result of this high level of disagreement all three researchers got together and
discussed the classification of each of the 199 diffs. They decided not to allow any
Don’t Knows as the other two approaches did not include such classifications. During
this process 68 of the 199 diffs were excluded from future analysis as, on closer in-
spection they were based on inappropriate data (for example changes only to header
files). This means that the other 2 approaches were applied to a ‘cleaned’ data set of
131 diffs. The following diff classification consensus was achieved: 47 fault fixing
changes; 84 non fault fixing changes.

4.2 Keyword Search

We searched comments in the CVS logged changes as described in Section 3. As a
result the 131 changes were classified as: 27 fault fixing changes and 104 non fault
fixing changes. Table 3 compares the classification of this approach to the manual
classification of diffs.

Table 3 shows that there is significant disagreement between the two approaches in
the classification of fault fixing and non fault fixing changes. In particular the key-
words classify far fewer changes as fault fixes than the manual diff classifications (27
as opposed to 47). This may be the result of missing comment data on which to
search, as well as unexpected comments used to describe a fault fixing change. Our
key words do not include for example ‘patched’ or ‘mended’ (though clearly our key
word list could be extended).

62 Chapter 4. Papers

 Evaluating Three Approaches to Extracting Fault Data 113

Table 3. Key word compared to diff classification

FF==FFaauulltt ffiixx;; NNFF==nnoott ffaauulltt ffiixx

9999//113311 aaggrreeeemmeennttss kkaappppaa 00..44 ((ffaaiirr))

4.3 Size of Change Search

We applied both the fixed and sliding window timeframe approaches to identify those
changes that involved only one or two files. Such changes are classified as fault fixing
changes. Using the fixed window approach changes were classified as: 44 fault fixes;
87 non fault fixes. Using the sliding window approach changes were classified as: 50
fault fixes; 81 non fault fixes. Table 4 compares the classification of both of these
timeframe approaches to our manual diff classifications.

Table 4. Size of change compared to diff classification

 FF==FFaauulltt ffiixx;; NNFF==nnoott ffaauulltt ffiixx FF==FFaauulltt ffiixx;; NNFF==nnoott ffaauulltt ffiixx

9900//113311 aaggrreeeemmeennttss kkaappppaa 00..33 ((ffaaiirr)) 9922//113311 aaggrreeeemmeennttss kkaappppaa ..33 ((ffaaiirr))

Table 4 shows that the approach used to calculate the timeframe in which
downloaded files are assumed to be related make little difference to the classification
of changes. The sliding window timeframe classifies 6 more changes as fault fixing
than the fixed window timeframe. Table 4 also shows that both approaches have sig-
nificant disagreement with the manual diff classification of fault fixing and non fault
fixing changes.

5 Conclusions

Our results suggest that extracting fault fixing data from CVS change repositories can
be unreliable. There are many factors that contribute to this. A significant factor is the
completeness and quality of the data stored. Missing and unclear checked-in CVS

Paper 3 63

114 T. Hall et al.

comments make it difficult for the key word search technique to be accurate. This,
together with the readability of code, also makes it difficult to manually identify fault
fixing diffs. As a result it is difficult to have confidence in the precision of techniques
for separating fault fixing changes from other changes. Added to which fault fixing
changes represent only a sub-set of faults in the system as they are only faults that
have been found, latent faults certainly remain in the system. Although our study is
based on an open source system these problems are just as likely in the commercial
domain where data is reported to be incomplete and have quality issues.

Our results could have important implications for researchers and practitioners. It
is difficult for practitioners to have confidence in some fault prediction models as the
historical fault data on which they are based could lack quality. This is likely to re-
duce the accuracy of predicting real faults or fault proneness. It is also difficult for
researchers to build reliable fault prediction models without access to high quality
data. Such data is not widely available, especially in projects which do not use fault
management tools such as Bugzilla. Some projects do appear to adopt a more system-
atic approach to managing faults and it is these projects that are likely to generate
more reliable data for analysis.

Our overall conclusions are that the quality of data used to build fault prediction
models is critical to the reliability of those models and is an aspect of those models
that needs to be addressed by researchers. And finally, the collection of reliable data
on faults by projects is critical to improving our understanding of product quality.

Acknowledgements. This work was funded by the UK’s Engineering and Physical
Sciences Research Council under grant number: EP/E063039/1, Investigating code
fault proneness using program slicing. We would also like to thank Sarah Beecham,
Sue Black and Steve Counsell for their support during the work reported here.

References

1. Levinson, M.: Let’s stop wasting $78 billion a year. CIO Magazine (2001)
2. Runeson, P., Andrews, A.: Detection or Isolation of Defects? An Experimental Compari-

son of Unit Testing and Code Inspection. In: ISSRE 2003, pp. 3–13 (2003)
3. Di Fatta, G., Leue, S., Stegantova, E.: Dis-criminative Pattern Mining in Software Fault

Detection. In: SOQUA Workshop (2006)
4. Turhan, B., Kocak, G., Bener, A.: Data mining source code for locating software bugs: A

case study in telecommunication industry. Expert Syst. Appl. 36, 6 (2009)
5. Bezerra, M.E.R., Oliveira, A.L.I., Adeodato, P.J.L., Meira, S.R.L.: Enhancing RBF-DDA

Algorithm’s Robustness: Neural Networks Applied to Prediction of Fault-Prone Software
Modules. In: Artificial Intelligence in Theory and Practice II (2007)

6. Oral, A.D., Bener, A.: Defect prediction for embedded software. In: Proceedings of the
22nd International Symposium on Computer and Information Sciences, pp. 1–6 (2007)

7. Pai, G.J., Dugan, J.B.: Empirical Analysis of Software Fault Content and Fault Proneness
Using Bayesian Methods. IEEE Trans. Software Eng. 33(10), 675–686 (2007)

8. Tomaszewski, P., Håkansson, J., Grahn, H., Lundberg, L.: Statistical models vs. expert es-
timation for fault prediction in modified code – An industrial case study. Journal of Sys-
tems and Software 80(8), 1227–1238 (2007)

64 Chapter 4. Papers

 Evaluating Three Approaches to Extracting Fault Data 115

9. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Proceedings of
the Third International Workshop on Predictor Models in Software Engineering (2007)

10. Sliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: Proceedings
of the Second International Workshop on Mining Software Repositories, pp. 24–28 (2005)

11. Schröter, A., Zimmermann, T., Premraj, R., Zeller, A.: Where do bugs come from?
SIGSOFT Softw. Eng. Notes 31(6), 1–2 (2006)

12. Weyuker, E.J., Ostrand, T.J.: Comparing methods to identify defect reports in a change
management database. In: DEFECTS 2008: Proceedings of the 2008 workshop on Defects
in large software systems, pp. 27–31 (2008)

13. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of faults in
large software systems. IEEE Trans. Software Eng. 31(4), 340–355 (2005)

14. Zimmermann, T., Weissgerber, P.: Preprocessing cvs data for fine-grained analysis. In:
Proceedings of the First International Workshop on Mining Software Repositories, pp. 2–6
(2004)

15. Meyers, T.M., Binkley, D.: An empirical study of slice-based cohesion and coupling met-
rics. ACM Trans. Softw. Eng. Methodol. 17(1), 1–27 (2007)

Paper 3 65

Paper 4 67

4.4 Paper 4: A Systematic Literature Review on Fault Prediction Perfor-
mance in Software Engineering.

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault
prediction performance in software engineering. Software Engineering, IEEE Transactions
on 38(6):1276 –1304

4.4.1 Corrigendum

This paper requires one corrigendum:

1. On page 1291 of the published document, we would recommend that the residual sum of squares
be used as the performance measure as described by Foss et al. [2003] rather than average residual
as we had originally suggested.

A Systematic Literature Review on
Fault Prediction Performance

in Software Engineering
Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell

Abstract—Background: The accurate prediction of where faults are likely to occur in code can help direct test effort, reduce costs, and

improve the quality of software. Objective: We investigate how the context of models, the independent variables used, and the

modeling techniques applied influence the performance of fault prediction models. Method: We used a systematic literature review to

identify 208 fault prediction studies published from January 2000 to December 2010. We synthesize the quantitative and qualitative

results of 36 studies which report sufficient contextual and methodological information according to the criteria we develop and apply.

Results: The models that perform well tend to be based on simple modeling techniques such as Naive Bayes or Logistic Regression.

Combinations of independent variables have been used by models that perform well. Feature selection has been applied to these

combinations when models are performing particularly well. Conclusion: The methodology used to build models seems to be influential

to predictive performance. Although there are a set of fault prediction studies in which confidence is possible, more studies are needed

that use a reliable methodology and which report their context, methodology, and performance comprehensively.

Index Terms—Systematic literature review, software fault prediction

Ç

1 INTRODUCTION

THIS Systematic Literature Review (SLR) aims to identify
and analyze the models used to predict faults in source

code in 208 studies published between January 2000 and
December 2010. Our analysis investigates how model
performance is affected by the context in which the model
was developed, the independent variables used in the
model, and the technique on which the model was built.
Our results enable researchers to develop prediction models
based on best knowledge and practice across many
previous studies. Our results also help practitioners to
make effective decisions on prediction models most suited
to their context.

Fault1 prediction modeling is an important area of

research and the subject of many previous studies. These

studies typically produce fault prediction models which

allow software engineers to focus development activities on

fault-prone code, thereby improving software quality and

making better use of resources. The many fault prediction
models published are complex and disparate and no up-to-
date comprehensive picture of the current state of fault
prediction exists. Two previous reviews of the area have
been performed in [1] and [2].2 Our review differs from
these reviews in the following ways:

. Timeframes. Our review is the most contemporary
because it includes studies published from 2000-
2010. Fenton and Neil conducted a critical review of
software fault prediction research up to 1999 [1].
Catal and Diri’s [2] review covers work published
between 1990 and 2007.

. Systematic approach. We follow Kitchenham and
Charters [3] original and rigorous procedures for
conducting systematic reviews. Catal and Diri did
not report on how they sourced their studies, stating
that they adapted Jørgensen and Shepperd’s [4]
methodology. Fenton and Neil did not apply the
systematic approach introduced by Kitchenham and
Charters [3] as their study was published well before
these guidelines were produced.

. Comprehensiveness. We do not rely on search engines
alone and, unlike Catal and Diri, we read through
relevant journals and conferences paper-by-paper.
As a result, we analyzed many more papers.

. Analysis. We provide a more detailed analysis of
each paper. Catal and Diri focused on the context of
studies, including: where papers were published,
year of publication, types of metrics used, datasets
used, and modeling approach. In addition, we report

1276 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

. T. Hall and S. Counsell are with the Department of Information Systems
and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH,
United Kingdom. E-mail: {tracy.hall, steve.counsell}@brunel.ac.uk.

. S. Beecham is with Lero—The Irish Software Engineering Research Centre,
University of Limerick, Tierney Building, Limerick, Ireland.
E-mail: sarah.beecham@lero.ie.

. D. Bowes and D. Gray are with the Science and Technology Research
Institute, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB,
United Kingdom. E-mail: {d.h.bowes, d.gray}@herts.ac.uk.

Manuscript received 21 Oct. 2010; revised 10 July 2011; accepted 13 Sept.
2011; published online 30 Sept. 2011.
Recommended for acceptance by D. Sjøberg.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-10-0312.
Digital Object Identifier no. 10.1109/TSE.2011.103.

1. The term “fault” is used interchangeably in this study with the terms
“defect” or “bug” to mean a static fault in software code. It does not denote
a “failure” (i.e., the possible result of a fault occurrence).

2. Note that two referencing styles are used throughout this paper; [ref#]
refers to papers in the main reference list while [Sref#] refers to papers in
the separate systematic literature review list, located before the main
reference list.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Paper 4 69

on the performance of models and synthesize the
findings of studies.

We make four significant contributions by presenting:

1. A set of 208 studies addressing fault prediction in
software engineering from January 2000 to December
2010. Researchers can use these studies as the basis of
future investigations into fault prediction.

2. A subset of 36 fault prediction studies which report
sufficient contextual and methodological detail to
enable these studies to be reliably analyzed by other
researchers and evaluated by model users planning
to select an appropriate model for their context.

3. A set of criteria to assess that sufficient contextual
and methodological detail is reported in fault
prediction studies. We have used these criteria to
identify the 36 studies mentioned above. They can
also be used to guide other researchers to build
credible new models that are understandable,
usable, replicable, and in which researchers and
users can have a basic level of confidence. These
criteria could also be used to guide journal and
conference reviewers in determining that a fault
prediction paper has adequately reported a study.

4. A synthesis of the current state of the art in software
fault prediction as reported in the 36 studies
satisfying our assessment criteria. This synthesis is
based on extracting and combining: qualitative
information on the main findings reported by
studies, quantitative data on the performance of
these studies, detailed quantitative analysis of the
206 models (or model variants) reported in 19 studies
which report (or we can calculate from what is
reported) precision, recall, and f-measure perfor-
mance data.

This paper is organized as follows: In the next section, we
present our systematic literature review methodology. In
Section 3, we present our criteria developed to assess
whether or not a study reports sufficient contextual and
methodological detail to enable us to synthesize a particular
study. Section 4 shows the results of applying our
assessment criteria to 208 studies. Section 5 reports the
results of extracting data from the 36 studies which satisfy

our assessment criteria. Section 6 synthesizes our results
and Section 7 discusses the methodological issues asso-
ciated with fault prediction studies. Section 8 identifies the
threats to validity of this study. Finally, in Section 9 we
summarize and present our conclusions.

2 METHODOLOGY

We take a systematic approach to reviewing the literature
on the prediction of faults in code. Systematic literature
reviews are well established in medical research and
increasingly in software engineering. We follow the
systematic literature review approach identified by Kitch-
enham and Charters [3].

2.1 Research Questions

The aim of this systematic literature review is to analyze the

models used to predict faults in source code. Our analysis is

based on the research questions in Table 1.

2.2 Inclusion Criteria

To be included in this review, a study must be reported in a

paper published in English as either a journal paper or

conference proceedings. The criteria for studies to be

included in our SLR are based on the inclusion and

exclusion criteria presented in Table 2.
Before accepting a paper into the review, we excluded

repeated studies. If the same study appeared in several

publications, we included only the most comprehensive or

most recent.

2.3 Identification of Papers

Included papers were published between January 2000 and

December 2010. Our searches for papers were completed at

the end of May 2011 and it is therefore unlikely that we

missed any papers published in our time period as a result

of publication time lags. There were four elements to our

searches:

1. Key word searching using the search engines: ACM
Digital Library, IEEExplore, and the ISI Web of
Science. These search engines covered the vast

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1277

TABLE 1
The Research Questions Addressed

70 Chapter 4. Papers

majority of software engineering publications and
the search string we used is given in Appendix A.

2. An issue-by-issue manual reading of paper titles in
relevant journals and conferences. The journals and
conferences searched are shown in Appendix B.
These were chosen as highly relevant software
engineering publications found previously to be
good sources of software engineering research [4].

3. A manual search for publications from key authors
using DBLP.3 These authors were selected as appear-
ing most frequently in our list of papers: Khoshgof-
taar, Menzies, Nagappan, Ostrand, and Weyuker.

4. The identification of papers using references from
included studies.

Table 3 shows that our initial searches elicited 2,073 papers.
The title and abstract of each was evaluated and 1,762 were
rejected as not relevant to fault prediction. This process was
validated using a randomly selected 80 papers from the initial
set of 2,073. Three researchers separately interpreted and
applied the inclusion and exclusion criteria to the 80 papers.
Pairwise interrater reliability was measured across the three
sets of decisions to get a fair/good agreement on the first
iteration of this process. Based on the disagreements, we
clarified our inclusion and exclusion criteria. A second
iteration resulted in 100 percent agreement between the three
researchers.

We read the remaining 311 papers in full. This resulted
in a further 178 papers being rejected. An additional
80 secondary papers were identified from references and,
after being read in full, accepted into the included set. We
also included two extra papers from Catal and Diri’s [2]
review which overlapped our timeframe. Our initial
searches omitted these two of Catal and Diri’s papers as
their search terms included the word “quality.” We did not
include this word in our searches as it generates a very high
false positive rate. This process resulted in the 208 papers
included in this review.

3 ASSESSING THE SUITABILITY OF PAPERS FOR

SYNTHESIS

The previous section explained how we included papers
which both answered our research questions and satisfied
our inclusion criteria. This section describes how we
identified a subset of those papers as suitable from which
to extract data and synthesize an overall picture of fault
prediction in software engineering. We then describe the
extraction and synthesis process.

3.1 The Assessment Criteria

Our approach to identifying papers suitable for synthesis is
motivated by Kitchenham and Charter’s [3] notion of a
quality check. Our assessment is focused specifically on
identifying only papers reporting sufficient information to
allow synthesis across studies in terms of answering our
research questions. To allow this, a basic set of information
must be reported in papers. Without this it is difficult to
properly understand what has been done in a study and
equally difficult to adequately contextualize the findings
reported by a study. We have developed and applied a set
of criteria focused on ensuring sufficient contextual and
methodological information is reported in fault prediction
studies. Our criteria are organized into four phases
described below.

Phase 1: Establishing that the study is a prediction study.
In this SLR it is important that we consider only models

which actually do some form of prediction. Some studies
which seem to be reporting prediction models actually turn
out to be doing very little prediction. Many of these types of
studies report correlations between metrics and faults. Such
studies only indicate the propensity for building a prediction
model. Furthermore, a model is only doing any prediction if
it is tested on unseen data (i.e., data that were not used
during the training process) [S112]. To be considered a
prediction model it must be trained and tested on different
data [6]. Table 4 shows the criteria we apply to assess
whether a study is actually a prediction study.

1278 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

3. http://www.informatik.uni-trier.de/~ley/db/.

TABLE 3
Paper Selection and Validation Process

TABLE 2
Inclusion and Exclusion Criteria

Paper 4 71

Table 4 shows that a study can pass this criterion as long
as they have separated their training and testing data. There
are many ways in which this separation can be done.
Holdout is probably the simplest approach, where the
original dataset is split into two groups comprising:
{training set, test set}. The model is developed using the
training set and its performance is then assessed on the test
set. The weakness of this approach is that results can be
biased because of the way the data have been split. A safer
approach is often n-fold cross validation, where the data are
split into n groups fg1 . . . gng. Ten-fold cross validation is
very common, where the data are randomly split into
10 groups, and 10 experiments carried out. For each of these
experiments, one of the groups is used as the testing set,
and all others combined are used as the training set.
Performance is then typically reported as an average across
all 10 experiments. M-N fold cross validation adds another
step by generating M different N-fold cross validations,
which increases the reliability of the results and reduces
problems due to the order of items in the training set.

Stratified cross validation is an improvement to this
process, and keeps the distribution of faulty and nonfaulty
data points approximately equal to the overall class
distribution in each of the n bins. Although there are
stronger and weaker techniques available to separate
training and testing data, we have not made a judgment
on this and have accepted any form of separation in this
phase of assessment.

Phase 2: Ensuring sufficient contextual information is
reported.

We check that basic contextual information is presented
by studies to enable appropriate interpretation of findings.
A lack of contextual data limits the user’s ability to:
interpret a model’s performance, apply the model appro-
priately, or repeat the study. For example, a model may
have been built using legacy systems with many releases
over a long time period and has been demonstrated to
perform well on these systems. It may not then make sense
to rely on this model for a new system where the code has
only recently been developed. This is because the number
and type of faults in a system are thought to change as a
system evolves [S83]. If the maturity of the system on which
the model was built is not reported, this severely limits a
model user’s ability to understand the conditions in which
the model performed well and to select this model
specifically for legacy systems. In this situation the model
could be applied to newly developed systems with
disappointing predictive performance.

The contextual criteria we applied are shown in Table 5
and are adapted from the context checklist developed by
Petersen and Wohlin [7]. Our context checklist also overlaps
with the 40 project characteristics proposed by Zimmermann
et al. [S208] as being relevant to understanding a project
sufficiently for cross project model building (it was
impractical for us to implement all 40 characteristics as none
of our included studies report all 40).

Context data are particularly important in this SLR as it
is used to answer Research Question 1 and interpret our
overall findings on model performance. We only synthesize
papers that report all the required context information as
listed in Table 5. Note that studies reporting several models
based on different datasets can pass the criteria in this
phase if sufficient contextual data are reported for one or
more of these models. In this case, data will only be
extracted from the paper based on the properly contextua-
lized model.

Phase 3: Establishing that sufficient model building informa-
tion is reported.

For a study to be able to help us to answer our research
questions it must report its basic model building elements.
Without clear information about the independent and
dependent variables used as well as the modeling techni-
que, we cannot extract sufficient data to allow synthesis.
Table 6 describes the criteria we apply.

Phase 4: Checking the model building data.
Data used are fundamental to the reliability of models.

Table 7 presents the criteria we apply to ensure that studies
report basic information on the data they used.

In addition to the criteria we applied in Phases 1 to 4, we
also developed more stringent criteria that we did not
apply. These additional criteria relate to the quality of the
data used and the way in which predictive performance is
measured. Although we initially intended to apply these,
this was not tenable because the area is not sufficiently
mature. Applying these criteria would have resulted in only
a handful of studies being synthesized. We include these
criteria in Appendix C as they identify further important
criteria that future researchers should consider when
building models.

3.2 Applying the Assessment Criteria

Our criteria have been applied to our included set of
208 fault prediction studies. This identified a subset of
36 finally included studies from which we extracted data
and on which our synthesis is based. The initial set of
208 included papers was divided between the five authors.
Each paper was assessed by two authors independently

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1279

TABLE 4
Prediction Criteria

72 Chapter 4. Papers

1280 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

TABLE 6
Model Building Criteria

TABLE 5
Context Criteria

Paper 4 73

(with each author being paired with at least three other
authors). Each author applied the assessment criteria to
between 70 and 80 papers. Any disagreements on the
assessment outcome of a paper were discussed between
the two authors and, where possible, agreement estab-
lished between them. Agreement could not be reached by
the two authors in 15 cases. These papers were then given
to another member of the author team for moderation. The
moderator made a final decision on the assessment
outcome of that paper.

We applied our four phase assessment to all 208 included
studies. The phases are applied sequentially. If a study does
not satisfy all of the criteria in a phase, then the evaluation
is stopped and no subsequent phases are applied to the
study. This is to improve the efficiency of the process as
there is no point in assessing subsequent criteria if the study
has already failed the assessment. This does have the
limitation that we did not collect information on how a
paper performed in relation to all assessment criteria. So if
a paper fails Phase 1, we have no information on how that
paper would have performed in Phase 4.

This assessment process was piloted four times. Each
pilot involved three of the authors applying the assessment
to 10 included papers. The assessment process was refined
as a result of each pilot.

We developed our own MySQL database system to
manage this SLR. The system recorded full reference details

and references to pdfs for all papers we identified as

needing to be read in full. The system maintained the status

of those papers as well as providing an online process to

support our assessments of 208 papers. The system

collected data from all authors performing assessments. It

also provided a moderation process to facilitate identifying

and resolving disagreements between pairs of assessors.

The system eased the administration of the assessment

process and the analysis of assessment outcomes. All data

that were extracted from the 36 papers which passed the

assessment is also recorded on our system. An overview of

the system is available from [9] and full details are available

from the third author.

3.3 Extracting Data from Papers

Data addressing our three research questions was extracted

from each of the 36 finally included studies which passed

all assessment criteria. Our aim was to gather data that

would allow us to analyze predictive performance within

individual studies and across all studies. To facilitate this,

three sets of data were extracted from each study:

1. Context data. Data showing the context of each
study were extracted by one of the authors. This data
give the context in terms of: the source of data
studied and the maturity, size, application area, and
programming language of the system(s) studied.

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1281

TABLE 7
Data Criteria

74 Chapter 4. Papers

2. Qualitative data. Data related to our research
questions were extracted from the findings and
conclusions of each study. This was in terms of what
the papers reported rather than on our own
interpretation of their study. This data supplemen-
ted our quantitative data to generate a rich picture of
results within individual studies.

Two authors extracted qualitative data from all
36 studies. Each author extracted data indepen-
dently and compared their findings to those of the
other author. Disagreements and omissions were
discussed within the pair and a final set of data
agreed upon.

3. Quantitative data. Predictive performance data
were extracted for every individual model (or model
variant) reported in a study. The performance data
we extracted varied according to whether the study
reported their results via categorical or continuous
dependent variables. Some studies reported both
categorical and continuous results. We extracted
only one of these sets of results, depending on the
way in which the majority of results were presented
by those studies. The following is an overview of
how we extracted data from categorical and con-
tinuous studies.

Categorical studies. There are 23 studies reporting catego-
rical dependent variables. Categorical studies report their
results in terms of predicting whether a code unit is likely to
be fault prone or not fault prone. Where possible we report
the predictive performance of these studies using precision,
recall, and f-measure (as many studies report both precision
and recall, from which an f-measure can be calculated).
F-measure is commonly defined as the harmonic mean of
precision and recall, and generally gives a good overall
picture of predictive performance.4 We used these three
measures to compare results across studies and, where
necessary, we calculate and derive these measures from
those reported (Appendix E explains how we did this
conversion and shows how we calculated f-measure).
Standardizing on the performance measures reported
allows comparison of predictive performances across
studies. Lessmann et al. [S97] recommend the use of
consistent performance measures for cross-study compar-
ison; in particular, they recommend use of Area Under the
Curve (AUC). We also extract AUC where studies report
this. Appendix D summarizes the measurement of pre-
dictive performance.

We present the performance of categorical models in
boxplots. Box plots are useful for graphically showing the
differences between populations. They are useful for our
results as they make no assumptions about the distribution
of the data presented. These boxplots present the precision,
recall, and f-measure of studies according to a range of
model factors. These factors are related to the research
questions presented at the beginning of Section 2; an
example is a boxplot showing model performance relative
to the modeling technique used.

Continuous studies. There are 13 studies reporting con-
tinuous dependent variables. These studies report their
results in terms of the number of faults predicted in a unit
of code. It was not possible to convert the data presented in
these studies into a common comparative measure; we
report the individual measures that they use. Most
measures reported by continuous studies are based on
reporting an error measure (e.g., Mean Standard Error
(MSE)), or measures of difference between expected and
observed results (e.g., Chi Square). Some continuous studies
report their results in ranking form (e.g., top 20 percent of
faulty units). We extract the performance of models using
whatever measure each study used.

Two authors extracted quantitative data from all
36 studies. A pair approach was taken to extracting this
data since it was a complex and detailed task. This meant
that the pair of authors sat together identifying and
extracting data from the same paper simultaneously.

3.4 Synthesizing Data across Studies

Synthesizing findings across studies is notoriously difficult
and many software engineering SLRs have been shown to
present no synthesis [13]. In this paper, we have also found
synthesizing across a set of disparate studies very challen-
ging. We extracted both quantitative and qualitative data
from studies. We intended to meta-analyze our quantitative
data across studies by combining precision and recall
performance data. However, the studies are highly dis-
parate in terms of both context and models. Meta-analyzing
this quantitative data may generate unsafe results. Such a
meta-analysis would suffer from many of the limitations in
SLRs published in other disciplines [14].

We combined our qualitative and quantitative data to
generate a rich picture of fault prediction. We did this by
organizing our data into themes based around our three
research questions (i.e., context, independent variables, and
modeling techniques). We then combined the data on each
theme to answer our research questions. This synthesis is
presented in Section 6.

4 RESULTS OF OUR ASSESSMENT

This section presents the results from applying our
assessment criteria (detailed in Tables 4, 5, 6, and 7) to
establish whether or not a paper reports sufficient con-
textual and methodological detail to be synthesized. The
assessment outcome for each study is shown at the end of
its reference in the list of included studies.

Table 8 shows that only 36 of our initially included
208 studies passed all assessment criteria.5 Of these 36
finally included studies, three are relatively short [S116],
[S110], and [S164]. This means that it is possible to report
necessary contextual and methodological detail concisely
without a significant overhead in paper length. Table 8 also
shows that 41 papers failed at phase 1 of the assessment
because they did not report prediction models as such. This
includes studies that only present correlation studies or

1282 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

4. Menzies et al. [10] claim that values of precision vary greatly when
used with models applied to different datasets. However, reporting
precision and recall via an f-measure effectively evaluates classifier
performance, even in highly imbalanced domains [11], [12].

5. These papers are [S8], [S9], [S10], [S11], [S18], [S21], [S29], [S31], [S32],
[S37], [S51], [S56], [S69], [S73], [S74], [S76], [S83], [S86], [S92], [S98], [S109],
[S110], [S116], [S117], [S118], [S120], [S122], [S127], [S133], [S135], [S154],
[S160], [S163], [S164], [S190], [S203].

Paper 4 75

models that were not tested on data unseen during
training. This is an important finding as it suggests that a
relatively high number of papers reporting fault prediction
are not really doing any prediction (this finding is also
reported by [6]).

Table 8 also shows that 13 studies provided insufficient
information about their data. Without this it is difficult to
establish the reliability of the data on which the model is
based. Table 8 also shows that a very high number of
studies (114) reported insufficient information on the
context of their study. This makes it difficult to interpret
the results reported in these studies and to select an
appropriate model for a particular context. Several studies
passing all of our criteria anonymized their contextual data,
for example, [S109] and [S110]. Although these studies gave
full contextual details of the systems they used, the results
associated with each were anonymized. This meant that it
was impossible to relate specific fault information to
specific systems. While a degree of commercial confidenti-
ality was maintained, this limited our ability to analyze the
performance of these models.

Of the 114 studies which did not report sufficient context
information, 58 were based on NASA data (located in NASA
MDP or PROMISE). This is because we could find no
information about the maturity of the systems on which the
NASA data are based. Maturity information is not given in
either the MDP or PROMISE repository documentation and
no included paper provided any maturity information.
Turham et al. [15] report that the NASA data are from
numerous NASA contractors for an array of projects with a
wide range of reuse. This suggests that a range of maturities
might also be represented in these datasets. No clear insight
is given into whether particular datasets are based on
systems developed from untested, newly released, or legacy
code based on many releases. The only three studies using
NASA data which passed the context phase of the assess-
ment were those which also used other datasets for which
full context data are available (the NASA-based models were
not extracted from these studies). Whether a study uses
NASA data (sourced from MDP or PROMISE) is shown at the
end of its reference in the list of included studies.

Table 8 also shows that two studies failed the assessment
due to the “other” reasons reported in Table 9.

5 RESULTS EXTRACTED FROM PAPERS

This section presents the results we extracted from the
36 papers that passed all of our assessment criteria. The full
set of data extracted from those papers are contained in our

online Appendix (https://bugcatcher.stca.herts.ac.uk/
slr2011/). This online Appendix consists of the following.

1. Context of study table. For each of the 36 studies,
the context of the study is given in terms of: the aim
of the study together with details of the system(s)
used in the study (the application area(s), the
system(s), maturity, and size(s)).

2. Categorical models table. For each study reporting
categorical results, each model is described in terms
of the: independent variable(s), the granularity of the
dependent variable, the modeling technique(s), and
the dataset(s) used. This table also reports the
performances of each model using precision, recall,
f-measure, and (where given by studies) AUC. Some
studies present many models or model variants, all
of which are reported in this table.

3. Continuous models table. For each study reporting
continuous results (including those reporting rank-
ing results) the same information describing their
model(s) is presented as for categorical models.
However, the performance of each continuous
model is reported in terms of either: the error
measure, the measure of variance, or the ranked
results (as reported by a study).

4. Qualitative data table. For each study a short
summary of the main findings reported by authors
is presented.

The remainder of this section contains boxplots illustrat-
ing the performance of the models in relation to various

model factors (e.g., modeling technique used, independent
variable used, etc.). These factors are related to the research
questions that we posed at the beginning of Section 2. The
boxplots in this section set performance against individual

model factors (e.g., modeling technique used). This is a
simplistic analysis, as a range of interacting factors are likely
to underpin the performance of a model. However, our

results indicate areas of promising future research.

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1283

TABLE 9
Issues with the Measurement of Performance

TABLE 8
Results of Applying Assessment Criteria

76 Chapter 4. Papers

The boxplots represent models reporting only categorical
results for which precision, recall, and f-measure were
either reported or could be calculated by us. Such models
are reported in 19 of the 23 categorical studies (of the
remaining four, three report AUC). We are unable to
present boxplots for the 13 studies using continuous data as
the measures used are not comparable or convertible to
comparable measures.

Each boxplot includes data only where at least three
models have used a particular factor (e.g., a particular
independent variable like LOC). This means that the
numbers (n) at the top of the boxplots will not add up to
the same number on every plot, as factors used in less than
three studies will not appear; the total of ns will therefore
vary from one boxplot to the next. The boxplots contain
performance data based on precision, recall, and f-measure.
This is for all categorical models and model variants
presented by each study (206 models or model variants).
Some studies present many model variants while others
present only one model. We also created boxplots of only
the best results from each study. These boxplots did not
change the pattern of good performances but only pre-
sented limited information about poor performances. For
that reason, we do not include these “best only” boxplots.

5.1 Performances of Models Reported in Individual
Studies

Fig. 1 is a boxplot of the performances of all the models
reported by each of the 19 categorical papers (full details of
which can be found in the online Appendix). For each
individual paper, f-measure, precision, and recall is re-
ported. Fig. 1 shows that studies report on many models or
variants of models, some with a wide range of performances

(the details of these can be found in the Models Table in the
online Appendix (https://bugcatcher.stca.herts.ac.uk/
slr2011/)). For example, Schröter et al. [S154] present
20 model variants with a wide range of precision, recall,
and f-measure. Many of these variants are not particularly
competitive; the most competitive models that Schröter et al.
[S154] report are based on training the model on only the
faultiest parts of the system. This is a promising training
technique and a similar technique has also been reported to
be successful by Zhang et al. [S200]. Bird et al. [S18] report
28 model variants with a much smaller range of perfor-
mances, all of which are fairly competitive. Fig. 1 also shows
the performance tradeoffs in terms of precision and recall
made by some models. For example, Bird et al. [S18] report
consistent precision and recall, whereas Moser et al. [S118]
and Shivaji et al. [S164] report performances where precision
is much higher than recall.

Fig. 1 also shows that some models seem to be
performing better than others. The models reported by
Shivaji et al. [S164], based on Naive Bayes, performed
extremely competitively. In general Naive Bayes performed
relatively well, see Fig. 8. However, Shivaji et al. [S164] also
used a good modeling process, including feature selection
and appropriate measures derived during model training.
In addition, their dataset contained a relatively large
proportion of faulty components, making it fairly balanced.
This may improve performance by providing many exam-
ples of faults from which the modeling technique can train.
There are many good aspects of this study that mean it is
likely to produce models which perform well.

On the other hand, the performance of Arisholm et al.’s
models [S8], [S9] are low in terms of precision but

1284 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 1. Performances of the models reported in each of the categorical studies.

Paper 4 77

competitive in terms of recall. The two Arisholm et al. studies
are different but use the same datasets. This low precision
is reportedly because of the sampling method used to
address the imbalance of the data used. Though the datasets
used are also small relative to those used in other studies
(148 KLOC), Arisholm et al.’s studies [S8], [S9] are interesting
as they also report many good modeling practices and in
some ways are exemplary studies. But they demonstrate how
the data used can impact significantly on the performance of
a model. It is also essential that both high and low
performances be reported, as it is only by identifying these
that our overall understanding of fault prediction will
improve. The boxplots in the rest of this section explore in
more detail aspects of models that may underpin these
performance variations. Because the performances of Aris-
holm et al.’s models [S8], [S9] are very different from those of
the other studies, we have removed them from the rest of the
boxplots. We have treated them as outliers which would
skew the results we report in other boxplots.

5.2 Performances in Relation to Context Factors

Fig. 2 shows the datasets used in the studies. It shows that
108 models reported in the studies are based on data from
Eclipse. Eclipse is very well studied, probably because the
fault data are easy to access and its utility has been well
proven in previous studies. In addition, data already
extracted from Eclipse are available from Saarland Uni-
versity (http://www.st.cs.uni-saarland.de/softevo/bug-
data/eclipse/) and PROMISE (http://promisedata.org/).
Fig. 2 shows that there is a wide variation in model
performance using Eclipse. Fig. 2 also suggests that it may
be more difficult to build models for some systems than for

others. For example, the models built for embedded
telecoms systems are not particularly competitive. This
may be because such systems have a different profile of
faults with fewer postdelivery faults relative to other
systems. Developers of such systems normally prioritize
reducing postdelivery faults as their embedded context
makes fixing them comparatively expensive [S83].

Fig. 3 shows how models have performed relative to the
size of systems on which they are based. Eclipse is the most
common system used by studies. Consequently, Fig. 3
shows only the size of versions of Eclipse in relation to
model performance. Fig. 3 suggests that as the size of a
system increases, model performance seems to improve.
This makes sense as models are likely to perform better
given more data.

Fig. 4 shows the maturity of systems used by studies
relative to the performance of models. The Context Table in
the online Appendix shows how systems have been
categorized in terms of their maturity. Fig. 4 shows that no
immature systems are used by more than two models in this
set of studies (i.e., where n � 3).6 There seems to be little
difference between the performance of models using mature
or very mature systems. This suggests that the maturity of
systems may not matter to predictive performance.7 This
finding may be linked to the finding we report on size. It
may be that what was previously believed about the

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1285

Fig. 2. Data used in models.

6. An exception to this is found in studies [S11], [S133], where immature
systems are used with promising performances reported (see the online
Appendix for full details).

7. This may mean that it is not important to report maturity when studies
describe their context (many more studies would have passed our
assessment had that been the case). However, much more data on maturity
is needed before firm conclusions can be drawn.

78 Chapter 4. Papers

importance of maturity was actually about size, i.e.,
maturity is a surrogate for size. Indeed, there is a significant
relationship between size and maturity in the data we report
here. However, we do not have enough data to draw firm
conclusions as the data we analyze contain no studies using
immature systems. More research is needed to test for
possible association between maturity and size and whether
data extracted from immature systems can be used as a basis
for reliable fault prediction.

Fig. 5 shows the language used in the systems studied in
relation to the performance of models. We present only
studies reporting the use of either Java or C/C++. There are

several single studies using other languages which we do
not report. Fig. 5 suggests that model performance is not
related to the language used.

Fig. 6 shows model performance relative to the granularity
of dependent variables (e.g., whether fault prediction is at the
class or file level). It shows no clear relationship between
granularity and performance. It does not seem to be the case
that higher granularity is clearly related to improved
performance. Models reporting at “other” levels of granular-
ity seem to be performing most consistently. These tend to be
high levels of granularity defined specifically by individual
studies (e.g., Nagappan et al. [S120]).

1286 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 4. The maturity of the systems used. Fig. 5. The language used.

Fig. 3. The size of the datasets used for Eclipse.

Paper 4 79

5.3 Performance in Relation to Independent
Variables

Fig. 7 shows model performance in relation to the

independent variables used. The Categorical Models
Table in the online Appendix shows how independent

variables as expressed by individual studies have been
categorized in relation to the labels used in Fig. 7. It shows

that there is variation in performance between models using
different independent variables. Models using a wide
combination of metrics seem to be performing well. For

example, models using a combination of static code metrics
(scm), process metrics, and source code text seem to be

performing best overall (e.g., Shivaji et al. [S164]). Similarly
Bird et al.’s study [S18], which uses a wide combination of

socio-technical metrics (code dependency data together
with change data and developer data), also performs well

(though the results from Bird et al.’s study [S18] are
reported at a high level of granularity). Process metrics (i.e.,
metrics based on changes logged in repositories) have not

performed as well as expected. OO metrics seem to have
been used in studies which perform better than studies

based only on other static code metrics (e.g., complexity-
based metrics). Models using only LOC data seem to have

performed competitively compared to models using other
independent variables. Indeed, of these models using only

metrics based on static features of the code (OO or SCM),
LOC seems as good as any other metric to use. The use of

source code text seems related to good performance.
Mizuno et al.’s studies [S116], [S117] have used only source

code text within a novel spam filtering approach to

relatively good effect.

5.4 Performance in Relation to Modeling Technique

Fig. 8 shows model performance in relation to the

modeling techniques used. Models based on Naive Bayes

seem to be performing well overall. Naive Bayes is a well

understood technique that is in common use. Similarly,

models using Logistic Regression also seem to be

performing well. Models using Linear Regression perform

not so well, though this technique assumes that there is a

linear relationship between the variables. Studies using

Random Forests have not performed as well as might be

expected (many studies using NASA data use Random

Forests and report good performances [S97]). Fig. 8 also

shows that SVM (Support Vector Machine) techniques do

not seem to be related to models performing well.

Furthermore, there is a wide range of low performances

using SVMs. This may be because SVMs are difficult to

tune and the default Weka settings are not optimal. The

performance of models using the C4.5 technique is fairly

average. However, Arisholm et al.’s models [S8], [S9] used

the C4.5 technique (as previously explained, these are not

shown as their relatively poor results skew the data

presented). C4.5 is thought to struggle with imbalanced

data [16] and [17] and this may explain the performance of

Arisholm et al.’s models.

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1287

Fig. 6. The granularity of the results.

80 Chapter 4. Papers

6 SYNTHESIS OF RESULTS

This section answers our research questions by synthesizing
the qualitative and quantitative data we have collected. The
qualitative data consist of the main findings reported by

each of the individual 36 finally included studies (presented

in the Qualitative Data Table in our online Appendix). The

quantitative data consist of the predictive performance of the

individual models reported in the 36 studies (summarized in

1288 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Fig. 8. Modeling technique used.

Fig. 7. Independent variables used in models.

Paper 4 81

the Categorical and Continuous Models Tables in our online
Appendix). The quantitative data also consist of the detailed
predictive performance data from 19 studies (206 models or
model variants) comparing performance across models
(reported in Section 5). This combination of data addresses
model performance across studies and within individual
studies. This allows us to discuss model performance in two
ways. First, we discuss performance within individual
studies to identify the main influences on model perfor-
mance reported within a study. Second, we compare model
performances across the models reported in 19 studies. This
is an important approach to discussing fault prediction
models. Most studies report at least one model which
performs “well.” Though individual studies usually only
compare performance within the set of models they present
to identify their best model, we are able to then compare the
performance of the models which perform well within a
study across other studies. This allows us to report how well
these models perform across studies.

6.1 Answering our Research Questions

RQ1: How does context affect fault prediction?
Analyzing model performance across the 19 studies in

detail suggests that some context variables may influence
the reliability of model prediction. Our results provide some
evidence to suggest that predictive performance improves
as systems get larger. This is suggested by the many models
built for the Eclipse system. As Eclipse increases in size, the
performance of models seems to improve. This makes some
sense as models are likely to perform better with more data.
We could find no evidence that this improved performance
was based on the maturing of systems. It may be that size
influences predictive performance more than system ma-
turity. However, our dataset is relatively small and
although we analyzed 206 models (or model variants) very
few were based on immature systems. Our results also
suggest that some applications may be less likely to produce
reliable prediction models. For example, the many models
built for embedded telecoms applications generally per-
formed less well relative to other applications. Our results
also show that many models have been built using Eclipse
data. This corpus of knowledge on Eclipse provides a good
opportunity for future researchers to meta-analyze across a
controlled context.

The conventional wisdom is that context determines how
transferrable a model is to other systems. Despite this, none
of the 36 finally included studies directly investigate the
impact on model performance of specific context variables
such as system size, maturity, application area, or program-
ming language. One exception is [S29], which demonstrates
that transforming project data can make a model more
comparable to other projects.

Many of the 36 finally included studies individually
test how well their model performs when transferred to
other contexts (releases, systems, application areas, data
sources, or companies). Few of these studies directly
investigate the contextual factors influencing the transfer-
ability of the model. Findings reported from individual
studies on model transferability are varied. Most studies
report that models perform poorly when transferred. In
fact, Bell et al. [S11] report that models could not be

applied to other systems. Denaro and Pezzè [S37] reported
good predictive performance only across homogenous
applications. Nagappan et al. [S122] report that different
subsets of complexity metrics relate to faults in different
projects and that no single set of metrics fits all projects.
Nagappan et al. [S122] conclude that models are only
accurate when trained on the same or similar systems.
However, other studies report more promising transfer-
ability. Weyuker et al. [S190] report good performance
when models are transferred between releases of systems
and between other systems. However, Shatnawi and Li
[S160] report that the performance of models declines
when applied to later releases of a system. Shatnawi and
Li [S160] conclude that different metrics should be used in
models used for later releases.

The context of models has not been studied extensively
in the set of studies we analyzed. Although every model has
been developed and tested within particular contexts, the
impact of that context on model performance is scarcely
studied directly. This is a significant gap in current
knowledge as it means we currently do not know what
context factors influence how well a model will transfer to
other systems. It is therefore imperative that studies at least
report their context since, in the future, this will enable a
meta-analysis of the role context plays in predictive
performance.

RQ2: Which independent variables should be included

in fault prediction models?
Many different independent variables have been used in

the 36 finally included studies. These mainly fall into
process (e.g., previous change and fault data) and product
(e.g., static code data) metrics as well as metrics relating to
developers. In addition, some studies have used the text of
the source code itself as the independent variables (e.g.,
Mizuno et al. [S116], Mizuno and Kikuno [S117]).

Model performance across the 19 studies we analyzed in
detail suggests that the spam filtering technique, based on
source code, used by Mizuno et al. [S116], Mizuno and
Kikuno [S117] performs relatively well. On the other hand,
models using only static code metrics (typically complexity-
based) perform relatively poorly. Model performance does
not seem to be improved by combining these metrics with
OO metrics. Models seem to perform better using only OO
metrics rather than only source code metrics. However,
models using only LOC seem to perform just as well as
those using only OO metrics and better than those models
only using source code metrics. Within individual studies,
Zhou et al. [S203] report that LOC data performs well.
Ostrand et al. [S133] report that there was some value in
LOC data and Hongyu [S56] reports LOC to be a useful
early general indicator of fault-proneness. Zhou et al. [S203]
report that LOC performs better than all but one of the
Chidamber and Kemerer metrics (Weighted Methods per
Class). Within other individual studies LOC data were
reported to have poor predictive power and to be out-
performed by other metrics (e.g., Bell et al. [S11]). Overall,
LOC seem to be generally useful in fault prediction.

Model performance across the 19 studies that we analyzed
suggests that the use of process data is not particularly
related to good predictive performance. However, looking at

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1289

82 Chapter 4. Papers

the findings from individual studies, several authors report
that process data, in the form of previous history data,
performs well (e.g., [S163], [S120]). D’Ambros et al. [S31]
specifically report that previous bug reports are the best
predictors. More sophisticated process measures have also
been reported to perform well. In particular, Nagappan et al.
[S120] introduce “change burst” metrics which demonstrate
good predictive performance (however, these models per-
form only moderately when we compared them against
models from other studies).

The few studies using developer information in models
report conflicting results. Ostrand et al. [S135] report that
the addition of developer information does not improve
predictive performance much. Bird et al. [S18] report better
performances when developer information is used as an
element within a socio-technical network of variables. This
study also performs well in our detailed comparison of
performances (Bird et al. [S18] report results at a high level
of granularity and so might be expected to perform better).

The models which perform best in our analysis of
19 studies seem to use a combined range of independent
variables. For example, Shivaji et al. [S164] use process-
based and SCM-based metrics together with source code.
Bird et al. [S18] combine a range of metrics. The use of
feature selection on sets of independent variables seems to
improve the performance of models (e.g., [S164], [S76],
[S18]). Optimized sets of metrics using, for example, feature
selection, make sense.

RQ3: Which modeling techniques perform best when

used in fault prediction?
While many included studies individually report the

comparative performance of the modeling techniques they
have used, no clear consensus on which perform best
emerges when individual studies are looked at separately.
Mizuno and Kikuno [S117] report that, of the techniques
they studied, Orthogonal Sparse Bigrams Markov models
(OSB) are best suited to fault prediction. Bibi et al. [S15]
report that Regression via Classification (RvC) works well.
Khoshgoftaar et al. [S86] report that modules whose fault
proneness is predicted as uncertain can be effectively
classified using the TreeDisc (TD) technique. Khoshgoftaar
and Seliya [S83] also report that Case-Based Reasoning
(CBR) does not predict well, with C4.5 also performing
poorly. Arisholm et al. [S9] report that their comprehensive
performance comparison revealed no predictive differences
between the eight modeling techniques they investigated.

A clearer picture seems to emerge from our detailed
analysis of model performance across the 19 studies. Our
findings suggest that performance may actually be linked to
the modeling technique used. Overall our comparative
analysis suggests that studies using Support Vector
Machine (SVM) techniques perform less well. These may
be underperforming as they require parameter optimization
(something rarely carried out in fault prediction studies) for
best performance [18]. Where SVMs have been used in other
prediction domains and may be better understood, they
have performed well [19]. Models based on C4.5 seem to
underperform if they use imbalanced data (e.g., Arisholm
et al. [S8], [S9]), as the technique seems to be sensitive to
this. Our comparative analysis also suggests that the models

performing comparatively well are relatively simple tech-
niques that are easy to use and well understood. Naive
Bayes and Logistic regression, in particular, seem to be the
techniques used in models that are performing relatively
well. Models seem to have performed best where the right
technique has been selected for the right set of data. And
these techniques have been tuned to the model (e.g., Shivaji
et al. [S164]), rather than relying on default tool parameters.

7 METHODOLOGICAL ISSUES IN FAULT PREDICTION

The methodology used to develop, train, test, and measure
the performance of fault prediction models is complex.
However, the efficacy of the methodology used underpins
the confidence which we can have in a model. It is essential
that models use and report a rigorous methodology.
Without this, the maturity of fault prediction in software
engineering will be low. We identify methodological
problems in existing studies so that future researchers can
improve on these.

Throughout this SLR, methodological issues in the
published studies came to light. During our assessment of
the 208 initially included studies and the extraction of data
from the 36 finally included studies methodological weak-
nesses emerged. In this section, we discuss the most
significant of these methodological weaknesses. These
generally relate to the quality of data used to build models
and the approach taken to measure the predictive perfor-
mance of models.

7.1 Data Quality

The quality of the data used in fault prediction has significant
potential to undermine the efficacy of a model. Data quality is
complex and many aspects of data are important to ensure
reliable predictions. Unfortunately, it is often difficult to
assess the quality of data used in studies, especially as many
studies report very little about the data they use. Without
good quality data, clearly reported, it is difficult to have
confidence in the predictive results of studies.

The results of our assessment show that data quality is
an issue in many studies. In fact many studies failed our
synthesis assessment on the basis that they either reported
insufficient information about the context of their data or
about the collection of that data. Some studies explicitly
acknowledge the importance of data quality (e.g., Jiang
et al. [S64]).

Collecting good quality data is very hard. This is partly
reflected by the number of studies which failed our
assessment by not adequately explaining how they had
collected their independent or dependent data. Fault data
collection has been previously shown to be particularly
hard to collect, usually because fault data are either not
directly recorded or recorded poorly [20]. Collecting data is
made more challenging because large datasets are usually
necessary for reliable fault prediction. Jiang et al. [S64]
investigate the impact that the size of the training and test
dataset has on the accuracy of predictions. Tosun et al.
[S176] present a useful insight into the real challenges
associated with every aspect of fault prediction, but
particularly on the difficulties of collecting reliable metrics
and fault data. Once collected, data is usually noisy and

1290 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Paper 4 83

often needs to be cleaned (e.g., outliers and missing values
dealt with [21]). Very few studies report any data cleaning
(even in our 36 finally included studies).

The balance of data (i.e., the number of faulty as opposed
to nonfaulty units) on which models are trained and tested
is acknowledged by a few studies as fundamental to the
reliability of models (see Appendix F for more information
on class imbalance). Indeed, across the 19 studies we
analyzed in detail, some of those performing best are based
on data with a good proportion of faulty units (e.g., [S164],
[S37], [S11], [S74]). Our analysis also suggests that data
imbalance in relation to specific modeling techniques (e.g.,
C4.5) may be related to poor performance (e.g., [S8], [S9]).
Several studies specifically investigated the impact of data
balance and propose techniques to deal with it. For
example, Khoshgoftaar et al. [S76] and Shivaji et al. [S164]
present techniques for ensuring reliable data distributions.
Schröter et al. [S154] base their training set on the faultiest
parts of the system. Similarly, Seiffert et al. [S156] present
data sampling and boosting techniques to address data
imbalance. Data imbalance is explored further in Fioravanti
and Nesi [S43] and Zhang et al. [S200]. Many studies seem
to lack awareness of the need to account for data imbalance.
As a consequence, the impact of imbalanced data on the real
performance of models can be hidden by the performance
measures selected. This is especially true where the balance
of data is not even reported. Readers are then not able to
account for the degree of imbalanced data in their
interpretation of predictive performance.

7.2 Measuring the Predictive Performance of
Models

There are many ways in which the performance of a
prediction model can be measured. Indeed, many different
categorical and continuous performance measures are used
in our 36 studies. There is no one best way to measure the
performance of a model. This depends on: the class
distribution of the training data, how the model has been
built, and how the model will be used. For example, the
importance of measuring misclassification will vary de-
pending on the application.

Performance comparison across studies is only possible if
studies report a set of uniform measures. Furthermore, any
uniform set of measures should give a full picture of correct
and incorrect classification. To make models reporting
categorical results most useful, we believe that the raw
confusion matrix on which their performance measures are
derived should be reported. This confusion matrix data
would allow other researchers and potential users to
calculate the majority of other measures. Pizzi et al. [22]
provide a very usable format for presenting a confusion
matrix. Some studies present many models and it is not
practical to report the confusion matrices for all these.
Menzies et al. [S114] suggest a useful way in which data from
multiple confusion matrices may be effectively reported.
Alternatively, Lessmann [S97] recommends that ROC curves
and AUC are most useful when comparing the ability of
modeling techniques to cope with different datasets (ROC
curves do have some limitations [23]). Either of these
approaches adopted widely would make studies more useful
in the future. Comparing across studies reporting continuous

results is currently even more difficult and is the reason we
were unable to present comparative boxplots across these
studies. To enable cross comparison we recommend that
continuous studies report Average Relative Error (ARE) in
addition to any preferred measures presented.

The impact of performance measurement has been
picked up in many studies. Zhou et al. [S203] report that
the use of some measures, in the context of a particular
model, can present a misleading picture of predictive
performance and undermine the reliability of predictions.
Arisholm et al. [S9] discuss how model performance varies
depending on how it is measured. There is an increasing
focus on identifying effective ways to measure the perfor-
mance of models. Cost and/or effort aware measurement is
now a significant strand of interest in prediction measure-
ment. This takes into account the cost/effort of falsely
identifying modules and has been increasingly reported as
useful. The concept of cost-effectiveness measurement
originated with the Simula group (e.g., Arisholm et al.
[S9]), but has more recently been taken up and developed by
other researchers, for example, Nagappan et al. [S120] and
Mende and Koschke [S109].

7.3 Fault Severity

Few studies incorporate fault severity into their measure-
ment of predictive performance. Although some faults are
more important to identify than others, few models
differentiate between the faults predicted. In fact, Shatnawi
and Li’s [S160] was the only study in the final 36 to use fault
severity in their model. They report a model which is able to
predict high and medium severity faults (these levels of
severity are based on those reported in Bugzilla by Eclipse
developers). Lamkanfi et al. [24], Singh et al. [S167], and
Zhou and Leung [S202] are other studies which have also
investigated severity. This lack of studies that consider
severity is probably because, although acknowledged to be
important, severity is considered a difficult concept to
measure. For example, Menzies et al. [S113] say that severity
is too vague to reliably investigate, Nikora and Munson
[S126] says that “without a widely agreed definition of
severity we cannot reason about it” and Ostrand et al. [S133]
state that severity levels are highly subjective and can be
inaccurate and inconsistent. These problems of how to
measure and collect reliable severity data may limit the
usefulness of fault prediction models. Companies develop-
ing noncritical systems may want to prioritize their fault
finding effort only on the most severe faults.

7.4 The Reporting of Fault Prediction Studies

Our results suggest that, overall, fault prediction studies are
reported poorly. Out of the 208 studies initially included in
our review, only 36 passed our assessment criteria. Many of
these criteria are focused on checking that studies report
basic details about the study. Without a basic level of
information reported it is hard to have confidence in a
study. Our results suggest that many studies are failing
to report information which is considered essential
when reporting empirical studies in other domains. The
poor reporting of studies has consequences for both future
researchers and potential users of models: It is difficult for
researchers to meta-analyze across studies and it is difficult

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1291

84 Chapter 4. Papers

to replicate studies; it is also difficult for users to identify
suitable models for implementation.

7.5 NASA Data

NASA’s publicly available software metrics data have
proven very popular in developing fault prediction models.
We identify all 62 studies which use NASA data in the
reference list of the 208 included studies. The NASA data is
valuable as it enables studies using different modeling
techniques and independent variables to be compared to
others using the same dataset. It also allows studies to be
replicated. A meta-analysis of the studies using NASA data
would be valuable. However, although the repository holds
many metrics and is publicly available, it does have
limitations. It is not possible to explore the source code
and the contextual data are not comprehensive (e.g., no data
on maturity are available). It is also not always possible to
identify if any changes have been made to the extraction and
computation mechanisms over time. In addition, the data
may suffer from important anomalies [21]. It is also
questionable whether a model that works well on the NASA
data will work on a different type of system; as Menzies et al.
[S112] point out, NASA works in a unique niche market,
developing software which is not typical of the generality of
software systems. However, Turhan et al. [S181] have
demonstrated that models built on NASA data are useful
for predicting faults in software embedded in white goods.

8 THREATS TO VALIDITY

Searches. We do not include the term “quality” in our
search terms as this would have resulted in the examination
of a far wider range of irrelevant papers. This term
generates a high number of false positive results. We might
have missed some papers that use the term “quality” as a
synonym for “defect” or “fault,” etc. However, we missed
only two papers that Catal and Diri’s [2] searches found
using the term “quality.” This gives us confidence that we
have missed very few papers. We also omitted the term
“failure” from our search string as this generated papers
predominately reporting on studies of software reliability in
terms of safety critical systems. Such studies of reliability
usually examine the dynamic behavior of the system and
seldom look at the prediction of static code faults, which is
the focus of this review.

We apply our search terms to only the titles of papers.
We may miss studies that do not use these terms in the title.
Since we extend our searches to include papers cited in the
included papers, as well as key conferences, individual
journals, and key authors, we are confident that the vast
majority of key papers have been included.

Studies included for synthesis. The 36 studies which
passed our assessment criteria may still have limitations
that make their results unreliable. In the first place, the data
on which these models are built might be problematic as we
did not insist that studies report data cleaning or attribute
selection. Nor did we apply any performance measure-
based criteria. So some studies may be reporting unsafe
predictive performances. This is a particular risk in regard
to how studies have accounted for using imbalanced data.

This risk is mitigated in the categorical studies, where we
are able to report precision, recall, and f-measure.

It is also possible that we have missed studies which
should have been included in the set of 36 from which we
extracted data. Some studies may have satisfied our
assessment criteria but either failed to report what they did
or did not report it in sufficient detail for us to be confident
that they should pass the criteria. Similarly, we may have
missed the reporting of a detail and a paper that should have
passed a criterion did not. These risks are mitigated by two
authors independently assessing every study.

The boxplots. The boxplots we present set performance
against individual model factors (e.g., modeling technique
used). This is a simplistic analysis, as a number of interacting
factors are likely to underpin the performance of a model.
For example, the technique used in combination with the
dataset and the independent variables is likely to be more
important than any one factor alone. Furthermore, metho-
dological issues are also likely to impact on performance; for
example, whether feature selection has been used. Our
boxplots only present possible indicators of factors that
should be investigated within the overall context of a model.
More sophisticated analysis of a larger dataset is needed to
investigate factors influencing model performance.

Our boxplots do not indicate the direction of any
relationship between model performance and particular
model factors. For example, we do not investigate whether a
particular modeling technique performs well because it was
used in a good model or whether a model performs well
because it used a particular modeling technique. This is also
important work for the future. In addition, some studies
contribute data from many models to one boxplot, whereas
other studies contribute data from only one model. This
may skew the results. We do not calculate the statistical
significance of any differences observed in the boxplots.
This is because the data contained within them are not
normally distributed and the individual points represent
averages from different sizes of population.

9 CONCLUSIONS

Fault prediction is an important topic in software engineer-
ing. Fault prediction models have the potential to improve
the quality of systems and reduce the costs associated with
delivering those systems. As a result of this, many fault
prediction studies in software engineering have been
published. Our analysis of 208 of these studies shows that
the vast majority are less useful than they could be. Most
studies report insufficient contextual and methodological
information to enable full understanding of a model. This
makes it difficult for potential model users to select a model
to match their context and few models have transferred into
industrial practice. It also makes it difficult for other
researchers to meta-analyze across models to identify the
influences on predictive performance. A great deal of effort
has gone into models that are of limited use to either
practitioners or researchers.

The set of criteria we present identify a set of essential
contextual and methodological details that fault prediction
studies should report. These go some way toward addres-
sing the need identified by Myrtveit et al. [25] for “more

1292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Paper 4 85

reliable research procedures before we can have confidence
in the conclusions of comparative studies.” Our criteria
should be used by future fault prediction researchers. They
should also be used by journal and conference reviewers.
This would ensure that future studies are built reliably and
reported comparably with other such reliable studies. Of the
208 studies we reviewed, only 36 satisfied our criteria and
reported essential contextual and methodological details.

We analyzed these 36 studies to determine what impacts
on model performance in terms of the context of models, the
independent variables used by models, and the modeling
techniques on which they were built. Our results suggest
that models which perform well tend to be built in a context
where the systems are large. We found no evidence that the
maturity of systems or the language used is related to
predictive performance. But we did find some evidence to
suggest that some application domains (e.g., embedded
systems) may be more difficult to build reliable prediction
models for. The independent variables used by models
performing well seem to be sets of metrics (e.g., combina-
tions of process, product, and people-based metrics). We
found evidence that where models use KLOC as their
independent variable, they perform no worse than where
only single sets of other static code metrics are used. In
addition, models which perform well tend to use simple,
easy to use modeling techniques like Naive Bayes or
Logistic Regression. More complex modeling techniques,
such as support vector machines, tend to be used by models
which perform relatively less well.

The methodology used to build models seems to be
influential to predictive performance. The models which
performed well seemed to optimize three aspects of the
model. First, the choice of data was optimized. In particular,
successful models tend to be trained on large datasets which
contain a relatively high proportion of faulty units. Second,
the choice of independent variables was optimized. A large
range of metrics were used on which feature selection was
applied. Third, the modeling technique was optimized. The
default parameters were adjusted to ensure that the
technique would perform effectively on the data provided.

Overall we conclude that many good fault prediction
studies have been reported in software engineering (e.g.,
the 36 which passed our assessment criteria). Some of these
studies are of exceptional quality, for example, Shivaji et al.
[S164]. However, there remain many open questions about
how to build effective fault prediction models for software
systems. We need more studies which are based on a
reliable methodology and which consistently report the
context in which models are built and the methodology
used to build them. A larger set of such studies will enable
reliable cross-study metaanalysis of model performance. It
will also give practitioners the confidence to appropriately
select and apply models to their systems. Without this
increase in reliable models that are appropriately reported,
fault prediction will continue to have limited impact on the
quality and cost of industrial software systems.

REFERENCES FOR THE 208 INCLUDED SLR PAPERS

[S1-S208]

References from this list are cited using the format [Sref#]).
Each reference is followed by a code indicating the status of

the paper in terms of whether it passed (P) or failed (F) our
assessment. An indication is also given as to the assessment
phase a paper failed (1, 2, 3, 4, or 5). The use of NASA data
by studies is also indicated (N). A paper (n) failing an
assessment criterion in phase 2 which used NASA data
would be coded: (Paper=n; Status=F, Phase=2, Data=N)

Please report possible problems with our assessment of
these papers to: tracy.hall@brunel.ac.uk.

[1] R. Abreu and R. Premraj, “How Developer Communication
Frequency Relates to Bug Introducing Changes,” Proc. Joint Int’l
and Ann. ERCIM Workshops Principles of Software Evolution and
Software Evolution Workshops, pp. 153-158, 2009. (Paper=1,
Status=F, Phase=1).

[2] W. Afzal, “Using Faults-Slip-Through Metric as a Predictor of
Fault-Proneness,” Proc. 17th Asia Pacific Software Eng. Conf.,
pp. 414-422, 2010. (Paper=2, Status=F, Phase=2).

[3] W. Afzal and R. Torkar, “A Comparative Evaluation of Using
Genetic Programming for Predicting Fault Count Data,” Proc.
Third Int’l Conf. Software Eng. Advances, pp. 407-414, 2008.
(Paper=3, Status=F, Phase=2).

[4] W. Afzal, R. Torkar, and R. Feldt, “Prediction of Fault Count Data
Using Genetic Programming,” Proc. IEEE Int’l Multitopic Conf.,
pp. 349-356, 2008. (Paper=4, Status=F, Phase=2).

[5] S. Amasaki, Y. Takagi, O. Mizuno, and T. Kikuno, “A Bayesian
Belief Network for Assessing the Likelihood of Fault Content,”
Proc. 14th Int’l Symp. Software Reliability Eng., pp. 215-226, Nov.
2003. (Paper=5, Status=F, Phase=2).

[6] C. Andersson and P. Runeson, “A Replicated Quantitative
Analysis of Fault Distributions in Complex Software Systems,”
IEEE Trans. Software Eng., vol. 33, no. 5, pp. 273-286, May 2007.
(Paper=6, Status=F, Phase=1).

[7] E. Arisholm and L. Briand, “Predicting Fault-Prone Components
in a Java Legacy System,” Proc. ACM/IEEE Int’l Symp. Empirical
Software Eng., pp. 8-17, 2006. (Paper=7, Status=F, Phase=4).

[8] E. Arisholm, L.C. Briand, and M. Fuglerud, “Data Mining
Techniques for Building Fault-Proneness Models in Telecom Java
Software,” Proc. IEEE 18th Int’l Symp. Software Reliability, pp. 215-
224, Nov. 2007. (Paper=8, Status=P).

[9] E. Arisholm, L.C. Briand, and E.B. Johannessen, “A Systematic
and Comprehensive Investigation of Methods to Build and
Evaluate Fault Prediction Models,” J. Systems and Software,
vol. 83, no. 1, pp. 2-17, 2010. (Paper=9, Status=P).

[10] N. Ayewah, W. Pugh, J. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating Static Analysis Defect Warnings on Production
Software,” Proc. Seventh ACM SIGPLAN-SIGSOFT Workshop
Program Analysis for Software Tools and Eng., pp. 1-8, 2007.
(Paper=10, Status=F, Phase=1).

[11] R. Bell, T. Ostrand, and E. Weyuker, “Looking for Bugs in All the
Right Places,” Proc. Int’l Symp. Software Testing and Analysis,
pp. 61-72, 2006. (Paper=11, Status=P).

[12] P. Bellini, I. Bruno, P. Nesi, and D. Rogai, “Comparing Fault-
proneness Estimation Models,” Proc. IEEE 10th Int’l Conf. Eng.
Complex Computer Systems, pp. 205-214, June 2005. (Paper=12,
Status=F, Phase=2).

[13] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving Defect
Prediction Using Temporal Features and Non Linear Models,”
Proc. Ninth Int’l Workshop Principles of Software Evolution: In
Conjunction with the Sixth ESEC/FSE Joint Meeting, pp. 11-18,
2007. (Paper=13, Status=F, Phase=2).

[14] M. Bezerra, A. Oliveira, and S. Meira, “A Constructive RBF Neural
Network for Estimating the Probability of Defects in Software
Modules,” Proc. Int’l Joint Conf. Neural Networks, pp. 2869-2874,
Aug. 2007. (Paper=14, Status=F, Phase=2, Data=N).

[15] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahvas, “Software
Defect Prediction Using Regression via Classification,” Proc. IEEE
Int’l Conf. Computer Systems and Applications, vol. 8, pp. 330-336,
2006. (Paper=15, Status=P).

[16] D. Binkley, H. Feild, D. Lawrie, and M. Pighin, “Software Fault
Prediction Using Language Processing,” Proc. Testing: Academic
and Industrial Conf. Practice and Research Techniques, pp. 99-110,
Sept. 2007. (Paper=16, Status=F, Phase=1).

[17] D. Binkley, H. Feild, D. Lawrie, and M. Pighin, “Increasing
Diversity: Natural Language Measures for Software Fault Predic-
tion,” J. Systems and Software, vol. 82, no. 11, pp. 1793-1803, 2009.
(Paper=17, Status=F, Phase=1).

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1293

86 Chapter 4. Papers

[18] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu,
“Putting it All Together: Using Socio-Technical Networks to
Predict Failures,” Proc. 20th Int’l Symp. Software Reliability Eng.,
pp. 109-119, 2009. (Paper=18, Status=P).

[19] G. Boetticher, “Improving Credibility of Machine Learner Models
in Software Engineering,” Advanced Machine Learner Applications in
Software Eng., pp. 52-72, Idea Group Publishing, 2006. (Paper=19,
Status=F, Phase=2, Data=N).

[20] L. Briand, W. Melo, and J. Wust, “Assessing the Applicability of
Fault-Proneness Models across Object-Oriented Software Pro-
jects,” IEEE Trans. Software Eng., vol. 28, no. 7, pp. 706-720, July
2002. (Paper=20, Status=F, Phase=2).

[21] B. Caglayan, A. Bener, and S. Koch, “Merits of Using Repository
Metrics in Defect Prediction for Open Source Projects,” Proc. ICSE
Workshop Emerging Trends in Free/Libre/Open Source Software
Research and Development, pp. 31-36, 2009. (Paper=21, Status=P).

[22] G. Calikli, A. Tosun, A. Bener, and M. Celik, “The Effect of
Granularity Level on Software Defect Prediction,” Proc. 24th Int’l
Symp. Computer and Information Sciences, pp. 531-536, Sept. 2009.
(Paper=22, Status=F, Phase=2).

[23] C. Catal, B. Diri, and B. Ozumut, “An Artificial Immune System
Approach for Fault Prediction in Object-Oriented Software,” Proc.
Second Int’l Conf. Dependability of Computer Systems, pp. 238-245,
June 2007. (Paper=23, Status=F, Phase=2, Data=N).

[24] E. Ceylan, F. Kutlubay, and A. Bener, “Software Defect Identifica-
tion Using Machine Learning Techniques,” Proc. 32nd Software
Eng. and Advanced Applications, pp. 240-247, 2006. (Paper=24,
Status=F, Phase=2).

[25] V.U. Challagulla, F.B. Bastani, and I.-L. Yen, “A Unified Frame-
work for Defect Data Analysis Using the MBR Technique,” Proc.
IEEE 18th Int’l Tools with Artificial Intelligence, pp. 39-46, Nov. 2006.
(Paper=25, Status=F, Phase=2, Data=N).

[26] V. Challagulla, F. Bastani, I.-L. Yen, and R. Paul, “Empirical
Assessment of Machine Learning Based Software Defect Predic-
tion Techniques,” Proc.S 10th IEEE Int’l Workshop Object-Oriented
Real-Time Dependable Systems, pp. 263-270, Feb. 2005. (Paper=26,
Status=F, Phase=2, Data=N).

[27] J. Cong, D. En-Mei, and Q. Li-Na, “Software Fault Prediction
Model Based on Adaptive Dynamical and Median Particle Swarm
Optimization,” Proc. Second Int’l Conf. Multimedia and Information
Technology, vol. 1, pp. 44-47, 2010. (Paper=27, Status=F, Phase=2,
Data=N).

[28] C. Cruz and A. Erika, “Exploratory Study of a UML Metric for
Fault Prediction,” Proc. ACM/IEEE 32nd Int’l Conf. Software Eng.,
pp. 361-364, 2010. (Paper=28, Status=F, Phase=4).

[29] C. Cruz, A. Erika, and O. Koichiro, “Towards Logistic Regression
Models for Predicting Fault-Prone Code across Software Projects,”
Proc. Third Int’l Symp. Empirical Software Eng. and Measurement,
pp. 460-463, 2009. (Paper=29, Status=P).

[30] V. Dallmeier and T. Zimmermann, “Extraction of Bug Localization
Benchmarks from History,” Proc. IEEE/ACM 22nd Int’l Conf.
Automated Software Eng., pp. 433-436, 2007. (Paper=30, Status=F,
Phase=1).

[31] M. D’Ambros, M. Lanza, and R. Robbes, “On the Relationship
between Change Coupling and Software Defects,” Proc. 16th
Working Conf. Reverse Eng., pp. 135-144, Oct. 2009. (Paper=31,
Status=P).

[32] M. D’Ambros, M. Lanza, and R. Robbes, “An Extensive
Comparison of Bug Prediction Approaches,” Proc. IEEE Seventh
Working Conf. Mining Software Repositories, pp. 31-41, 2010.
(Paper=32, Status=P).

[33] A.B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz, “Predicting
Fault Proneness of Classes through a Multiobjective Particle
Swarm Optimization Algorithm,” Proc. IEEE 20th Int’l Conf. Tools
with Artificial Intelligence, vol. 2, pp. 387-394, 2008. (Paper=33,
Status=F, Phase=2, Data=N).

[34] A.B. de Carvalho, A. Pozo, and S.R. Vergilio, “A Symbolic Fault-
Prediction Model Based on Multiobjective Particle Swarm
Optimization,” J. Systems and Software, vol. 83, no. 5, pp. 868-882,
2010. (Paper=34, Status=F, Phase=2, Data=N).

[35] G. Denaro, “Estimating Software Fault-Proneness for Tuning
Testing Activities,” Proc. Int’l Conf. Software Eng., pp. 704-706,
2000. (Paper=35, Status=F, Phase=2).

[36] G. Denaro, S. Morasca, and M. Pezzè, “Deriving Models of
Software Fault-Proneness,” Proc. 14th Int’l Conf. Software Eng. and
Knowledge Eng., pp. 361-368, 2002. (Paper=36, Status=F, Phase=2).

[37] G. Denaro and M. Pezzè, “An Empirical Evaluation of Fault-
Proneness Models,” Proc. 24th Int’l Conf. Software Eng., pp. 241-
251, 2002. (Paper=37, Status=P).

[38] Z. Dianqin and W. Zhongyuan, “The Application of Gray-
Prediction Theory in the Software Defects Management,” Proc.
Int’l Conf. Computational Intelligence and Software Eng., pp. 1-5,
2009. (Paper=38, Status=F, Phase=2).

[39] K. El Emam, W. Melo, and J. Machado, “The Prediction of Faulty
Classes Using Object-Oriented Design Metrics,” J. Systems and
Software, vol. 56, no. 1, pp. 63-75, 2001. (Paper=39, Status=F,
Phase=2).

[40] K. Elish and M. Elish, “Predicting Defect-prone Software Modules
Using Support Vector Machines,” J. Systems and Software, vol. 81,
no. 5, pp. 649-660, 2008. (Paper=40, Status=F, Phase=2, Data=N).

[41] N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and P.
Krause, “Project Data Incorporating Qualitative Factors for
Improved Software Defect Prediction,” Proc. Int’l Workshop
Predictor Models in Software Eng., p. 2, May 2007. (Paper=41,
Status=F, Phase=2).

[42] N. Fenton and N. Ohlsson, “Quantitative Analysis of Faults and
Failures in a Complex Software System,” IEEE Trans. Software
Eng., vol. 26, no. 8, pp. 797-814, Aug. 2000. (Paper=42, Status=F,
Phase=1).

[43] F. Fioravanti and P. Nesi, “A Study on Fault-Proneness Detection
of Object-Oriented Systems,” Proc. Fifth European Conf. Software
Maintenance and Reeng., pp. 121-130, 2001. (Paper=43, Status=F,
Phase=2).

[44] K. Gao and T. Khoshgoftaar, “A Comprehensive Empirical Study
of Count Models for Software Fault Prediction,” IEEE Trans.
Reliability, vol. 56, no. 2, pp. 223-236, June 2007. (Paper=44,
Status=F, Phase=2).

[45] N. Gayatri, S. Nickolas, A.V. Reddy, and R. Chitra, “Performance
Analysis of Datamining Algorithms for Software Quality Predic-
tion,” Proc. Int’l Conf. Advances in Recent Technologies in Comm. and
Computing, pp. 393-395, 2009. (Paper=45, Status=F, Phase=2,
Data=N).

[46] I. Gondra, “Applying Machine Learning to Software Fault-
Proneness Prediction,” J. Systems and Software, vol. 81, no. 2,
pp. 186-195, 2008. (Paper=46, Status=F, Phase=1).

[47] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Trans. Software
Eng., vol. 26, no. 7, pp. 653-661, July 2000. (Paper=47, Status=F,
Phase=1).

[48] D. Gray, D. Bowes, N. Davey, S. Yi, and B. Christianson, “Software
Defect Prediction Using Static Code Metrics Underestimates
Defect-Proneness,” Proc. Int’l Joint Conf. Neural Networks, pp. 1-7,
2010. (Paper=48, Status=F, Phase=1).

[49] L. Guo, B. Cukic, and H. Singh, “Predicting Fault Prone Modules
by the Dempster-Shafer Belief Networks,” Proc. IEEE 18th Int’l
Conf. Automated Software Eng., pp. 249-252, Oct. 2003. (Paper=49,
Status=F, Phase=2, Data=N).

[50] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust Prediction of
Fault-Proneness by Random Forests,” Proc. 15th Int’l Symp.
Software Reliability Eng., pp. 417-428, Nov. 2004. (Paper=50,
Status=F, Phase=2, Data=N).

[51] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault
Prediction,” IEEE Trans. Software Eng., vol. 31, no. 10, pp. 897-
910, Oct. 2005. (Paper=51, Status=P).

[52] A.E. Hassan, “Predicting Faults Using the Complexity of Code
Changes,” Proc. 31st IEEE Int’l Conf. Software Eng., pp. 78-88, 2009.
(Paper=52, Status=F, Phase=5).

[53] A. Hassan and R. Holt, “The Top Ten List: Dynamic Fault
Prediction,” Proc. 21st IEEE Int’l Conf. Software Maintenance,
pp. 263-272, Sept. 2005. (Paper=53, Status=F, Phase=1).

[54] Y. Higo, K. Murao, S. Kusumoto, and K. Inoue, “Predicting Fault-
Prone Modules Based on Metrics Transitions,” Proc. Workshop
Defects in Large Software Systems, pp. 6-10, 2008. (Paper=54,
Status=F, Phase=1).

[55] T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj,
and A. Zeller, “Predicting Defects in SAP Java Code: An
Experience Report,” Proc. 31st Int’l Conf. Software Eng.-Companion
Volume, pp. 172-181, 2009. (Paper=55, Status=F, Phase=2).

[56] Z. Hongyu, “An Investigation of the Relationships Between Lines
of Code and Defects,” Proc. IEEE Int’l Conf. Software Maintenance,
pp. 274-283, 2009. (Paper=56, Status=P, Data=N).

1294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Paper 4 87

[57] D. Hovemeyer and W. Pugh, “Finding Bugs Is Easy,” Proc.
Companion to the 19th Ann. ACM SIGPLAN Conf. Object-Oriented
Programming Systems, Languages, and Applications, pp. 132-136,
2004. (Paper=57, Status=F, Phase=3).

[58] L. Hribar and D. Duka, “Software Component Quality Prediction
Using KNN and Fuzzy Logic,” Proc. 33rd Int’l Convention MIPRO,
pp. 402-408, 2010. (Paper=58, Status=F, Phase=1).

[59] W. Huanjing, T.M. Khoshgoftaar, and A. Napolitano, “A
Comparative Study of Ensemble Feature Selection Techniques
for Software Defect Prediction,” Proc. Ninth Int’l Conf. Machine
Learning and Applications, pp. 135-140, 2010. (Paper=59, Status=F,
Phase=4, Data=N).

[60] L. Jiang, Z. Su, and E. Chiu, “Context-Based Detection of Clone-
Related Bugs,” Proc. Sixth Joint Meeting of the European Software
Eng. Conf. and the ACM SIGSOFT Symp. Foundations of Software
Eng., pp. 55-64, 2007. (Paper=60, Status=F, Phase=1).

[61] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for Evaluating Fault
Prediction Models,” Empirical Software Eng., vol. 13, no. 5, pp. 561-
595, 2008. (Paper=61, Status=F, Phase=2, Data=N).

[62] Y. Jiang, B. Cukic, and T. Menzies, “Fault Prediction Using Early
Lifecycle Data,” Proc. IEEE 18th Int’l Symp. Software Reliability,
pp. 237-246, Nov. 2007. (Paper=62, Status=F, Phase=2, Data=N).

[63] Y. Jiang, B. Cukic, and T. Menzies, “Cost Curve Evaluation of
Fault Prediction Models,” Proc. 19th Int’l Symp. Software Reliability
Eng., pp. 197-206, Nov. 2008. (Paper=63, Status=F, Phase=2,
Data=N).

[64] Y. Jiang, J. Lin, B. Cukic, and T. Menzies, “Variance Analysis in
Software Fault Prediction Models,” Proc. 20th Int’l Symp. Software
Reliability Eng., pp. 99-108, Nov. 2009. (Paper=64, Status=F,
Phase=2, Data=N).

[65] J.A. Jones and M.J. Harrold, “Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique,” Proc. IEEE/
ACM 20th Int’l Conf. Automated Software Eng., pp. 273-282, 2005.
(Paper=65, Status=F, Phase=1).

[66] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” Proc. 24th Int’l Conf.
Software Eng., pp. 467-477, 2002. (Paper=66, Status=F,
Phase=1).

[67] H. Joshi, C. Zhang, S. Ramaswamy, and C. Bayrak, “Local and
Global Recency Weighting Approach to Bug Prediction,” Proc.
Fourth Int’l Workshop Mining Software Repositories, p. 33, May 2007.
(Paper=67, Status=F, Phase=2).

[68] L. Jun, X. Zheng, Q. Jianzhong, and L. Shukuan, “A Defect
Prediction Model for Software Based on Service Oriented
Architecture Using Expert Cocomo,” Proc. 21st Ann. Int’l Conf.
Chinese Control and Decision Conf., pp. 2591-2594, 2009. (Paper=68,
Status=F, Phase=1).

[69] Y. Kamei, S. Matsumoto, A. Monden, K.i. Matsumoto, B. Adams,
and A.E. Hassan, “Revisiting Common Bug Prediction Findings
Using Effort-Aware Models,” Proc. IEEE Int’l Conf. Software
Maintenance, pp. 1-10, 2010. (Paper=69, Status=P).

[70] K. Kaminsky and G. Boetticher, “Building a Genetically Engineer-
able Evolvable Program (GEEP) Using Breadth-based Explicit
Knowledge for Predicting Software Defects,” Proc. IEEE Ann.
Meeting Fuzzy Information, vol. 1, pp. 10-15, June 2004. (Paper=70,
Status=F, Phase=1).

[71] S. Kanmani, V.R. Uthariaraj, V. Sankaranarayanan, and P.
Thambidurai, “Object Oriented Software Quality Prediction
Using General Regression Neural Networks,” SIGSOFT Software
Eng. Notes, vol. 29, pp. 1-6, Sept. 2004. (Paper=71, Status=F,
Phase=2).

[72] S. Kanmani, V. Uthariaraj, V. Sankaranarayanan, and P. Thambi-
durai, “Object-Oriented Software Fault Prediction Using Neural
Networks,” Information and Software Technology, vol. 49, no. 5,
pp. 483-492, 2007. (Paper=72, Status=F, Phase=2).

[73] Y. Kastro and A. Bener, “A Defect Prediction Method for Software
Versioning,” Software Quality J., vol. 16, no. 4, pp. 543-562, 2008.
(Paper=73, Status=P).

[74] A. Kaur and R. Malhotra, “Application of Random Forest in
Predicting Fault-Prone Classes,” Proc. Int’l Conf. Advanced Compu-
ter Theory and Eng., pp. 37-43, 2008. (Paper=74, Status=P).

[75] A. Kaur, P.S. Sandhu, and A.S. Bra, “Early Software Fault
Prediction Using Real Time Defect Data,” Proc. Second Int’l Conf.
Machine Vision, pp. 242-245, 2009. (Paper=75, Status=F, Phase=2,
Data=N).

[76] T.M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute Selection
and Imbalanced Data: Problems in Software Defect Prediction,”
Proc. 22nd IEEE Int’l Conf. Tools with Artificial Intelligence, vol. 1,
pp. 137-144, 2010. (Paper=76, Status=P).

[77] T. Khoshgoftaar, E. Allen, and J. Busboom, “Modeling Software
Quality: The Software Measurement Analysis and Reliability
Toolkit,” Proc. IEEE 12th Int’l Conf. Tools with Artificial Intelligence,
pp. 54-61, 2000. (Paper=77, Status=F, Phase=2).

[78] T. Khoshgoftaar, K. Gao, and R. Szabo, “An Application of Zero-
Inflated Poisson Regression for Software Fault Prediction,” Proc.
12th Int’l Symp. Software Reliability Eng., pp. 66-73, Nov. 2001.
(Paper=78, Status=F, Phase=2).

[79] T. Khoshgoftaar, E. Geleyn, and K. Gao, “An Empirical Study of
the Impact of Count Models Predictions on Module-order
Models,” Proc. Eighth IEEE Symp. Software Metrics, pp. 161-172,
2002. (Paper=79, Status=F, Phase=2).

[80] T. Khoshgoftaar and N. Seliya, “Improving Usefulness of Software
Quality Classification Models Based on Boolean Discriminant
Functions,” Proc. 13th Int’l Symp. Software Reliability Eng., pp. 221-
230, 2002. (Paper=80, Status=F, Phase=2).

[81] T. Khoshgoftaar and N. Seliya, “Software Quality Classification
Modeling Using the Sprint Decision Tree Algorithm,” Proc. IEEE
14th Int’l Conf. Tools with Artificial Intelligence, pp. 365-374, 2002.
(Paper=81, Status=F, Phase=2).

[82] T. Khoshgoftaar and N. Seliya, “Tree-Based Software Quality
Estimation Models for Fault Prediction,” Proc. IEEE Eighth Symp.
Software Metrics, pp. 203-214, 2002. (Paper=82, Status=F, Phase=2).

[83] T. Khoshgoftaar and N. Seliya, “Comparative Assessment of
Software Quality Classification Techniques: An Empirical Case
Study,” Empirical Software Eng., vol. 9, no. 3, pp. 229-257, 2004.
(Paper=83, Status=P).

[84] T. Khoshgoftaar, N. Seliya, and K. Gao, “Assessment of a New
Three-Group Software Quality Classification Technique: An
Empirical Case Study,” Empirical Software Eng., vol. 10, no. 2,
pp. 183-218, 2005. (Paper=84, Status=F, Phase=2).

[85] T. Khoshgoftaar, V. Thaker, and E. Allen, “Modeling Fault-Prone
Modules of Subsystems,” Proc. 11th Int’l Symp. Software Reliability
Eng., pp. 259-267, 2000. (Paper=85, Status=F, Phase=2).

[86] T. Khoshgoftaar, X. Yuan, E. Allen, W. Jones, and J. Hudepohl,
“Uncertain Classification of Fault-Prone Software Modules,”
Empirical Software Eng., vol. 7, no. 4, pp. 297-318, 2002. (Paper=86,
Status=P).

[87] S. Kim, K. Pan, and E. Whitehead Jr., “Memories of Bug Fixes,”
Proc. 14th ACM SIGSOFT Int’l Symp. Foundations of Software Eng.,
pp. 35-45, 2006. (Paper=87, Status=F, Phase=2).

[88] S. Kim, T. Zimmermann, E. Whitehead Jr., and A. Zeller,
“Predicting Faults from Cached History,” Proc. 29th Int’l Conf.
Software Eng., pp. 489-498, 2007. (Paper=88, Status=F, Phase=4).

[89] S. Kim, T. Zimmermann, K. Pan, and E. Whitehead, “Automatic
Identification of Bug-Introducing Changes,” Proc. IEEE/ACM 21st
Int’l Conf. Automated Software Eng., pp. 81-90, Sept. 2006.
(Paper=89, Status=F, Phase=1).

[90] M. Kläs, F. Elberzhager, J. Münch, K. Hartjes, and O. von
Graevemeyer, “Transparent Combination of Expert and Measure-
ment Data for Defect Prediction: An Industrial Case Study,” Proc.
32nd ACM/IEEE Int’l Conf. Software Eng., pp. 119-128, 2010.
(Paper=90, Status=F, Phase=2).

[91] M. Kläs, H. Nakao, F. Elberzhager, and J. Münch, “Predicting
Defect Content and Quality Assurance Effectiveness by Combin-
ing Expert Judgment and Defect Data-A Case Study,” Proc. 19th
Int’l Symp. Software Reliability Eng., pp. 17-26, 2008. (Paper=91,
Status=F, Phase=2).

[92] P. Knab, M. Pinzger, and A. Bernstein, “Predicting Defect
Densities in Source Code Files with Decision Tree Learners,”
Proc. Int’l Workshop Mining Software Repositories, pp. 119-125, 2006.
(Paper=92, Status=P).

[93] A. Koru and H. Liu, “Building Effective Defect-Prediction Models
in Practice,” IEEE Software, vol. 22, no. 6, pp. 23-29, Nov./Dec.
2005. (Paper=93, Status=F, Phase=2, Data=N).

[94] A. Koru, D. Zhang, and H. Liu, “Modeling the Effect of Size on
Defect Proneness for Open-Source Software,” Proc. Int’l Workshop
Predictor Models in Software Eng., p. 10, May 2007. (Paper=94,
Status=F, Phase=1).

[95] O. Kutlubay, B. Turhan, and A. Bener, “A Two-Step Model for
Defect Density Estimation,” Proc. 33rd EUROMICRO Conf. Soft-
ware Eng. and Advanced Applications, pp. 322-332, Aug. 2007.
(Paper=95, Status=F, Phase=2, Data=N).

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1295

88 Chapter 4. Papers

[96] L. Layman, G. Kudrjavets, and N. Nagappan, “Iterative Identifi-
cation of Fault-Prone Binaries Using in-Process Metrics,” Proc.
ACM-IEEE Second Int’l Symp. Empirical Software Eng. and Measure-
ment, pp. 206-212, 2008. (Paper=96, Status=F, Phase=4).

[97] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmark-
ing Classification Models for Software Defect Prediction: A
Proposed Framework and Novel Findings,” IEEE Trans. Software
Eng., vol. 34, no. 4, pp. 485-496, July/Aug. 2008. (Paper=97,
Status=F, Phase=2, Data=N).

[98] P.L. Li, J. Herbsleb, M. Shaw, and B. Robinson, “Experiences and
Results from Initiating Field Defect Prediction and Product Test
Prioritization Efforts at Abb Inc.” Proc. 28th Int’l Conf. Software
Eng., pp. 413-422, 2006. (Paper=98, Status=P).

[99] P.L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam, “Empirical
Evaluation of Defect Projection Models for Widely-Deployed
Production Software Systems,” SIGSOFT Software Eng. Notes,
vol. 29, pp. 263-272, Oct. 2004. (Paper=99, Status=F, Phase=1).

[100] P. Li, J. Herbsleb, and M. Shaw, “Finding Predictors of Field
Defects for Open Source Software Systems in Commonly Avail-
able Data Sources: A Case Study of Openbsd,” Proc. IEEE 11th Int’l
Symp. Software Metrics, pp. 10-32, Sept. 2005. (Paper=100,
Status=F, Phase=1).

[101] Z. Li and M. Reformat, “A Practical Method for the Software
Fault-Prediction,” Proc. IEEE Int’l Conf. Information Reuse and
Integration, pp. 659-666, Aug. 2007. (Paper=101, Status=F,
Phase=2, Data=N).

[102] Y. Ma, L. Guo, and B. Cukic, “A Statistical Framework for the
Prediction of Fault-Proneness,” Proc. Advances in Machine Learning
Applications in Software Eng., pp. 237-265, 2006. (Paper=102,
Status=F, Phase=2, Data=N).

[103] J.T. Madhavan and E.J. Whitehead Jr., “Predicting Buggy Changes
Inside an Integrated Development Environment,” Proc. OOPSLA
Workshop Eclipse Technology Exchange, pp. 36-40, 2007. (Paper=103,
Status=F, Phase=4).

[104] A. Mahaweerawat, P. Sophatsathit, and C. Lursinsap, “Software
Fault Prediction Using Fuzzy Clustering and Radial-Basis Func-
tion Network,” Proc. Int’l Conf. Intelligent Technologies, pp. 304-313,
2002. (Paper=104, Status=F, Phase=2).

[105] A. Mahaweerawat, P. Sophatsathit, and C. Lursinsap, “Adaptive
Self-Organizing Map Clustering for Software Fault Prediction,”
Proc. Fourth Int’l Joint Conf. Computer Science and Software Eng.,
pp. 35-41, 2007. (Paper=105, Status=F, Phase=2).

[106] A. Mahaweerawat, P. Sophatsathit, C. Lursinsap, and P.
Musilek, “Fault Prediction in Object-Oriented Software Using
Neural Network Techniques,” Proc. InTech Conf., pp. 2-4, 2004.
(Paper=106, Status=F, Phase=2).

[107] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the Conceptual
Cohesion of Classes for Fault Prediction in Object-Oriented
Systems,” IEEE Trans. Software Eng., vol. 34, no. 2, pp. 287-300,
Mar./Apr. 2008. (Paper=107, Status=F, Phase=1).

[108] T. Mende and R. Koschke, “Revisiting the Evaluation of Defect
Prediction Models,” Proc. Fifth Int’l Conf. Predictor Models in
Software Eng., p. 7, 2009. (Paper=108, Status=F, Phase=2, Data=N).

[109] T. Mende and R. Koschke, “Effort-Aware Defect Prediction
Models,” Proc. 14th European Conf. Software Maintenance and
Reeng., pp. 107-116, 2010. (Paper=109, Status=P, Data=N).

[110] T. Mende, R. Koschke, and M. Leszak, “Evaluating Defect
Prediction Models for a Large Evolving Software System,” Proc.
13th European Conf. Software Maintenance and Reeng., pp. 247-250,
Mar. 2009. (Paper=110, Status=P).

[111] T. Menzies and J. Di Stefano, “How Good Is Your Blind Spot
Sampling Policy,” Proc. IEEE Eighth Int’l Symp. High Assurance
Systems Eng., pp. 129-138, Mar. 2004. (Paper=111, Status=F,
Phase=2, Data=N).

[112] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static Code
Attributes to Learn Defect Predictors,” IEEE Trans. Software Eng.,
vol. 33, no. 1, pp. 2-13, Jan. 2007. (Paper=112, Status=F, Phase=2,
Data=N).

[113] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A.B.
Bener, “Defect Prediction from Static Code Features: Current
Results, Limitations, New Approaches,” Automatic Software Eng.,
vol. 17, no. 4, pp. 375-407, 2010. (Paper=113, Status=F, Phase=2,
Data=N).

[114] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
“Implications of Ceiling Effects in Defect Predictors,” Proc. Fourth
Int’l Workshop Predictor Models in Software Eng., pp. 47-54, 2008.
(Paper=114, Status=F, Phase=2, Data=N).

[115] M. Mertik, M. Lenic, G. Stiglic, and P. Kokol, “Estimating Software
Quality with Advanced Data Mining Techniques,” Proc. Int’l Conf.
Software Eng. Advances, p. 19, Oct. 2006. (Paper=115, Status=F,
Phase=2, Data=N).

[116] O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno, “Spam Filter
Based Approach for Finding Fault-Prone Software Modules,”
Proc. Fourth Int’l Workshop Mining Software Repositories, p. 4, May
2007. (Paper=116, Status=P).

[117] O. Mizuno and T. Kikuno, “Training on Errors Experiment to
Detect Fault-Prone Software Modules by Spam Filter,” Proc. Sixth
Joint Meeting of the European Software Eng. Conf. and the ACM
SIGSOFT Symp. Foundations of Software Eng., pp. 405-414, 2007.
(Paper=117, Status=P).

[118] R. Moser, W. Pedrycz, and G. Succi, “A Comparative Analysis of
the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction,” Proc. ACM/IEEE 30th Int’l Conf. Software Eng.,
pp. 181-190, 2008. (Paper=118, Status=P).

[119] N. Nagappan and T. Ball, “Static Analysis Tools as Early
Indicators of Pre-Release Defect Density,” Proc. 27th Int’l Conf.
Software Eng., pp. 580-586, May 2005. (Paper=119, Status=F,
Phase=3).

[120] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B.
Murphy, “Change Bursts as Defect Predictors,” Proc. IEEE 21st
Int’l Symp. Software Reliability Eng., pp. 309-318, 2010. (Paper=120,
Status=P).

[121] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures
to Predict System Defect Density,” Proc. 27th Int’l Conf. Software
Eng., pp. 284-292, 2005. (Paper=121, Status=F, Phase=2).

[122] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” Proc. 28th Int’l Conf. Software Eng., pp. 452-
461, 2006. (Paper=122, Status=P).

[123] N.K. Nagwani and S. Verma, “Predictive Data Mining Model for
Software Bug Estimation Using Average Weighted Similarity,”
Proc. IEEE Second Int’l Advance Computing Conf., pp. 373-378, 2010.
(Paper=123, Status=F, Phase=1).

[124] A. Neufelder, “How to Measure the Impact of Specific Develop-
ment Practices on Fielded Defect Density,” Proc. 11th Int’l Symp.
Software Reliability Eng., pp. 148-160, 2000. (Paper=124, Status=F,
Phase=1).

[125] A. Nikora and J. Munson, “Developing Fault Predictors for
Evolving Software Systems,” Proc. Ninth Int’l Software Metrics
Symp., pp. 338-350, Sept. 2003. (Paper=125, Status=F, Phase=1).

[126] A. Nikora and J. Munson, “The Effects of Fault Counting Methods
on Fault Model Quality,” Proc. 28th Ann. Int’l Computer Software
and Applications Conf., vol. 1, pp. 192-201, Sept. 2004. (Paper=126,
Status=F, Phase=1).

[127] A. Nugroho, M.R.V. Chaudron, and E. Arisholm, “Assessing UML
Design Metrics for Predicting Fault-Prone Classes in a Java
System,” Proc. IEEE Seventh Working Conf. Mining Software
Repositories, pp. 21-30, 2010. (Paper=127, Status=F, Phase=5).

[128] H. Olague, L. Etzkorn, S. Gholston, and S. Quattlebaum,
“Empirical Validation of Three Software Metrics Suites to Predict
Fault-Proneness of Object-Oriented Classes Developed Using
Highly Iterative or Agile Software Development Processes,” IEEE
Trans. Software Eng., vol. 33, no. 6, pp. 402-419, June 2007.
(Paper=128, Status=F, Phase=2).

[129] A. Oral and A. Bener, “Defect Prediction for Embedded Soft-
ware,” Proc. 22nd Int’l Symp. Computer and Information Sciences,
pp. 1-6, Nov. 2007. (Paper=129, Status=F, Phase=2, Data=N).

[130] T.J. Ostrand and E.J. Weyuker, “The Distribution of Faults in a
Large Industrial Software System,” SIGSOFT Software Eng. Notes,
vol. 27, pp. 55-64, July 2002. (Paper=130, Status=F, Phase=1).

[131] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Locating Where Faults
Will Be,” Proc. Conf. Diversity in Computing, pp. 48-50, 2005.
(Paper=131, Status=F, Phase=2).

[132] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Automating Algo-
rithms for the Identification of Fault-Prone Files,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 219-227, 2007. (Paper=132,
Status=F, Phase=4).

[133] T.J. Ostrand, E.J. Weyuker, and R. Bell, “Where the Bugs Are,”
ACM SIGSOFT Software Eng. Notes, vol. 29, pp. 86-96, 2004.
(Paper=133, Status=P).

[134] T.J. Ostrand, E.J. Weyuker, and R. Bell, “Predicting the Location
and Number of Faults in Large Software Systems,” IEEE Trans.
Software Eng., vol. 31, no. 4, pp. 340-355, Apr. 2005. (Paper=134,
Status=F, Phase=4).

1296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Paper 4 89

[135] T. Ostrand, E. Weyuker, and R. Bell, “Programmer-Based Fault
Prediction,” Proc. Sixth Int’l Conf. Predictive Models in Software Eng.,
pp. 1-10, 2010. (Paper=135, Status=P).

[136] T. Ostrand, E. Weyuker, R. Bell, and R. Ostrand, “A Different
View of Fault Prediction,” Proc. 29th Ann. Int’l Computer Software
and Applications Conf., vol. 2, pp. 3-4, July 2005. (Paper=136,
Status=F, Phase=1).

[137] F. Padberg, T. Ragg, and R. Schoknecht, “Using Machine Learning
for Estimating the Defect Content After an Inspection,” IEEE
Trans. Software Eng., vol. 30, no. 1, pp. 17-28, Jan. 2004.
(Paper=137, Status=F, Phase=2).

[138] G. Pai and J. Dugan, “Empirical Analysis of Software Fault
Content and Fault Proneness Using Bayesian Methods,” IEEE
Trans. Software Eng., vol. 33, no. 10, pp. 675-686, Oct. 2007.
(Paper=138, Status=F, Phase=2, Data=N).

[139] A.K. Pandey and N.K. Goyal, “Test Effort Optimization by
Prediction and Ranking of Fault-Prone Software Modules,” Proc.
Second Int’l Conf. Reliability, Safety and Hazard, pp. 136-142, 2010.
(Paper=139, Status=F, Phase=2, Data=N).

[140] L. Pelayo and S. Dick, “Applying Novel Resampling Strategies to
Software Defect Prediction,” Proc. Ann. Meeting of the North Amer.
Fuzzy Information Processing Soc., pp. 69-72, June 2007. (Paper=140,
Status=F, Phase=2, Data=N).

[141] P. Pendharkar, “Exhaustive and Heuristic Search Approaches for
Learning a Software Defect Prediction Model,” J. Eng. Applications
of Artificial Intelligence, vol. 23, no. 1, pp. 34-40, 2010. (Paper=141,
Status=F, Phase=5, Data=N).

[142] H. Peng and Z. Jie, “Predicting Defect-Prone Software Modules at
Different Logical Levels,” Proc. Int’l Conf. Research Challenges in
Computer Science, pp. 37-40, 2009. (Paper=142, Status=F, Phase=2,
Data=N).

[143] M. Pighin and A. Marzona, “An Empirical Analysis of Fault
Persistence through Software Releases,” Proc. Int’l Symp. Empirical
Software Eng., pp. 206-212, Sept.-Oct. 2003. (Paper=143, Status=F,
Phase=1).

[144] M. Pinzger, N. Nagappan, and B. Murphy, “Can Developer-
Module Networks Predict Failures?” Proc. 16th ACM SIGSOFT
Int’l Symp. Foundations of Software Eng., pp. 2-12, 2008. (Paper=144,
Status=F, Phase=2).

[145] R. Ramler, S. Larndorfer, and T. Natschlager, “What Software
Repositories Should Be Mined for Defect Predictors?” Proc. 35th
Euromicro Conf. Software Eng. and Advanced Applications, pp. 181-
187, 2009. (Paper=145, Status=F, Phase=4).

[146] Z. Rana, S. Shamail, and M. Awais, “Ineffectiveness of Use of
Software Science Metrics as Predictors of Defects in Object
Oriented Software,” Proc. WRI World Congress Software Eng.,
vol. 4, pp. 3-7, May 2009. (Paper=146, Status=F, Phase=1,
Data=N).

[147] J. Ratzinger, T. Sigmund, and H.C. Gall, “On the Relation of
Refactorings and Software Defect Prediction,” Proc. Int’l Working
Conf. Mining Software Repositories, pp. 35-38, 2008. (Paper=147,
Status=F, Phase=4).

[148] M. Reformat, A Fuzzy-Based Meta-model for Reasoning about the
Number of Software Defects. Springer, 2003. (Paper=148, Status=F,
Phase=2).

[149] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz,
“Detecting Fault Modules Applying Feature Selection to Classi-
fiers,” Proc. IEEE Int’l Conf. Information Reuse and Integration,
pp. 667-672, Aug. 2007. (Paper=149, Status=F, Phase=2, Data=N).

[150] P.S. Sandhu, R. Goel, A.S. Brar, J. Kaur, and S. Anand, “A
Model for Early Prediction of Faults in Software Systems,”
Proc. Second Int’l Conf. Computer and Automation Eng., vol. 4,
pp. 281-285, 2010. (Paper=150, Status=F, Phase=2, Data=N).

[151] P.S. Sandhu, M. Kaur, and A. Kaur, “A Density Based Clustering
Approach for Early Detection of Fault Prone Modules,” Proc. Int’l
Conf. Electronics and Information Eng., vol. 2, pp. V2-525-V2-530,
2010. (Paper=151, Status=F, Phase=2, Data=N).

[152] N. Schneidewind, “Investigation of Logistic Regression as a
Discriminant of Software Quality,” Proc. Seventh Int’l Software
Metrics Symp., pp. 328-337, 2001. (Paper=152, Status=F, Phase=2).

[153] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller, “If Your
Bug Database Could Talk,” Proc. Fifth Int’l Symp. Empirical
Software Eng., vol. 2, pp. 18-20, 2006. (Paper=153, Status=F,
Phase=1).

[154] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting Compo-
nent Failures at Design Time,” Proc. ACM/IEEE Int’l Symp.
Empirical Software Eng., pp. 18-27, 2006. (Paper=154, Status=P).

[155] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller, “Where
Do Bugs Come Drom?” SIGSOFT Software Eng. Notes, vol. 31,
pp. 1-2, Nov. 2006. (Paper=155, Status=F, Phase=1).

[156] C. Seiffert, T.M. Khoshgoftaar, and J.V. Hulse, “Improving
Software-Quality Predictions with Data Sampling and Boosting,”
IEEE Trans. Systems, Man, and Cybernetics, Part A: Systems and
Humans, vol. 39, no. 6, pp. 1283-1294, Nov. 2009. (Paper=156,
Status=F, Phase=2, Data=N).

[157] N. Seliya, T.M. Khoshgoftaar, and J. Van Hulse, “Predicting Faults
in High Assurance Software,” Proc. IEEE 12th Int’l Symp High-
Assurance Systems Eng., pp. 26-34, 2010. (Paper=157, Status=F,
Phase=2, Data=N).

[158] N. Seliya, T. Khoshgoftaar, and S. Zhong, “Analyzing Software
Quality with Limited Fault-Proneness Defect Data,” Proc. IEEE
Ninth Int’l Symp. High-Assurance Systems Eng., pp. 89-98, Oct. 2005.
(Paper=158, Status=F, Phase=2, Data=N).

[159] R. Selvarani, T. Nair, and V. Prasad, “Estimation of Defect
Proneness Using Design Complexity Measurements in Object-
Oriented Software,” Proc. Int’l Conf. Signal Processing Systems,
pp. 766-770, May 2009. (Paper=159, Status=F, Phase=1).

[160] R. Shatnawi and W. Li, “The Effectiveness of Software Metrics in
Identifying Error-Prone Classes in Post-Release Software Evolu-
tion Process,” J. Systems and Software, vol. 81, no. 11, pp. 1868-1882,
2008. (Paper=160, Status=P).

[161] M. Sherriff, S.S. Heckman, M. Lake, and L. Williams, “Identifying
Fault-Prone Files Using Static Analysis Alerts through Singular
Value Decomposition,” Proc. Conf. Center for Advanced Studies on
Collaborative Research, pp. 276-279, 2007. (Paper=161, Status=F,
Phase=2).

[162] M. Sherriff, N. Nagappan, L. Williams, and M. Vouk, “Early
Estimation of Defect Density Using an In-Process Haskell Metrics
Model,” SIGSOFT Software Eng. Notes, vol. 30, pp. 1-6, May 2005.
(Paper=162, Status=F, Phase=1).

[163] Y. Shin, R.M. Bell, T.J. Ostrand, and E.J. Weyuker, “Does Calling
Structure Information Improve the Accuracy of Fault Prediction?”
Proc. Sixth Int’l Working Conf. Mining Software Repositories, pp. 61-
70, 2009. (Paper=163, Status=P).

[164] S. Shivaji, E.J. Whitehead, R. Akella, and K. Sunghun, “Reducing
Features to Improve Bug Prediction,” Proc. IEEE/ACM 24th Int’l
Conf. Automated Software Eng., pp. 600-604, 2009. (Paper=164,
Status=P).

[165] P. Singh and S. Verma, “An Investigation of the Effect of
Discretization on Defect Prediction Using Static Measures,” Proc.
Int’l Conf. Advances in Computing, Control, Telecomm. Technologies,
pp. 837-839, 2009. (Paper=165, Status=F, Phase=2).

[166] Y. Singh, A. Kaur, and R. Malhotra, “Predicting Software Fault
Proneness Model Using Neural Network,” Product-Focused Soft-
ware Process Improvement, vol. 5089, pp. 204-214, 2008. (Paper=166,
Status=F, Phase=2, Data=N).

[167] Y. Singh, A. Kaur, and R. Malhotra, “Empirical Validation of
Object-Oriented Metrics for Predicting Fault Proneness Models,”
Software Quality J., vol. 18, no. 1, pp. 3-35, 2010. (Paper=167,
Status=F, Phase=2, Data=N).

[168] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software
Defect Association Mining and Defect Correction Effort Predic-
tion,” IEEE Trans. Software Eng., vol. 32, no. 2, pp. 69-82, Feb. 2006.
(Paper=168, Status=F, Phase=2).

[169] C. Stringfellow and A. Andrews, “Deriving a Fault Architecture to
Guide Testing,” Software Quality J., vol. 10, no. 4, pp. 299-330, 2002.
(Paper=169, Status=F, Phase=1).

[170] G. Succi, W. Pedrycz, M. Stefanovic, and J. Miller, “Practical
Assessment of the Models for Identification of Defect-Prone
Classes in Object-Oriented Commercial Systems Using Design
Metrics,” J. Systems and Software, vol. 65, no. 1, pp. 1-12, 2003.
(Paper=170, Status=F, Phase=1).

[171] M.D.M. Suffian and M.R. Abdullah, “Establishing a Defect
Prediction Model Using a Combination of Product Metrics as
Predictors via Six Sigma Methodology,” Proc. Int’l Symp. Informa-
tion Technology, vol. 3, pp. 1087-1092, 2010. (Paper=171, Status=F,
Phase=2).

[172] M.M.T. Thwin and T.-S. Quah, “Application of Neural Network
for Predicting Software Development Faults Using Object-Or-
iented Design Metrics,” Proc. Ninth Int’l Conf. Neural Information
Processing, vol. 5, pp. 2312-2316, Nov. 2002. (Paper=172, Status=F,
Phase=2).

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1297

90 Chapter 4. Papers

[173] P. Tomaszewski, H. Grahn, and L. Lundberg, “A Method for an
Accurate Early Prediction of Faults in Modified Classes,” Proc.
IEEE 22nd Int’l Conf. Software Maintenance, pp. 487-496, Sept. 2006.
(Paper=173, Status=F, Phase=2).

[174] A. Tosun and A. Bener, “Reducing False Alarms in Software
Defect Prediction by Decision Threshold Optimization,” Proc.
Third Int’l Symp. Empirical Software Eng. and Measurement,
pp. 477-480, 2009. (Paper=174, Status=F, Phase=2, Data=N).

[175] A. Tosun, B. Turhan, and A. Bener, “Practical Considerations in
Deploying AI for Defect Prediction: A Case Study within the
Turkish Telecommunication Industry,” Proc. Fifth Int’l Conf.
Predictor Models in Software Eng., p. 11, 2009. (Paper=175, Status=F,
Phase=2, Data=N).

[176] A. Tosun, A.B. Bener, B. Turhan, and T. Menzies, “Practical
Considerations in Deploying Statistical Methods for Defect
Prediction: A Case Study within the Turkish Telecommunications
Industry,” Information and Software Technology, vol. 52, no. 11,
pp. 1242-1257, 2010. (Paper=176, Status=F, Phase=2, Data=N).

[177] B. Turhan and A. Bener, “A Multivariate Analysis of Static Code
Attributes for Defect Prediction,” Proc. Seventh Int’l Conf. Quality
Software, pp. 231-237, Oct. 2007. (Paper=177, Status=F, Phase=2,
Data=N).

[178] B. Turhan, G. Kocak, and A. Bener, “Software Defect Prediction
Using Call Graph Based Ranking (CGBR) Framework,” Proc. 34th
Euromicro Conf. Software Eng. and Advanced Applications, pp. 191-
198, Sept. 2008. (Paper=178, Status=F, Phase=2).

[179] B. Turhan, G. Kocak, and A. Bener, “Data Mining Source Code for
Locating Software Bugs: A Case Study in Telecommunication
Industry,” Expert Systems with Applications, vol. 36, no. 6, pp. 9986-
9990, 2009. (Paper=179, Status=F, Phase=2, Data=N).

[180] B. Turhan, A.B. Bener, and T. Menzies, “Regularities in Learning
Defect Predictors,” Proc. 11th Int’l Conf. Product-Focused Software
Process Improvement, pp. 116-130, 2010. (Paper=180, Status=F,
Phase=4, Data=N).

[181] B. Turhan, T. Menzies, A. Bener, and J. Di Stefano, “On the
Relative Value of Cross-Company and within-Company Data for
Defect Prediction,” Empirical Software Eng., vol. 14, no. 5, pp. 540-
578, 2009. (Paper=181, Status=F, Phase=2, Data=N).

[182] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer,
and R. Haesen, “Mining Software Repositories for Comprehen-
sible Software Fault Prediction Models,” J. Systems and Software,
vol. 81, no. 5, pp. 823-839, 2008. (Paper=182, Status=F, Phase=2,
Data=N).

[183] R. Vivanco, Y. Kamei, A. Monden, K. Matsumoto, and D. Jin,
“Using Search-Based Metric Selection and Oversampling to
Predict Fault Prone Modules,” Proc. 23rd Canadian Conf. Electrical
and Computer Eng., pp. 1-6, 2010. (Paper=183, Status=F, Phase=2,
Data=N).

[184] D. Wahyudin, A. Schatten, D. Winkler, A.M. Tjoa, and S. Biffl,
“Defect Prediction Using Combined Product and Project Metrics
—A Case Study from the Open Source ‘Apache’ Myfaces Project
Family,” Proc. 34th Euromicro Conf. Software Eng. and Advanced
Applications, pp. 207-215, 2008. (Paper=184, Status=F, Phase=1).

[185] T. Wang and W.-h. Li, “Naive Bayes Software Defect Prediction
Model,” Proc. Int’l Conf. Computational Intelligence and Software
Eng., pp. 1-4, 2010. (Paper=185, Status=F, Phase=2, Data=N).

[186] W. Wei, D. Xuan, L. Chunping, and W. Hui, “A Novel Evaluation
Method for Defect Prediction in Software Systems,” Proc. Int’l
Conf. Computational Intelligence and Software Eng., pp. 1-5, 2010.
(Paper=186, Status=F, Phase=1).

[187] Y. Weimin and L. Longshu, “A Rough Set Model for Software
Defect Prediction,” Proc. Int’l Conf. Intelligent Computation Technol-
ogy and Automation, vol. 1, pp. 747-751, 2008. (Paper=187,
Status=F, Phase=2, Data=N).

[188] E. Weyuker, T. Ostrand, and R. Bell, “Using Developer Informa-
tion as a Factor for Fault Prediction,” Proc. Third Int’l Workshop
Predictor Models in Software Eng., p. 8, May 2007. (Paper=188,
Status=F, Phase=2).

[189] E. Weyuker, T. Ostrand, and R. Bell, “Comparing Negative
Binomial and Recursive Partitioning Models for Fault Prediction,”
Proc. Fourth Int’l Workshop Predictor Models in Software Eng., pp. 3-
10, 2008. (Paper=189, Status=F, Phase=2).

[190] E. Weyuker, T. Ostrand, and R. Bell, “Do Roo Many Cooks Spoil
the Broth? Using the Number of Developers to Enhance Defect
Prediction Models,” Empirical Software Eng., vol. 13, no. 5, pp. 539-
559, 2008. (Paper=190, Status=P).

[191] E.J. Weyuker, T.J. Ostrand, and R.M. Bell, “Comparing the
Effectiveness of Several Modeling Methods for Fault Prediction,”
Empirical Software Eng., vol. 15, no. 3, pp. 277-295, 2010.
(Paper=191, Status=F, Phase=2).

[192] C. Wohlin, M. Host, and M. Ohlsson, “Understanding the
Sources of Software Defects: A Filtering Approach,” Proc.
Eighth Int’l Workshop Program Comprehension, pp. 9-17, 2000.
(Paper=192, Status=F, Phase=1).

[193] W. Wong, J. Horgan, M. Syring, W. Zage, and D. Zage, “Applying
Design Metrics to Predict Fault-Proneness: A Case Study on a
Large-Scale Software System,” Software: Practice and Experience,
vol. 30, no. 14, pp. 1587-1608, 2000. (Paper=193, Status=F,
Phase=2).

[194] Z. Xu, T. Khoshgoftaar, and E. Allen, “Prediction of Software
Faults Using Fuzzy Nonlinear Regression Modeling,” Proc. IEEE
Fifth Int’l Symp. High Assurance Systems Eng., pp. 281-290, 2000.
(Paper=194, Status=F, Phase=2).

[195] B. Yang, L. Yao, and H.-Z. Huang, “Early Software Quality
Prediction Based on a Fuzzy Neural Network Model,” Proc. Third
Int’l Conf. Natural Computation, vol. 1, pp. 760-764, Aug. 2007.
(Paper=195, Status=F, Phase=2).

[196] L. Yi, T.M. Khoshgoftaar, and N. Seliya, “Evolutionary Optimiza-
tion of Software Quality Modeling with Multiple Repositories,”
IEEE Trans. Software Eng., vol. 36, no. 6, pp. 852-864, Nov. 2010.
(Paper=196, Status=F, Phase=2, Data=N).

[197] H. Youngki, B. Jongmoon, K. In-Young, and C. Ho-Jin, “A Value-
Added Predictive Defect Type Distribution Model Based on
Project Characteristics,” Proc. IEEE/ACIS Seventh Int’l Conf.
Computer and Information Science, pp. 469-474, 2008. (Paper=197,
Status=F, Phase=2).

[198] P. Yu, T. Systa, and H. Muller, “Predicting Fault-Proneness Using
OO Metrics an Industrial Case Study,” Proc. Sixth European Conf.
Software Maintenance and Reeng., pp. 99-107, 2002. (Paper=198,
Status=F, Phase=1).

[199] X. Yuan, T. Khoshgoftaar, E. Allen, and K. Ganesan, “An
Application of Fuzzy Clustering to Software Quality Predic-
tion,” Proc. IEEE Third Symp. Application-Specific Systems and
Software Eng. Technology, pp. 85-90, 2000. (Paper=199,
Status=F, Phase=2).

[200] H. Zhang, A. Nelson, and T. Menzies, “On the Value of
Learning from Defect Dense Components for Software Defect
Prediction,” Proc. Sixth Int’l Conf. Predictive Models in Software
Eng., p. 14, Sept. 2010. (Paper=200, Status=F, Phase=2,
Data=N).

[201] S. Zhong, T. Khoshgoftaar, and N. Seliya, “Unsupervised
Learning for Expert-Based Software Quality Estimation,” Proc.
IEEE Eighth Int’l Symp. High Assurance Systems Eng., pp. 149-155,
Mar. 2004. (Paper=201, Status=F, Phase=2, Data=N).

[202] Y. Zhou and H. Leung, “Empirical Analysis of Object-Oriented
Design Metrics for Predicting High and Low Severity Faults,”
IEEE Trans. Software Eng., vol. 32, no. 10, pp. 771-789, Oct. 2006.
(Paper=202, Status=F, Phase=2, Data=N).

[203] Y. Zhou, B. Xu, and H. Leung, “On the Ability of Complexity
Metrics to Predict Fault-Prone Classes in Object-Oriented Sys-
tems,” J. Systems and Software, vol. 83, no. 4, pp. 660-674, 2010.
(Paper=203, Status=P).

[204] T. Zimmermann and N. Nagappan, “Predicting Subsystem Fail-
ures Using Dependency Graph Complexities,” Proc. IEEE 18th
Int’l Symp. Software Reliability, pp. 227-236, Nov. 2007. (Paper=204,
Status=F, Phase=2).

[205] T. Zimmermann and N. Nagappan, “Predicting Defects Using
Network Analysis on Dependency Graphs,” Proc. ACM/IEEE 30th
Int’l Conf. Software Eng., pp. 531-540, 2008. (Paper=205, Status=F,
Phase=4).

[206] T. Zimmermann and N. Nagappan, “Predicting Defects with
Program Dependencies,” Proc. Third Int’l Symp. Empirical Software
Eng. and Measurement, pp. 435-438, 2009. (Paper=206, Status=F,
Phase=2).

[207] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting Defects for
Eclipse,” Proc. Int’l Workshop Predictor Models in Software Eng., p. 9,
May 2007. (Paper=207, Status=F, Phase=2).

[208] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-Project Defect Prediction: A Large Scale Experiment on
Data vs. Domain vs. Process,” Proc. Seventh Joint Meeting of the
European Software Eng. Conf. and the ACM SIGSOFT Symp. The
Foundations of Software Eng., pp. 91-100, 2009. (Paper=208,
Status=F, Phase=4).

1298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Paper 4 91

APPENDIX A

SEARCH STRING

The following search string was used in our searches:
(Fault* OR bug* OR defect* OR errors OR corrections OR

corrective OR fix*) in title only
AND (Software) anywhere in study

APPENDIX B

CONFERENCES AND JOURNALS MANUALLY

SEARCHED

See Table 10

APPENDIX C

ADDITIONAL ASSESSMENT CRITERIA

Data quality criteria. The efficacy of the predictions made

by a model is determined by the quality of the data on

which the model was built. Leibchen and Shepperd [26]

report that many studies do not seem to consider the quality

of the data they use. Many fault prediction models are

based on machine learning, where it has been shown that a

lack of data cleaning may compromise the predictions

obtained [21]. The criteria shown in Table 11 are based on

[21], [S168], [S192], [S194], and [S19].
Predictive performance criteria. Measuring the predic-

tive performance of a model is an essential part of

demonstrating the usefulness of that model. Measuring

model performance is complex and there are many ways in

which the performance of a model may be measured.
Furthermore, the value of measures varies according to
context. For example, safety critical system developers may
want models that identify as many faults as possible,
accepting the cost of false alarms, whereas business system
developers may want models which do not generate many
false alarms as testing effort is short to ensure the timely
release of a product at the cost of missing some faults.
Appendix D reports the principles of predictive perfor-
mance measurement and provides the basis of our
performance measurement criteria. Table 12 shows our
predictive performance measurement criteria.

APPENDIX D

THE PRINCIPLES OF PREDICTIVE PERFORMANCE

MEASUREMENT

This overview of measuring predictive performance is
based on [30], [S61], and [S97]. The measurement of
predictive performance is often based on the analysis of
data in a confusion matrix (shown in Table 13 and
explained further in Table 14). This matrix reports how
the model classified the different fault categories compared
to their actual classification (predicted versus observed).
Many performance measures are related to components of
the confusion matrix shown in Table 14. Confusion matrix-
based measures are most relevant to fault prediction models
producing categorical outputs, though continuous outputs
can be converted to categorical outputs and analyzed in
terms of a confusion matrix.

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1299

TABLE 10
Conferences and Journals Manually Searched

TABLE 11
Additional Data Quality Criteria

92 Chapter 4. Papers

Composite performance measures can be calculated by
combining values from the confusion matrix (see Table 15).
“Recall” (otherwise known as the true positive rate,
probability of detection (pd), or sensitivity) describes the
proportion of faulty code units (usually files, modules, or
packages) correctly predicted as such, while “precision”
describes how reliable a prediction is in terms of what
proportion of code predicted as faulty actually was faulty.
Both are important when test sets are imbalanced, but there
is a tradeoff between these two measures [S61]. An
additional composite measure is the false positive rate
(pf), which describes the proportion of erroneous defective
predictions. Thus, the optimal classifier would achieve a pd
of 1, precision of 1, and a pf of 0. The performance measure
balance combines pd and pf. A high-balance value (near 1)
is achieved with a high pd and low pf. Balance can also be
adjusted to a factor in the cost of false alarms which
typically do not result in fault fixes. When the combinations
of pd and pf are plotted, they produce a Receiver Operator

Curve (ROC). This gives a range of balance figures, and it is
usual to report the area under the curve as varying between
0 and 1, with 1 being the ideal value. Table 16 shows other
ways in which the performance of a model can be
measured. Such measures are usually used in models that
produce continuous or ranking results.

APPENDIX E

CALCULATING PRECISION, RECALL, AND F-MEASURE

FOR CATEGORICAL STUDIES (REPORTED IN [31])

Many studies report precision and recall, but others report
pd and pf. If we are to compare the results we need to
convert the results of one paper into the performance

1300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

TABLE 12
Additional Predictive Performance Measurement Criteria

TABLE 13
Confusion Matrix

TABLE 14
Confusion Matrix-Based Performance Indicator

Paper 4 93

measures reported by the other paper. In this case, we want

to report everything in terms of precision and recall. We

chose these measures as fault prediction datasets are often

highly imbalanced (Zhang and Zhang [27] and Gray et al.

[12]). When trying to compare the results of one paper with

the results of another paper, it may be necessary to

reconstruct a form of the Confusion Matrix (see Table 13

in Appendix D) where the values are not the sums of

instances, but the frequency of each instance:

1 ¼ TP þ TN þ FP þ FN: ð1Þ

This is possible in many cases when the distribution of

the classes is also reported. To do this we need to know the

frequency of the true class d, where

d ¼ TP þ FN: ð2Þ

It then becomes possible to calculate TP , FP , TN , and

FN as follows:
Given pf and d:

TN ¼ ð1� dÞð1� pfÞ; ð3Þ

FP ¼ ð1� dÞpf: ð4Þ

Given pdðRecallðrÞÞ and d:

TP ¼ d:r; ð5Þ

FN ¼ dð1� rÞ: ð6Þ

Given FNRðTypeIIðt2ÞÞ, pf and d we already have (1), (3),

and (4):

FN ¼ pfð1� dÞt2ð1� t2Þ ; ð7Þ

TP ¼ 1� FN � TN � FP: ð8Þ

Given PrecisionðpÞ, RecallðrÞ, and d we already have (1),

(5), and (6):

FP ¼ FNð1� pÞ
p

¼ dð1� rÞð1� pÞ
p

; ð9Þ

TN ¼ 1� FP � FN � TP: ð10Þ

In some cases d is not available but more performance

measures are provided.
Given ErrorrateðerÞ, FNRðTypeIIðt2ÞÞ, and pf :

d ¼ 1� erð1� t2Þ
pf

; ð11Þ

which can then be used with (3), (4), (7), and (8).
Given PrecisionðpÞ, RecallðrÞ, and AccuracyðaÞ:

d ¼ pð1� aÞ
p� 2prþ r ; ð12Þ

which can then be used with (5), (6), (9), and (10).

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1301

TABLE 16
Performance Indicators Defined

TABLE 15
Composite Performance Measures

94 Chapter 4. Papers

Given AccuracyðaÞ, pf , and FNRðTypeIIðt2ÞÞ:

FP ¼ ð1� t2� aÞpf
pf � t2 ; ð13Þ

TN ¼ ð1� t2� aÞð1� pfÞ
pf � t2 ; ð14Þ

TP ¼ ð1� t2Þðpf � 1þ 1Þ
pf � t2 ; ð15Þ

FN ¼ 1� TP � TN � FP: ð16Þ

Given FP , FN , and d:

TP ¼ d� FP; ð17Þ

which can then be used with (10).
The following values were extracted from [S83]:

er ¼ 0:3127; pf ¼ 0:3134; t2 ¼ 0:2826:

We compute

d ¼ 0:2842:

Giving,

FN ¼ 0:0884; TN ¼ 0:4915; FP ¼ 0:2243; TP ¼ 0:1958:

Finally,

Precision ¼ 0:4661; Recall ¼ 0:6891;

F -measure ¼ 0:5561:

APPENDIX F

THE CLASS IMBALANCE PROBLEM

Substantially imbalanced datasets are commonly used in
binary fault prediction studies (i.e., there are usually many
more nonfaulty units than faulty units) [32], [27]. An
extreme example of this is seen in NASA dataset PC2,
which has only 0.4 percent of data points belonging to the
faulty class (23 out of 5,589 data points). This distribution of
faulty and nonfaulty units—known as the class distribution
—should be taken into account during any binary fault
prediction task. This is because imbalanced data can
strongly influence both the training of a classification model
and the suitability of classifier performance metrics.

When training a classifier using imbalanced data, an
algorithm can struggle to learn from the minority class. This
is typically due to an insufficient quantity of minority class
data. The most common symptom when this occurs is for a
classifier to predict all data points as belonging to the
majority class, which is of little practical worth. To avoid
this happening, various approaches can be used and are
typically based around training-set sampling and/or learn-
ing algorithm optimization. Note that these techniques are
entirely optional, and may not be necessary. This is because
learning techniques vary in their sensitivity to imbalanced
data. For example, C4.5 decision trees have been reported to
struggle with imbalanced data [16] and [17], whereas fuzzy-
based classifiers have been reported to perform robustly
regardless of class distribution [33].

Sampling methods involve the manipulation of training
data in order to reduce the level of imbalance and therefore
alleviate the problems associated with learning from
imbalanced data. Undersampling methods involve redu-
cing the size of the majority class, whereas oversampling
methods involve increasing the size of the minority class.
Such techniques have been reported to be useful [11];
however, they do suffer from drawbacks. With under-
sampling methods, the main problem is deciding which
majority class data points should be removed. With over-
sampling methods, there is a risk of the learning algorithm
overfitting the oversampled data. This will probably result
in good training data performance, but low performance
when the classifier is presented with unseen data (data
independent from that used during training) [11].

Many learning algorithms can have their various para-
meters adjusted in order to boost performance on imbal-
anced data. This can be very effective, as many algorithms
by default assume an equal class distribution during
training. By increasing the misclassification cost of the
minority class, it is possible to construct models that are
better suited to imbalanced domains. Such methods can be
difficult and/or time consuming to approximate appro-
priate misclassification costs.

Additional problems caused by imbalanced data are that
selecting appropriate classifier performance measures is
more difficult. This is because measures which favor the
majority class (such as accuracy and error rate) are no
longer sufficient [11]. More appropriate measures in
imbalanced domains include: precision, recall, f-measure
(see Appendix D), and g-mean [11].

In contrast to the training data, the balance of test data
should be representative of that which will be encountered
in the real world.

There remains significant debate on data imbalance in
fault prediction (see [12], [27], [S179], [28], [29]).

ACKNOWLEDGMENTS

The authors are grateful to the United Kingdom’s Engineer-
ing and Physical Science Research Council who supported
this research at Brunel University under grant EPSRC EP/
E063039/1 and to Science Foundation Ireland grant 3/CE2/
I303_1 who partially supported this work at Lero. They are
also grateful to Dr. Sue Black and Dr. Paul Wernick who
provided input to the early stages of the work reported in this
paper and to Professor Martin Shepperd for his suggestions
throughout the work. They are also grateful for the detailed
and insightful comments from the reviewers that enabled
them to significantly improve the quality of this paper.

REFERENCES

[1] N. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Trans. Software Eng., vol. 25, no. 5, pp. 675-689,
Sept. 1999.

[2] C. Catal and B. Diri, “A Systematic Review of Software Fault
Prediction Studies,” Expert Systems with Application, vol. 36, no. 4,
pp. 7346-7354, 2009.

[3] B. Kitchenham and S. Charters, “Guidelines for Performing
Systematic Literature Reviews in Software Engineering (Version
2.3),” Technical Report EBSE-2007-01, Keele Univ., EBSE, 2007.

1302 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Paper 4 95

[4] M. Jorgensen and M. Shepperd, “A Systematic Review of Software
Development Cost Estimation Studies,” IEEE Trans. Software Eng.,
vol. 33, no. 1, pp. 33-53, Jan. 2007.

[5] B. Kitchenham, “What’s Up with Software Metrics?—A Prelimin-
ary Mapping Study,” J. Systems and Software, vol. 83, no. 1, pp. 37-
51, 2010.

[6] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A General
Software Defect-Proneness Prediction Framework,” IEEE Trans.
Software Eng., vol. 37, no. 3, pp. 356-370, May 2011.

[7] K. Petersen and C. Wohlin, “Context in Industrial Software
Engineering Research,” Proc. Third Int’l Symp. Empirical Software
Eng. and Measurement, pp. 401-404, 2009.

[8] P.G. Armour, “Beware of Counting LOC,” Comm. ACM, vol. 47,
pp. 21-24, Mar. 2004.

[9] D. Bowes and T. Hall, “SLuRp: A Web Enabled Database for
Effective Management of Systematic Literature Reviews,” Tech-
nical Report 510, Univ. of Hertfordshire, 2011.

[10] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald,
“Problems with Precision: A Response to “Comments on ‘Data
Mining Static Code Attributes to Learn Defect Predictors,’” IEEE
Trans. Software Eng., vol. 33, no. 9, pp. 637-640, Sept. 2007.

[11] H. He and E. Garcia, “Learning from Imbalanced Data,” IEEE
Trans. Knowledge and Data Eng., vol. 21, no. 9, pp. 1263-1284, Sept.
2008.

[12] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,
“Further Thoughts on Precision,” Proc. Evaluation and Assessment
in Software Eng., 2011.

[13] D.S. Cruzes and T. Dybå, “Research Synthesis in Software
Engineering: A Tertiary Study,” Information Software Technology,
vol. 53, pp. 440-455, May 2011.

[14] R. Rosenthal and M. DiMatteo, “Meta-Analysis: Recent Develop-
ments in Quantitative Methods for Literature Reviews,” Ann. Rev.
Psychology, vol. 52, no. 1, pp. 59-82, 2001.

[15] B. Turhan, T. Menzies, A. Bener, and J. Di Stefano, “On the
Relative Value of Cross-Company and Within-Company Data for
Defect Prediction,” Empirical Software Eng., vol. 14, no. 5, pp. 540-
578, 2009.

[16] N. Japkowicz and S. Stephen, “The Class Imbalance Problem: A
Systematic Study,” Intelligent Data Analysis, vol. 6, no. 5, pp. 429-
449, 2002.

[17] W. Liu, S. Chawla, D.A. Cieslak, and N.V. Chawla, “A Robust
Decision Tree Algorithm for Imbalanced Data Sets,” Proc. 10th
SIAM Int’l Conf. Data Mining, pp. 766-777, 2010.

[18] C. Hsu, C. Chang, and C. Lin, “A Practical Guide to Support
Vector Classification,” technical report, Dept. of Computer Science
and Information Eng., Nat’l Taiwan Univ., 2003.

[19] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines: And Other Kernel-Based Learning Methods.
Cambridge Univ. Press, 2006.

[20] T. Hall, D. Bowes, G. Liebchen, and P. Wernick, “Evaluating Three
Approaches to Extracting Fault Data from Software Change
Repositories,” Proc. 11th Int’l Conf. Product-Focused Software Process
Improvement, pp. 107-115, 2010.

[21] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “The
Misuse of the NASA Metrics Data Program Data Sets for
Automated Software Defect Prediction,” Proc. Evaluation and
Assessment in Software Eng., 2011.

[22] N. Pizzi, A. Summers, and W. Pedrycz, “Software Quality
Prediction Using Median-Adjusted Class Labels,” Proc. Int’l Joint
Conf. Neural Networks, vol. 3, pp. 2405-2409, 2002.

[23] J. Davis and M. Goadrich, “The Relationship between Precision-
Recall and ROC Curves,” Proc. 23rd Int’l Conf. Machine Learning,
pp. 233-240, 2006.

[24] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting
the Severity of a Reported Bug,” Proc. IEEE Working Conf. Seventh
Mining Software Repositories, pp. 1-10, 2010.

[25] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and
Validity in Comparative Studies of Software Prediction Models,”
IEEE Trans. Software Eng., vol. 31, no. 5, pp. 380-391, May 2005.

[26] G. Liebchen and M. Shepperd, “Data Sets and Data Quality in
Software Engineering,” Proc. Fourth Int’l Workshop Predictor Models
in Software Eng., pp. 39-44, 2008.

[27] H. Zhang and X. Zhang, “Comments on ‘Data Mining Static Code
Attributes to Learn Defect Predictors,’” IEEE Trans. Software Eng.,
vol. 33, no. 9, pp. 635 -637, Sept. 2007.

[28] G. Batista, R. Prati, and M. Monard, “A Study of the Behavior of
Several Methods for Balancing Machine Learning Training Data,”
ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 20-29, 2004.

[29] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.
Matsumoto, “The Effects of Over and Under Sampling on Fault-
Prone Module Detection,” Proc. First Int’l Symp. Empirical Software
Eng. and Measurement, pp. 196-204, Sept. 2007.

[30] T. Ostrand and E. Weyuker, “How to Measure Success of Fault
Prediction Models,” Proc. Fourth Int’l Workshop Software Quality
Assurance: In Conjunction with the Sixth ESEC/FSE Joint Meeting,
pp. 25-30, 2007.

[31] D. Bowes and D. Gray, “Recomputing the Confusion Matrix for
Prediction Studies Reporting Categorical Output,” Technical
Report 509, Univ. of Hertfordshire, 2011.

[32] N.V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special Issue
on Learning from Imbalanced Data Sets,” SIGKDD Explorations,
vol. 6, no. 1, pp. 1-6, 2004.

[33] S. Visa and A. Ralescu, “Fuzzy Classifiers for Imbalanced,
Complex Classes of Varying Size,” Proc. Information Processing
and Management of Uncertainty in Knowledge-Based Systems, pp. 393-
400, 2004.

Tracy Hall received the PhD degree in software
metrics from City University in 1998. Currently
she is working as a reader in software
engineering at Brunel University. Previously
she was the head of the Systems & Software
Research Group at the University of Hertford-
shire. Over the last 15 years she has con-
ducted many empirical software engineering
studies with a variety of industrial collaborators.
Her research interests have become increas-

ingly centered on fault prediction.

Sarah Beecham is a research fellow working at
Lero, The Irish Software Engineering Research
Centre. She is currently collaborating closely
with industry to develop a process model of
global software development recommended
practices. Her research interests include soft-
ware engineer motivation, requirements engi-
neering, fault prediction, effort estimation, and
open source software development.

David Bowes is currently working toward the
PhD degree, focusing on defect prediction
studies. He has been a senior lecturer at the
University of Hertfordshire since 2005. He has
published mainly in the area of program slicing
metrics, defect prediction, and epigenetic
robotics.

HALL ET AL.: A SYSTEMATIC LITERATURE REVIEW ON FAULT PREDICTION PERFORMANCE IN SOFTWARE ENGINEERING 1303

96 Chapter 4. Papers

David Gray received the BSc and MSc degrees
in computer science from the University of
Hertfordshire. He is currently working toward
the PhD degree at the Science and Technology
Research Institute of the same university. His
research interests include software defect pre-
diction and, in particular, issues with methodol-
ogy and data quality. His main areas of academic
interests include software engineering, machine
learning, data quality, and data cleansing.

Steve Counsell received the BSc degree in
computing in 1987, the MSc degree in systems
analysis in 1988, and the PhD degree from the
University of London in 2002. From 1998-2004,
he was a lecturer in computer science at
Birkbeck, London. He is currently a reader in
the School of Information Systems, Computing
and Mathematics at Brunel University. His
research interests include software metrics,
refactoring, software testing, and, more gener-

ally, empirical studies of software engineering artifacts.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 6, NOVEMBER/DECEMBER 2012

Paper 4 97

Paper 5 99

4.5 Paper 5: Comparing the performance of fault prediction models
which report multiple performance measures: recomputing the con-
fusion matrix.

Bowes D, Hall T, Gray D (2012b) Comparing the performance of fault prediction models which
report multiple performance measures: reconstructing the confusion matrix. In: Proceed-
ings of the 8th International Conference on Predictive Models in Software Engineering.

Best Paper in Conference Award.

4.5.1 Corrigenda

This paper requires two corrigendum:

1. Section 3.2 paragraph 1. The equation is incorrect and should read: d =
T P + FN

T P + T N + FP + FN

2. Equation 12 is incorrect and should be replaced by Equation 15 (which can then be removed).

Comparing the performance of fault prediction models
which report multiple performance measures:

recomputing the confusion matrix

David Bowes
Science and Technology

Research Institute
University of Hertfordshire

College Lane
Hatfield, AL10 9AB

United Kingdom
d.h.bowes@herts.ac.uk

Tracy Hall
Department of Information
Systems and Computing

Brunel University
Uxbridge

Middlesex, UB8 3PH
United Kingdom

tracy.hall@brunel.ac.uk

David Gray
Science and Technology

Research Institute
University of Hertfordshire

College Lane
Hatfield, AL10 9AB

United Kingdom
d.gray@herts.ac.uk

ABSTRACT
There are many hundreds of fault prediction models pub-
lished in the literature. The predictive performance of these
models is often reported using a variety of different mea-
sures. Most performance measures are not directly compara-
ble. This lack of comparability means that it is often difficult
to evaluate the performance of one model against another.
Our aim is to present an approach that allows other re-
searchers and practitioners to transform many performance
measures of categorical studies back into a confusion matrix.
Once performance is expressed in a confusion matrix alter-
native preferred performance measures can then be derived.
Our approach has enabled us to compare the performance of
600 models published in 42 studies. We demonstrate the ap-
plication of our approach on several case studies, and discuss
the advantages and implications of doing this.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Measurement, Performance, Reliability, Theory

Keywords
fault, confusion matrix, machine learning

1. INTRODUCTION
Imagine the following simplified scenario:

You are a practitioner thinking about starting to use fault
prediction models. You hope that such models will help you

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE ’12, September 21–22, 2012, Lund, Sweden
Copyright 2012 ACM 978-1-4503-1241-7/12/09 ...$15.00.

to identify the most fault prone parts of your system. You
then plan to target your test effort on those parts of the sys-
tem. You think that doing this may reduce the faults deliv-
ered to your users and reduce the cost of your system. You
are not an expert in fault prediction models yourself, but you
have seen many such models published in the literature. You
identify several published models that have been developed in
a similar software development context to your own. You
decide to evaluate the performance of these models with a
view to trying out the top three models in your project. How-
ever when you look at the model performance figures they are
reported using a variety of different performance measures.
Several studies report Precision1 and Recall. Some report
Error Rate. Some report pd and pf. Others report Popt.
A few report Area Under the Curve of the Receiver Opera-
tor Curve. One provides a confusion matrix. It is beyond
your expertise to identify a comparative point of reference
amongst these different measures. You struggle to under-
stand how the overall performance of a model compares to
the others. And so you decide that fault prediction models
are too complicated to use and abandon the idea.

This type of scenario may partially explain why the uptake
of fault prediction models is low in industry. This low uptake
is important as finding and fixing faults in code costs the
software industry many millions of dollars every year. Pre-
dicting effectively where faults are in code occupies many re-
searchers and practitioners. Our previous work [14] showed
that 208 software fault prediction studies were published be-
tween January 2000 and December 2010. These 208 studies
contained many hundreds of fault prediction models.

Despite this significant research effort it remains difficult
or inconvenient to compare the performance of these models.
The difficulty in comparing predictive performance means
that identifying which fault prediction models perform best
in a given context is complex. This complexity in compar-
ing the performance of models is not only a likely barrier to
practitioners using fault prediction models, but also makes
it difficult for researchers to meta-analyse fault prediction
studies [8]. This lack of opportunity to meta-analyse limits
the ability of the fault prediction community to mature, as

1Definitions of particular measures are given in Section Two.

Paper 5 101

we are not building an evidence base that is as useful as it
should be.

One of the difficulties when comparing the performance of
fault prediction models stems from the many performance
measurement schemes devised, used and reported by stud-
ies. Many of the schemes used by studies highlight differ-
ent aspects of predictive performance. For example, Men-
zies et al. [25] use pd and pf to highlight standard predic-
tive performance, while Mende and Koschke [23] use Popt
to assess effort-awareness. The different performance mea-
surement schemes used mean that directly comparing the
performance reported by individual studies is difficult and
potentially misleading. Such comparisons cannot compare
like with like as there is no adequate point of comparison.

It is perfectly legitimate for studies to report different per-
formance measures. Studies may be interested in report-
ing prediction models with particular qualities. Some stud-
ies may be interested in reporting models which reduce the
amount of effort wasted on code predicted as faulty which
turns out not to be faulty. In these cases, measures based on
the number of false positives will be of most interest. Other
studies may be developing models focused on identifying the
maximum number of faults in the system. In which case
measures related to the number of true positives are likely
to be the performance focus. The qualities needed in a fault
prediction model depend on, for example, application do-
main. Models used in the safety critical domain are likely to
need different predictive qualities to those in other domains.
However developers and potential users of models may want
to compare performance in terms of a particular predictive
quality. This requires a conversion of performance figures
from those reported to those reflecting the predictive qual-
ity of interest. The ability to convert predictive measures in
this way allows the predictive performance of a wide range
of models to be compared.

We previously found [14] that Precision and Recall were
the most commonly reported predictive performance mea-
sures used with binary2 fault prediction models (e.g. [1, 6,
11, 20]). However, many studies provide only limited pre-
dictive performance data, often only reporting performance
using their preferred performance measures. This preferred
data often represents the performance of specific models in
the most positive light. An issue also highlighted by Zeller
et al. [34]. This preferred measurement data may be un-
usual and rarely reported in other studies. For example,
only a few studies report the use of Error Rate [19, 29, 33]
or Popt [23]. Without additional performance data that is
more commonly reported by studies, it is difficult to satisfac-
torily compare the predictive performance of such models.
A common point of comparison is needed.

The confusion matrix is usually at the centre of measur-
ing the predictive performance of binary classification mod-
els (the confusion matrix is discussed in detail in Section

2Binary models are those predicting that code units (e.g.
modules or classes) are either fault prone (fp) or not fault
prone (nfp). Binary models do not predict the number of
faults in code units. In this paper we restrict ourselves to
considering only binary models that are based on machine
learning techniques.

Two). Most other predictive performance measures are cal-
culated from the confusion matrix. The confusion matrix
is a powerful point of comparative reference. All models re-
porting binary results can have their predictive performance
expressed via a confusion matrix [26]. This means that it
is a relatively universal comparative basis. It is also a sim-
ple and understandable way to show predictive performance.
More sophisticated measures of predictive performance can
be calculated from a confusion matrix. The confusion matrix
provides measurement flexibility as specific measures may be
derived from the confusion matrix which evaluate particular
model qualities. The importance of the confusion matrix is
discussed in detail by Pizzi et al. [28].

In this paper we present a process by which we transform a
variety of reported predictive performance measures back to
a confusion matrix [5]. These measures cover most of those
reported by the 208 fault prediction studies we previously
reviewed [14]. We illustrate this process by constructing the
confusion matrix for a number of published models. From
these confusion matrices we compute a range of alternative
performance measures. We finally evaluate the use of our
transformation process.

In Section Two we describe the measurement of predictive
performance by discussing in detail the basis of the confusion
matrix and related compound measures of performance. In
Section Three we present our method of transforming a va-
riety of performance measures to the confusion matrix and
explain how alternative measures can then be derived from
this matrix. Section Four provides the results of worked
examples from the literature in which we transform the re-
ported performance measures back to the confusion matrix.
Section Five identifies the threats to the validity of the study.
Section Six discusses the implications of transforming per-
formance measures. We conclude and summarise in Section
Seven.

2. MEASURING PREDICTIVE
PERFORMANCE

This section is based on several previous studies which
provide an excellent overview of measuring the predictive
performance of fault models (e.g. [26], [16] and [22]).

2.1 The Confusion Matrix
The measurement of predictive performance is often based

on the analysis of data in a confusion matrix (see [26]). Pizzi
et al. [28] discuss the confusion matrix in more detail. This
matrix reports how the model classified the different fault
categories compared to their actual classification (i.e. pre-
dicted versus observed). This is represented by four pieces
of data:

- True Positive (TP): An item is predicted as faulty and
it is faulty

- False Positive (FP): An item is predicted as faulty and
it is not faulty

- True Negative (TN): An item is predicted as not faulty
and it is not faulty

- False Negative (FN): An item is predicted as not faulty
and it is faulty

102 Chapter 4. Papers

Table 1 shows the structure of a confusion matrix.

Table 1: Confusion matrix
observed true observed false

predicted true TP FP
predicted false FN TN

Table 2: Confusion matrix with example summed
instances

observed true observed false
predicted true 33 2
predicted false 17 98

In a confusion matrix, it is normal for the sum of the in-
stances of each possibility to be reported, see Table 2.

Few studies report complete confusion matrices for their
experiments, these include [27], [36] and [18]. Most stud-
ies prefer to report a sub-set of the compound performance
measures shown in Table 3.

2.2 Compound Measures
Many performance measures are related to components of

the confusion matrix. Table 3 shows how some commonly
used performance measures are calculated relative to the
confusion matrix.

Table 3 shows that Accuracy is the proportion of units
correctly classified. Table 3 also shows that Recall (other-
wise known as the true positive rate, probability of detection
(pd) or Sensitivity) describes the proportion of faulty code
units (usually files, modules or packages) correctly predicted
as such. Precision describes how reliable a prediction is in
terms of what proportion of code predicted as faulty actually
was faulty. Both Recall and Precision are important when
test sets are imbalanced (see the following sub-section), but
there is a trade-off between these two measures (see [16] for
a more detailed analysis of this trade-off). An additional
composite measure is the false positive rate (pf) which de-
scribes the proportion of erroneously predicted faulty units.
The optimal classifier would achieve a pd of 1, Precision of
1, a pf of 0 and an f-measure of 1. The performance measure
balance combines pd and pf. A high Balance value (near 1)
is achieved with a high pd and low pf. Balance can also be
adjusted to factor in the cost of false alarms which typically
do not result in fault fixes. Matthews Correlation Coefficient
(MCC) is a measure rarely used in software fault prediction
[3]. MCC is more commonly used in medical research and
bioinformatics e.g. [3, 30]. It is a Chi Square based perfor-
mance measure on which all four quadrants of the confusion
matrix are included in the calculation. MCC results are the
equivalent of reporting R2 in regression modelling and re-
sults range from -1 to 1 (with 0 indicating random results).
Popt defined by Mende and Koschke [23] is a an effort aware
performance measure which ranges between 0 and 1 with 1
being desirable.

The Receiver Operator Curve (ROC) is an important mea-
sure of predictive performance for comparing different mod-
els. When the combinations of Recall and pf for a series of
experiments are plotted they produce a ROC. It is usual to
report the area under the curve (AUC) as varying between
0 and 1, with 1 being the ideal value. Because the AUC is a
result of a series of experiments where the meta-parameters
are varied, it is not possible to compute the confusion matrix
from AUC and visa versa3.

Previous studies have critiqued the use of these various
measures of performance. For example, Zhang and Zhang
[35], Menzies et al. [24] and Gray et al. [13] discuss the use
of precision. However such a critique is beyond the scope of
the work reported here.

2.3 Imbalanced Data
Substantially imbalanced data sets are commonly used in

fault prediction studies (i.e. there are usually many more
non-faulty units than faulty units in the data sets used in
fault prediction) [7], [35]. An extreme example of this is
seen in the NASA data set PC2, which has only 0.4% of
data points belonging to the faulty class (23 out of 5589
data points). This distribution of faulty and non-faulty units
has important implications in fault prediction. Imbalanced
data can strongly influence the suitability of predictive per-
formance measures. Measures which favour the majority
class (such as Accuracy and Error Rate) are not sufficient by
themselves [15]. More appropriate measures for imbalanced
data sets include: Precision, Recall, f-measure, MCC and
G-mean [15]. Consequently data imbalance is an important
consideration in our method of recomputing the confusion
matrix4.

3. OUR METHOD OF RECOMPUTING THE
CONFUSION MATRIX

To compare the results of one study with the results of
another we recompute the confusion matrix for each study
and then calculate the preferred compound measures from
this. Zhang and Zhang [35] did something similar to this by

recomputing Precision for Menzies et al.’̇s [25] study which
originally reported pd and pf. Our approach is motivated
by Zhang and Zhang’s [35] work. We now describe the pro-
cess by which transformation from a variety of compound
measures to the confusion matrix can be achieved.

3.1 Creating a Frequency-Based Confusion
Matrix

The precise method needed to recompute the confusion
matrix varies slightly depending upon the original measures
reported. In most cases the first thing that needs to be done
is to produce a frequency-based confusion matrix. These
confusion matrices are different from instance based confu-
sion matrices (an example of which was shown in Table 2).

3Although AUC is a valuable measure of performance, it is
beyond the scope of our work as it is not possible to con-
struct a confusion matrix from AUC data.
4Data imbalance also has serious implications for the train-
ing of prediction models. Discussion of this is beyond the
scope of this work (instead see [13], [35], [31], [4] and [17]).

Paper 5 103

Table 3: Compound Performance Measures

Measures Defined As

Accuracy / Correct Classification Rate (CCR)
TP + TN

TP + TN + FP + FN

Error Rate
FP + FN

TP + TN + FP + FN

Recall / True Positive Rate / Sensitivity / Probability
of Detection (pd)

TP

TP + FN

True Negative Rate / Specificity
TN

TN + FP

False Positive Rate / Type I Error Rate / Probability
of False Alarm (pf)

FP

TN + FP

False Negative Rate / Type II Error Rate
FN

FN + TP

Precision
TP

TP + FP

F-Measure / F-Score
2×Recall × Precision

Recall + Precision

Balance 1−
√

(0− pf)2 + (1− pd)2√
2

G-mean
√
Recall × Precision

Matthews Correlation Coefficient (MCC)
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Table 4 shows the frequencies (or proportions for each con-
fusion matrix quadrant) based on the instances in Table
2. These frequencies are derived by dividing the instances
in each quadrant by the total number of instances in the
matrix. This shows the relative proportion each quadrant
represents of the whole confusion matrix. From now on we
will append f to TP , TN , FP and FN to distinguish fre-
quency values from instance based values for example TPf .

3.2 Calculating Faulty and Non-Faulty Data
Distributions

Constructing a frequency based confusion matrix is possi-
ble when the class distribution (i.e. the proportion of faulty
versus non-faulty units) is reported5. To do this we use d as
the frequency of the faulty units, where:

d =
TN + FN

TN + TP + FP + FN
(1)

Applying (1) to the example instances reported in Table 2

5When this class distribution is not provided it is often pos-
sible to calculate the proportion of faulty units in a data
set.

would result in:

n = 33 + 17 + 2 + 98, d =
33 + 17

n
= 0.3333

This shows that given the confusion matrix shown in Table
2, 33% of the units in the data set on which the model was
applied, were faulty.

Table 4: Frequency Confusion Matrix
observed true observed false

predicted true 0.2200 0.0133
predicted false 0.1133 0.6533

TNf + TPf + FPf + FNf = 1
d = 0.2200 + 0.1133 = 0.3333

3.3 Transforming Specific Compound
Measures

A wide variety of compound measures are reported by
studies. Our approach is successful when a particular sub-
set of these measures is reported by studies. Table 5 shows

104 Chapter 4. Papers

the pre-requisite combinations of performance measures that
must be available.

Each of these combinations of measures requires a spe-
cific method by which to recompute the confusion matrix.
Formulae for the most common measures reported are now
described.

1. Transforming Precision, Recall and pf
We first need to know the frequency of the true class d.

1 = TPf + TNf + FPf + FNf (2)

d = TPf + FNf (3)

It then becomes possible to calculate TPf , FPf , TNf and
FNf as follows:
Given pf and d

TNf = (1− d)(1− pf) (4)

FPf = (1− d)pf (5)

Given Recall(r) and d

TPf = d× r (6)

FNf = d(1− r) (7)

Given FNR(TypeII(t2)), pf and d we already have (2), (4)
and (5)

FNf = t2× d (8)

TPf = 1− FNf − TNf − FPf (9)

Given Precision(p), Recall(r) and d we already have (2),
(6) and (7)

FPf =
TPf (1− p)

p
=

d(1− p)r

p
(10)

TNf = 1− FPf − FNf − TPf (11)

2. Transforming ErrorRate(er), TypeII(t2) and pf

d =
er − pf + pf × er

t2
(12)

which can then be used with (4),(5),(8) and (9)

3. Transforming Precision(p), Recall(r) and
Accuracy(a)

d =
p(1− a)

p− 2pr + r
(13)

which can then be used with (6),(7),(10) and (11)

4. Transforming Accuracy(a), pf and FNR(TypeII(t2))

er = 1− a (14)

d =
er − pf

t2− pf
(15)

which can be used with (8) to give FNf and (5) to give FPf .

TPf = d(1− t2) (16)

which can be used with (11) to give TNf .

We have automated these conversations by developing a
tool6. This tool allows individual performance measurement
data to be input and will automatically recompute the con-
fusion matrix by iterating over the the equations until no
extra performance measures can be derived.

4. CONSTRUCTING THE CONFUSION
MATRIX FOR SOME EXAMPLE STUD-
IES

We have transformed the predictive performance data pro-
duced by 600 models reported in 42 published studies. A list
of these studies is provided in the Appendix. Space restric-
tions make it is impossible to report the detail for all these
transformations. Consequently in this section we present
transformations for four examples. We chose these four ex-
amples to illustrate recomputing the confusion matrix from
a range of different original measures.

4.1 Case Studies
Table 6 illustrates the original performance measurement

data reported by our four case study papers. Table 6 shows
that a wide range of different measurement data is reported
by these four papers. Given this range it is difficult to eval-
uate how the performance of these models compares against
each other.

We have recomputed the confusion matrix for these four
case studies (shown in Table 7). Based on this confusion
matrix data, we have computed the f-measure and MCC
data for each case study (also shown in Table 7). It is
now possible to comparatively evaluate the predictive perfor-
mance of these case studies using this common set of data7.

5. THREATS TO VALIDITY
There are internal and external validity issues that need

to be considered when using our approach to recomputing
the confusion matrix.

5.1 Internal Validity
The impact of cross-validation. Performance data re-

ported are usually based on some form of cross-validation.
This means that the numbers reported are usually average
figures across a specific number of folds and / or experi-
ments. This averaging process may introduce some minor
inaccuracies into our calculations8. The study by Elish and
Elish [12] provide a clearer understanding of the variation
in performance values across a series of experiments. The
results of rounding errors and variations in performance val-
ues helps to explain the negative TNf value computed in
Table 11.

6This tool is available at:
https://bugcatcher.stca.herts.ac.uk/JConfusion/
7The aim of this paper is to provide an approach by which
others may perform comparative analysis of fault prediction
models. A comparative analysis is complex and requires
many factors to be taken into account, e.g. the aims of the
predictive model. It is beyond the scope of this paper to
provide a full comparative analysis of studies against each
other.
8An examination of the code for LibSVM shows that the
performance measure is an average value of the performance
measure for each fold.

Paper 5 105

Table 5: Pre-Requisite Combinations of Performance Measures for Re-Computing the Confusion Matrix.
Fault Frequency Type I Type II Precision Recall Accuracy pf Error Rate Specificity

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

All columns with checkmarks in each row correspond to “enough information” to recompute the frequency confusion matrix.
NB this is not an exhaustive list. For example, it is possible to calculate d by dividing the number of defective instances by

the total number of instances.

Table 6: Reported Performance Measurement Data
Study pd pf Error Rate Type I Type II Precision Recall Accuracy Total In-

stances
Faulty
Instances

[19] 0.3134 0.3127 0.2826
[6] 0.682 0.621 0.641
[21] 0.471 0.0834 0.8515
[29] 0.1615 0.1304 0.2830 520 106

Divide by zero problems. Several of our formulas are
based on divisions. Where some figures are very similar we
encounter divide by zero problems. This division problem is
exacerbated by rounding of very small numbers. These small
numbers may be very different, but when rounded become
the same number. Such numbers suffer from divide by zero
issues.

Data uncertainty. Identifying the balance of faulty and
non-faulty units is an important part of our recomputing
method. However in a few studies there is inconsistency in
the class distribution figures. For example, although an au-
thor may have cited a particular class distribution, when we
calculate the distribution figure inherent within the results
reported (i.e. via the calculation of d), the distribution is
different to that stated by the authors. Similarly in some
papers where the same data set has been used the distribu-
tion varies between experiments. This inconsistency casts
some uncertainty over the results in such cases. We sus-
pect that this distribution inconsistency is partly the result
of a particular machine learner dealing with the data that
it is processing differently to other learners, and partly the
result of studies not reporting the data pre-processing that
they have applied.

5.2 External Validity
Model tuning. Some models may have been developed

to maximise a particular quality (e.g. to reduce false pos-
itives). Such models are likely to perform best when their
performance is expressed using measures that are sympa-
thetic to the qualities for which the model has been built.
Interpreting the performance of such models via alternative
performance measures should be treated with caution.

6. DISCUSSION
The process of translating the performance measures re-

ported by studies to the confusion matrix reveals a variety
of performance issues with studies that we now discuss.

6.1 Erroneous Results
In some cases our translation to the confusion matrix

demonstrated that the original results reported by some
studies could not have been possible. For example we found
an error in [32]. This error was revealed as our transforma-
tions would not work correctly. As a result of this we emailed
the authors to clarify the problem. The authors confirmed
that a typographical error had crept into their final draft.
False Alarms were reported instead of False Positives. It is
easy for such errors to creep into published work, especially
in an area as complex as fault prediction. Without very
careful interpretation such errors can easily be missed and
be misleading.

6.2 Definitions of Measures
While performing our transformations we have had diffi-

culty in making sense of the figures reported in some studies.
The reason for this was that a number of studies have used
non-standard definitions for some well-known performance
measures (e.g. [36] does not use a standard definition of
Precision and [27] does not use the standard definitions of
Sensitivity and Specificity (in both cases, the issues were
confirmed by emailing the authors)). Although the defini-
tions used were given in the paper, it is difficult for a reader
to pick-up on the nuances of measurement definitions (usu-
ally provided via formulae). Consequent mis-understanding
could have serious implications for subsequent model users.

106 Chapter 4. Papers

Table 7: Computed Performance Measurement Data
Study TPf TNf FPf FNf f-measure MCC
[19] 0.0163 0.6710 0.3063 0.0064 0.0944 0.1288
[6] 0.3335 0.3075 0.1555 0.2035 0.6501 0.2845
[21] 0.0575 0.7940 0.0732 0.0646 0.4549 0.3755
[29] 0.1422 0.6963 0.1000 0.0615 0.6377 0.5381

6.3 Reporting Performance Based on Predict-
ing Non-Faulty Units

Some papers have reported performance measures based
on predicting the majority (non-faulty class) rather than the
minority (faulty) class. In some of these cases it is also not
made clear that the predictive performance is on the major-
ity class. These issues can be very misleading when trying
to evaluate predictive performance. For example, Elish and
Elish [12] report a very influential fault prediction study us-
ing Support Vector Machines (SVM). Their study has been
cited more than 60 times and is considered a pivotal paper
in the use of SVMs. Table 8 shows the very good Accuracy,
Precision and Recall performances reported by Elish and
Elish for SVM using datasets cm1, pc1, kc1 and kc3 (taken
from [12]).

Table 8: Accuracy, Precision and Recall [12]
Dataset Accuracy Precision Recall

cm1 0.9069 0.9066 1.0000
pc1 0.9310 0.9353 0.9947
kc1 0.8459 0.8495 0.9940
kc3 0.9328 0.9365 0.9958

Our process to recompute the confusion matrix would not
work on these figures when we assumed that the values for
Precision and Recall were based on the non-faulty class. Ta-
bles 9 and 10 show our workings for this recomputation.
Our workings suggest that Elish and Elish have reported
the performance of their SVM models based on predicting
non-faulty units rather than faulty units, this was confirmed
by emailling the authors. Since the vast majority of units in
data sets are non-faulty (ranging between 84.6% and 93.7%
in their case), predicting the majority class is very easy and
so high performance figures are to be expected. Such mod-
els are not useful. Our findings are complementary to those
of several other authors who report problems reproducing
the high predictive performances reported by Elish and El-
ish when using their SVM settings. For example [2] reports
that most papers report a far lower Recall value. [9] and [10]
used the same SVM settings. [9] reported Specificity and
Sensitivity values and [10] reported Precision and Recall for
both the faulty and non-faulty classes which are similar to
our recomputed values.

Using our technique it is possible to calculate the Preci-
sion and Recall of the faulty units in Elish and Elish’s study.
Table 11 shows the results of this calculation. Table 11 sug-
gests that the performance of the SVMs in the Elish and
Elish study is much less positive. Table 11 shows that f-
measure ranges from 0.0 to 0.12. This is compared to their
original maximum f-measure of 0.96.

Table 9: Frequency of the Class Identified as “True”
and the Frequency of the Faulty class

Dataset
computed

d
1 -

computed d
Reported fault

frequency
cm1 0.9037 0.0963 0.097
pc1 0.9311 0.0689 0.069
kc1 0.8462 0.1538 0.154
kc3 0.9370 0.0630 0.063

Table 10: SVM Confusion Matrix of the Majority
Class

Dataset TPf FNf FPf TNf

cm1 0.9037 0.0000 0.0931 0.0032
pc1 0.9261 0.0049 0.0641 0.0049
kc1 0.8412 0.0047 0.1490 0.0051
kc3 0.9330 0.0039 0.0633 -0.0002*
* demonstrates that rounding errors occur.

Table 11: Performance Measures for the Faulty
Class using the Values from Table 10

Dataset Accuracy Precision Recall f-measure
cm1 0.9069 1.0000 0.0332 0.0643
pc1 0.9310 0.5000 0.0710 0.1244
kc1 0.8463 0.5204 0.0331 0.0622
kc3 0.9328 -0.0541 -0.0032 -0.0060

7. CONCLUSION
The predictive performance of published fault prediction

models is expressed using a variety of different performance
measures. This makes it difficult to compare the perfor-
mance of published prediction models. We have presented
an approach that enables the recomputation of the confu-
sion matrix for studies originally reporting a variety of per-
formance measures. From the confusion matrix a range of
other performance measures can be calculated. Expressing
the performance of fault prediction models using a consistent
set of measures allows comparative analysis. Our approach
has several advantages, including that it:

• allows comparative analysis of a set of fault prediction
models in terms of a preferred predictive quality.

Paper 5 107

• makes meta-analysis possible across the many fault
prediction studies published.

• enables the validation of the performance figures re-
ported in published studies.

The advantages of our approach have benefits for fault
prediction researchers, practitioners and reviewers.
Researchers can use our approach to evaluate predictive per-
formance across sets of models and perform meta-analysis of
these models. An evidence base of fault prediction can be
built by researchers that will enable more informed future
model building research. Practitioners can express model
performance to reflect the qualities that they are interested
in, for example practitioners wanting a model that values
finding as many faults as possible might might predomi-
nately focus on Recall. Practitioners are then in a more in-
formed position to select a model that is appropriate for their
development context. Reviewers of fault prediction studies
can use our process as a relatively easy way to check that
no errors have crept into fault prediction studies. Without
our ‘ready reckoner’ checking performance figures in stud-
ies submitted for review is difficult. Model builders could
themselves use our process as a ‘ready reckoner’ to check
their own figures are correct. Model builders and reviewers
doing this checking could improve the quality of the fault
prediction work that is published.

Overall the approach that we present could significantly
improve the quality of fault prediction studies and enable
meta-analysis across studies. Achieving this is very impor-
tant as it will help this research area to mature and grow.
Such maturation could ultimately expand the industrial up-
take of fault prediction modelling.

8. REFERENCES
[1] E. Arisholm, L. C. Briand, and M. Fuglerud. Data

mining techniques for building fault-proneness models
in telecom java software. In Software Reliability, 2007.
ISSRE ’07. The 18th IEEE International Symposium
on, pages 215 –224, nov. 2007.

[2] E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of
methods to build and evaluate fault prediction models.
Journal of Systems and Software, 83(1):2–17, 2010.

[3] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and
H. Nielsen. Assessing the accuracy of prediction
algorithms for classification: an overview.
Bioinformatics, 16(5):412–424, 2000.

[4] G. Batista, R. Prati, and M. Monard. A study of the
behavior of several methods for balancing machine
learning training data. ACM SIGKDD Explorations
Newsletter, 6(1):20–29, 2004.

[5] D. Bowes and D. Gray. Recomputing the confusion
matrix for prediction studies reporting categorical
output. Technical Report 509, University of
Hertfordshire, 2011.

[6] C. Catal, B. Diri, and B. Ozumut. An artificial
immune system approach for fault prediction in
object-oriented software. In Dependability of
Computer Systems, 2007. DepCoS-RELCOMEX ’07.
2nd International Conference on, pages 238 –245, june
2007.

[7] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial:
special issue on learning from imbalanced data sets.
SIGKDD Explorations, 6(1):1–6, 2004.

[8] D. S. Cruzes and T. Dyb̊a. Research synthesis in
software engineering: A tertiary study. Inf. Softw.
Technol., 53:440–455, May 2011.

[9] A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz.
Predicting fault proneness of classes trough a
multiobjective particle swarm optimization algorithm.
In Tools with Artificial Intelligence, 2008. ICTAI ’08.
20th IEEE International Conference on, volume 2,
pages 387–394, 2008.

[10] A. B. de Carvalho, A. Pozo, and S. R. Vergilio. A
symbolic fault-prediction model based on
multiobjective particle swarm optimization. Journal of
Systems and Software, 83(5):868–882, 2010.

[11] G. Denaro and M. Pezzè. An empirical evaluation of
fault-proneness models. In Proceedings of the 24th
International Conference on Software Engineering,
ICSE ’02, pages 241–251, New York, NY, USA, 2002.
ACM.

[12] K. O. Elish and M. O. Elish. Predicting defect-prone
software modules using support vector machines.
Journal of Systems and Software, 81(5):649 – 660,
2008.

[13] D. Gray, D. Bowes, N. Davey, Y. Sun, and
B. Christianson. Further thoughts on precision. In
Evaluation and Assessment in Software Engineering
(EASE), 2011.

[14] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A systematic review of fault prediction
performance in software engineering. Software
Engineering, IEEE Transactions on, PP(99):1, 2011.

[15] H. He and E. Garcia. Learning from imbalanced data.
IEEE Transactions on Knowledge and Data
Engineering, pages 1263–1284, 2008.

[16] Y. Jiang, B. Cukic, and Y. Ma. Techniques for
evaluating fault prediction models. Empirical Software
Engineering, 13(5):561–595, 2008.

[17] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto,
and K. Matsumoto. The effects of over and under
sampling on fault-prone module detection. In
Empirical Software Engineering and Measurement,
2007. ESEM 2007. First International Symposium on,
pages 196 –204, sept. 2007.

[18] A. Kaur, P. S. Sandhu, and A. S. Bra. Early software
fault prediction using real time defect data. In
Machine Vision, 2009. ICMV ’09. Second
International Conference on, pages 242–245. accept,
2009.

[19] T. Khoshgoftaar and N. Seliya. Comparative
assessment of software quality classification
techniques: An empirical case study. Empirical
Software Engineering, 9(3):229–257, 2004.

[20] A. Koru and H. Liu. Building effective
defect-prediction models in practice. Software, IEEE,
22(6):23 – 29, nov.-dec. 2005.

[21] O. Kutlubay, B. Turhan, and A. Bener. A two-step
model for defect density estimation. In Software
Engineering and Advanced Applications, 2007. 33rd
EUROMICRO Conference on, pages 322 –332, aug.
2007.

108 Chapter 4. Papers

[22] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
Software Engineering, IEEE Transactions on,
34(4):485 –496, july-aug. 2008.

[23] T. Mende and R. Koschke. Effort-aware defect
prediction models. In Software Maintenance and
Reengineering (CSMR), 2010 14th European
Conference on, pages 107–116, 2010.

[24] T. Menzies, A. Dekhtyar, J. Distefano, and
J. Greenwald. Problems with precision: A response to
”comments on ’data mining static code attributes to
learn defect predictors’”. Software Engineering, IEEE
Transactions on, 33(9):637 –640, sept. 2007.

[25] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors.
Software Engineering, IEEE Transactions on, 33(1):2
–13, jan. 2007.

[26] T. Ostrand and E. Weyuker. How to measure success
of fault prediction models. In Fourth international
workshop on Software quality assurance: in
conjunction with the 6th ESEC/FSE joint meeting,
pages 25–30. ACM, 2007.

[27] G. Pai and J. Dugan. Empirical analysis of software
fault content and fault proneness using bayesian
methods. Software Engineering, IEEE Transactions
on, 33(10):675 –686, oct. 2007.

[28] N. Pizzi, A. Summers, and W. Pedrycz. Software
quality prediction using median-adjusted class labels.
In Neural Networks, 2002. IJCNN ’02. Proceedings of
the 2002 International Joint Conference on, volume 3,
pages 2405 –2409, 2002.

[29] N. Seliya, T. Khoshgoftaar, and S. Zhong. Analyzing
software quality with limited fault-proneness defect
data. In High-Assurance Systems Engineering, 2005.
HASE 2005. Ninth IEEE International Symposium
on, pages 89 –98, oct. 2005.

[30] Y. Sun, C. Castellano, M. Robinson, R. Adams,
A. Rust, and N. Davey. Using pre & post-processing
methods to improve binding site predictions. Pattern
Recognition, 42(9):1949–1958, 2009.

[31] B. Turhan, G. Kocak, and A. Bener. Data mining
source code for locating software bugs: A case study
in telecommunication industry. Expert Systems with
Applications, 36(6):9986–9990, 2009.

[32] T. Wang and W.-h. Li. Naive bayes software defect
prediction model. In Computational Intelligence and
Software Engineering (CiSE), 2010 International
Conference on, pages 1–4. accept, 2010.

[33] L. Yi, T. M. Khoshgoftaar, and N. Seliya.
Evolutionary optimization of software quality
modeling with multiple repositories. Software
Engineering, IEEE Transactions on, 36(6):852–864,
2010.

[34] A. Zeller, T. Zimmermann, and C. Bird. Failure is a
four-letter word: a parody in empirical research. In
Proceedings of the 7th International Conference on
Predictive Models in Software Engineering, Promise
’11, pages 5:1–5:7, New York, NY, USA, 2011. ACM.

[35] H. Zhang and X. Zhang. Comments on ”data mining
static code attributes to learn defect predictors”.
Software Engineering, IEEE Transactions on,

33(9):635 –637, sept. 2007.

[36] Y. Zhou and H. Leung. Empirical analysis of
object-oriented design metrics for predicting high and
low severity faults. Software Engineering, IEEE
Transactions on, 32(10):771 –789, oct. 2006.

APPENDIX
List of Papers from which we have Recomputed Confusion
Matrices.
E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining
techniques for building fault-proneness models in telecom
java software. In ISSRE ’07. The 18th IEEE Intern Symp
on, pages 215 –224, 2007.

E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of methods to
build and evaluate fault prediction models. Journal of Sys-
tems and Software, 83(1):2–17, 2010.

C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. De-
vanbu. Putting it all together: Using socio-technical net-
works to predict failures. In 20th International Symposium
on Software Reliability Engineering, pages 109–119. IEEE,
2009.

L. Briand, W. Melo, and J. Wust. Assessing the applica-
bility of fault-proneness models across object-oriented soft-
ware projects. Software Engineering, IEEE Transactions
on, 28(7):706 – 720, 2002.

B. Caglayan, A. Bener, and S. Koch. Merits of using repos-
itory metrics in defect prediction for open source projects.
In FLOSS ’09. ICSE Workshop on, pages 31–36, 2009.

G. Calikli, A. Tosun, A. Bener, and M. Celik. The effect
of granularity level on software defect prediction. In Com-
puter and Information Sciences, 2009. ISCIS 2009. 24th
International Symposium on, pages 531 –536, 2009.

C. Catal, B. Diri, and B. Ozumut. An artificial immune
system approach for fault prediction in object-oriented soft-
ware. In Dependability of Computer Systems, 2007. DepCoS-
RELCOMEX ’07. 2nd International Conference on, pages
238 –245, 2007.

C. Cruz and A. Erika. Exploratory study of a uml metric
for fault prediction. In Proceedings of the 32nd ACM/IEEE
Intern Conf on Software Engineering, pages 361–364. 2010.

A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz. Pre-
dicting fault proneness of classes trough a multiobjective
particle swarm optimization algorithm. In Tools with Artifi-
cial Intelligence, 2008. ICTAI ’08. 20th IEEE International
Conference on, volume 2, pages 387–394, 2008.

A. B. de Carvalho, A. Pozo, and S. R. Vergilio. A sym-
bolic fault-prediction model based on multiobjective particle
swarm optimization. J of Sys & Soft, 83(5):868–882, 2010.

G. Denaro and M. Pezzè. An empirical evaluation of fault-
proneness models. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, pages 241–
251, NY, USA, 2002. ACM.

L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction
of fault-proneness by random forests. In Software Reliability
Engineering, 2004. ISSRE 2004. 15th International Sym-
posium on, pages 417 – 428, 2004.

T. Gyimothy, R. Ferenc, and I. Siket. Empirical valida-
tion of object-oriented metrics on open source software for
fault prediction. Software Engineering, IEEE Transactions
on, 31(10):897 – 910, 2005.

Z. Hongyu. An investigation of the relationships between

Paper 5 109

lines of code and defects. In Software Maintenance, 2009.
IEEE Intern Conf on, pages 274–283, 2009.

Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating
fault prediction models. Empirical Software Engineering,
13(5):561–595, 2008.

S. Kanmani, V. Uthariaraj, V. Sankaranarayanan, and
P. Thambidurai. Object-oriented software fault prediction
using neural networks. Information and Software Technol-
ogy, 49(5):483–492, 2007.

A. Kaur and R. Malhotra. Application of random forest in
predicting fault-prone classes. In Advanced Computer The-
ory and Engineering, 2008, Internl Conf on, 37–43, 2008.

A. Kaur, P. S. Sandhu, and A. S. Bra. Early software fault
prediction using real time defect data. In Machine Vision,
2009. Intern Conf on, pages 242–245.

T. Khoshgoftaar and N. Seliya. Comparative assessment
of software quality classification techniques: An empirical
case study. Empirical Software Engineering, 9(3):229–257,
2004.

T. Khoshgoftaar, X. Yuan, E. Allen, W. Jones, and J. Hude-
pohl. Uncertain classification of fault-prone software mod-
ules. Empirical Software Engineering, 7(4):297–318, 2002.

A. Koru and H. Liu. Building effective defect-prediction
models in practice. Software, IEEE, 22(6):23 – 29, 2005.

O. Kutlubay, B. Turhan, and A. Bener. A two-step model
for defect density estimation. In Software Engineering and
Advanced Applications, 2007. 33rd EUROMICRO Confer-
ence on, pages 322 –332, 2007.

Y. Ma, L. Guo, and B. Cukic. Advances in Machine Learn-
ing Applications in Software Engineering, chapter A statis-
tical framework for the prediction of fault-proneness, pages
237–265. IGI Global, 2006.

T. Mende and R. Koschke. Effort-aware defect predic-
tion models. In Software Maintenance and Reengineering
(CSMR), 2010 14th European Conference on, pages 107–
116, 2010.

T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors. Software
Engineering, IEEE Transactions on, 33(1):2 –13, 2007.

O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno. Spam
filter based approach for finding fault-prone software mod-
ules. In Mining Software Repositories, 2007. ICSE ’07.
International Workshop on, page 4, 2007.

O. Mizuno and T. Kikuno. Training on errors experiment
to detect fault-prone software modules by spam filter. In
Procs European Software Engineering Conf and the ACM
SIGSOFT symp on The foundations of software engineer-
ing, ESEC-FSE ’07, pages 405–414, 2007. ACM.

R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static code
attributes for defect prediction. In Software Engineering,
2008. ICSE ’08. ACM/IEEE 30th Intern Conf on, pages
181–190.

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and
B. Murphy. Change bursts as defect predictors. In Software
Reliability Engineering (ISSRE), 2010 IEEE 21st Interna-
tional Symposium on, pages 309–318.

A. Nugroho, M. R. V. Chaudron, and E. Arisholm. As-
sessing uml design metrics for predicting fault-prone classes
in a java system. In Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on, pages 21–30.

G. Pai and J. Dugan. Empirical analysis of software fault
content and fault proneness using bayesian methods. Soft-

ware Engineering, IEEE Trans on, 33(10):675–686, 2007.
A. Schröter, T. Zimmermann, and A. Zeller. Predict-

ing component failures at design time. In Proceedings of
the 2006 ACM/IEEE international symposium on Empiri-
cal software engineering, pages 18–27. ACM, 2006.

N. Seliya, T. Khoshgoftaar, and S. Zhong. Analyzing soft-
ware quality with limited fault-proneness defect data. In
High-Assurance Systems Engineering, 2005. IEEE Internl
Symp on, pages 89 –98, 2005.

S. Shivaji, E. J. Whitehead, R. Akella, and K. Sunghun.
Reducing features to improve bug prediction. In Automated
Software Engineering, 2009. ASE ’09. 24th IEEE/ACM In-
ternational Conference on, pages 600–604.

Y. Singh, A. Kaur, and R. Malhotra. Predicting soft-
ware fault proneness model using neural network. Product-
Focused Software Process Improvement, 5089:204–214, 2008.

A. Tosun and A. Bener. Reducing false alarms in software
defect prediction by decision threshold optimization. In
Empirical Software Engineering and Measurement, ESEM
2009. International Symposium on, pages 477–480.

B. Turhan and A. Bener. A multivariate analysis of static
code attributes for defect prediction. In Quality Software,
2007. Intern Conf on, pages 231 –237, 2007.

O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer,
and R. Haesen. Mining software repositories for comprehen-
sible software fault prediction models. Journal of Systems
and Software, 81(5):823–839, 2008.

R. Vivanco, Y. Kamei, A. Monden, K. Matsumoto, and
D. Jin. Using search-based metric selection and oversam-
pling to predict fault prone modules. In Electrical and Com-
puter Engineering, 2010, Canadian Conf on, pages 1–6.

L. Yi, T. M. Khoshgoftaar, and N. Seliya. Evolution-
ary optimization of software quality modeling with multi-
ple repositories. Soft Engin, IEEE Trans on, 36(6):852–864,
2010.

Y. Zhou and H. Leung. Empirical analysis of object-
oriented design metrics for predicting high and low severity
faults. Software Engineering, IEEE Trans on, 32(10):771–
789, 2006.

T. Zimmermann, R. Premraj, and A. Zeller. Predicting
defects for eclipse. In Predictor Models in Software Engi-
neering, 2007. PROMISE’07, page 9, 2007.

110 Chapter 4. Papers

Paper 6 111

4.6 Paper 6: The State of Machine Learning Methodology in Software
Fault Prediction.

Hall T, Bowes D (2012) The state of machine learning methodology in software fault prediction.
In: Machine Learning and Applications (ICMLA), 2012 11th International Conference on,
vol 2, pp 308 –313

The State of Machine Learning Methodology in
Software Fault Prediction

Tracy Hall
Department of Information Systems and Computing

Brunel University
Uxbridge, UK

Email: tracy.hall@brunel.ac.uk

David Bowes
Science and Technology Research Institute

University of Hertfordshire
Hatfield, UK

d.h.bowes@herts.ac.uk

Abstract—The aim of this paper is to investigate the quality of
methodology in software fault prediction studies using machine
learning. Over two hundred studies of fault prediction have been
published in the last 10 years. There is evidence to suggest that
the quality of methodology used in some of these studies does
not allow us to have confidence in the predictions reported by
them. We evaluate the machine learning methodology used in 21
fault prediction studies. All of these studies use NASA data sets.
We score each study from 1 to 10 in terms of the quality of their
machine learning methodology (e.g. whether or not studies report
randomising their cross validation folds). Only 10 out of the 21
studies scored 5 or more out of 10. Furthermore 1 study scored
only 1 out of 10. When we plot these scores over time there is
no evidence that the quality of machine learning methodology is
better in recent studies. Our results suggest that there remains
much to be done by both researchers and reviewers to improve
the quality of machine learning methodology used in software
fault prediction. We conclude that the results reported in some
studies need to be treated with caution.

Index Terms—machine learning; experimental techniques;
methodology; fault prediction; software engineering.

I. INTRODUCTION

In this paper we investigate the quality of methodology used
in 21 studies using machine learning for software fault predic-
tion. We focus on four methodological aspects of these studies.
First, we look at the data used and how it is cleaned and pre-
processed. Second, we look at the cross validation schemes im-
plemented. Third, we look at how machine learning techniques
have been applied and tuned. Fourth, we look at how studies
have drawn conclusions on predictive performance. Our aim is
to establish whether the quality of methodology used allows us
to have confidence in the results reported in machine learning
studies for software fault prediction.

The quality of methodology underpins the validity of re-
ported results in all disciplines. Methodological weakness
and error are regularly brought to light in published studies
in many disciplines [1]. Such methodological weaknesses
have subsequently invalidated many reported results. Important
examples include the spurious link reported between the MMR
(Measles, Mumps, and Rubella) vaccine and autism1. The
repercussions of this are still reflected in sub-optimal take-

1http://www.bmj.com/content/342/bmj.c7452

up rates of this vaccination2. More recently methodological
problems led to false reports of neutrino particles travelling
faster than the speed of light3.

Methodological weaknesses can also be found in the soft-
ware fault prediction literature. Song et al [2] report that the
quality of data used to build software fault prediction models
can be low and can affect the efficacy of predictions. Gray et
al [3] report that the way predictive performance of software
fault prediction models is measured can be flawed. Gray et
al also show that the poor data used by some models can
introduce predictive bias [4]. Zeller et al [5] suggest that
methodological rigour might be compromised in response to
the pressure researchers feel under to publish positive fault
prediction results.

In our previous systematic literature review [6] only 36
out of 208 fault prediction studies passed our fairly basic
methodological quality check4. Furthermore we have also
shown that methodological problems seriously compromise
our confidence in the results of several previous studies.
For example we show [7] that Elish and Elish’s [8] highly
cited work using Support Vector Machine (SVM) models in
software fault prediction reports unexpected results.

It is very easy for researchers to inadvertently design
weaknesses into their methodology. It is also very easy to
make mistakes in the deployment of that methodology. Indeed
we have made many methodological mistakes in our own
studies. Methodological weakness and error is especially easy
when using machine learning in software fault prediction. This
is because researchers are likely to be software engineering
experts rather than machine learning experts. This expertise
problem is exacerbated by the large range of machine learners
to choose from and the complexity involved in effectively
deploying each machine learner, as well as the availability of
seemingly easy to use tools (e.g. Weka). Song et al [9] observe
that the complexity of predictive model building means that

2http://www.hpa.org.uk/ProductsServices/LocalServices/NorthWest/ North-
WestPressReleases/nwest110629measlesvaccine15yearhigh/

3http://www.bbc.co.uk/news/science-environment-17139635
4Appendix B shows the basic empirical methods check we applied in

our previous study. We have not previously analysed the machine learning
methodology (e.g. cross validation scheme used etc. used by studies of fault
prediction).

Paper 6 113

it is difficult to know how best to construct a model from all
the options available.

In this paper we look systematically at the quality of ma-
chine learning methodology used in software fault prediction
studies. We analyse the methodology of studies published
2000-2010. We analyse all 21 of these studies which use
NASA data and machine learning classifiers. We develop a
simple scoring scheme based on the literature and apply this
scoring scheme to each of these 21 studies. Appendix A lists
these 21 papers which are referenced in the text using [[x]].

The rest of this paper is structured as follows. The next
section provides an overview of the background to method-
ological aspects of machine learning. Section Three describes
our methods. Section Four outlines the threats to validity.
Section Five presents our results. Section Six concludes by
discussing the implications of our results.

II. BACKGROUND

Using machine learning to build software fault prediction
models has become very popular. Our previous systematic
literature review [6] identified 208 such studies published
between the beginning of 2000 and the end of 2010. Building
such models is complex and the efficacy of the methods used
underpin the validity of the results produced. There are many
important and complex methodological elements that must be
effectively addressed by studies. In this section we give a very
brief overview of these elements and provide pointers to more
detailed information.

A. Data

It is essential that there is integrity in the data used. This
section discusses several important aspects of data integrity.

The origin of the data: It is important that data is obtained
from a trusted source. For example, the NASA data (used by
all the studies we analyse here) is available from two sites -
the original NASA sponsored MDP site5 and the PROMISE
data site6. The origin of the NASA data used in the studies is
important as the quality of the data hosted on PROMISE has
been reported to be compromised [4].

Data cleaning: The quality of the data used in fault
prediction models determines the reliability of predictions. It
is common for there to be quality problems with fault data
[4]. Data sets are often noisy and contain outliers and missing
values. Such data problems can skew results and invalidate
findings. Leibchen and Shepperd [10] report that many studies
in software engineering do not seem to consider the quality of
the data they use. It is very important that studies do explicitly
consider the quality of the data on which models are built.

Data pre-processing: There are many ways in which data
can be pre-processed. Repeated attributes are one important as-
pect of pre-processing data for machine learning. Results have
been shown to be skewed if repeated or related attributes are
allowed to dominate predictions [4]. Various techniques can
be used to guard against this, including Principal Component

5Hosted at: http://filesanywhere.com/fs/v.aspx?v=896a648c5e5e6f799b
6http://promisedata.org/

Analysis and attribute selection. Menzies et al [11] suggest that
applying feature reduction techniques is important in terms of
reducing computational effort.

Data balance: Imbalanced data can severely compromise
the reliability of some machine learners, especially when
reporting predictive performance using some measures that
are particularly sensitive to imbalanced data (e.g. accuracy).
It is important that imbalanced data is acknowledged and
dealt with where necessary. It is also important that the
balance of data used in studies is reported. Reporting this
data allows subsequent researchers to replicate and investigate
reported results further. Substantially imbalanced data sets
are commonly used in fault prediction studies (i.e. there are
usually many more non-faulty units than faulty units) ([12],
[13]). For example NASA data set PC2 has only 0.4% of
data points belonging to the faulty class (23 out of 5589 data
points). This class distribution should be taken into account
during fault prediction because imbalanced data can strongly
influence both: the training of a model, and the way predictive
performance should be measured. Various approaches can
be used including over/under sampling [14], and/or learning
algorithm optimisation [15]. However learning techniques vary
in their sensitivity to imbalanced data and a decision about the
appropriateness of the data needs to be made for each model.

B. Cross validation

The separation of training and test data is an important
aspect of prediction. There are many ways in which this
separation can be done. Holdout is probably the simplest
approach, where the original data set is split into two groups
comprising: training set, test set. The model is developed using
the training set and its performance is then assessed on the
test set. The weakness of this approach is that results can be
biased because of the way the data has been split. A safer
approach is often n-fold cross validation, where the data is
split into n groups {g1..gn}. Ten-fold cross validation is very
common, where the data is randomly split into ten groups, and
ten experiments carried out. For each of these experiments, one
of the groups is used as the testing set, and all others combined
together and preferably randomised to form a training set.
Performance is then typically reported as an average across
all ten experiments. M-N fold cross validation adds another
step by generating M different N-fold cross validations which
increases the reliability of the results and reduces problems
due to the order of items in the training set. Stratified cross
validation is an improvement to this process, and keeps the
distribution of faulty and non-faulty data points approximately
equal to the overall class distribution in each of the n bins.

C. Machine learning techniques

There are many different machine learning techniques being
used to build software fault prediction models. These range
from relatively simple statistical classifiers (e.g. Naive Bayes)
to more sophisticated Support Vector Machine (SVM) clas-
sifiers. Witten [15] describes these classifiers in detail and
Lessmann et al [16] provide a comparative analysis of their

114 Chapter 4. Papers

performance in software fault prediction. Most classification
techniques are complex to understand and to deploy correctly.
Many require expertise to tune them appropriately to the
particular circumstances of the experiment. For example SVMs
have been shown to require intensive tuning to function
effectively [17]. It is also important that the right technique
is selected for the right experimental circumstances. Some
techniques perform at their best when deployed with data
evenly balanced between binary classes, for example C4.5
decision trees ([18] and [19]). Other techniques perform well
with imbalanced data, for example fuzzy based classifiers [20].
Many learning algorithms can have their various parameters
adjusted in order to boost performance on imbalanced data. To
preserve the integrity of predictive results it is essential that
the right technique is correctly used in the right circumstances.

A variety of tools exist to automate the production of fault
prediction models using machine learning. Weka7 is a very
popular such tool. Again, it is important that tools are used
correctly and that techniques are tuned. The default settings of
tools make producing a predictive model deceptively simple.
But without tuning, tools may not produce an effective model
given the particular technique and the particular data.

D. Predictive performance measurement

There are many ways in which the predictive performance
of models can be measured (see [21], [3]). Many measures are
based on elements of the confusion matrix or are derivatives
of the confusion matrix. This matrix reports how the model
classified the different fault categories compared to their actual
classification (predicted versus observed). The efficacy of the
performance measurement scheme used depends on the overall
construction of the model and the data being used. Designing
the right measurement scheme for the right model is not
necessarily straightforward. However the appropriateness of
that scheme underpins the confidence that we can have in the
predictions reported.

Prediction studies usually aim to compare the performance
of one model against another (e.g. [11], [16]). The perfor-
mance of a range of machine learning techniques is often the
focus of such comparative studies. When reporting the results
of such comparisons the use of statistical inferencing methods
are important. Such methods can formally test the existence or
not of any apparent superior performance. Manually observing
the performance results of a comparative study and informally
reporting what the results seem to imply, without testing the
statistical basis of these results, makes it difficult to have
confidence in the conclusions draw.

E. Methodological quality criteria

Based on the methodological aspects of machine learning
reported in the literature (and summarised in this section),
we propose a set of basic criteria that a study using machine
learning for fault prediction should adhere to. These criteria are
based on practices recommended in the literature as previously

7http://www.cs.waikato.ac.nz/ml/weka/

Criteria
1. Data cleaning should be used with PROMISE data

otherwise MDP data should be used
2. Data cleaning should be done
3. Imbalanced data should be dealt with
4. Feature reduction techniques should be applied
5. At least 10 cross validation folds should be used
6. Cross validation folds should be randomised
7. At least 10 experiment repeats should be performed
8. Fold stratification should be used
9. Classifiers should be tuned
10. Comparative results should be based on statistical
analysis

TABLE I: Machine learning methodological criteria

described in this section. Table I shows those criteria. The
criteria in the table are at a high level of granularity and are
those methodological issues that most studies should apply and
all studies should be cognisant of. The few studies which need
not apply a particular criteria should still report the reasons
for this. Studies should not only address the methodological
criteria shown in Table I, but they should also explicitly report
how they have addressed these criteria.

III. METHODS

We systematically identified all studies predicting faults in
code published from the beginning of 2000 to the end of 2010.
We identified these studies using using the following search
terms in the ACM Digital Library, IEEExplore and the ISI
Web of Science8:

(Fault* OR bug* OR defect* OR errors OR corrections OR
corrective OR fix*) in title only AND (Software) anywhere in
study

Our searches identified 2,073 papers. After ensuring that
each paper was an empirical study focused on predicting faults
in software published in English we were left with 208 papers.

We then identified all those 62 studies based on using NASA
data. We selected this sub-set of studies for detailed analysis
as 1) we did not analyse these studies in our first study [6]
and 2) we wanted to reduce the variability in the studies and
so controlled the data on which the studies are based to only
NASA data.

We applied a quality check to each paper to ensure that
basic information about the study was reported. The details
of this quality check are reported in [6] and summarised in
Appendix B. Of the 62 NASA studies 21 which used machine
learning techniques passed the quality check9.

For the study reported here we then scored each of these
21 studies according to the 10 criteria shown in Table I. This
results in each of the 21 studies receiving a score between

8Full details of our search strategy are reported in [6]
9One quality check item was not applied to the NASA studies. This item

required that studies reported the maturity of systems on which data was
based. None of the NASA studies were able to report system maturity.

Paper 6 115

0 and 10. This score is a very rough and ready guide to the
general quality of machine learning methodology reported in
the studies. The scoring system works on the basis that if a
paper reports any indication that a criterion has been met, then
1 will be added to the cumulative score for the paper. A study
gains a score if the criteria has clearly been addressed by the
study or the criteria is explicitly mentioned (even if only to
explain why this criteria was not necessary).

IV. THREATS TO VALIDITY

1. Our criteria are a very rough indication of quality as
some studies may have done an extensive job of, for example,
data cleaning whereas another study may have done a minimal
job. Both such studies would receive the same score of 1.
Consequently the scores we have awarded are likely to be
somewhat inflated as any implementation of the criteria has
been credited even when that implementation was relatively
weak.

2. No detailed analysis of the interplay between the study
factors has been done. For example we did not analyse the
detailed methodological requirements of a particular study
implementing a particular technique with a particular NASA
data set, consequently our scoring system may miss the fact
that a criteria was not actually necessary for a particular study.
However the need to miss any criteria is rare. The vast majority
of these criteria will apply to all studies. Consequently any
score inaccuracies will be minimal.

3. All criteria are scored equally. It could be argued that
some criteria impact more on model efficacy than other
criteria. However there is little consensus on the relative
importance on each criteria. This lack of consensus makes
it difficult to implement a finer grained scoring system.

4. All the studies analysed in this paper use NASA data. It is
not clear if the methodological approaches used with this sub-
set of studies is representative of all fault prediction models.
However there is nothing to lead us to believe that studies
using these particular data sets are any different to studies
using other data sets.

V. RESULTS

Figure 1 presents the scores that individual studies received
when we applied the criteria shown in Table I. Figure 1 shows
that no study scored more than 7 out of 10. Only 10 of the 21
studies scored 5 or more. Indeed 1 of the studies scored only
1. Overall this suggests that the methodology used by most
studies could be significantly improved. Figure 1 is ordered
by publication date. This ordering shows that the scores of
studies have not improved over time (this finding is confirmed
by an autocorrelation test). Figure 1 provides no evidence that
researchers are improving their machine learning techniques as
more information on methodology comes to light over time in
the literature.

Table II shows how many papers passed each of our 10
methodological criteria. Table II shows that 14 from the 21
studies passed our criteria ensuring that the origin of the data
is safe (criterion 1). All 14 of these studies used the NASA

Fig. 1. Scores of each study in publication date order

Criteria Papers
passed (n)

1. Data cleaning should be used with
PROMISE data otherwise MDP data
should be used

14

2. Data cleaning should be done 10
3. Imbalanced data should be dealt with 5
4. Feature reduction techniques should be
applied

6

5. At least 10 cross validation folds should
be used

16

6. Cross validation folds should be ran-
domised

7

7. At least 10 experiment repeats should
be performed

11

8. Fold stratification should be used 4
9. Classifiers should be tuned 9
10. Comparative results should be based
on statistical analysis

11

TABLE II: Results of applying the methodological criteria

data as hosted by MDP. None of the studies using PROMISE
cleaned the data to overcome the known quality problems with
that data.

Table II shows that only 10 from the 21 studies passed the
criterion ensuring that data cleaning has been considered by
studies (criterion 2). This means that less than half of the
studies reported any form of data cleaning. The quality of the
data cleaning done varies hugely.

Table II shows that 5 of the 21 studies passed the criterion
ensuring that studies have considered the impact of the balance
of data on their model (criterion 3). Two studies used over-
sampling while three studies used other data balancing tech-
niques. A very low proportion of studies mention the impact
of the balance of data they are using at all. In some cases
balance is likely to be highly problematic given the severely
imbalanced nature of some NASA data sets.

A few studies consider the balance of data where data pre-
processing or cleaning has been applied. It is important that
the impact of changing the data has on the balance of data
is considered. Although the majority of studies do not need

116 Chapter 4. Papers

to re-consider the balance of data (as they did not apply data
cleaning or pre-processing), of the 9 studies which did change
the data, 5 studies did re-consider data balance. We consider
this a sign of high quality studies.

Table II shows that 6 of the 21 studies passed the criteria
ensuring that feature selection has been done (criterion 4). Of
these 6 studies, 3 use feature sub-set selection.

Robust cross validation strategies form an important basis
for confidence in predictive performance. There are a variety of
elements involved in a good quality cross validation strategy.
The number of folds used is one element. Table II shows
that 16 out of the 21 studies passed the criteria ensuring that
cross validation strategies were based on at least 10 data folds
(criterion 5). Table II shows that only 7 studies report that
those folds are randomised (criterion 6). Such randomisation
adds rigour to the cross validation. Table II also shows that
only 4 studies report using stratification (criteria 8). Table II
shows that 11 out of the 21 studies report using at least 10
experiment repeats (criterion 7). Overall only 1 study [[10]]
reports using the most sophisticated cross validation scheme
(i.e. cross validation using at least 10 stratified randomised
folds where at least 10 experiments are repeated).

Table II shows that 9 of the 21 studies report tuning their
technique (criterion 9). Of those that do not, 4 explicitly report
using the default parameters. Reporting this is a useful practice
for subsequent replicability.

The vast majority of studies aim to draw some conclusions
on the most effective approach to building a predictive model
using the NASA data. In drawing these conclusions it is
important that reliable inferences are made. Table II shows that
11 of the 21 studies draw their comparative conclusions based
on statistical inference (criterion 10). This means that many
studies use only informal argumentation and discussion with
which to draw conclusions. This is a weak form of inference.

VI. DISCUSSION AND CONCLUSIONS

It is clear that approaches to building models and check-
ing the data on which they are built vary between studies.
Some studies use data cleaning, report the balance of new
datasets, balance training sets and present a well described and
executed study (e.g. [[10]],[[11]] and [[14]]). More worrying
is the number of studies which do not report key machine
learning aspects of their methodology, e.g. tuning techniques,
randomisation of folds etc.

Our results suggest that relatively novice approaches are
being used to build some models. Basic principles of machine
learning (as outlined in for example [15]) do not always seem
to be followed. In particular very little technique tuning is
reported by studies. Tuning has been shown to be particularly
important when using some techniques (e.g. SVMs). Some
studies report an unsophisticated approach to cross validation.
It is not clear that studies are using cross validation schemes
shown to be most effective for the fault prediction domain.
Furthermore feature selection seems to be performed infre-
quently even though [11] demonstrates that feature selection
can improve the production of predictive models. Our results

also suggest that fault data imbalance does not really seem
to be addressed adequately. Dealing with data imbalance is
especially important with some of the highly imbalanced
NASA data sets that are used by the studies we analysed. This
omission could seriously compromise the results of studies.
Very little data cleaning is being reported. This suggests that
some researchers are not getting to know the data they are
using (e.g. identifying impossible erroneous data points etc.).
Such a failure to clean data can result in serious bias ([9]
and [16]). Overall a significant minority of papers seem to
demonstrate a serious lack of expertise in using machine
learning.

A high proportion of studies seem to draw their comparative
conclusions using informal argument rather than statistical
testing. This means that conclusions on the ’best’ performing
technique/cross validation scheme/data balancing scheme/etc.
may not be sound. In addition many studies do not benchmark
their results against those of others. This lack of benchmarking
means that no corpus of understanding is being developed and
every study may as well be the first. Such an approach does not
improve the maturity of the machine learning use in software
fault prediction.

ACKNOWLEDGMENT

The authors would like to thank Professor Martin Shepperd
for his help in extracting the data on which this paper is based.
And also for his helpful and insightful comments on drafts of
this paper.

REFERENCES

[1] K. Dickersin, “The existence of publication bias and risk factors for its
occurrence,” JAMA: the journal of the American Medical Association,
vol. 263, no. 10, pp. 1385–1389, 1990.

[2] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software defect
association mining and defect correction effort prediction,” Software
Engineering, IEEE Transactions on, vol. 32, no. 2, pp. 69 – 82, feb.
2006.

[3] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Further
thoughts on precision,” in Evaluation and Assessment in Software
Engineering (EASE), 2011.

[4] ——, “The misuse of the nasa metrics data program data sets for
automated software defect prediction,” in Evaluation and Assessment
in Software Engineering (EASE), 2011.

[5] A. Zeller, T. Zimmermann, and C. Bird, “Failure is a four-letter word:
a parody in empirical research,” in Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, ser. Promise
’11. New York, NY, USA: ACM, 2011, pp. 5:1–5:7.

[6] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
review of fault prediction performance in software engineering,” Soft-
ware Engineering, IEEE Transactions on, vol. PP, no. 99, p. 1, 2011.

[7] D. Bowes, T. Hall, and D. Gray, “Comparing the performance of fault
prediction models which report multiple performance measures: recon-
structing the confusion matrix,” in Proceedings of the 8th International
Conference on Predictive Models in Software Engineering, 2012.

[8] K. Elish and M. Elish, “Predicting defect-prone software modules using
support vector machines,” Journal of Systems and Software, vol. 81,
no. 5, pp. 649–660, 2008.

[9] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” Software Engineering, IEEE
Transactions on, vol. 37, no. 3, pp. 356 –370, may-june 2011.

[10] G. Liebchen and M. Shepperd, “Data sets and data quality in software
engineering,” in Proceedings of the 4th international workshop on
Predictor models in software engineering. ACM, 2008, pp. 39–44.

Paper 6 117

[11] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, pp. 2 –13, jan. 2007.

[12] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: special issue
on learning from imbalanced data sets,” SIGKDD Explorations, vol. 6,
no. 1, pp. 1–6, 2004.

[13] H. Zhang and X. Zhang, “Comments on ”data mining static code
attributes to learn defect predictors”,” Software Engineering, IEEE
Transactions on, vol. 33, no. 9, pp. 635 –637, sept. 2007.

[14] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Transac-
tions on Knowledge and Data Engineering, pp. 1263–1284, 2008.

[15] I. Witten, E. Frank, and M. Hall, Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2011.

[16] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” Software Engineering, IEEE Transactions on,
vol. 34, no. 4, pp. 485 –496, july-aug. 2008.

[17] T. Segaran, Programming collective intelligence: building smart web 2.0
applications. O’Reilly Media, 2007.

[18] N. Japkowicz and S. Stephen, “The class imbalance problem: A system-
atic study,” Intell. Data Anal, vol. 6, no. 5, pp. 429–449, 2002.

[19] W. Liu, S. Chawla, D. A. Cieslak, and N. V. Chawla, “A robust decision
tree algorithm for imbalanced data sets,” in SDM. SIAM, 2010, pp.
766–777.

[20] S. Visa and A. Ralescu, “Fuzzy classifiers for imbalanced, complex
classes of varying size,” in Information Processing and Management
of Uncertainty in Knowledge-Based Systems, 2004, pp. 393–400.

[21] T. Ostrand and E. Weyuker, “How to measure success of fault prediction
models,” in Fourth international workshop on Software quality assur-
ance: in conjunction with the 6th ESEC/FSE joint meeting. ACM,
2007, pp. 25–30.

APPENDIX A
PAPERS FROM WHICH DATA WAS EXTRACTED

[[1]] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-
proneness by random forests,” in Software Reliability Engineering,
2004. ISSRE 2004. 15th International Symposium on, nov. 2004, pp.
417 – 428.

[[2]] A. Koru and H. Liu, “Building effective defect-prediction models in
practice,” Software, IEEE, vol. 22, no. 6, pp. 23 – 29, nov.-dec. 2005.

[[3]] N. Seliya, T. Khoshgoftaar, and S. Zhong, “Analyzing software quality
with limited fault-proneness defect data,” in High-Assurance Systems
Engineering, 2005. HASE 2005. Ninth IEEE International Symposium
on, oct. 2005, pp. 89 –98.

[[4]] Y. Ma, L. Guo, and B. Cukic, Advances in Machine Learning
Applications in Software Engineering. IGI Global, 2006, ch. A
statistical framework for the prediction of fault-proneness, pp. 237–
265.

[[5]] Y. Zhou and H. Leung, “Empirical analysis of object-oriented design
metrics for predicting high and low severity faults,” Software Engi-
neering, IEEE Transactions on, vol. 32, no. 10, pp. 771 –789, oct.
2006.

[[6]] C. Catal, B. Diri, and B. Ozumut, “An artificial immune system
approach for fault prediction in object-oriented software,” in Depend-
ability of Computer Systems, 2007. DepCoS-RELCOMEX ’07. 2nd
International Conference on, june 2007, pp. 238 –245.

[[7]] O. Kutlubay, B. Turhan, and A. Bener, “A two-step model for
defect density estimation,” in Software Engineering and Advanced
Applications, 2007. 33rd EUROMICRO Conference on, aug. 2007,
pp. 322 –332.

[[8]] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE
Transactions on, vol. 33, no. 1, pp. 2 –13, jan. 2007.

[[9]] G. Pai and J. Dugan, “Empirical analysis of software fault content
and fault proneness using bayesian methods,” Software Engineering,
IEEE Transactions on, vol. 33, no. 10, pp. 675 –686, oct. 2007.

[[10]] B. Turhan and A. Bener, “A multivariate analysis of static code
attributes for defect prediction,” in Quality Software, 2007. QSIC ’07.
Seventh International Conference on, oct. 2007, pp. 231 –237.

[[11]] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and
R. Haesen, “Mining software repositories for comprehensible software
fault prediction models,” Journal of Systems and Software, vol. 81,
no. 5, pp. 823–839, 2008.

[[12]] Y. Singh, A. Kaur, and R. Malhotra, “Predicting software fault
proneness model using neural network,” Product-Focused Software
Process Improvement, vol. 5089, pp. 204–214, 2008.

[[13]] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault
prediction models,” Empirical Software Engineering, vol. 13, no. 5,
pp. 561–595, 2008.

[[14]] A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz, “Predicting
fault proneness of classes trough a multiobjective particle swarm
optimization algorithm,” in Tools with Artificial Intelligence, 2008.
ICTAI ’08. 20th IEEE International Conference on, vol. 2, 2008, pp.
387–394.

[[15]] Z. Hongyu, “An investigation of the relationships between lines of
code and defects,” in Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, 2009, pp. 274–283.

[[16]] A. Kaur, P. S. Sandhu, and A. S. Bra, “Early software fault prediction
using real time defect data,” in Machine Vision, 2009. ICMV ’09.
Second International Conference on. 2009, pp. 242–245.

[[17]] A. Tosun and A. Bener, “Reducing false alarms in software defect
prediction by decision threshold optimization,” in Empirical Software
Engineering and Measurement, 2009. ESEM 2009. 3rd International
Symposium on. 2009, pp. 477–480.

[[18]] T. Mende and R. Koschke, “Effort-aware defect prediction models,”
in Software Maintenance and Reengineering (CSMR), 2010 14th
European Conference on, 2010, pp. 107–116.

[[19]] R. Vivanco, Y. Kamei, A. Monden, K. Matsumoto, and D. Jin, “Using
search-based metric selection and oversampling to predict fault prone
modules,” in Electrical and Computer Engineering (CCECE), 2010
23rd Canadian Conference on. 2010, pp. 1–6.

[[20]] L. Yi, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary optimization
of software quality modeling with multiple repositories,” Software
Engineering, IEEE Transactions on, vol. 36, no. 6, pp. 852–864, 2010.

[[21]] A. B. de Carvalho, A. Pozo, and S. R. Vergilio, “A symbolic fault-
prediction model based on multiobjective particle swarm optimiza-
tion,” Journal of Systems and Software, vol. 83, no. 5, pp. 868–882,
2010.

APPENDIX B
SUMMARY OF METHODOLOGY CHECK APPLIED [6]

Methodological criteria
1. Is a prediction model reported?
2. Is the prediction model tested on unseen data?
3. Is the source of data reported?
4. Is the maturity of data reported?
5. Is the size of data reported?
6. Is the application domain of data reported?
7. Is the programming language of the data reported?
8. Are the independent and dependent variables clearly
reported?
9. Is the granularity of the dependent variables reported?
10. Are the modelling techniques used reported?
11. Is the fault data acquisition process described?
12. Is the independent variables data acquisition process
described?
13. Is the faulty and non-faulty balance of data reported?

118 Chapter 4. Papers

Chapter 5

Conclusion

Understanding the measurement protocols enables us to see the patterns better.

Figure 5.1: The Improvement in Image Quality by Changing the Measurement Protocol of the Hubble
Space Observatory.
http://upload.wikimedia.org/wikipedia/commons/1/12/Improvement_in_Hubble_
images_after_SMM1.jpg

5.1 Reflection on the Research Questions

To start the conclusion of this dissertation I will reflect on the initial research questions which were
posed in the Introduction and answered in Chapter 3.

http://upload.wikimedia.org/wikipedia/commons/1/12/Improvement_in_Hubble_images_after_SMM1.jpg
http://upload.wikimedia.org/wikipedia/commons/1/12/Improvement_in_Hubble_images_after_SMM1.jpg

120 Chapter 5. Conclusion

RQ1: Does the measurement protocol for the independent variables affect
the metric values produced?

The results and conclusions from [Paper 1] and [Paper 2] demonstrate that the measurement protocol
does affect the value of the metrics being computed. Having answered the question, we now want
to know if this variation in values determined by the measurement protocol has an impact on defect
prediction performance. The presentation in Appendix B.2 suggests that the measurement protocol does
impact on the ability to predict defects. The suggestion that measurement protocol affects the ability
to predict defects opens up the need for more research into how the measurement protocols impact
on the ability of learners to predict defect prone modules. The results of Appendix B.2 also suggest
that different measurement protocols may find different defect types. Being able to build a diverse set of
models which identify different defect types is important when building ensembles of learners [Kuncheva
and Whitaker 2003], therefore we may be able to exploit the different measurement protocols to build
better ensembles.

RQ2: Is there an effective method for deriving the dependent variables for
defect prediction?

In [Paper 3], we conclude that the approaches for identifying where defects are in code do not agree
strongly. This means that the additional noise caused by the presence of modules labelled as not defective
when they are actually defective will reduce the opportunity to learn the characteristics of defects. Bird
et al. [2009] reported that they had found more defects than Zimmermann et al. [2007] for the eclipse
dataset. [Paper 3] in conjunction with [Zimmermann et al. 2007] and Bird et al. [2009] suggests that
the impact of the noise generated by not being able to correctly label modules as defective or not should
now be studied further. Kim et al. [2011] suggests that the performance of learners is affected when the
percentage of false positives or false negatives is more than 20% of all instances. Our findings suggest
that this value may be exceeded (24%) based on the low level of agreement that we discovered between
the techniques used to label defects in [Paper 3].

RQ3 a) Do different model building techniques have an impact on predic-
tion models?

The results and conclusion of [Paper 4] show that there is little impact of using different modelling
techniques on the predictive performance in defect prediction. This is in agreement with other studies
[Lessmann et al. 2008] which also found that no single technique dominates when applied to the NASA
datasets. [Paper 4] concludes that simple modelling techniques perform slightly better than more com-
plicated modelling techniques.

5.2. Main Findings 121

RQ3 b) Do different datasets have an impact on prediction models?

The results of [Paper 4] show that the dataset does have an impact on the predictive performance of
defect prediction studies. [Paper 4] also studied which metrics produced higher predictive performance
measure values. Radjenović et al. [2013] have already extended our work by carrying out a more detailed
analysis of the characteristics of the metrics which allow researchers to build better defect prediction
models.

[Paper 4] has already been cited in 40 studies1 because of its contribution to knowledge relating to the
state of the art in defect prediction performance and the corpus of data which allows for other analysis
such as the joint work with Martin Shepperd [Shepperd 2011; 2012; 2013]2.

[Paper 5] is an important contribution to the work in analysing the performance of defect prediction
models across different studies. It has already been cited by others as a point of reference when report-
ing subsets of performance measures which can be used to re-compute the confusion matrix [Turhan
et al. 2012]. The report of the first reviewer is included in Appendix A. In summary, the first reviewer
highlighted the contribution of the technique for re-computing the the confusion matrix as follows: The
technique produces a common performance measure (the confusion matrix) which can be used by oth-
ers to compute their own preferred predictive performance measure. The technique does not constrain
researchers to report a standard single predictive performance measure which may not in itself be a clear
indicator of the effect that a researcher is trying to demonstrate. A final contribution is the explicit use of
MCC as a performance measure for comparing predictive performance. The use of MCC in [Paper 5]
makes the comparison of the performance of different studies both transparent. The use of MCC also
highlights studies which are not doing better than making random predictions.

RQ4: Are the results of machine learning studies reliable/trustworthy?

[Paper 6] answers RQ4 by showing that machine learning approaches which are known to have an
impact on the performance of machine learners, are not being applied systematically to defect prediction
studies. This strongly suggests that the machine learning approach is an important factor which needs
to be evaluated when assessing the predictive performance of a defect prediction study.

5.2 Main Findings

As was stated in the Introduction of this dissertation, defect prediction is an important technique which
can help practitioners to improve the quality of software code. Helping to make the predictions as
accurate as possible requires us to understand what factors may impact on the defect prediction models
that we build. This dissertation has demonstrated that there are many factors which may affect the
predictive performance of trainable models for software defect prediction. I have demonstrated the
need for having well defined measurement protocols for both independent and dependent variables. I
have also helped to synthesise the factors which affect defect prediction performance by studying the

1Citation count from Google scholar (5/06/2013).
2Martin Shepperd, Tracy Hall and I have completed a meta analysis of the results from [Paper 4] which shows that the

single major factor which determines the predictive performance of defect prediction studies is which group of researchers
worked together.

122 Chapter 5. Conclusion

predictive performance of results published in a range of defect prediction studies. I have developed the
idea that comparing the results of different studies is not simple, requiring a deeper understanding of the
context of each result.

The papers that I have presented for this dissertation make a clear contribution to the thesis that there
are many factors which may affect the performance of trainable models for software defect prediction.
[Paper 1] and [Paper 2] demonstrate that there is a clear need to describe the measurement protocol for
different independent variables. [Paper 3] demonstrates that there is a need to improve the measurement
protocol for determining the dependent variables of defect prediction studies. [Paper 4] provides us
with a clearer picture of the factors which have affected the predictive performance of models reported
in published studies. [Paper 5] provides a technique for re-computing the confusion matrix which
then allows us to compare the predictive performance of different studies. [Paper 5] also demonstrates
that the re-computation of the confusion matrix is an important part of checking the validity of results
published by researchers when carrying out defect prediction using binary classifiers. Finally, [Paper 6]
shows that the good machine learning practices which should be used by researchers when carrying out
defect prediction studies are not being reported in recent studies. The poor reporting of good machine
learning practices is a concern and reduces the trust that we have in the results that are produced.

5.2.1 Analysis

It is clear that every area of defect prediction has factors which will result in some form of variability in
the results. The measurement protocols for calculating the code metrics can vary significantly. No two
techniques for labelling modules as defective or not have a good level of agreement with each other. The
approaches used to perform machine learning experiments vary across different studies. Put together, all
of these factors may affect the predictive performance reported by the many studies analysed.

Menzies and Shepperd [2012] and Shepperd and MacDonell [2012] illuminate the idea that the conclu-
sions for different studies are contradictory or ‘unstable’ when applying machine learning to the prob-
lems of defect prediction and effort estimation. Menzies and Shepperd use the diagram from [Fayyad
et al. 1996] (see Figure 5.2) to motivate some of the factors which may affect the conclusion. The
conclusion of [Menzies and Shepperd 2012] is that we need better reporting of prediction studies and
that learning local patterns may be more productive. It would be interesting to ask the question: Is
the conclusion of Menzies and Shepperd [2012] reliable, or could it be affected by some other factor?
On reflection we find that they have not included the measurement protocol factors which will impact
on their result. I would suggest that conclusions are usually stable as long as good practice has been
followed. They are stable because they work for the context in which they were placed. Asking the
question: "Do bears live in woods?" will produce unstable conclusions, but it is obvious that the context
is key: it depends on the continent. The conclusions may be achieved when internal threats to validity
are low, but external threats to validity are high. I therefore suggest that the problem is context instability
which is not reported rather than conclusion instability. To be able to join up the the results of different
studies to form a global conclusion, requires us to be able to understand the context of the results. The
argument that we need to investigate the locality of learning is probably correct. Learning from subsets
of the data may overcome one of the pitfalls of comparing the performance of models from different
systems. Cross project validation has a hidden assumption that the metric values are of similar ranges.
Most statisticians know not to extrapolate a prediction beyond the end of the graph, yet cross project val-
idation asks models to predict outcomes for metrics which are significantly outside of the metric space
that the model is trained on. The problem with using subsets of data is that the different measurement

5.3. Future Work 123

protocols may mean that even when using the same source, the measurement protocol may project the
values to different spaces. Chapter 4 clearly shows that the measurement protocol for program slicing
metrics affects the values of the metrics computed. If we use the models built on small parts of the
dataset and apply them to someone else’s data using a different measurement protocol (on the same
source), the models have no reason to work because the shift in metrics values between the two datasets
caused by the different measurement protocols will make it appear that we are dealing with a different
locality.

Aggregating data from many different sources may not be meaningful unless sufficient contextual infor-
mation is provided. If we know the context and have sufficient data, it may be possible to re-compute a
common dataset from which a global conclusion can be formed. DConfusion [Bowes et al. 2013] has
allowed us to compare the predictive performance for defect prediction studies. We need to be aware
that we have not been able to assess the measurement protocols for the different studies when applying
DConfusion which may result in the findings of conclusion instability described in Shepperd [2012].
Having openly available datasets such as PROMISE allows us to remove some of the factor instability
by removing the measurement protocol factors but context is still key. The process of being able to
re-compute a comparable measurement allows researchers to report results in the way that they want to
for the purpose of their paper while retaining the ability to use the data in cross study analysis.

Figure 5.2: The KDD Cycle. From Fayyad et al. [1996]

5.3 Future Work

This dissertation has studied both empirically and experimentally some of the factors which may affect
defect prediction studies which use machine learning. There are many questions which this dissertation
raises which are areas for future work; some of which are described below.

124 Chapter 5. Conclusion

5.3.1 Statistical Analysis of the Impact of Different Measurement Protocols on being
able to Predict Defects

This dissertation has suggested that different measurement protocols will impact on the ability to predict
defects. As was mentioned in the introduction, not all defects are the same. It is therefore completely
possible that program slicing metrics based on print statements are limited to a few defects which cause
output failures. Statistically proving the relationship is an ongoing study which the data from the papers
included in this dissertation should help to answer. Using the approach of varying the measurement
protocol and seeing if this gives a more reliable defect prediction model will hopefully give a better
understanding of defects and the cause of defects.

5.3.2 Measurement Protocols

It is clear that changing the measurement protocol for program slicing metrics results in different results.
What is not clear, is how other metrics can be and are affected by different measurement protocols.
Shepperd [1995] goes some way to discussing the issues with computing LOC which when put to a first
year University student appear to be simple. Measuring cyclomatic complexity and other metrics (such
as the presence or absence of Fowlers’ bad smells [Fowler and Beck 1999]) is also open to interpretation
and this may affect experimental results which use these metrics.

5.3.3 Reporting Protocols

The method of reporting results has historically been by publications in archival papers. These papers
are usually limited in space and may not be able to report the full contextual information needed to allow
us to compare the results of one paper against another. There are at least two possible ways forward, the
first is to establish a reporting protocol which succinctly describes the experimental methods carried out
during the work and the second is to build open repositories which contain both the data and the tools
used to produce the results.

5.3.4 The Need for Replication Studies

The replication of studies is an important part of scientific practice [Jasny et al. 2011]. In physics, it
was important that Lonchampt et al. [1996] replicated the work of Fleischmann et al. [1989] in order
to show that the measurement protocol could in itself could lead to the conclusion that cold fusion was
possible. In software engineering, Sjøberg et al. [2003] suggest that the aim of academics is to have their
work transfer into an industrial setting. Sjøberg et al. [2003] discuss how industry needs to have trust in
the experiments that software engineers perform and recommend that replicating studies along with full
reporting of the context of work is an important factor in building trust.

Bowes et al. [2011] clearly demonstrates that more studies need to be replicated in order to test the
applicability of published results. The inability to replicate the results of Meyers and Binkley [2007]
caused us to significantly delay publication of our results because we initially doubted our own results.
By replicating [Paper 1] using an independent programmer, we were able to improve confidence in our
own results.

5.3. Future Work 125

It was while reading [Mende and Koschke 2009] that I fully realised the impact that poor reporting
has on the trust that could be placed on the findings of a paper. Mende and Koschke [2009] show
that while replicating two defect prediction studies, it was possible to only replicate the results of one
paper. The second paper reported in [Mende and Koschke 2009] could not be replicated because of poor
protocol reporting. Replication studies allow us to find the holes in papers by making us work through
the problem again. Bruce Christianson extols the virtue of making PhD students at the beginning of
their programme of work replicate the studies of others. He suggests that it stops students from just
reading the paper and makes them think critically about the methodology and results. David Gray while
carrying out his PhD [Gray 2013] repeated many of the defect prediction studies reported in [Paper 6]
from which he could synthesise the methodological issues in defect prediction reported in his thesis.
Removing the noise of poor papers will improve the chance that the next generation of researchers will
have a good starting point on which to base their ideas.

5.3.5 Ensuring Consistency in Machine Learning Approaches

[Gray 2013] goes some way towards formalising the methodology for defect prediction studies. The
results in [Paper 6] show that good practice has either not been carried out or not reported. The challenge
now is to make sure that the good practices are continued and reported.

Using re-computation techniques will help to spot errors in papers, but so far, the technique has only
been developed for binary classification problems. Extending the technique to other problems is possible
but requires more data to be stored in repositories. If we record the prediction for every instance in
every fold, we can truly compare models against each other. We can identify instances that are always
predicted as defective and those which are occasionally predicted as defective. Knowing which instances
are reliably predicted the same will allow us to better focus our attention and understanding on the less
predictable instances.

5.3.6 Building Repositories of Comparable Data

Repositories of data need to be constructed which extend the PROMISE concept by including not only
the initial data, but also the results and code. Being open and transparent will improve the trust we have
in results and will give us a better understanding of the features of code which increase the probability
that it is defective.

5.3.7 Why not What!

Throughout this dissertation I have constantly answered the question ‘what?’. The secret purpose has
always been to put us in a better position to address the question ‘why?’. The purpose of ‘what?’ is
irrelevant naval gazing if it does not allow us the better understand ‘why?’. If we do not attempt to find
root cause and effect we will be limited to mere observers rather than participants in changing the reasons
why defects are occurring in code. Creating models which are clearer and more understandable should
be the goal of defect prediction. Although this dissertation has added to the problems by including yet
another set of factors which need to be considered when building a model, I hope that the contribution
will eventually enable us to build simpler, clearer models which will help others in their future work ask
the question ‘why do these metrics predict defects?’

126 Chapter 5. Conclusion

5.4 Final Remarks

The conclusion for this dissertation is short and stark:

• How independent variables are computed from the source code can have a statistically significant
impact on the values of the metrics collected.

• There is no gold standard for collecting the dependent variables for defect prediction.

• There are many defect prediction studies which have used a large number of different datasets,
independent variables and learners. The performance reported in these studies varies significantly
depending on the dataset and to some extent the learner.

• The machine learning approaches developed over the last decade have not been adopted by many
recent papers.

We therefore seem to be no further on than the studies (which motivated this dissertation) carried out in
the 1980’s, 1990’s and now the 2000’s. Papers are still ignoring sound practices in terms of measurement
protocol validation and machine learning approaches. It is no wonder we have ‘conclusion instability’.
Having taken an empirical approach using real data rather than the synthetic data of Shepperd and
Kadoda [2001], we still come to the same conclusion: how you do the experiment will affect how the
model performs.

This dissertation helps to understand the problem of conclusion instability by showing that we need to
be critical of the way that factors are computed and used in defect prediction and beyond.

This dissertation has made significant contributions to knowledge (see Section 1.4) and posses as many
questions as it answers (see Section 5.3).

References

Arisholm E, Briand LC, Fuglerud M (2007) Data mining techniques for building fault-proneness models
in telecom java software. In: Software Reliability, 2007. ISSRE ’07. The 18th IEEE International
Symposium on, pp 215 –224 (Cited on page 22.)

Arisholm E, Briand LC, Johannessen EB (2010) A systematic and comprehensive investigation of meth-
ods to build and evaluate fault prediction models. Journal of Systems and Software 83(1):2–17 (Cited
on page 22.)

Baker AL, Bieman JM, Fenton N, Gustafson DA, Melton A, Whitty R (1990) A philosophy for soft-
ware measurement. Journal of Systems and Software 12(3):277 – 281, oregon Workshop on Software
Metrics (Cited on page 10.)

Basili VR, Selby RW (1987) Comparing the effectiveness of software testing strategies. IEEE Trans
Softw Eng 13(12):1278–1296 (Cited on page 8.)

Beck K, Fowler M, Beck G (1999) Bad smells in code. Refactoring: Improving the design of existing
code pp 75–88 (Cited on page 32.)

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?: bias
in bug-fix datasets. In: Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering, ACM,
New York, NY, USA, ESEC/FSE ’09, pp 121–130 (Cited on pages 33 and 120.)

Black S, Counsell S, Hall T, Wernick P (2006) Using program slicing to identify faults in software.
In: Binkley DW, Harman M, Krinke J (eds) Beyond Program Slicing, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany, no.
05451 in Dagstuhl Seminar Proceedings (Cited on page 31.)

Boetticher G (2006) Advanced machine learner applications in software engineering, Idea Group Pub-
lishing, Hershey, PA, USA, chap Improving credibility of machine learner models in software engi-
neering, pp 52 – 72 (Cited on page 20.)

Boetticher G, Menzies T, Ostrand T (2007) Promise repository of empirical software engineering data.
West Virginia University, Department of Computer Science (Cited on page 10.)

Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Pro-
ceedings of the fifth annual workshop on Computational learning theory, ACM, New York, NY, USA,
COLT ’92, pp 144–152 (Cited on page 20.)

Bowes D, Hall T (2010) Using program slicing data to predict code faults. In: The 3rd CREST Open
Workshop (Cited on pages 32 and 33.)

Bowes D, Hall T (2011) SLuRp: A web enabled database for effective management of systematic liter-
ature reviews. Tech. Rep. 510, University of Hertfordshire (Cited on page 4.)

Bowes D, Hall T, Kerr A (2011) Program slicing-based cohesion measurement: the challenges of repli-
cating studies using metrics. In: Proceeding of the 2nd international workshop on Emerging trends in
software metrics, ACM, pp 75–80 (Cited on pages 3, 32 and 124.)

128 References

Bowes D, Hall T, Beecham S (2012a) SLuRp: a tool to help large complex systematic literature reviews
deliver valid and rigorous results. In: Proceedings of the 2nd international workshop on Evidential
assessment of software technologies, ACM, pp 33–36 (Cited on pages 5, 35 and 37.)

Bowes D, Hall T, Gray D (2012b) Comparing the performance of fault prediction models which report
multiple performance measures: reconstructing the confusion matrix. In: Proceedings of the 8th Inter-
national Conference on Predictive Models in Software Engineering (Cited on pages vi, 135 and 136.)

Bowes D, Hall T, Gray D (2013) DConfusion: A technique to allow cross study performance evaluation
of fault prediction studies. Automated Software Engineering Journal (In Review) (Cited on pages 4,
5, 35 and 123.)

Breiman L (2001) Random forests. Machine Learning 45:5–32 (Cited on page 18.)

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Chapman &
Hall/CRC (Cited on page 17.)

Catal C, Diri B (2009) A systematic review of software fault prediction studies. Expert Systems with
Applications 36(4):7346–7354 (Cited on page 8.)

Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) Smote: synthetic minority over-sampling tech-
nique. Journal of Artificial Intelligence Research 16(1):321–357 (Cited on page 22.)

Corazza A, Di Martino S, Ferrucci F, Gravino C, Sarro F, Mendes E (2010) How effective is tabu search
to configure support vector regression for effort estimation? In: Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, ACM, New York, NY, USA, PROMISE
’10, pp 4:1–4:10 (Cited on pages 20 and 23.)

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297 (Cited on page 20.)

Counsell S, Bowes D, Hall T (2009) Cohesion Metrics: The Empirical Contradiction. In: The Psychol-
ogy of Programming Interest Group, Open University (Cited on pages 4 and 32.)

Elish K, Elish M (2008) Predicting defect-prone software modules using support vector machines. Jour-
nal of Systems and Software 81(5):649–660 (Cited on page 35.)

Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases.
AI magazine 17(3):37 (Cited on pages ix, 122 and 123.)

Fenton N, Neil M (1999) A critique of software defect prediction models. Software Engineering, IEEE
Transactions on 25(5):675 –689 (Cited on pages 2, 3 and 20.)

Fenton N, Pfleeger SL (1997) Software metrics (2nd ed.): a rigorous and practical approach. PWS
Publishing Co., Boston, MA, USA (Cited on pages 10 and 11.)

Fenton NE (1991) Software Metrics: A Rigorous Approach. Chapman & Hall, Ltd., London, UK, UK
(Cited on page 10.)

Fleischmann M, Pons S, Hawkins M (1989) Electrochemically induced nuclear fusion of deuterium.
Journal of Electroanalytical Chemistry 261(2):301–308 (Cited on page 124.)

Forman G, Scholz M (2010) Apples-to-apples in cross-validation studies: pitfalls in classifier perfor-
mance measurement. ACM SIGKDD Explorations Newsletter 12(1):49–57 (Cited on page 26.)

References 129

Foss T, Stensrud E, Kitchenham B, Myrtveit I (2003) A simulation study of the model evaluation cri-
terion mmre. Software Engineering, IEEE Transactions on 29(11):985 – 995 (Cited on pages 22, 25
and 67.)

Fowler M, Beck K (1999) Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (Cited on pages 32 and 124.)

Glover F (1989) Tabu search—part i. ORSA Journal on computing 1(3):190–206 (Cited on page 20.)

Glover F (1990) Tabu search—part ii. ORSA Journal on computing 2(1):4–32 (Cited on page 20.)

Glover F, McMillan C (1986) The general employee scheduling problem: an integration of ms and ai.
Comput Oper Res 13(5):563–573 (Cited on page 20.)

Gray D (2013) Software defect prediction using static code metrics : Formulating a methodology. PhD
thesis, Computer Science, University of Hertfordshire (Cited on pages 21 and 125.)

Gray D, Bowes D, Davey N, Yi S, Christianson B (2010) Software defect prediction using static code
metrics underestimates defect-proneness. In: Neural Networks (IJCNN), The 2010 International Joint
Conference on, pp 1–7 (Cited on page 22.)

Gray D, Bowes D, Davey N, Sun Y, Christianson B (2012) Reflections on the nasa mdp data sets.
Software, IET 6(6):549 –558 (Cited on page 20.)

Hall T, Bowes D (2011) Issues of consistency in defining slices for slicing metrics: ensuring compara-
bility in research findings. In: The 10th CREST Open Workshop (Cited on page 32.)

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011) Developing fault-prediction models: What the
research can show industry. Software, IEEE 28(6):96 –99 (Cited on page 35.)

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault predic-
tion performance in software engineering. Software Engineering, IEEE Transactions on 38(6):1276
–1304 (Cited on pages 35 and 37.)

Halstead MH (1977) Elements of Software Science (Operating and programming systems series). Else-
vier Science Inc., New York, NY, USA (Cited on page 10.)

He H, Garcia E (2008) Learning from imbalanced data. IEEE Transactions on Knowledge and Data
Engineering pp 1263–1284 (Cited on page 36.)

Hertz JA, Krogh AS, Palmer RG (1991) Introduction to the theory of neural computation, vol 1. West-
view press (Cited on page 18.)

IEEE (1990) Ieee standard glossary of software engineering terminology. IEEE Std 61012-1990 p 1
(Cited on page 7.)

Izurieta C, Bieman J (2008) Testing consequences of grime buildup in object oriented design patterns.
In: Software Testing, Verification, and Validation, 2008 1st International Conference on, pp 171 –179
(Cited on page 32.)

Japkowicz N, Stephen S (2002) The class imbalance problem: A systematic study. Intell Data Anal
6(5):429–449 (Cited on pages 22 and 36.)

130 References

Jasny BR, Chin G, Chong L, Vignieri S (2011) Again, and again, and again Science 334(6060):1225
(Cited on page 124.)

Khoshgoftaar T, Seliya N, Gao K (2005) Assessment of a new three-group software quality classifica-
tion technique: An empirical case study. Empirical Software Engineering 10(2):183–218 (Cited on
page 11.)

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction. In: Proceedings of the
33rd International Conference on Software Engineering, ACM, New York, NY, USA, ICSE ’11, pp
481–490 (Cited on page 120.)

Kitchenham B, Pickard L, Linkman S (1990) An evaluation of some design metrics. Software Engineer-
ing Journal 5(1):50 –58 (Cited on pages 2, 3 and 32.)

Kitchenham B, Pfleeger S, Fenton N (1995) Towards a framework for software measurement validation.
Software Engineering, IEEE Transactions on 21(12):929 –944 (Cited on page 10.)

Kohavi R, et al. (1995) A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: International joint Conference on artificial intelligence, Lawrence Erlbaum Associates
Ltd, vol 14, pp 1137–1145 (Cited on page 36.)

Kuncheva L, Whitaker C (2003) Measures of diversity in classifier ensembles and their relationship with
the ensemble accuracy. Machine Learning 51:181–207 (Cited on page 120.)

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software de-
fect prediction: A proposed framework and novel findings. Software Engineering, IEEE Transactions
on 34(4):485 –496 (Cited on pages 1, 18, 35 and 120.)

Levinson M (2001) Let’s stop wasting $78 billion a year’. CIO, 15th October pp 78–83 (Cited on pages 1
and 2.)

Li PL, Herbsleb J, Shaw M, Robinson B (2006) Experiences and results from initiating field defect
prediction and product test prioritization efforts at abb inc. In: Proceedings of the 28th international
conference on Software engineering, ACM, New York, NY, USA, ICSE ’06, pp 413–422 (Cited on
page 1.)

Liebchen G, Shepperd M (2008) Data sets and data quality in software engineering. In: Proceedings of
the 4th international workshop on Predictor models in software engineering, ACM, pp 39–44 (Cited
on page 36.)

Liu W, Chawla S, Cieslak DA, Chawla NV (2010) A robust decision tree algorithm for imbalanced data
sets. In: SDM, SIAM, pp 766–777 (Cited on page 22.)

Lokan C (2005) What should you optimize when building an estimation model? In: Software Metrics,
2005. 11th IEEE International Symposium, pp 10 pp. –34 (Cited on page 22.)

Lonchampt G, Bonnetain L, Hieter P (1996) Reproduction of fleischmann and pons experiments. In:
Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy, p 113 (Cited on
page 124.)

McCabe T (1976) A complexity measure. Software Engineering, IEEE Transactions on SE-2(4):308 –
320 (Cited on page 10.)

References 131

Mende T, Koschke R (2009) Revisiting the evaluation of defect prediction models. In: Proceedings of
the 5th International Conference on Predictor Models in Software Engineering, ACM, p 7 (Cited on
page 125.)

Menzies T (2011) S.p.a.c.e. exploration for software engineering. In: The 15th CREST Open Workshop
(Cited on page 28.)

Menzies T, Shepperd M (2012) Special issue on repeatable results in software engineering prediction.
Empirical Software Engineering pp 1–17 (Cited on page 122.)

Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors.
Software Engineering, IEEE Transactions on 33(1):2 –13 (Cited on pages 11, 21 and 36.)

Menzies T, Turhan B, Bener A, Gay G, Cukic B, Jiang Y (2008) Implications of ceiling effects in
defect predictors. In: Proceedings of the 4th international workshop on Predictor models in software
engineering, ACM, New York, NY, USA, PROMISE ’08, pp 47–54 (Cited on pages 1 and 2.)

Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener AB (2010) Defect prediction from static code
features: current results, limitations, new approaches. Autom Softw Eng 17(4):375–407 (Cited on
page 2.)

Menzies T, Caglayan B, Kocaguneli E, Krall J, Peters F, Turhan B (2012) The promise repository
of empirical software engineering data. URL http://promisedata.googlecode.com (Cited on
page 10.)

Meyers TM, Binkley D (2007) An empirical study of slice-based cohesion and coupling metrics. ACM
Trans Softw Eng Methodol 17(1):2:1–2:27 (Cited on pages 32 and 124.)

Miyazaki Y, Terakado M, Ozaki K, Nozaki H (1994) Robust regression for developing software estima-
tion models. Journal of Systems and Software 27(1):3 – 16 (Cited on page 22.)

Morasca S, Briand L (1997) Towards a theoretical framework for measuring software attributes. In: Soft-
ware Metrics Symposium, 1997. Proceedings., Fourth International, pp 119 –126 (Cited on page 10.)

Munson J, Khoshgoftaar T (1990) Regression modelling of software quality: empirical investigation.
Information and Software Technology 32(2):106 – 114 (Cited on page 1.)

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In:
Proceedings of the 27th international conference on Software engineering, ACM, New York, NY,
USA, ICSE ’05, pp 284–292 (Cited on page 11.)

Newman M (2005) Power laws, pareto distributions and zipf’s law. Contemporary physics 46(5):323–
351 (Cited on page 12.)

Oram A, Wilson G (eds) (2010) Making Software What Really Works, and Why We Believe It. O’Reilly
Media (Cited on pages 2, 7, 12 and 13.)

Pinzger M, Nagappan N, Murphy B (2008) Can developer-module networks predict failures? In: Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineer-
ing, ACM, pp 2–12 (Cited on page 11.)

http://promisedata.googlecode.com

132 References

Port D, Korte M (2008) Comparative studies of the model evaluation criterions mmre and pred in soft-
ware cost estimation research. In: Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, ACM, New York, NY, USA, ESEM ’08, pp 51–60
(Cited on page 22.)

Quinlan J (1993) C4. 5: programs for machine learning, vol 1. Morgan kaufmann (Cited on page 17.)

Radjenović D, Heričko M, Torkar R, Živkovič A (2013) Software fault prediction metrics: A systematic
literature review. Information and Software Technology Accepted for publication (Cited on pages 8
and 121.)

Rezwan F, Davey N, Sun Y, Adams R (2013) Effect of using varying negative examples in transcription
factor binding site predictions. Applied Soft Computing (Cited on pages 22, 23 and 24.)

Rosenberg J (1997) Some misconceptions about lines of code. In: Software Metrics Symposium, 1997.
Proceedings., Fourth International, pp 137 –142 (Cited on page 2.)

Runeson P, Andrews A (2003) Detection or isolation of defects? an experimental comparison of unit
testing and code inspection. In: Software Reliability Engineering, 2003. ISSRE 2003. 14th Interna-
tional Symposium on, IEEE, pp 3–13 (Cited on pages 1 and 2.)

Salehi F, Lacroix R, Wade KM (1998) Effects of learning parameters and data presentation on the per-
formance of backpropagation networks for milk yield prediction (Cited on page 18.)

Scott JSJSJ (2012) Ca technologies works with rbs on technical fault as out-
age enters fifth day. URL http://www.computerweekly.com/news/2240158589/
CA-Technologies-works-with-RBS-on-technical-fault-as-outage-enters-fifth-day
(Cited on page 2.)

Shannon CE, Weaver W (1948) A mathematical theory of communication (Cited on page 17.)

Shepperd M (1988) A critique of cyclomatic complexity as a software metric. Software Engineering
Journal 3(2):30 –36 (Cited on page 10.)

Shepperd M (1995) Foundations of software measurement. Prentice Hall International (UK) Ltd., Hert-
fordshire, UK, UK (Cited on pages 4 and 124.)

Shepperd M (2011) It doesn’t matter what you do but does matter who does it! In: The 15th CREST
Open Workshop (Cited on page 121.)

Shepperd M (2012) The scientific basis for prediction research. In: Proceedings of the 8th Interna-
tional Conference on Predictive Models in Software Engineering, ACM, pp 1–2 (Cited on pages 121
and 123.)

Shepperd M (2013) Assessing the predictive performance of machine learners in software engineering.
In: The 24th CREST Open Workshop (Cited on pages 1, 22 and 121.)

Shepperd M, Kadoda G (2001) Comparing software prediction techniques using simulation. Software
Engineering, IEEE Transactions on 27(11):1014 –1022 (Cited on page 126.)

Shepperd M, MacDonell S (2012) Evaluating prediction systems in software project estimation. Infor-
mation and Software Technology 54(8):820 – 827, special Issue: Voice of the Editorial Board (Cited
on page 122.)

http://www.computerweekly.com/news/2240158589/CA-Technologies-works-with-RBS-on-technical-fault-as-outage-enters-fifth-day
http://www.computerweekly.com/news/2240158589/CA-Technologies-works-with-RBS-on-technical-fault-as-outage-enters-fifth-day

References 133

Shirabad J, Menzies T (2005) The promise repository of software engineering databases. School of
Information Technology and Engineering, University of Ottawa, Canada 24 (Cited on page 10.)

Sjøberg D, Anda B, Arisholm E, Dybå T, Jørgensen M, Karahasanović A, Vokáč M (2003) Challenges
and recommendations when increasing the realism of controlled software engineering experiments.
Empirical methods and studies in software engineering pp 24–38 (Cited on page 124.)

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: ACM SIGSOFT
Software Engineering Notes, ACM, vol 30, pp 1–5 (Cited on page 33.)

Stevens SS (1946) On the theory of scales of measurement. Science 103(2684):677–680 (Cited on
page 10.)

Turhan B, Menzies T, Bener A, Di Stefano J (2009) On the relative value of cross-company and within-
company data for defect prediction. Empirical Software Engineering 14(5):540–578 (Cited on pages 2
and 21.)

Turhan B, MÄ±sÄ±rlÄ± AT, Bener A (2012) Empirical evaluation of the effects of mixed project data
on learning defect predictors. Information and Software Technology (0):– (Cited on page 121.)

Vapnik V (1963) Pattern recognition using generalized portrait method. Automation and Remote Control
24:774–780 (Cited on page 20.)

Weiser M (1981) Program slicing. In: Proceedings of the 5th international conference on Software
engineering, IEEE Press, Piscataway, NJ, USA, ICSE ’81, pp 439–449 (Cited on page 7.)

Weiser MD (1979) Program slices: formal, psychological, and practical investigations of an automatic
program abstraction method. PhD thesis, Computer and Communication Sciences Dept., Ann Arbor,
MI, USA, aAI8007856 (Cited on pages 7 and 11.)

Weyuker EJ, Ostrand TJ (2008) What can fault prediction do for you? In: Beckert B, Hähnle R (eds)
Tests and Proofs, Lecture Notes in Computer Science, vol 4966, Springer Berlin / Heidelberg, pp
18–29 (Cited on page 1.)

Weyuker EJ, Ostrand TJ, Bell RM (2010) Comparing the effectiveness of several modeling methods for
fault prediction. Empirical Software Engineering 15(3):277–295 (Cited on pages 11, 13 and 21.)

Witten I, Frank E (2002) Weka. Machine Learning Algorithms in Java In: Witten I, Frank E(eds) Data
Mining: Practical Machine Learning Tools and Techniques with Java (Cited on page 17.)

Witten I, Frank E (2005) Data Mining: Practical machine learning tools and techniques. Morgan Kauf-
mann (Cited on pages 20, 21 and 23.)

Zhang M, Baddoo N, Wernick P, Hall T (2011) Prioritising refactoring using code bad smells. In: Soft-
ware Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth International Con-
ference on, pp 458 –464 (Cited on page 32.)

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: Predictor Models in
Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007. International Workshop on, p 9
(Cited on page 120.)

134 References

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In: Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ACM, New York, NY, USA, ESEC/FSE ’09, pp 91–100 (Cited on page 21.)

Appendix A

Reviewers’ Comments for
[Bowes et al. 2012b]

Reviewer 1 for Bowes et al. [2012b] summarises the benefits of re-computing a common measure better
than I can :

“TITLE: Comparing the performance of defect prediction models which report multiple
performance measures: reconstructing the confusion matrix

AUTHORS: David Bowes, Tracy Hall and David Gray

This paper compares 601 predictive models from 42 paper using a very nice approach to
combine the different performance measures reported.

I think that this is probably one of the most important steps forward in comparative meta
level research that I have read for some time and I would strongly recommend that it is
accepted for PROMISE. ...

... The contribution is really important in my view. That is, we know that most papers report
some form of results, but find it very hard to compare them; often we feel we are comparing
"apples and oranges", or so it seems.

Of course we could expect a set of papers to opine the lack of standard measures and to
"mandate" that authors use a prescribed approach to facilitate comparison. I have some
sympathy with these "mandated standard of reporting" papers, but they always have a slight
Orwellian ring to them; they demand that authors comply to facilitate comparison, subli-
mating their natural human creativity for the greater scientific good. It’s all very laudable,
but it seems to go against the creative grain of human nature.

This paper takes a very different approach and one that I think has more chance of success
because it goes with the grain of human nature rather than seeking to take up arms against
it with a polemic against the "proliferation of measurement standards".

The work builds on the foundations of the previous (very detailed and comprehensive) re-
view of predictive models by these authors (and colleagues) in TSE. What the authors no-
ticed in that work was the way in which precision and recall formed a natural base point and
(also) the way in which reported measures could often be defined using a confusion matrix.
The authors therefore set about to "reverse engineer" the confusion matrix from 42 different
papers to facilitate comparison.

The confusion matrix is like a kind of "atomic indivisible" reducible core of information
about predictive models. It consist of the "core four": true positives, false positives, true
negatives and false negatives. It is at the heart of any predictive model, yet, as the authors
explain, these four numbers are not always reported. One could "mandate" that they be

136
Appendix A. Reviewers’ Comments for

[Bowes et al. 2012b]

reported in all future paper (nice try, big brother), but what the authors do is just so much
better; they propose concrete approaches to reverse engineer these core four numbers and
demonstrate that this approach is realistic: that is, they show that it is possible to extract
from a large corpus of work, the confusion matrix using their "reverse engineering" ap-
proach.

The techniques used to reverse engineer the confusion matrix are synthesised from the lit-
erature and are not, in themselves, the primary novel contribution of the paper. However,
the use of these techniques in this way, though simple and perhaps even (to some) obvious
(once stated as an approach!) is extremely important. I would go as far as to suggest that
this could well prove to be a game changing paper that really marks a point in time after
which, meta analysis will clearly be changed (for the better).

The confusion matrix makes sense to me as a lingua franca. Naturally, one can compute
things like precision and recall from this information (provided the predictive model always
answers positive or negative in a binary classification test; no "undefined" values allowed).

This is a really nice idea. It means that we can use this approach to seek to compare many
different results. It also *will* affect the bahaviour of future authors in ways that polemic
and tirades against non standardness cannot. That is, I believe that authors will start to more
routinely report in a way that facilities this kind of analysis (not wanting to be left out).

By showing that a large number of models (601) can be compared using their approach, the
authors have done a huge service; they have created a sufficiency "corpus of comparison" to
make it worth other authors’ while to make their work sufficiently compliant to be included
an any future studies using this approach. In this way I believe that this paper will act as a
catalyst.

The paper includes a nice short explanation of the kinds of compound measure most com-
monly used and the approach the authors used to extract from such measures the "core four"
needed for the confusion matrix.

The authors take four example papers as a case study and show the diversity of measure-
ments reported. They then use their approach to construct the confusion matrices for these
four papers, from which a better and more informative comparison becomes possible.

I think that this paper represents an important step forward in the construction of meta
analysis. Such meta analyses (when done properly) are hugely important and valuable. This
paper opens a path through which future meta analyses can truly be important and valuable.
I have no doubt that the paper should be accepted for PROMISE 2012 and I would like to
advocate for it to be considered for the award of best paper.” Reviewer 1

Appendix B

Additional Papers

B.1 Cohesion metrics: the empirical contradiction.

Counsell S, Bowes D, Hall T (2009) Cohesion Metrics: The empirical contradiction. In: The Psychology
of Programming Interest Group, Open University

PPIG, Lancaster 2008 www.ppig.org

Evolutionary Cohesion Metrics: The Empirical Contradiction

 Steve Counsell David Bowes Tracy Hall

Dept. Information Systems Dept. Computer Science Dept. Information Systems
 Brunel University Hertfordshire University Brunel University
steve.counsell@brunel.ac.uk d.h.bowes@herts.ac.uk tracy.hall@brunel.ac.uk

Keywords: Cohesion, Slicing, Barcode, Function.

Abstract
As a software engineering concept, the nuances of software cohesion have been notoriously difficult
to interpret, comprehend or obtain any real consensus about. This has arisen because cohesion can be
interpreted in many different ways, each of which is usually as valid as any other. In this paper, we
describe a contradictory facet of slice-based cohesion from automatically extracted data that illustrates
just this problem; the system in question (Barcode) was studied over multiple versions and two, slice-
based cohesion metrics collected. Counter-intuitively, we found that function cohesion, rather than
deteriorating over time, actually improved over time as code grew in size. The implication of our
analysis and a conclusion that we should have perhaps drawn a long time ago is that cohesion is not
commonly understood, is unlikely to be and, consequently, a metric that captures it will always elude
us.

1. Introduction
Cohesion has been the subject of many previous studies [5, 6, 11]. It is also a characteristic of
software that we still know very little about compared with, for example, coupling. The problem with
cohesion is that unlike coupling, it can only be ‘quantified’ based on a single impression of what
cohesion actually measures and that impression is often debatable. Herein, we explore the evolution
of two cohesion metrics based on program slices [12] from a C system called Barcode. We collected
the metrics from versions of the system using the CodeSurfer tool [4] and studied the evolutionary
features therein. Results point to a revealing, counter-intuitive characteristic feature of the two
metrics. The remainder of the paper is organised as follows. We describe the motivation for the work
and related studies (Section 2). In Section 3, we describe the empirical data drawn from the Barcode
system and in Section 4 present a discussion of some the issues raised by the study. Finally, we draw
some conclusions in Section 5.

2. Motivation and Related Work

The motivation for the research in this paper stems from two sources. First, we know very little,
empirically about cohesion metrics and their behaviour. Second, from an evolutionary perspective,
and theoretically speaking and in the absence of consistent refactoring [8], we would expect cohesion
of a system to deteriorate as a system decays evolves. The authors know of no study that demonstrates
whether or not this is the case.

Slicing metrics have been used in various program analysis studies, the majority of which have used
the procedural paradigm as a basis [1, 2, 3, 13]. In terms of slicing literature, the paper from which
the slicing metrics were analyzed and is considered the seminal slicing text is that of Weiser [12].
Since then, the techniques of program slicing have been adopted and adapted by many disciplines and
in a multitude of contexts. Ott and Thuss explored some of Weiser’s original metrics [11] and also
introduced several of their own. These metrics were then analyzed from a largely empirical viewpoint.
Meyers and Binkley [10] undertook a large-scale empirical study of five slice-based metrics (largely

B.1. Cohesion metrics: the empirical contradiction. 139

 2

PPIG, Lancaster 2008 www.ppig.org

those of Ott and Thuss) and provide baseline values for those metrics on a longitudinal basis; lowly-
rated modules according to those baselines would be candidates for re-engineering.

3. Data Analysis
3.1 Preliminaries

Formally, we denote a set of variables used by a function M as VF. We denote VO as the subset of VF
representing output variables. We denote a slice SLi as that obtained for vi ∈VO and SLint as the
intersection of SLi over all vi ∈ VO. We define the ‘Tightness’ and ‘Overlap’ metrics as originally
defined by Weiser [12] (see the example in Appendix A) as:

Tightness(F) =
)(
|| int

Flength
SL and Overlap(F) =

 |Vo|
1 ∑

=

|Vo |

1i |SLi |
|| intSL

Tightness measures the number of statements that occur in every slice and Overlap ‘how many
statements in a slice are found only in that slice’ [12]. Appendix A is taken from [10] and shows how
these two metrics are calculated from a function to calculate the largest and smallest of an array of
numbers. From the definitions of Tightness and Overlap, we obtain the following values for the
function in Appendix A:

Tightness =

19
11 = 0.58

Overlap =
2
1 (
14
11 +

16
11) = 0.74

The relatively high value of Overlap is due to high value of SLint relative to the size of the two slices
for ‘smallest’ and ‘largest’. The value of Tightness reflects the fact that SLint accounts for just over
half the module length.

3.2 Summary Data

Table 1 shows the summary data (maximum (Max.), minimum (Min.), median and standard deviation
(SD)) for the Tightness and Overlap values for the first version (v1) and the latest version (v22) of all
modules in the Barcode system. Barcode is a C system for processing barcode information and the
subject of previous empirical research by Meyers and Binkley [10]. The CodeSurfer tool [4] was used
to extract the data. We note that in the Barcode system, a module can contain many functions (i.e.
there is a ‘one-to-many’ relationship between the two) and it is the metrics extracted on a function
basis that we report in this paper.

 Max. Min. Median SD

Tightness v1 1 0 0.54 0.34

Tightness v22 1 0 0.61 0.33

Overlap v1 1 0 0.92 0.30

Overlap v22 1 0 0.84 0.28

Table 1. Summary Data for Tightness and Overlap

The most striking feature of Table 1 is the low values for SD suggesting that there is very little
variance in the range of values for either metric. The relatively high values of the Overlap metric are
reflective of the fact that the functions in Barcode had many slices – and the greater the number of
slices, the higher the probability of high ‘overlap’.

140 Appendix B. Additional Papers

 3

PPIG, Lancaster 2008 www.ppig.org

3.3 Data analysis

Figures 1a and 1b show the trend in the Tightness values for v1 and v22 of all modules in Barcode.
Figures 2a and 2b show the equivalent Overlap values. Neither set of values show any specific
characteristics. We would expect cohesion to fall consistently during evolution as the code decays and
functions grow in size. This is based on the belief that as code is maintained it decays because of
consistent corrective and requirement-change induced maintenance. As a result it becomes more fault-
prone (not less fault-prone) and consequently a vicious circle of: maintenance-fault-maintenance, sets
in. Function cohesion will inevitably suffer as a result. The average value for Tightness in v1 is 0.45
and for v22, higher at 0.54. The average value for Overlap in v1 is 0.71 and for v22, again higher at
0.76. In other words, counter-intuitively, evolution has not caused the values of the two metrics to fall
– they have increased. The average LOC per function in v1 was 46.6 and for v22, 66.1, i.e., cohesion
increased as function size increased.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Function

Ti
gh

tn
es

s
va

lu
e

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

Function

Ti
gh

tn
es

s
va

lu
e

 Figure 1a. Tightness values version 1 Figure 1b. Tightness values version 22

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Function

O
ve

rl
ap

 v
al

ue

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

Function

Ov
er

lap
 va

lu
e

 Figure 2a. Overlap values version 1 Figure 2b. Overlap values version 22

As the Barcode system has evolved, the cohesion of its functions has gone up and it has grown in size
rather than what we expected.

4. Discussion
The preceding analysis raises a number of interesting issues. The stance that the authors adopt is that
cohesion is a subjective concept that we should collect and analyse based on the understanding of the
limitations of each metric. We suggest that it is unlikely that there will be a consensus on ‘the’
cohesion metric. Even though the OO community has adopted the Lack of Cohesion of the Methods
of a Class (LCOM) metric of Chidamber and Kemerer [7] in a widespread way, it has not enjoyed full
acceptance as the definitive OO metric; many attempts since have tried to redefine or re-invent new
cohesion metrics. As a community, we can understand the notion of coupling since this can be
quantified. We can say that one function has more coupling than another function with certainty; we
can even normalise that coupling data to account for program size to make it more meaningful. In
other words, we should collect coupling metrics and not cohesion.

B.1. Cohesion metrics: the empirical contradiction. 141

 4

PPIG, Lancaster 2008 www.ppig.org

One question that arises is whether the values of the two metrics fluctuated much during the course of
the 22 versions over which data was extracted. Figure 3a shows the values for the Tightness metric at
version 11 and Figure 3b, those for Overlap at version 11.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

Function

Ti
gh

tn
es

s
va

lu
e

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800

Function

O
ve

rla
p

va
lu

e

Series1

 Figure 3a. Tightness values version 11 Figure 3b. Overlap values version 11

Table 2 shows the summary values for version 11 of Barcode. The values for median and SD are
comparable with those of version 1 and 22 (in Table 1). The mean value of Tightness at v11 was 0.60
and in the same version, that of Overlap 0.80. In other words, there has only been a marginal decrease
in cohesion from version 11 to 22, (a 0.06 difference for Tightness and a 0.04 difference for Overlap),
this is not a convincing argument for using either metric.

 Max. Min. Median SD

Tightness v11 1 0 0.66 0.33

Overlap v11 1 0 0.95 0.27

Table 2. Summary Data for Tightness and Overlap (v11)

Of course, we have no evidence on how much refactoring effort has been applied to the Barcode
system and this represents one validity threat to the study. However, that still leaves the question as to
whether the values of Tightness and Overlap actually represent high cohesion and what they measure.

5. Conclusions

In this paper, we have explored the characteristics of two slice-based cohesion metrics (Tightness and
Overlap). The basis of the study was that if a metric measures cohesion, then by implication, as a
system decays and cohesion deteriorates, this should be reflected in the values of any cohesion metric.
Our empirical analysis of version of the Barcode system showed that the Tightness and Overlap
cohesion values actually rose from version 1 to version 22. The implications of the study are therefore
that, while metrics do provide a comparative indication of function features, they do fail to provide
reinforcement of intuitive beliefs about the behaviour of software systems. Future work will focus on
extracting faults from the same system as well as a study of the ‘entropy’ of the metrics data.

6. Acknowledgements
The research described is kindly supported by a grant from the UK Engineering and Physical Sciences
Research Council (EPSRC Grant No: EP/E055141/1).

7. References
[1] Binkley, D. Gold, N. and Harman, M. An empirical study of static program slice size. ACM Trans.
Software Engineering Methodology (TOSEM) 16(2):1-32, 2007.

142 Appendix B. Additional Papers

 5

PPIG, Lancaster 2008 www.ppig.org

[2] Binkley, D., Harman, M., and Krinke, J., Empirical study of optimization techniques for massive
slicing. ACM Trans. Program. Lang. Syst. 30(1): (2007)
[3] Binkley, D., Harman, M., Raszewski, I., and Smith, C. An empirical study of amorphous slicing as
a program comprehension tool. Proc. of the Intl. Workshop on Program Comprehension, Limerick,
Ireland, pp. 161-170, 2000.
[4] Codesurfer at: www.grammatech.com/products/codesurfer/
[5] Counsell, S., Swift. S. and Crampton J. The Interpretation and Utility of Three Cohesion Metrics
for Object-Oriented Design. ACM Trans. on Software Eng. and Meth., 15(2):123 – 149, 2006.
[6] Counsell, S. Mendes, E., and Swift, S. Comprehension of Object-Oriented Software Cohesion:
The Empirical Quagmire. Intl. Workshop on Program Comprehension, Paris, France, pp.33-42, 2002.
[7] Chidamber, S., and Kemerer, C. A metrics suite for object oriented design. IEEE Trans. on
Software Engineering 20(6) (1994), 467-493.
[8] Fowler, M. Refactoring (Improving the Design of Existing Code). Addison Wesley, 1999.
[9] Gold, N., Harman, M., Binkley, D., Hierons, R., Unifying program slicing and concept assignment
for higher-level executable source code extraction. Softw., Pract. Exper. 35(10): 977-1006 (2005)
[10] Meyers, T and Binkley, D. Slice-based Cohesion Metrics and Software Intervention, Proceeding
s of the 11th Working Conf. on Reverse Engineering (WCRE 04), Delft, Netherlands, pages 256-265.
[11] Ott L. and Thuss, J., The relationship between slices and module cohesion. Proceedings of
International Conference on Software Engineering, Pittsburgh, US, 1989, pages 198-204.
[12] Weiser, M. 1981. Program slicing. Proc. Int. Conf. on Soft Eng., San Diego, IEEE, pp.439-449.
[13] Weiser M (1982) Programmers use slices when debugging, Communications of the ACM, 25(7),
pp.446-452, July 1982

APPENDIX A – Example function from [10]

Program function SLsmallest SLlargest SLint
Main()
{
int i;
int smallest;
int largest;
int A[10];

for (i=0; i <10; i++)
{
 int num;
 scanf(“%d”, &num);
 A[i] = num;
}

smallest = A[0];
largest=smallest;

i=1;
while (i <10)
{
 if (smallest > A[i])
 smallest = A[i];
 if (largest < A[i])
 largest = A[i];

i = i +1;
}

printf(“%d \n”, smallest);
printf(”%d \n”, largest);
}

|
|

|

|

|
|
|

|

|
|

|
|

|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|

|

|

|
|
|

|

|
|

|

length =19 14 16 11

B.1. Cohesion metrics: the empirical contradiction. 143

B.2. Using program slicing data to predict code faults. 145

B.2 Using program slicing data to predict code faults.

Bowes D, Hall T (2010) Using program slicing data to predict code faults. In: The 3rd CREST Open
Workshop, KCL

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Using program slicing data to predict code faults

David Bowes
University of Hertfordshire

February 10, 2010

David Bowes University of Hertfordshire Using program slicing data to predict code faults

B.2. Using program slicing data to predict code faults. 147

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’

Relating slicing metrics to ’fault’ data

Conclusion

David Bowes University of Hertfordshire Using program slicing data to predict code faults

148 Appendix B. Additional Papers

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Why?

Why?

I Defect prediction 70% using machine learning

I Slicing Metrics rarely used for defect prediction

I Slicing metrics have some relationship of cohesion

I Slicing metrics do not tend to be a proxy for LOC

David Bowes University of Hertfordshire Using program slicing data to predict code faults

B.2. Using program slicing data to predict code faults. 149

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Code example
Slicing Metrics
Which variables to choose?
Code example
What impact does the choice of variables have?

Code example

public class Fib {

 int start=1;//may be err?

 public static void main(String[] args) {
 Fib f = new Fib();
 for (int i = 1; i < 10; i++) {
 System.out.println(i+" "+f.fib(i));
 }
 }

 public int fib(int n) {
 int a = 0, b = 1;
 int c = start, d = 1;//fix me?
 while (c < n) {while (c < n) {
 System.out.printf(" debug %d\r\n", System.out.printf(" debug %d\r\n", dd););
 d = a + b;d = a + b;
 a = b;a = b;
 b = d;b = d;
 c++;c++;
 }}
 return return bb;;
 }
}

David Bowes University of Hertfordshire Using program slicing data to predict code faults

150 Appendix B. Additional Papers

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Code example
Slicing Metrics
Which variables to choose?
Code example
What impact does the choice of variables have?

Slicing Metrics

Weiser ,Ott and Thuss defined a set of slice based metrics
including:

I Tightness :The number of statements which are in every slice.
High tightness values suggest that the code is cohesive.

I Overlap : Indicates how many statements in a slice are found
only in that slice

I Coverage : Compares the length of slices to the length of the
entire program

I Min Coverage :The length of the shortest slice as a proportion
of the program length

I Max Coverage : Length of the longest slice as a proportion of
the program length

New metric Counsel et al
I NHD

David Bowes University of Hertfordshire Using program slicing data to predict code faults

B.2. Using program slicing data to predict code faults. 151

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Code example
Slicing Metrics
Which variables to choose?
Code example
What impact does the choice of variables have?

Which variables to choose?

Previous studies exploring the efficacy of slice-based metrics have
tended to use different sets of variables in specifying the slices:

Categories Description Studies

Formal ins (Vi) Input parameters for the function
specified in the module declaration

6

Formal outs (Vo) The set of return variables 8

Global variables (Vg) The set of variables which are used or
may be affected by the module

9

printfs (Vp) Variables which appear as formal outs
in the list of parameters in an output
statement (e.g. printf)

7

David Bowes University of Hertfordshire Using program slicing data to predict code faults

152 Appendix B. Additional Papers

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Code example
Slicing Metrics
Which variables to choose?
Code example
What impact does the choice of variables have?

Code example

public class Fib {

 int start=1;//may be err?

 public static void main(String[] args) {
 Fib f = new Fib();
 for (int i = 1; i < 10; i++) {
 System.out.println(i+" "+f.fib(i));
 }
 }

 public int fib(int n) {
 int a = 0, b = 1;
 int c = start, d = 1;//fix me?
 while (c < n) {while (c < n) {
 System.out.printf(" debug %d\r\n", System.out.printf(" debug %d\r\n", dd););
 d = a + b;d = a + b;
 a = b;a = b;
 b = d;b = d;
 c++;c++;
 }}
 return return bb;;
 }
}

David Bowes University of Hertfordshire Using program slicing data to predict code faults

B.2. Using program slicing data to predict code faults. 153

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Code example
Slicing Metrics
Which variables to choose?
Code example
What impact does the choice of variables have?

What impact does the choice of variables have?

I Studied barcode, open source barcode printing utility.
I http://ar.linux.it/software/barcode/barcode.html

I For 15 variants of variables:

David Bowes University of Hertfordshire Using program slicing data to predict code faults

154 Appendix B. Additional Papers

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Code example
Slicing Metrics
Which variables to choose?
Code example
What impact does the choice of variables have?

Vi Vo Vg Vp Overlap Tightness Coverage Min C Max C

+ + + + 0.649 0.481 0.691 0.523 0.901

+ + + 0.643 0.482 0.705 0.524 0.901
+ + + 0.712 0.551 0.717 0.588 0.898
+ + + 0.759 0.563 0.712 0.587 0.892

+ + + 0.745 0.519 0.671 0.543 0.845

+ + 0.728 0.560 0.743 0.590 0.898
+ + 0.772 0.518 0.653 0.538 0.820

+ + 0.839 0.672 0.764 0.694 0.885
+ + 0.767 0.521 0.653 0.544 0.761

+ + 0.728 0.560 0.743 0.590 0.898
+ + 0.820 0.591 0.688 0.610 0.792

+ 0.944 0.823 0.856 0.832 0.885
+ 1.000 0.612 0.612 0.612 0.612

+ 0.851 0.538 0.639 0.547 0.717
+ 0.749 0.464 0.597 0.496 0.778

David Bowes University of Hertfordshire Using program slicing data to predict code faults

B.2. Using program slicing data to predict code faults. 155

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

’Cleaning’ the data
Building a prediction model ?Wackit into Weka?
result

Relating slicing metrics to ’fault’ data:Getting data

Technique:

I Find a bug fix

I Assume before (α) was defective and after (β) was less
defective.

I do the metrics of α predict a change to less defective state
β?1

1This technique produces balanced data so accuracy can be used to
compare results.

David Bowes University of Hertfordshire Using program slicing data to predict code faults

156 Appendix B. Additional Papers

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

’Cleaning’ the data
Building a prediction model ?Wackit into Weka?
result

Wack it into Weka

I For each variant of slicing variable:
I format the data for Weka
I use Naive Bayesian Classifier
I 10 fold cross validation
I report accuracy

David Bowes University of Hertfordshire Using program slicing data to predict code faults

B.2. Using program slicing data to predict code faults. 157

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

’Cleaning’ the data
Building a prediction model ?Wackit into Weka?
result

Results using diff data

a:all

b:no V
p

c:no V
g

d:no V
o

e:no V
i

f:i+o

g:g+p

h:i+p

I:o+g

j:i+g

k:o+p

l:i m
:o

n:g

o:p

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Predicting defects using slicing metrics using diff data

dif fs

Slicing variables

ac
cu

ra
cy

 %

David Bowes University of Hertfordshire Using program slicing data to predict code faults

158 Appendix B. Additional Papers

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

’Cleaning’ the data
Building a prediction model ?Wackit into Weka?
result

Results

a:all

b:no V
p

c:no V
g

d:no V
o

e:no V
i

f:i+o

g:g+p

h:i+p

I:o+g

j:i+g

k:o+p

l:i m
:o

n:g

o:p

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Accuracy measure for predicting defectiveness from slicing metrics

comments
dif fs
sliding w indow

Slicing variables

Ac
cu

ra
cy

David Bowes University of Hertfordshire Using program slicing data to predict code faults

B.2. Using program slicing data to predict code faults. 159

Outline
Using program slicing data to predict code faults

Calculating the Slicing metrics for a ’module’
Relating slicing metrics to ’fault’ data

Conclusion

Conclusion/Analysis

I Choice of slicing variables has an impact on slicing metrics

I Learning defects from slicing metrics may be domain specific

I Slicing metrics on their own do not predict defects ’better’
than other studies. Or even picking a classification at random

I There aren’t enough bug fixes!
I Looking at defect boundaries may not be the best approach.

I A patch is likely to need patching.... does the quality of code
improve with patching?

I defect mining with defect boundaries may predict if the patch
was good if we study the pattern of patching after.

David Bowes University of Hertfordshire Using program slicing data to predict code faults

160 Appendix B. Additional Papers

Appendix Slicing Metrics

Metric Formula

Tightness = |SLint |
length(M)

Overlap =
1

|Vo |

Vo∑

i=1

|SLint |
|SLi |

Coverage =
1

|Vo |

Vo∑

i=1

|SLi |
length(M)

Min Coverage =
min
i
|SLi |

length(M)

Max Coverage =
max

i
|SLi |

length(M)

Key : M Set of program vertices in a method, NB
length(M) ≡ |M|

V0 Set of variables used to slice a method.
SLi Set of program vertices in the slice of the i ’th variable in V0

SLint Intersection of all slices formed from each V0

David Bowes University of Hertfordshire Using program slicing data to predict code faults

B.2. Using program slicing data to predict code faults. 161

B.3. Program slicing-based cohesion measurement: the challenges of replicating studies using
metrics. 163

B.3 Program slicing-based cohesion measurement: the challenges of
replicating studies using metrics.

Bowes D, Hall T, Kerr A (2011) Program slicing-based cohesion measurement: the challenges of repli-
cating studies using metrics. In: Proceeding of the 2nd International Workshop on Emerging Trends in
Software Metrics, ACM, pp 75–80

Program Slicing-Based Cohesion Measurement: The
Challenges of Replicating Studies Using Metrics
David Bowes

University of Hertfordshire
College Lane
Hatfield, UK

d.h.bowes@herts.ac.uk

Tracy Hall
Brunel University

Kingston Lane
Uxbridge, UK

tracy.hall@brunel.ac.uk

Andrew Kerr
University of Hertfordshire

College Lane
Hatfield, UK

a.kerr@herts.ac.uk

ABSTRACT
It is important to develop corpuses of data to test out the efficacy
of using metrics. Replicated studies are an important contribution
to corpuses of metrics data. There are few replicated studies using
metrics reported in software engineering.

To contribute more data to the body of evidence on the use of
novel program slicing-based cohesion metrics.

We replicate a very well regarded study by Meyers and Binkley
[15, 16] which analyses the cohesion of open source projects
using program slicing-based metrics.

Our results are very different from Meyers and Binkley’s original
results. This suggests that there are a variety of opportunities for
inconsistently to creep into the collection and analysis of metrics
data during replicated studies.

We conclude that researchers using metrics data must present
their work with sufficient detail for replication to be possible.
Without this detail it is difficult for subsequent researchers to
accurately replicate a study such that consistent and reliable data
can be added to a body of evidence.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – product metrics

General Terms
Measurement, Experimentation.

Keywords
Empirical software engineering, data quality, slicing metrics

1. INTRODUCTION
In this paper we present our replication of Meyers and Binkley’s
[15, 16] study of slice based cohesion metrics. These metrics are
little known measures of code structure based on the program
slices underlying that code (program slicing and slice-based
metrics are described in Section 3). Meyers and Binkley [15, 16]

conducted a large empirical study of slice-based metrics covering
63 open source C programs. They also show how cohesion
changes as two open source programs evolve.

The aim of our replication was to ensure that we could generate
identical results using the same cohesion metrics, the same
techniques and the same open source data as originally used by
Meyers and Binkley [15, 16]. Once we had ensured our approach
collected valid metrics data we intended to add to the body of
evidence on the use of slice based metrics by using the same
techniques to collect data from additional software projects.

Replication plays an important role in building large corpuses of
metrics data. Such large bodies of evidence are currently rare in
software engineering. However the development of these is
fundamental to generating significant results on which rigorous
conclusions can be drawn in software engineering. Other more
mature disciplines have used replicated studies to build significant
evidence bases (e.g. the replication of cold fusion techniques by
Lonchampt [13]).

However it proved much more difficult than we anticipated to
generate the same results as the original Meyers and Binkley [15,
16] study. In this paper we report on the difficulties associated
with what we anticipated would be a small and simple replication
study. We focus particularly on the problems related to specifying
precisely and implementing consistently the definition of metrics
being used to collect data.

In Section Two we present the background to performing
replicated studies. In Section Three we provide an overview of
program slicing and slice-based metrics. Section Four describes
the Meyers and Binkley’s [15, 16] original study. In Section Five
we report our replicated results. In Section Six we discuss our
findings. We conclude and summarise in Section Seven.

2. BACKGROUND
Shull et al [20] define replication as “a study that is run, based on
the design and results of a previous study, whose goal is to either
verify or broaden the applicability of the results of the initial
study”. Our study can be further defined as an exact replication
which Shull et al [21] describe as “one in which the procedures of
an experiment are followed as closely as possible to determine
whether the same results can be obtained”.

An increasing number of replicated studies are now being
conducted in software engineering (e.g. Andersson & Runeson,
[1]). This growth is partly in response to the increasing amount of
publically available software engineering metrics data. This data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, HI, USA.
Copyright 2011 ACM 978-1-4503-0593-8/11/05…$10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WETSoM’11, May 24, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0593-8/11/05 ...$10.00

75

B.3. Program slicing-based cohesion measurement: the challenges of replicating studies using
metrics. 165

includes the PROMISE repository of data as well as the huge
number of open source system (OSS) projects.

Conducting replicated studies is difficult. Several previous studies
report on these difficulties. For example Shull et al. [20] report
that during their study of defect prediction they struggled to
accurately replicate the original study. The main reason was that
tacit knowledge from the original study could not be built into the
replication. This was despite the replicated study adopting a
detailed laboratory package designed to facilitate replication (the
laboratory package was based on [3]).

Anderson and Runeson [1] replicated Fenton and Ohlsson’s [4]
study of software defects. They tested the original study’s
hypotheses using the original study’s techniques but applied to
different data sets. They report different results from the original
study, but are one of the few studies not to report difficulties
associated with performing the actual replication.

We could find only one other previous study focused on replicated
studies using OSS metrics data. Robles [19] report their review of
the 171 papers published at the Mining Software Repositories
Workshop between 2004 and 2009. They analyse each paper in
terms of its potential for replication. They report that only two of
these papers could be easily replicated, while 64 would be
possible to replicate. Robles [19] reports that for a variety of
reasons the majority of studies could not be replicated. Lack of
detail in the method description, especially in relation to the
processing of data, was a major reason for studies not being
repeatable. The unavailability of tools, scripts and processed data
was also reported as an impediment to repeatability. Robles [19]
concludes that publically available raw data is not sufficient to
allow for replication and calls for a replication framework to be
used by original studies.

3. PROGRAM SLICING AND SLICING
DATA
The Meyers and Binkley’s [15, 16] study that we replicate is an
analysis of program slicing data, consequently in this section we
describe program slicing and slice-based metrics

3.1 Program Slicing
Program slicing was introduced by Weiser [22, 23]. It is a
technique for decomposing programs into slices where each slice
preserves the effects on a set of variables at a given point.
Informally a slice of a program at a point p for a set of variables V
is an executable subset of that program that preserves the state
changes of V up to p. The pair <p, V> is the slicing criterion.
Weiser’s proposed applications for slicing were debugging and
parallel execution [23] and slicing was intended to be useful for
programmers maintaining code [22].

Horwitz et al. [10] introduced the system dependence graph
(SDG), a representation of a program which includes procedure
dependence graphs (PDGs) and both direct dependence and
transitive dependence edges connecting them. The SDG was
created for the purpose of computing interprocedural slices. They
described a two phase algorithm for computing interprocedural
slices using an SDG. Horwitz et al. [10] used a slightly different
concept of a slice to Weiser’s: “The [backward] slice of a program
with respect to program point p and variable x consists of all
statements and predicates of the program that might affect the
value of x at point p” [10] with the additional constraint of only
allowing slicing criteria (p,x) where x is used or declared at p.

Horwitz et al. [10] also introduced the forward slice: “the forward
slice of a program with respect to a program point p and variable x
consists of all statements and predicates of the program that might
be affected by the value of x at point p”.

3.2 Slice-based Cohesion
The cohesion of a module is “the extent to which its individual
components are needed to perform the same task” ([5], p. 312).
Higher cohesion is considered preferable, indicating a module
tightly focused on one task

Metrics for the cohesion of a module can be calculated from the
sizes of slices, the intersection of slices and the size of the
module. Weiser [22] suggested five metrics based on program
slicing: coverage, overlap, clustering, parallelism and tightness.
Longworth [14] investigated the use of Weiser’s metrics as
measures of cohesion, redefining overlap so that it, coverage and
tightness have values varying between 0.0 and 1.0. He rejected
clustering as a useful cohesion metric and noted that parallelism is
of a different nature to the others.

Ott and Thuss [17] again changed the definition of overlap, and
introduced the metrics mincoverage and maxcoverage. Table 1
describes all their metric definitions excluding parallelism.

Table 1. Cohesion metric definition [17]

Average ratio of the size
of a slice to the size of
the module

Smallest ratio of the size
of a slice to the size of
the module

Largest ratio of the size
of a slice to the size of
the module

Average ratio of the size
of the intersection to the
size of a slice

Ratio of the size of the
intersection to the size
of the module

Green et al. [9] describe in detail the evolution of slice-based
cohesion metrics.

4. THE ORIGINAL STUDY
Few previous studies report the empirical study of program slice-
based metrics. Pan et al [18] use slice-based metrics to investigate
bug classification but there are few other examples of such
studies. Consequently little is known about how they perform.
However the advent of tools to automatically collect slice-based
metrics data (e.g. CodeSurfer [8]) means that using these metrics
has recently become more practical.

Meyers and Binkley [15, 16] are the first to conduct a large
empirical study of slice-based metrics covering 63 open source C
programs, including Barcode. As part of this they produce
averages of the cohesion metrics for the different release versions
of Barcode and Gnugo. These show how cohesion changes as
programs evolve. In addition they tested for correlation between
the metrics and lines of code but found no evidence of correlation.
However they did find that some cohesion metrics are strongly

Coverage(M) =
1

|V0|

|V0|∑

i=1

|SLi|
length(M)

MinCoverage(M) =
1

length(M)
min

i
|SLi|

MaxCoverage(M) =
1

length(M)
max

i
|SLi|

Overlap(M) =
1

|V0|

|V0|∑

i=1

|SLint|
|SLi|

Tightness(M) =
|SLint|

length(M)

76

166 Appendix B. Additional Papers

correlated, while others are weakly correlated or not correlated at
all.

Our study focuses on replicating Meyers and Binkley’s results for
the Barcode open source project. Barcode contains a total of 65
distinct functions and 49 revisions being studied, numbered 000 to
050 with 032 and 042 missed. There is one data point for each
combination of function and revision for a total of 3185 points.
Those where the function has yet to be defined (769 points) were
discarded leaving 2416 data points. Additionally one point was
deleted accidentally leaving 2415.

Meyers and Binkley used CodeSurfer [7] to automatically collect
slice-based metric data as we also do.
CodeSurfer is a sophisticated commercial static code analyser for
C code which can be configured to collect slicing metrics data.
This configuration impacts on the data collected by CodeSurfer
and so it is important that we configure CodeSurfer to collect data
in the same way as Meyers and Binkley did. Although Meyers and
Binkley [15, 16]do not report the CodeSurfer configuration they
used, we had lengthy discussions with David Binkley regarding
their configurations. Important aspects of our CodeSurfer
configuration are that our:

• build script was initially built using the ./configure
command,

• make file was cleaned using sed to remove –O2 options from
any line which called the gcc compiler.

• command used on Barcode to build a CodeSurfer project for
each release was: csurf hook-build barcode -
preset-build-options highest --- make

The –preset-build-options highest causes CodeSurfer
to produce the most detailed analysis of the program being
analysed. Although we used the highest preset of CodeSurfer
it is possible to use a lower preset such as high. Doing so
requires the individual CodeSurfer Build Options relevant to
slicing metrics to be specified. Many of the build options in
highest do not affect the computation of slicing metrics data.
Consequently the decision regarding which preset to use is a
trade-off between using unnecessary processing (highest) or
using more manual CodeSurfer expertise (high). Appendix B
shows the CodeSurfer presets for each build option. Unfortunately
Meyers and Binkley do not report on the preset that they used.

The data collection and analysis process we adopted attempts to
accurately replicate that reported by Meyers and Binkley [15, 16].
Full details of our method and the scripts which we used are
available in Kerr [11] which should enable any future replication
of this study. Kerr [11] is available on request from the first
author.

5. RESULTS
Meyers and Binkley [15, 16] charted average cohesion metrics
(Figure 1) for each released version of Barcode.

Figure 1. Longitudinal cohesion study [16]

Figure 2. Longitudinal study (our data)

Figure 2 shows our replication of Meyers and Binkley’s original
cohesion data. It shows that the data we collected for all five
cohesion metrics are different from Meyers and Binkley’s original
data. Trends in each metric differ between the studies with our
cohesion data slowly increasing (improving) rather than
decreasing as Meyers and Binkley’s data does. Again we expected
the pattern to be identical.

Figure 3. Longitudinal cohesion study, full vertex removal

(our data)

77

B.3. Program slicing-based cohesion measurement: the challenges of replicating studies using
metrics. 167

In trying to understand why our data was so different from
Meyers and Binkley’s we realized that we must have collected the
data for the slices slightly differently from them. Consequently we
tried to improve our replication of Meyers and Binkley’s cohesion
data by altering the way we specified the slices on which the
metrics data is based. The first change to the way we collected the
slice-based data was to remove all non coding vertices, such as the
body and entry vertices associated with ‘{‘. These are common to
all methods and tend to unilaterally increase the metrics values.
This issue may underpin why our values are consistently higher
than those reported by Meyers and Binkley. This was also done
in Green et al.’s [9] study of slice-based metrics.

Figure 3 shows our new data once these vertices have been
removed from the underlying slices. Not only is this data very
different from our first set of Barcode cohesion data but it remains
very different from Meyers and Binkley’s original data. This
means that the removal of these vertices cannot explain the greater
values for cohesion metrics that we report compared to Meyers
and Binkley [15, 16].

To understand how our data collection differed from Meyers and
Binkley’s and to try to move our results towards theirs we decided
to explore in detail one data point for each metric from Figure 3
(i.e. replicate the metric values for just one version). We collected
data from version 0.98. There are a variety of ways in which the
lines of code affected by a variable can be included in a specific
slice. The decision made as to which variables will be included in
slices affects the values of the slice-based metrics data. These
variables include:

1. Formal Ins: Input parameters for the function specified
in the module declaration.

2. Formal Outs: Return variables.
3. Globals: Variables used by or affected by the module.

4. Printf: Variables which appear as Formal Outs in the list
of parameters in an output statement.

In addition code can be sliced on a file or project basis. As Meyers
and Binkley [15, 16] did not specify which of these variables they
used in their original study we looked at the affect of them all on
the metric values produced for version 0.98. We combined these
variable settings to collect data in 30 different ways for each of
the five cohesion metrics (Appendix A). We discuss the impact of
these combinations on fault prediction in [2]. The closest match
with the original data came when we sliced files individually with
only printf variables. Even so, the values for tightness continued
to be greatly different from the values obtained by Meyers and
Binkley.

6. DISCUSSION
Our study shows that there are many ways in which the data
collected by a metric can vary. For example, as we have shown
here the way that program slices are set-up has a large impact on
the data collected by slice-based metrics. This finding is not new
as consistently defining and collecting even lines of code data is
an age old challenge. However we suspect the problem has been
significantly underestimated across empirical studies. This is
because it is by replicating previous empirical studies that the
problem comes to light, yet relatively few replicated studies are
performed. Consequently we need to treat cautiously the findings
of studies using metrics that compare their empirical findings to
others.

Addressing the problem of consistency in metrics definition and
metrics data collection sufficient for replication is not easy. The
problem has many facets, including the:
- precision of the original metric definition

- interpretation of this definition (it is not easy to formalise
every aspect of a definition)

- implementation of this definition in a data collection tool –
the actual practical way in which data is collected has an
impact on the data collected.

- tools used to collect data. Different versions of tools may
(invisibly) collect data slightly differently.

- data used – open source projects constantly evolve and it is
essential to ensure that the correctly matching data snapshot
has been used.

The consequence of variation in metrics data is that inconsistent
data can be collected. This makes it difficult to replicate previous
studies and therefore amass a reliable body of evidence on a topic.

However the variation in data collected by a metric may also have
beneficial side effects, as a particular metric variant may be more
useful than another variant. Indeed our previous study suggests
that some slice-base metric variants are more useful than others
for fault prediction in [2].

Despite having several detailed conversations with one of the
authors of the original study (David Binkley) we failed to get to
the bottom of why our data was different to the original data. We
concluded that it is likely to be the result of us using a newer
version of CodeSurfer. In the newer version that we subsequently
discovered that there are differences in the project build options
and the compiler and build environment. This may have affected
the SDGs produced, and thus affected the metric values. This
issue was probably confounded by other issues that we have not
yet identified.

7. CONCLUSIONS
Software engineering needs to move towards a more scientific
presentation of studies using metrics data. Studies reporting data
in some other scientific disciplines are presented in a great deal
more methodological detail than studies in software engineering.
Such detail enables replication and thereby the growth of large
corpuses of metrics data.
Such calls for methodological detail are not new. Kitchenham et
al [12] were probably the first to explicitly call for this in
empirical software engineering. However several subsequent
studies also recommend this increased detail in relation to
allowing replication (e.g. [19]). Indeed some studies present
replication frameworks for use by empirical researchers (e.g. [3]).
However our findings suggest that studies are not reporting
sufficient methodological detail to enable replication of metrics
studies. We suspect that the necessary technical complexity of
some metrics studies makes it difficult to include such lengthy
detail within a normal published paper. As a consequence we may
need to treat cautiously studies which use metrics and compare
their empirical findings to other studies.
Our conclusion is that we need to revisit how methodologies are
presented in studies using metrics data and consider how
important (and potentially extensive) methodological detail can be
systematically made available to subsequent researchers. In
particular researchers need to be encouraged to publish supporting

78

168 Appendix B. Additional Papers

documentation regarding experimental set-ups for published
papers.

8. ACKNOWLEDGMENTS
An academic program licence for CodeSurfer® was provided by
GrammaTech, http://www.grammatech.com/

9. REFERENCES
[1] Andersson, C. Runeson, P (2007) A Replicated Quantitative

Analysis of Fault Distributions in Complex Software
Systems. Software Engineering, IEEE Transactions on,
33(5), p273 - 286

[2] Bowes D, Counsell S, Hall T. (2008) Calibrating program
slicing metrics for practical use, TAIC PART Conference,
Windsor, Computer Society Press

[3] Brooks A, Roper M et al (2007) Replication's role in
software engineering. In: Shull F, Singer J, Sjoberg DIK
(eds) Guide to advanced empirical software engineering.
Springer, London, pp 365–379

[4] Fenton, N.E.; Ohlsson, N. (2000) "Quantitative analysis of
faults and failures in a complex software system," Software
Engineering, IEEE Transactions on , vol.26, no.8, pp.797-
814

[5] Fenton, N. E., Pfleeger, S. L. (1997). Software Metrics: A
Rigorous and Practical Approach (2nd ed.). Boston, MA:
PWS Publishing Company.

[6] Garcia Campos, C. (2009, April). CVSAnalY Manual.
Retrieved May 16, 2010, from
http://gsyc.es/~carlosgc/files/cvsanaly.pdf

[7] GrammaTech Inc. (2007). CodeSurfer User Guide and
Technical Reference .

[8] GrammaTech Inc. (2010). CodeSurfer product page.
Retrieved May 16, 2010, from GrammaTech Web site:
http://www.grammatech.com/products/codesurfer/overview.
html

[9] Green, P., Lane, P., Rainer, A., Scholz, S.-B. (2009). An
Introduction to Slice-Based Cohesion and Coupling Metrics.
Technical Report No. 488, University of Hertfordshire,
School of Computer Science.

[10] Horwitz, S., Reps, T., Binkley, D. (1990). Interprocedural
Slicing Using Dependence Graphs. ACM Transactions on
Programming Languages and Systems , 12 (1), 26-60.

[11] Kerr, M (2010). Can Slice-Based Metrics be Used to Predict
the Amount of Maintenance that will be Required on Each
Module of a Program?

[12] Kitchenham, B.A.; Pfleeger, S.L.; Pickard, L.M.; Jones,
P.W.; Hoaglin, D.C.; El Emam, K.; Rosenberg, J.; ,
"Preliminary guidelines for empirical research in software
engineering," Software Engineering, IEEE Transactions on ,
vol.28, no.8, pp. 721- 734, Aug 2002

[13] Lonchampt, G., L. Bonnetain, Hieter P (1996). Reproduction
of Fleischmann and Pons Experiments. in Sixth International
Conference on Cold Fusion, Progress in New Hydrogen
Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and
Industrial Technology Development Organization, Tokyo
Institute of Technology, Tokyo, Japan.

[14] H. Longworth. (1984) Slice based program metrics. Master’s
thesis, Computer Science, Michigan Technical University,
Michigan, USA.

[15] Meyers, T. M., Binkley, D. (2004) A Longitudinal and
Comparative Study of Slice-Based Metrics. International
Software Metrics Symposium, Chicargo, USA, IEEE Procs

[16] Meyers, T. M., Binkley, D. (2007). An Empirical Study of
Slice-Based Cohesion and Coupling Metrics. ACM
Transactions on SoftwareMaintenance , 17(1), pp. 1-25.

[17] Ott, L. M., & Thuss, J. J. (1993). Slice Based Metrics for
Estimating Cohesion. In Proceedings of Internationl
Software Metrics Symposium, Proceedings of the IEEE-CS,
71—81

[18] Pan K, Kim S, Whitehead J. Bug classification using
program slicing metrics. In SCAM ’06: Proceedings of the
Sixth IEEE International Workshop on Source Code
Analysis and Manipulation, Washington, DC, USA, 2006.
IEEE Computer Society, p31–42

[19] Robles, G. (2010) Replicating MSR: A study of the potential
replicability of papers published in the Mining Software
Repositories Proceedings. Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on, Computer
Society Press, 171 – 180

[20] Shull, F.; Basili, V.; Carver, J.; Maldonado, J.C.; Travassos,
G.H.; Mendonca, M.; Fabbri, S. (2002) Replicating software
engineering experiments: addressing the tacit knowledge
problem. Empirical Software Engineering, Proceedings in
International Symposium. p7 - 16

[21] Shull, F, Carver J, Vegas S, Juristo N, “The role of
replications in Empirical Software Engineering,” Empirical
Software Engineering, vol. 13, no. 2, pp. 211–218, 2008.

[22] Weiser, M. (1981). Program Slicing. Proceedings of the 5th
International Conference on Software Engineering (pp. 439-
449). San Diego: IEEE Press.

[23] Weiser, M. (1984). Program Slicing. IEEE Transon Software
Engineering , SE-10 (4), 352-357.

79

B.3. Program slicing-based cohesion measurement: the challenges of replicating studies using
metrics. 169

APPENDIX A: COMBINATIONS OF SLICING
SETTINGS

Individual slicing settings selected

Formal
Ins

Formal
outs

Globals Printf File
basis

Project
basis

1 • • • •
2 • • •
3 • •
4 •
5 • • • •
6 • • •
7 • • •
8 • •
9 • •

10 • • • •
11 • • •
12 • • • •
13 • • •
14 • •
15 • •
16 • • • • •
17 • • • •
18 • • •
19 • •
20 •
21 • • • •
22 • • •
23 • • •
24 • •
25 • •
26 • • • •
27 • • •
28 • • • •
29 • • •
30 • •
31 • •
32 • • • • •

Note: Rows 4 and 20 are not possible to implement as at least one
variable must be sliced on. Consequently there are 30 rather than
the expected 32 rows.

APPENDIX B: CODESURFER SETTINGS

 Functionality
Build Option high highest
Pointer Analysis a af
Pointer Analysis Hint Mask 75 75
Pointer Analysis Inlining yes yes
Pointer Analysis Inline Mask 513 537
Pointer Analysis Inline Max
Growth (%)

0 0

String Constant Pointer Targets one-string many-
strings

Variable Use/Def Sets yes yes
Create Declaration Vertices yes yes
Compute GMOD yes yes
Compute Data Dependence yes yes
Compute Control Dependence yes yes
Compute Summary Edges yes yes
Control-Flow Edges both both
CodeSurfer Library Models normal normal
AST Database yes yes
PDG_VERTEX -> AST
mapping

yes yes

Some of the built-in presets are defined as follows [7]

80

170 Appendix B. Additional Papers

B.4. Developing fault-prediction models: What the research can show industry. 171

B.4 Developing fault-prediction models: What the research can show in-
dustry.

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011a) Developing fault-prediction models: What
the research can show industry. Software, IEEE 28(6):96 –99

96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

Editor: Editor Name
affi l iation
email@email.com

Editor: Editor Name
affi l iation
email@email.com

Editor: Tore Dybå
SINTEF
tore.dyba@sintef.no

Editor: Helen Sharp
The Open University, London
h.c.sharp@open.ac.uk

Developing Fault-
Prediction Models:
What the Research Can Show Industry

Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell

VOICE OF EVIDENCE

CODE FAULTS ARE a daily reality
for software development companies.
Finding and removing them costs the
industry billions of dollars each year.
The lure of potential cost savings
and quality improvements has moti-
vated considerable research on fault-
prediction models, which try to iden-
tify areas of code where faults are
most likely to lurk. Developers can
then focus their testing efforts on
these areas. Effectively focused test-
ing should reduce the overall cost of
finding faults, eliminate them earlier,
and improve the delivered system’s
quality. Problem solved.

So why do so few companies seem to
be developing fault-prediction models?

One reason is probably the sheer
number and complexity of studies in
this fi eld. Before companies can start to

develop the models, they must under-
stand questions such as which metrics
to include, which modeling techniques
perform best, and how context affects
fault prediction.

To answer these questions, we con-
ducted a systematic review of the pub-
lished studies of fault prediction in
code from the beginning of 2000 to
the end of 2010.1 On the basis of this
review and subsequent analysis of 206
models, we present key features of suc-
cessful models here.

Context Is Key
We found 208 studies published on

predicting code faults over the 11-year
period covered in our review. These
studies contain many hundreds of indi-
vidual models, whose construction var-
ies considerably.

Although it would be nice if com-
panies could simply select one of these
published models and use it in their
own environment, the evidence sug-
gests that fault-prediction models
perform less well when transferred to
different contexts.2 This means that
practitioners must understand how ex-
isting models might or might not relate
to their own model development. In
particular, they must understand the
specifi c context in which an existing
model was developed, so they can base
their own models on those that are
contextually compatible.

However, we found three challenges
to this apparently simple requirement.
First, many studies presented insuffi -
cient information about the develop-
ment context. Second, most studies re-
ported models built using open source
data, which can limit their compatibil-
ity with commercial systems. Third, it
remains unclear which context vari-
ables (application domain, program-
ming language, size, system maturity,
and so on) are tied to a fault-prediction
model’s performance.

Establishing Confi dence
in Existing Models
Practitioners need a basic level of con-
fi dence in an existing model’s perfor-
mance. Such confi dence is based on

Analysis of 206 fault-prediction models
reported in 19 mature research studies
reveals key features to help industry
developers build models suitable
to their speci� c contexts.

B.4. Developing fault-prediction models: What the research can show industry. 173

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 97

understanding how well the model has
been constructed, its development con-
text, and its performance relative to
other models.

Our review suggests that few of the
published models provide sufficient
information to adequately support
this understanding. We developed a
set of criteria based on research (for
example, see Kai Petersen and Claes
Wohlin3), to assess whether a fault-
prediction study reports the basic in-
formation to support confidence in
a model. Figure 1 shows a checklist
based on these criteria (details are
available elsewhere 1).

When we applied these criteria to
the 208 studies we reviewed, only 36
passed all criteria. Each of these 36
studies presents clear models and pro-
vides the information necessary to
understand the model’s relevance to a
particular context.

We quantitatively analyzed the per-
formance of the models presented in
19 of the 36 studies. These 19 studies
all report categorical predictions, such
as whether a code unit was likely to be
faulty or not (see the sidebar). Such pre-
dictions use performance measures that
usually stem from a confusion matrix
(see Figure 2). This matrix supports a
performance comparison across cate-
gorical studies.

We omitted 13 studies from further
analysis because they reported contin-
uous predictions, such as how many
faults are likely to occur in each code
unit. Such studies employ a wide va-
riety of performance measures that
are difficult to compare. Likewise, we
omitted four categorical studies that re-
ported performance data based on the
area under a curve.

The 19 studies reporting categorical
predictions contained 206 individual
models. For each model, we extracted
performance data for

•	 precision = TP/(TP + FP): propor-
tion of units predicted as faulty that

were faulty;
•	 recall = TP/(TP + FN): proportion of

faulty units correctly classified; and
•	 f-measure = (2 × recall × precision)/

(recall + precision): the harmonic
mean of precision and recall.

For studies that didn’t report these
measures, we recomputed them from the
available confusion-matrix-based data.
This let us compare the performance of
all 206 models across the 19 studies and
to draw quantitative conclusions.

Editor: Helen Sharp
The Open University, London
h.c.sharp@open.ac.uk

FIGURE 1. Checklist of criteria for establishing confidence in a model. Only 36 of 208 studies

from the systematic literature review met all criteria.

Phase One: Prediction Criteria

Is a prediction model reported?

Is the prediction model tested on unseen data?

Phase Two: Context Criteria

Is the source of data reported?

Is the maturity of data reported?

Is the size of data reported?

Is the application domain of data reported?

Is the programming language of data reported?

Phase Three: Model Criteria

Are the independent variables clearly reported?

Is the dependent variable clearly reported?

Is the granularity of the dependent variable reported?

Is the modeling technique used reported?

Phase Four: Data Criteria

Is the fault data acquisition process described?

Is the independent variables data acquisition process described?

Is the faulty/nonfaulty balance of data reported?

FIGURE 2. Confusion matrix. The two columns and two rows capture the ways in which a

prediction can be correct or incorrect.

Number of code units

Predicted faulty Predicted not faulty

Actually faulty True positive (TP) False negative (FN)

Actually not faulty False positive (FP) True negative (TN)

174 Appendix B. Additional Papers

98 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

What Works in Existing Models
When compared with each other, most
of the 206 models peaked at about 70
percent recall—that is, they correctly
predict about 70 percent of actual real
faults. Some models performed consid-
erably higher (for example, see Shiv-
kumar Shivaji and his colleagues4),

while others performed considerably
lower (see Erik Arishholm and his
colleagues5).

Models based on techniques such
as naïve Bayes and logistic regression
seemed to perform best. Such tech-
niques are comparatively easy to under-
stand and simple to use.

Additionally, the models that per-
formed relatively well tended to com-
bine a wide range of metrics, typically
including metrics based on the source
code, change data, and data about de-
velopers (see Christian Bird and his
colleagues6). Often, the models per-
forming best had optimized this set of
metrics (for example, by using Prin-
cipal Component Analysis or Feature
Selection as in Shivaji4). Models using
source-code text directly as a predictor
yielded promising results (see Osamu
Mizuno and Tohru Kikuno7).Models
using static-code or change-based met-
rics alone performed least well. Models

using LOC metrics performed surpris-
ingly competitively.

O ur systematic literature re-
view suggests fi rst that suc-
cessful fault-prediction mod-

els are built or optimized to specifi c
contexts. The 36 mature studies we
identifi ed can support this task with
clearly defi ned models that include de-
velopment contexts and methodolo-
gies. Our quantitative analysis of the
19 categorical studies from this set
further suggests that successful mod-
els are based on both simple modeling
techniques and a wide combination of
metrics. Practitioners can use these re-
sults in developing their own fault-pre-
diction models.

Acknowledgments
We thank the UK’s Engineering and Physical
Science Research Council, which support-
ed this research at Brunel University under
grant EPSRC EP/E063039/1, and the Science
Foundation Ireland, which partially sup-
ported this work at Lero under grant 3/CE2/
I303_1. We are also grateful to Sue Black and
Paul Wernick for providing input to the early
stages of the work reported.

References
 1. T. Hall et al., “A Systematic Review of Fault

Prediction Performance in Software Engineer-
ing,” accepted for publication in IEEE	Trans.	
Software	Eng.; preprint available at http://
bura.brunel.ac.uk/handle/2438/5743.

 2. N. Nagappan, T. Ball, and A. Zeller, “Mining
Metrics to Predict Component Failures,” Proc.	
28th	Int’l	Conf.	Software	Eng., (ICSE 06),
ACM Press, 2006, pp. 452–461.

 3. K. Petersen and C. Wohlin, “Context in
Industrial Software Eng. Research,” Proc.	3rd	
Int’l	Symp.	Empirical	Software	Eng.	and	Mea-
surement (ESEM 09), IEEE CS Press, 2009,
pp. 401–404.

 4. S. Shivaji et al., “Reducing Features to Im-
prove Bug Prediction,” Proc.	24th	IEEE/ACM	
Int’l	Conf.	Automated	Software	Eng. (ASE
09), IEEE CS Press, 2009, pp. 600–604.

 5. E. Arisholm, L.C. Briand, and E.B. Johannes-
sen, “A Systematic and Comprehensive Investi-
gation of Methods to Build and Evaluate Fault
Prediction Models,” J.	Systems	and	Software,
vol. 83, no. 1, 2010, pp. 2–17.

 6. C. Bird et al., “Putting It All Together: Us-
ing Socio-Technical Networks to Predict

VOICE OF EVIDENCE

FAULT-PREDICTION MODEL ELEMENTS
There are three essential elements to a fault-prediction model.

PREDICTOR VARIABLES
These independent variables are usually metrics based on software artifacts, such
as static code or change data. Models have used a variety of metrics—from simple
LOC metrics to complex combinations of static-code features, previous fault data,
and information about developers.

OUTPUT VARIABLES
A model’s output, or independent variable, is a prediction of fault proneness in terms
of faulty versus nonfaulty code units. This output typically takes the form of either
categorical or continuous output variables.

Categorical outputs predict code units as either faulty or nonfaulty. Continuous
outputs usually predict the number of faults in a code unit. Predictions can address
varying units of code—from high-granularity units, such as plug-in level, to low-
granularity units, such as method level.

MODELING TECHNIQUES
Model developers can use one or more techniques to explore the relationship
between the predictor (or independent) variables and the output (or dependent)
variables. Among the many available techniques are statistically based regression
techniques and machine-learning techniques such as support vector machines.
Ian Witten and Eibe Frank provide an excellent guide to using machine-learning
techniques.1

Reference
 1. I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan

Kaufmann, 2005.

B.4. Developing fault-prediction models: What the research can show industry. 175

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 99

VOICE OF EVIDENCE

Failures,” Proc.	20th	Int’l	Symp.	Software	
Reliability	Eng. (ISSRE 09), IEEE CS Press,
2009, pp. 109–119.

 7. O. Mizuno and T. Kikuno, “Training on
Errors Experiment to Detect Fault-Prone
Software Modules by Spam Filter,” Proc.	6th	
Joint	Meeting	European	Software	Eng.	Conf.	
and	ACM	SIGSOFT	Symp.	Foundations	of	
Software	Eng. (ESEC-FSE 07), ACM Press,
2007, pp. 405–414.

TRACY HALL is a reader in software engineering
at Brunel University, UK. Contact her at tracy.hall@
brunel.ac.uk.

SARAH BEECHAM is a research fellow at Lero, the
Irish Software Engineering Research Centre. Contact
her at sarah.beecham@lero.ie.

DAVID BOWES is a senior lecturer at the University
of Hertfordshire, UK. Contact him at d.h.bowes@
herts.ac.uk.

DAVID GRAY is a PhD student at the University
of Hertfordshire, UK. Contact him at d.gray@herts.
ac.uk.

STEVE COUNSELL is a reader in software
engineering at Brunel University, UK. Contact him at
steve.counsell@brunel.ac.uk.

I E E E S O F T W A R E C A L L F O R P A P E R S

Lean Software Development
SubmiSSion deadline: 1 February 2012 • Publication: SePtember/october 2012

The lean product development paradigm entails an end-to-end
focus on delivering to customer needs, minimized rework, efficient
work streams, empowered teams, and continuous improvement.

We are interested to learn from industry experiences and
academic empirical studies what principles deliver value and how
organizations introduce lean. This issue will emphasize lean issues
that influence software design, development, and management,
and thus the success or failure of software projects. Our target is
commercial and industry software, and issues of broad interest
across software products and services, embedded software, and
end-user-developed software.

We solicit articles in the following areas, among others:

•	 managing the transition from traditional development to lean;
•	 applying lean to critical (such as safety-critical) environments;
•	 experiences with combining lean and agile techniques;
•	 lean methods and experiences in commercial software, e.g.,

Kanban, value stream analysis, options thinking, queuing
theory, and pull systems;

•	 systems thinking;
•	 case studies of notable successes or failures;
•	 empirical studies on adoption and use of lean principles in

software engineering; and
•	 tool support for lean development.

QueStionS?
For more information about the special issue,
contact the corresponding guest editor:
•	 Christof Ebert, Vector Consulting Services;

Christof.Ebert@vector.com

Editorial team: Pekka Abrahamsson,
Christof Ebert, Nilay Oza, Mary Poppendieck

For full call for papers: www.computer.org/software/cfp5
For full author guidelines: www.computer.org/software/author.htm
For submission details: software@computer.org

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org; Phone: +1 714 816 2139 | Fax: +1 714 821 4010
Sandy Brown: Sr. Business Development Mgr.
Email: sbrown@computer.org; Phone: +1 714 816 2144 | Fax: +1 714 821 4010
IEEE Computer Society, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 USA
www.computer.org

Advertising Sales Representatives
Central, Northwest, Far East: Eric Kincaid; Email: e.kincaid@computer.org;
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East: Ann & David Schissler; Email: a.schissler@computer.
org, d.schissler@computer.org; Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southeast: Heather Buonadies, Email: h.bounadies@computer.org;
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Southwest: Mike Hughes, Email: mikehughes@computer.org;
Phone: +1 805 529 6790; Fax: +1 941 966 2590

Advertising Sales Representative (Classified Line/Jobs Board)
Heather Buonadies, Email: h.bounadies@computer.org;
Phone: +1 973 585 7070; Fax: +1 973 585 7071

ADVERTISER INFORMATION • NOVEMBER/DECEMBER 2011

ADVERTISERS PAGE
Charter Communications-Business Cover 2
Qualcomm 55
Saturn 2012 8
Seapine Software, Inc. Cover 4

176 Appendix B. Additional Papers

B.5. SLuRp: a tool to help large complex systematic literature reviews deliver valid and rigorous
results. 177

B.5 SLuRp: a tool to help large complex systematic literature reviews
deliver valid and rigorous results.

Bowes D, Hall T, Beecham S (2012a) SLuRp: a tool to help large complex systematic literature reviews
deliver valid and rigorous results. In: Proceedings of the 2nd International Workshop on Evidential
Assessment of Software Technologies, ACM, pp 33–36

SLuRp – A tool to help large complex systematic literature

reviews deliver valid and rigorous results

David Bowes

Science and Technology Research
Institute

University of Hertfordshire
Hatfield, Herts

d.h.bowes@herts.ac.uk

Tracy Hall
 Department of Information Systems

and Computing
Brunel University

Uxbridge, UK

tracy.hall@brunel.ac.uk

Sarah Beecham
 Lero – The Irish Software

Engineering Research Centre

University of Limerick
Limerick, Ireland

sarah.beecham@lero.ie

ABSTRACT

Background: Systematic literature reviews are increasingly used

in software engineering. Most systematic literature reviews

require several hundred papers to be examined and assessed.

This is not a trivial task and can be time consuming and error-

prone.

Aim: We present SLuRp - our open source web enabled database

that supports the management of systematic literature reviews.

Method: We describe the functionality of SLuRp and explain

how it supports all phases in a systematic literature review.

Results: We show how we used SLuRp in our SLR. We discuss

how SLuRp enabled us to generate complex results in which we

had confidence.

Conclusions: SLuRp supports all phases of an SLR and enables

reliable results to be generated. If we are to have confidence in

the outcomes of SLRs it is essential that such automated systems

are used.

Categories and Subject Descriptors

H.4.0 [Information Systems Applications]: General

General Terms

Management, Measurement, Documentation, Standardization.

Keywords

Systematic literature reviews, SLRs, collaboration tool, Open

Source.

1. INTRODUCTION
Systematic literature reviews (SLRs) are increasingly established

as an important aspect of software engineering research. The

Journal of Information and Software Technology (IST) has a

special section devoted to publishing SLRs. Top rated software

engineering journals, such as IEEE Transactions on Software

Engineering (TSE) and ACM’s Transactions on Software

Engineering and Methodology (TOSEM) have published

numerous SLRs. These papers tend to have a high impact where

as many as 334 citations have been recorded (e.g. [1]).

Although conducting SLRs has become popular they are difficult

to execute well [2]. Performing an SLR in software engineering

is a large, time consuming and complex task. Many hundreds or

even thousands of papers can be identified as potentially relevant

in the early stages. An extreme example of this is [3] where

reviewers sourced over 3,000 papers, and only used 7 of them in

their final review. In our own most recent SLR of 208 studies on

fault prediction performance in software engineering [4], we

initially identified 2,073 papers. Many pieces of information

about all of these papers need to be accurately recorded,

maintained, analysed and reported.

In addition to managing a large number of papers, performing an

SLR requires many steps. All of these steps need to be

implemented accurately for every paper.

In this paper we introduce a tool, ‘SLuRp’, to support the

complex task of managing large numbers of papers, sharing tasks

amongst a research team and following the arduous and rigorous

SLR methodology recommended by Kitchenham and Charters

[12]. Our contribution is to provide the research community with

a support tool that increases the rigor and validity of our hitherto

manual methods, while simplifying and shortening the time

required to implement the many steps required to conduct a SLR.

Our own SLR [4], implemented twelve distinct steps. In most

cases several reviewers are involved in an SLR. Our own SLR

involved five different reviewers. The data each reviewer collects

needs to be reliably stored and collated. This administrative

complexity puts the quality of SLRs at risk, as the reliability and

credibility of SLR conclusions are dependent on the quality of

the SLR process used [5].

The recording and management of SLR data is often not reported

in papers. Where the process is reported manual records are

common [6, 7], as is the use of Endnote [8]. Both of these

approaches are potentially problematic. Manual record keeping is

time consuming and fault-prone. The functionality of Endnote

supports only a limited number of SLR steps.

Other researchers have recognised the need to automate and

simplify the SLR methodology for improved accuracy and speed

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEM ’12, September 19-20, 2012, Lund University, Sweden.

Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

B.5. SLuRp: a tool to help large complex systematic literature reviews deliver valid and rigorous
results. 179

of execution. According to Felizardo et al [13], their Systematic

Mapping Visual Text Mining tool (SM-VTM) reduces the effort

and time required to categorize and classify data in systematic

mapping studies. However the SM-VTM approach has

questionable usability as it requires some prior experience and

knowledge of text mining and visualization techniques.

Malheiros et al [14] developed a similar VTM tool to specifically

support the selection of primary studies in the systematic review

process. VTM was shown to speed-up the selection process and

improve quality of the selection process. While providing a

potentially useful way to mine and cluster information from

primary studies in a SLR, VTM does not provide the holistic,

management of the whole SLR process, that requires tracking

progress and storing of related data as in our SLuRp approach.

Previous automated approaches focus on one aspect of the

complex SLR process, leaving researchers to manage and

integrate the new methods with their manual approaches. Eppi-

reviewer1 has been extensively used to support SLRs in other

domains. It imports articles using reference manager databases

and has a heavy focus on the synthesis aspect of literature

reviews. However Eppi-reviewer is very generic and it is not

obvious how to perform quality checks.

We could find no previous studies that look in detail at the way

in which papers and data are managed and processed in existing

SLRs. This is an important omission as noted by [9] who call for

effective information retrieval tools to support performing

systematic reviews given the “growth of the number of available

papers and results published in the empirical software

engineering field”.

In response to the difficulties we experienced in managing and

recording information in our first three SLRs [8, 10, 11] we

developed SLuRp (Systematic Literature unified Review

program). This is our own web enabled database for recording

and managing all data necessary to perform an SLR. SLuRp is

written in Java with an SQL database. It is open source and

available for other reviewers to adapt and use3. SLuRp has a

client side Java component which semi-automates the process of

extracting information when querying online databases.

In the next section we describe the functionality of SLuRp. In

Section Three discuss the advantages of SLuRp using examples

from our own SLR. We conclude in Section Four.

2. THE FUNCTIONALITY OF SLuRp
SLuRp is designed around the SLR tasks required to conduct a

review according to Kitchenham and Charters’s [12] guidelines.

How SLuRp supports each SLR task is discussed in this section.

2.1 Identify Relevant Research
All definitions required in the SLR must be established by the

SLR research team. These include definitions of research

questions, search terms, inclusion/exclusion criteria, quality

check criteria etc. Once established all of these definitions are

stored centrally on SLuRp.

1
http://eppi.ioe.ac.uk/cms/Default.aspx?alias=eppi.ioe.ac.uk/cms/er4

3 https://bugcatcher.stca.herts.ac.uk/SLuRp

2.2 Select Primary Studies.
a) SLuRp can apply pre-defined search terms to online

databases (this is not permitted by some online databases

e.g. ACM Portal).

b) SLuRp can semi-automatically extract papers from

databases and save these.
c) SLuRp can semi-automatically store [PDF] copies of all

papers locally if appropriate permissions exist.

d) SLuRp can record bibliographic details by importing

BibTeX/RIS files from other citation management systems.

e) SLuRp prompts users to assign two+ reviewers to each

paper. Each of the two+ reviewers independently applies the

previously defined and stored inclusion and exclusion

criteria to their assigned papers in turn.

f) SLuRp records assessment of each reviewer against the

inclusion/exclusion criteria; and

g) SLuRp Records reason for rejection / acceptance.

h) SLuRp will identify differences in reviewer selections.

i) The need to reconcile disagreements between reviewers will

be flagged by SLuRp.

j) Where reviewers cannot agree, SLuRp allows the user to

assign an arbitrator. The paper remains in a ‘needs

moderation’ state until a consensus is reached.

k) Once a decision has been recorded, SLuRp will remove

rejected papers and record the reason (though SLuRp will

change the status of papers to rejected, rather than remove

them from the database). The frequency of disagreements

for including or excluding papers is automatically generated

by SLuRp. This allows inter-rater reliability scores to be

easily produced.

l) Where reviewers have agreed to include the paper, SLuRp

will store full copies of accepted papers (though SLuRp can

be set up to store full copies of all papers).

2.3 Assess Study Quality
a) SLuRp allows reviewers to define a set of quality criteria. The

application of which SLuRp supports in the same way as it deals

with the application of inclusion/exclusion criteria. Steps e) to k)

are repeated in the application of the quality criteria. SLuRp will:

allocate each accepted paper to two reviewers; record results of

quality assessment; flag differences in reviewer assessments;

invite reviewers to reconcile differences between assessments;

flag that a paper needs arbitration where no agreement is reached

and record the results of quality assessment.

b) SLuRp allows reviewers to record all data extracted from

included papers which have passed the quality check. It can

record data about the study and the context of the study. For

example dates of study, type of study, etc. It can also record data

relating to the SLR’s research questions. Quantitative and

qualitative can be recorded. This is achieved by each reviewer

completing a SLuRp form answering project defined questions.

Answers can be in the form of categorical, numerical or free flow

textual data. Usually drop down type answers are linked to

recording categorical data, whereas free textual data is required

for qualitative data extraction.

We also wanted to ensure the validity to the data extracted from

included papers. Consequently SLuRp also allows two+

reviewers to extract data from each included paper. The results

of these independent data extractions are compared and

reconciled using the same process as applied during the

180 Appendix B. Additional Papers

application of inclusion/exclusion criteria and during the quality

check (i.e. moderation between reviewers, followed by

independent arbitration).

2.4 Synthesize Data
a) SLuRp aggregates quantitative findings and displays these

in tables, or graphical form, e.g. box plot. All data is stored

in a database which links the papers to the data extracted.

This allows the data to be aggregated and statistically

analysed using SQL statements. SLuRp allows the results of

the data analysis to be presented in two main forms:

- Tabular: results can be cross-tabulated and presented in

HTML or LaTeX format for inclusion in papers.

- Graphical: SLuRp uses JFreeChart4 to produce: box

plots, pie charts, scatter plots, bar charts.

Each chart can be produced as: pdf, jpg, svg and png.

b) These graphical displays can highlight trends in results and

allow the team to consider bias in results.

c) SLuRp supports the research team to synthesise qualitative

data, according to the research questions (e.g report cross

cutting themes across papers), by recording qualitative

information which can then be aggregated and analysed in

tabular and graphical format.

2.5 The Advantages of Using SLuRp

We have shown how SLuRp directly supports the

implementation of SLR tasks. SLuRp also offers reviewers

additional benefits we now discuss.

Centrally storing the SLR protocol and all associated

instructions and criteria. The validity of SLR results is

undermined if the protocol and associated instructions and

criteria are not properly understood or applied consistently.

SLuRp allows all SLR documentation to be centrally stored. This

means that current versions of documents are always easily

accessible to the whole team. This also means that current

versions of all guidelines, instructions, definitions and criteria

are those being used by everyone. In our previous SLRs such

definitions change regularly and we have had problems ensuring

that the right versions of definitions and instructions are being

used by everyone. SLuRp’s centralized storage of instructions,

definitions and criteria ensures consistent application across

papers and across reviewers.

Figure 1 is a screen shot of the first page SLuRp generates every

time a user logs onto our own fault prediction SLR. At the top of

the screen is the menu list, which has various options which

include allowing access to the: instructions for all aspects of the

SLR, full list of papers, editing facilities for any criteria used and

the codes defined for data extraction etc.

This menu allows full access to all documentation (instructions,

guidelines, definitions, criteria, code schemes etc.). All of this

documentation can be edited via this menu. Editing access is

determined by a variety of SLuRp user permissions.

Figure 1 is a screen shot of the first page SLuRp generates every

time a user logs on; using our own fault prediction SLR as an

example. The charts we implemented in our SLR dynamically

track the progress of: individual reviewers, the current status of

papers and the number of papers completed over time. The

4 http://www.jfree.org/jfreechart/

progress charts produced can be varied according to the specific

needs of the SLR. These charts give immediate insight into the

progress of individual reviewers and the team as whole.

Figure 1. Screenshot of opening screen

Maintaining a central list of papers and their current status.

A central list of all papers is always maintained by SLuRp. This

list can be filtered according to the particular reviewer assigned

to papers. This allows a reviewer to easily identify the papers

assigned to them and access all relevant information regarding

that paper, including the pdf of the full paper. This central list of

papers can also be filtered according to the status of each paper.

This allows sets of papers to be easily generated, for example, all

those papers which have been included, or need to be moderated.

Overall this central list of papers makes accessing the right

papers easy and less error-prone.

Figure 2. List of papers screenshot

Figure 2 shows the central list of papers maintained by SLuRp

for our own fault prediction SLR. Figure 2 shows that every

paper is listed. The details provided for each paper include:

- paper id number

- publication details (blanked out in Figure 2 to keep anonymous

papers that did not pass our quality check)

- link to the pdf

- status in terms of passed or failed the quality check (colour

coded, red for Failed, and green for Passed)

- links to pages for extracted data (coding) and performance data

(a second set of data we extracted during our SLR).

Figure 2 also shows the filters that can be applied to this list of

papers. For example, the list can be filtered according to the

papers assigned to a particular reviewer (assigned to), and/or

filtered to list only those papers which are included or which

have passed the quality check (state). This allows a specific list

of papers to be generated according to the particular task a

particular reviewer is currently working on.

B.5. SLuRp: a tool to help large complex systematic literature reviews deliver valid and rigorous
results. 181

Controlling and managing the SLR process. SLuRp produces

information showing the current status of every paper. For

example, papers are labelled as either accepted, rejected, passed

or failed the quality check, undecided or in need of moderation or

arbitration. SLuRp also produces information showing the

current status of every reviewer. SLuRp quickly identifies if a

reviewer is falling behind and needs extra support with their

allocated reviewing tasks. This allows progress to be monitored

and schedules to be managed. SLR process information is

displayed in bar charts. These are dynamically updated and

always current (examples of these are given in Figure 2).

Ensuring data validity. SLuRp allows at least two reviewers to

be allocated to review each paper. Each reviewer ‘votes’ on

whether the paper meets the inclusion and exclusion criteria.

Each reviewer then ‘votes’ on whether the paper meets the

quality criteria. Finally each reviewer ‘votes’ on what data is

extracted from an included paper. SLuRp will highlight any

conflicts. All conflicts will then go into the moderation process.

This is where the reviewers themselves first try to resolve a

disagreement. Should this prove impossible the paper will be

labeled as needing arbitration. A new reviewer will then cast a

deciding vote. This rigorous process of voting at three different

SLR stages, secures the validity of the findings reported.

Reporting SLR results. The graphical charts and tables

produced by SLuRp can be used directly in the final report and

write up of the review. SLuRP can act as a LateX editor which

incorporates the graphical results and tables directly into the

final report. This allows changes to the raw data to be

automatically included in the latest version of the SLR.

Producing data on the SLR process. In reporting an SLR a

variety of data about the SLR itself needs to be produced. This

may include the number of papers that meet the

inclusion/exclusion criteria, the number of papers failing

particular inclusion/exclusion criteria, the proportion of papers

that failed the quality check, the number of decisions that

required moderation. The inter rater reliability score for

extracted data. SLuRp can produce all of this data easily.

3. CONCLUSION
Performing a rigorous SLR which reports reliable results is

difficult but essential. Many of the difficulties are related to the

administrative complexities involved with managing and

controlling any large complex project. Our experience is that in

order to produce reliable valid results, more than one reviewer is

required. Maintaining large amounts of data in a team with

several reviewers is time-consuming and error-prone. These

errors are difficult to identify and eliminate without the use of a

specific SLR tool like SLuRp.

4. ACKNOWLEDGMENTS
We thank the UK’s Engineering and Physical Science Research

Council, which supported this research at Brunel University

under grant EPSRC EP/E063039/1. We also thank the Science

Foundation Ireland, which partially supported this work at Lero

under grant 3/CE2/I303_1. Finally we thank Thomas Shippey for

writing the code to extract bibtex files from online databases.

5. REFERENCES
[1] Dybå, T. and T. Dingsøyr (2008). Empirical studies of

agile software development: A systematic review.

Information and Software Technology, 50(9–10): pp.833-

859.

[2] Cruzes, D.S. and T. Dybå (2011). Research synthesis in

software engineering: A tertiary study. Information and

Software Technology, 53(5): pp.440-455

[3] Morais, Y., T. Burity, and G. Elias. A Systematic Review of

Software Product Lines Applied to Mobile Middleware. in

Sixth Int. Conf. on Information Technology. 2009.

[4] Hall, T., S. Beecham, D. Bowes, D. Gray, and S. Counsell

(in press). A Systematic Literature Review on Fault

Prediction Performance in Software Engineering. IEEE

Transactions on Software Engineering (TSE).

[5] Brereton, P., B.A. Kitchenham, D. Budgen, M. Turner, and

M. Khalil (2007). Lessons from applying the systematic

literature review process within the software engineering

domain. Journal of Systems and Software, 80(4): pp.571-

583.

[6] Stol K, Ali Babar M, Avgeriou P, and Fitzgerald B, A

comparative study of challenges in integrating Open

Source Software and Inner Source Software. Information

and Software Technology, 2011. 53(12): p. 1319-1336.

[7] Lane, S. and I. Richardson (2011). Process models for

service-based applications: A systematic literature review.

Information and Software Technology, 53(5): pp.424-439.

[8] Beecham, S., N. Baddoo, T. Hall, H. Robinson, and H.

Sharp (2008). Motivation in Software Engineering: A

Systematic Literature Review. Information and Software

Technology (IST), Elsevier, 50 (9-10): pp.860–878.

[9] Ramampiaro, H., D. Cruzes, R. Conradi, and M. Mendona.

Supporting evidence-based Software Engineering with

collaborative information retrieval in Collaborative

Computing: Networking, Applications and Worksharing

(CollaborateCom), 2010 6th International Conference on.

2010, 9-12 Oct. 2010.

[10] Hall, T., S. Beecham, N. Baddoo, H. Sharp, and H.

Robinson (2009). A Systematic Review of Theory Use in

Studies Investigating the Motivations of Software

Engineers. ACM Transactions on Software Engineering

and Methodology (TOSEM), 18(3).

[11] Zhang, M., T. Hall, and N. Baddoo (2011). Code bad

smells: a review of current knowledge. Journal of Software

Maintenance and Evolution: research and practice, 23(3):

pp.179- 202.

[12] Kitchenham, B. and S. Charters (2007), Guidelines for

performing systematic literature reviews in software

engineering (version 2.3), in EBSE Technical Report,

Keele University, UK.

[13] Felizardo R K, Nakagawa E Y, Feitosa D, Minghim R, and

Maldonado D C. An Approach Based on Visual Text

Mining to Support Categorization and Classification in the

Systematic Mapping. in 14th International Conference on

Evaluation and Assessment in Software Engineering

(EASE). 2010. Keele University, UK.

[14] Malheiros V D, Hohn E, Pinho R,. Mendonça M, and

Maldonado J C. A Visual Text Mining approach for

Systematic Reviews. In: Empirical Software Engineering

and Measurement. in First International Symposium on

Empirical Software Engineering and Measurement

(ESEM). 2007. Madrid, Spain: IEEE Computer Society.

182 Appendix B. Additional Papers

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 183

B.6 DConfusion: A technique to allow cross study performance evalua-
tion of fault prediction studies.

Bowes D, Hall T, Gray D (2013) DConfusion: A technique to allow cross study performance evalua-
tion of fault prediction studies. Automated Software Engineering Journal (Accepted subject to minor
changes)

Special Issue of ASEJL:Next Generation of Empirical SE manuscript No.
(will be inserted by the editor)

DConfusion: A technique to allow cross study
performance evaluation of fault prediction studies.

David Bowes · Tracy Hall · David Gray

the date of receipt and acceptance should be inserted later

Abstract There are many hundreds of fault prediction models published in
the literature. The predictive performance of these models is often reported
using a variety of different measures. Most performance measures are not di-
rectly comparable. This lack of comparability means that it is often difficult to
evaluate the performance of one model against another. Our aim is to present
an approach that allows other researchers and practitioners to transform many
performance measures back into a confusion matrix. Once performance is ex-
pressed in a confusion matrix alternative preferred performance measures can
then be derived. Our approach has enabled us to compare the performance
of 600 models published in 42 studies. We demonstrate the application of our
approach on 8 case studies, and discuss the advantages and implications of
doing this.

D.Bowes
Science and Technology Research Institute
University of Hertfordshire
College Lane
Hatfield, AL10 9AB
United Kingdom
E-mail: d.h.bowes@herts.ac.uk

T. Hall
Department of Information Systems and Computing
Brunel University
Uxbridge
Middlesex, UB8 3PH
United Kingdom
E-mail: tracy.hall@brunel.ac.uk

D. Gray
Science and Technology Research Institute
University of Hertfordshire
College Lane
Hatfield, AL10 9AB
United Kingdom
E-mail: d.gray@herts.ac.uk

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 185

2 David Bowes et al.

Keywords fault, confusion matrix, machine learning

1 Introduction

Imagine the following simplified scenario:
“You are a practitioner thinking about starting to use fault prediction mod-

els. You hope that such models will help you to identify the most fault prone
parts of your system. You then plan to target your test effort on those parts of
the system. You think that doing this may reduce the faults delivered to your
users and reduce the cost of your system. You are not an expert in fault pre-
diction models yourself, but you have seen many such models published in the
literature. You identify several published models that have been developed in
a similar software development context to your own. You decide to evaluate
the performance of these models with a view to trying out the top three mod-
els in your project. However when you look at the model performance figures
they are reported using a variety of different performance measures. Several
studies report Precision1 and Recall. Some report Error Rate. Some report pd
and pf. Others report popt. A few report Area Under the Curve of the Receiver
Operator Curve. One provides a confusion matrix. It is beyond your expertise
to identify a comparative point of reference amongst these different measures.
You struggle to understand how the overall performance of a model compares to
the others. And so you decide that fault prediction models are too complicated
to use and abandon the idea.”

This type of scenario may partially explain why the uptake of fault pre-
diction models is low in industry. This low uptake is important as finding
and fixing faults in code costs the software industry many millions of dol-
lars every year. Predicting effectively where faults are in code occupies many
researchers and practitioners. Our previous work (Hall et al., 2012) showed
that 208 software fault prediction studies were published between January
2000 and December 2010. These 208 studies contained many hundreds of fault
prediction models.

Despite this significant research effort it remains difficult or inconvenient
to compare the performance of these models. The difficulty in comparing pre-
dictive performance means that identifying which fault prediction models per-
form best in a given context is complex. This complexity in comparing the
performance of models is not only a likely barrier to practitioners using fault
prediction models, but also makes it difficult for researchers to meta-analyse
fault prediction studies (Cruzes and Dyb̊a, 2011). This lack of opportunity to
meta-analyse limits the ability of the fault prediction community to mature,
as we are not building an evidence base that is as useful as it should be.

One of the difficulties when comparing the performance of fault prediction
models stems from the many performance measurement schemes devised, used
and reported by studies. Many of the schemes used by studies highlight dif-
ferent aspects of predictive performance. For example, Menzies et al. (2007b)

1 Definitions of particular measures are given in Section 2.

186 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 3

use pd and pf to highlight standard predictive performance, while Mende and
Koschke (2010) use popt to assess effort-awareness. The different performance
measurement schemes used mean that directly comparing the performance
reported by individual studies is difficult and potentially misleading. Such
comparisons cannot compare like with like as there is no adequate point of
comparison.

It is perfectly legitimate for studies to report different performance mea-
sures. Studies may be interested in reporting prediction models with particular
qualities. Some studies may be interested in reporting models which reduce
the amount of effort wasted on code predicted as faulty which turns out not to
be faulty. In these cases, measures based on the number of false positives will
be of most interest. Other studies may be developing models focused on iden-
tifying the maximum number of faults in the system. In which case measures
related to the number of true positives are likely to be the performance focus.
The qualities needed in a fault prediction model depend on, for example, ap-
plication domain. Models used in the safety critical domain are likely to need
different predictive qualities to those in other domains. However developers
and potential users of models may want to compare performance in terms of
a particular predictive quality. This requires a conversion of performance fig-
ures from those reported to those reflecting the predictive quality of interest.
The ability to convert predictive measures in this way allows the predictive
performance of a wide range of models to be compared and benchmarked.

We previously found (Hall et al., 2012) that Precision and Recall were the
most commonly reported predictive performance measures used with binary2

fault prediction models (e.g. Arisholm et al. (2007); Catal et al. (2007); Denaro
and Pezzè (2002); Koru and Liu (2005)). However, many studies provide only
limited predictive performance data, often only reporting performance using
their preferred performance measures. This preferred data usually represents
the performance of specific models in the most positive light. An issue also
highlighted by Zeller et al. (2011). This preferred measurement data may be
unusual and rarely reported in other studies. For example, only a few studies
report the use of Error Rate (Khoshgoftaar and Seliya, 2004; Seliya et al.,
2005; Yi et al., 2010) or popt (Mende and Koschke, 2010). Without additional
performance data that is more commonly reported by studies, it is difficult to
satisfactorily compare the predictive performance of such models. A common
point of comparison is needed.

The confusion matrix is usually at the centre of measuring the predictive
performance of models (the confusion matrix is discussed in detail in Sec-
tion 2). Most other predictive performance measures are calculated from the
confusion matrix. The confusion matrix is a powerful point of comparative
reference. All models reporting binary results can have their predictive perfor-
mance expressed via a confusion matrix (Ostrand and Weyuker, 2007). This

2 Binary models are those predicting that code units (e.g. modules or classes) are either
fault prone (fp) or not fault prone (nfp). Binary models do not predict the number of faults
in code units. In this paper we restrict ourselves to considering only binary models that are
based on machine learning techniques.

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 187

4 David Bowes et al.

means that it is a relatively universal comparative basis. It is also a simple and
understandable way to show predictive performance. More sophisticated mea-
sures of predictive performance can be calculated from a confusion matrix. The
confusion matrix provides measurement flexibility as specific measures may be
derived from the confusion matrix which evaluate particular model qualities.
The importance of the confusion matrix is discussed in detail by Pizzi et al.
(2002).

Although the confusion matrix is pivotal to reporting the performance of
fault prediction studies, some weaknesses exist. These weaknesses are caused
by the way in which the confusion matrix is used to produce the final reported
performance measures. The performance measures of fault prediction studies
tend to be averaged over a number of runs of the same experiment in order
to produce a more reliable/stable performance value. It is rare for a paper
to give the variation in the performance values but Elish and Elish (2008)
demonstrate that the variation is relatively small. Forman and Scholz (2010)
go into great detail about the different ways in which the confusion matrix
and hence the performance measures are computed. It is hard to anticipate
if the small variations in performance measures when combined together will
adversely affect the accuracy of re-computing the confusion matrix. In this
paper we investigate the accuracy of re-computing the confusion matrix by
performing a 10 x 10-fold cross-validation experiment.

The confusion matrix also has limitations because it looses some of the
information that a model may have about the faultiness of a module. Some
learners (e.g. Naive Bayes) can order the modules from most likely to be faulty
to the least likely. Several researchers report their results in such an ordering
form (e.g. (Ostrand et al., 2004)). This information may be important to de-
velopers who are trying to prioritise their effort in fixing modules which are
most likely to be faulty. Arisholm et. al (Arisholm et al., 2007) describe a
technique for estimating the return on investment of inspecting progressively
larger amounts of code by ranking modules by their predicted defectiveness
followed by their length. The curve produced is compared against a model
which predicts all modules as having a uniform defect density. Mende and
Koske (Mende and Koschke, 2010) expand on this by producing a metric
(popt) which compares the return on investment curve of a model to an opti-
mal model which ranks modules by their defect density. Effort aware metrics
are important, however the metric values they produce requires more infor-
mation than knowing if a module is defective or not. Converting all results to
a common confusion matrix format will loose any ordering information. The
loss of such information is beyond the scope of this paper which is focused
on comparing the results of studies which have reported binary classifications.
We do however propose a solution to the problem of loosing information in
Section 8 which describes how future studies could report their results in a
way that allows all information to be retained.

In this paper we present a process by which we transform a variety of
reported predictive performance measures back to a confusion matrix (Bowes
et al., 2012). These measures cover most of those reported by the 208 fault

188 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 5

prediction studies we previously reviewed (Hall et al., 2012). We demonstrate
that the re-computation process on a real fault prediction study produces very
small errors by carrying out a study using a variety of datasets and learners in
order to establish the accuracy of our process for re-computing the confusion
matrix. We illustrate the use of this process by constructing the confusion
matrix for 8 published models. From these confusion matrices we compute a
range of alternative performance measures and demonstrate how the technique
has produced a clearer understanding of the results reported by some studies.

In Section 2 we describe the measurement of predictive performance by
discussing in detail the basis of the confusion matrix and related compound
measures of performance. In Section 3 we present our method of transforming
a variety of performance measures to the confusion matrix and explain how
alternative measures can then be derived from this matrix. Section 4 describes
an experiment to test the accuracy of re-computing the confusion matrix.
Section 5 provides the results of worked examples from published studies in
which we transform the performance measures back to the confusion matrix.
Section 6 identifies threats to the validity of this study. Section 7 discusses the
implications of transforming performance measures. Section 8 describes how
this work is relevant to empirical software engineering v2.0. We conclude and
summarise in Section 9.

2 Measuring Predictive Performance

This section is based on several previous studies which provide an excellent
overview of measuring the predictive performance of fault models (e.g. Ostrand
and Weyuker (2007), Jiang et al. (2008) and Lessmann et al. (2008)).

2.1 The Confusion Matrix

The measurement of predictive performance is often based on the analysis of
data in a confusion matrix (see Ostrand and Weyuker (2007) and Pizzi et al.
(2002)). This matrix reports how a prediction model classified the different
fault categories compared to their actual classification (i.e. predicted versus
observed). This is represented by four pieces of data:

- True Positive (TP): An item is predicted as faulty and it is faulty
- False Positive (FP): An item is predicted as faulty and it is not faulty
- True Negative (TN): An item is predicted as not faulty and it is not faulty
- False Negative (FN): An item is predicted as not faulty and it is faulty

Table 1 shows the structure of a confusion matrix.
In a confusion matrix, it is normal for the sum of the instances of each

possibility to be reported, see Table 2.
Few studies report complete confusion matrices for their experiments. Stud-

ies that do include: Pai and Dugan (2007), Zhou and Leung (2006) and Kaur

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 189

6 David Bowes et al.

Table 1: Confusion matrix

observed true observed false
predicted true TP FP
predicted false FN TN

Table 2: Confusion matrix with example summed instances

observed true observed false
predicted true 33 2
predicted false 17 98

et al. (2009). Most studies prefer to report a sub-set of the compound perfor-
mance measures shown in Table 3 and discussed in Section 2.2.

2.2 Compound Measures

Many performance measures are related to components of the confusion ma-
trix. Table 3 shows how some commonly used performance measures are cal-
culated relative to the confusion matrix.

Table 3 shows that Accuracy is the proportion of units correctly classified.
Table 3 also shows that Recall (otherwise known as the true positive rate,
probability of detection (pd) or Sensitivity) describes the proportion of faulty
code units (usually files, modules or packages) correctly predicted as such.
Precision describes how reliable a prediction is in terms of what proportion
of code predicted as faulty actually was faulty. Both Recall and Precision are
important when test sets are imbalanced (see the following sub-section), but
there is a trade-off between these two measures (see Jiang et al. (2008) for a
more detailed analysis of this trade-off). An additional composite measure is
the false positive rate (pf) which describes the proportion of erroneously pre-
dicted faulty units. The optimal classifier would achieve a pd of 1, Precision of
1, a pf of 0 and an f-measure of 1. The performance measure balance combines
pd and pf. A high Balance value (near 1) is achieved with a high pd and low
pf. Balance can also be adjusted to factor in the cost of false alarms which
typically do not result in fault fixes. Matthews Correlation Coefficient (MCC)
is a measure rarely used in software fault prediction (Baldi et al., 2000). MCC
is more commonly used in medical research and bioinformatics e.g. Baldi et al.
(2000); Sun et al. (2009). It is a Chi Square based performance measure on
which all four quadrants of the confusion matrix are included in the calcula-
tion. MCC results are the equivalent of reporting R2 in regression modelling
and results range from -1 to 1 (with 0 indicating random results).

The Receiver Operator Curve (ROC) is an important measure of predictive
performance. When the combinations of Recall and pf for a series of experi-

190 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 7

Table 3: Compound Performance Measures

Measures Defined As

Accuracy (a) / Correct Classification Rate
(CCR)

TP + TN

TP + TN + FP + FN

Error Rate (er)
FP + FN

TP + TN + FP + FN

Recall (r)/ True Positive Rate / Sensitivity
/ Probability of Detection (pd)

TP

TP + FN

True Negative Rate / Specificity (spec)
TN

TN + FP

False Positive Rate / Type I Error Rate
(t1)/ Probability of False Alarm (pf)

FP

TN + FP

False Negative Rate / Type II Error Rate
(t2)

FN

FN + TP

Precision (p)
TP

TP + FP

F-Measure / F-Score
2×Recall × Precision

Recall + Precision

Balance 1−
√

(0− pf)2 + (1− pd)2√
2

G-mean
√
Recall × Precision

Matthews Correlation Coefficient (MCC)
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

ments are plotted they produce a ROC. It is usual to report the area under
the curve (AUC) as varying between 0 and 1, with 1 being the ideal value. Be-
cause the AUC is a result of a series of experiments where the meta-parameters
are varied, it is not possible to compute the confusion matrix from AUC and
visa versa. AUC can only be computed by either a) repeating an experiment
to achieve a range of Recall and pf, or b) by varying the meta-parameters
e.g. the decision threshold for Naive Bayes. In the first case, reporting the
prediction for every run and every item will allow others to compute any per-
formance measure and the AUC. In the latter case, it is necessary to record
both the items in each cross-validation fold and the model produced for each
training set in order to be able to generate any performance value including

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 191

8 David Bowes et al.

the AUC. To our knowledge, no fault prediction study has every provided such
an exhaustive set of data.

Additional metrics which take into consideration the effort required to
find/fix a defect have been proposed. Arisholme et. al Arisholm et al. (2007)
proposed a measure called ‘cost effectiveness’ (CE). CE is computed by order-
ing the modules by their predicted defect density and then plotting the number
of actual faults found against the total amount of code inspected starting with
the modules with the highest predicted defect density.

Previous studies have critiqued the use of these various measures of perfor-
mance. For example Zhang and Zhang (2007), Menzies et al. (2007a) and Gray
et al. (2011) discuss the use of precision. However such a critique is beyond
the scope of the work reported here.

2.3 Imbalanced Data

Substantially imbalanced data sets are commonly used in fault prediction stud-
ies (i.e. there are usually many more non-faulty units than faulty units in the
data sets used in fault prediction) (Chawla et al., 2004; Zhang and Zhang,
2007). An extreme example of this is seen in the NASA data set PC2, which
has only 0.4% of data points belonging to the faulty class (23 out of 5589
data points). This distribution of faulty and non-faulty units has important
implications in fault prediction. Imbalanced data can strongly influence the
suitability of predictive performance measures. Measures which favour the ma-
jority class (such as Accuracy and Error Rate) are not sufficient by themselves
(He and Garcia, 2008). More appropriate measures for imbalanced data sets
include: precision, recall, f-measure, MCC and G-mean He and Garcia (2008).
Consequently data imbalance is an important consideration in our method of
re-computing the confusion matrix3.

3 Our Method of Re-Computing the Confusion Matrix

To compare the results of one study with the results of another we re-compute
the confusion matrix for each study and then calculate the preferred compound
measures from this. Zhang and Zhang (2007) did something similar to this by
re-computing Precision for the study by Menzies et al. (2007b) which originally
reported pd and pf. Our approach is motivated by the work of Zhang and
Zhang (2007). We now describe the process by which transformation from a
variety of compound measures to the confusion matrix can be achieved.

3 Data imbalance also has serious implications for the training of prediction models. Dis-
cussion of this is beyond the scope of this work (instead see Gray et al. (2011), Zhang and
Zhang (2007), Turhan et al. (2009), Batista et al. (2004) and Kamei et al. (2007)).

192 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 9

3.1 Creating a Frequency-Based Confusion Matrix

The precise method needed to re-compute the confusion matrix varies slightly
depending upon the original measures reported. In most cases the first thing
that needs to be done is that we produce a frequency-based confusion matrix.
These confusion matrices are different from instance based confusion matrices
(an example of which was shown in Table 2). Table 4 shows the frequencies
(or proportions for each confusion matrix quadrant) based on the instances in
Table 2. These frequencies are derived by dividing the instances in each quad-
rant by the total number of instances in the matrix. This shows the relative
proportion each quadrant represents of the whole confusion matrix. From now
on we will append f to TP , TN , FP and FN to distinguish frequency values
from instance based values for example TPf .

3.2 Calculating Faulty and Non-Faulty Data Distributions

Constructing a frequency based confusion matrix is possible when the class
distribution (i.e. the proportion of faulty versus non-faulty units) is known4.
To do this we use d as the frequency of the faulty units, where:

d =
TP + FN

TN + TP + FP + FN
(1)

Applying (1) to the example instances reported in Table 2 would result in:

n = 33 + 17 + 2 + 98 = 150, d =
33 + 17

150
=

50

150
= 0.3333

This shows that given the confusion matrix shown in Table 2, 33% of the
units in the data set on which the model was applied, were faulty.

Table 4: Frequency Confusion Matrix

observed true observed false
predicted true 0.2200 0.0133
predicted false 0.1133 0.6533

TNf + TPf + FPf + FNf = 1
d = 0.2200 + 0.1133 = 0.3333

4 When this class distribution is not known it is often possible to calculate the proportion
of faulty units in a data set.

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 193

10 David Bowes et al.

Table 5: A Subset of Pre-Requisite Combinations of Performance Measures for
Re-Computing the Confusion Matrix.

Fault
Frequency

(d)
Type

I
Type

II Precision Recall Accuracy pf
Error
Rate Specificity

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

NB this is not an exhaustive list. For example, it is possible to calculate fault frequency
(d) by dividing the number of faulty instances by the total number of instances.

3.3 Transforming Specific Compound Measures

A wide variety of compound measures are reported by studies. Our approach
is successful when a particular sub-set of these measures is reported by stud-
ies. Table 5 provides some example pre-requisite combinations of performance
measures that must be available.

Each of these combinations of measures requires a specific method by which
to re-compute the confusion matrix. Formulae for the most common measures
reported are now described.

1. Transforming Precision, Recall and pf
We first need to know the frequency of the true class d.

1 = TPf + TNf + FPf + FNf (2)

d =
TPf + FNf

TPf + TNf + FPf + FNf
=

TPf + FNf

1
= TPf + FNf (3)

It then becomes possible to calculate TPf , FPf , TNf and FNf as follows:
Given pf and d

TNf = (1− d)(1− pf) (4)

FPf = (1− d)pf (5)

Given Recall(r) and d

TPf = d× r (6)

194 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 11

FNf = d(1− r) (7)

Given FNR(TypeII(t2)), pf and d we already have (2), (4) and (5)

FNf = t2× d (8)

TPf = 1− FNf − TNf − FPf (9)

Given Precision(p), Recall(r) and d we already have (2), (6) and (7)

FPf =
TPf (1− p)

p
=

d(1− p)r

p
(10)

TNf = 1− FPf − FNf − TPf (11)

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 195

12 David Bowes et al.

2. Transforming ErrorRate(er), TypeII(t2) and pf

d =
er − pf

t2− pf
(12)

which can be used with (8) to give FNf and (5) to give FPf .
3. Transforming Precision(p), Recall(r) and Accuracy(a)

d =
p(1− a)

p− 2pr + r
(13)

which can then be used with (6),(7),(10) and (11)
4. Transforming Accuracy(a), pf and FNR(TypeII(t2))

er = 1− a (14)

d =
er − pf

t2− pf
(15)

which can be used with (8) to give FNf and (5) to give FPf .

TPf = d(1− t2) (16)

which can be used with (11) to give TNf .
We have automated many conversions by developing a java tool ‘DConfu-

sion’5. This tool allows individual performance measurement data to be input
and will automatically re-compute the confusion matrix by iterating over the
the equations until no extra performance measures can be derived.

4 Methodology for Validating the Accuracy of the
Re-Computation of the Confusion Matrix

Validating the techniques and equations for re-computing of the confusion
matrix is necessary if other users are to have confidence in the secondary
data that DConfusion produces. The re-computation of the confusion matrix
involves the solution of a set of simultaneous equations and therefore for a sin-
gle experiment, the error involved with re-computation should only be caused
by rounding errors. There is therefore a threat that the re-computation may
not be accurate because of the inclusion of rounding errors. We also recognise
that some studies report average performance measures from m x n cross-
validation studies which may also add to the possible error of re-computation.
Using average values from repeated experiments is known to be problematic
(Fenton and Neil, 1999). If our process of re-computing the confusion matrix
is to have any validity, we need to test the technique on a controlled real
world m x n cross-validation fault prediction study. This enables us to know
what the original confusion matrix is and allows us to compare the original

5 This tool is available at: https://bugcatcher.stca.herts.ac.uk/DConfusion/

196 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 13

values with computed values. We can also run the experiment a few times to
see how the variation in performance affects the average re-computed values.
Without our own fault prediction experiment it is not possible to compare the
original confusion matrix against the re-computed confusion matrix based on
different sub-sets of performance measure. The rest of this section describes
the experiments carried out to assess the magnitude of the error which should
be expected when re-computing the frequency confusion matrix (which from
now on will be called confusion matrix′).

4.1 Validating the Re-Computation Process

We developed the DConfusion tool to re-compute the confusion matrix′ which
incorporates the set of equations described above. DConfusion includes a JU-
nit test to ensure the validity of the equations. The Junit test is included to
allow others to extend the set of re-computation equations and still maintain
confidence in the results produced by DConfusion. The JUnit test randomly
generates TP, TN,FP and FN values to produce a confusion matrix. This is
then used to compute the performance values (e.g. precision, recall and ac-
curacy). The JUnit test then uses all permutations of performance values to
recalculate the confusion matrix′ which is then compared against the original
confusion matrix to test the system. DConfusion tests that the re-computed
performance values (including TPf etc) are within the correct range (for ex-
ample 0 ≤ precision ≤ 1 and −1 ≤MCC ≤ 1).

When re-computing the confusion matrix′, DConfusion adds a rounding
error to the values provided by the user. For example, if the user enters the
following values a = 0.50, p = 0.50 and r = 0.50, DConfusion will also try
a = 0.50 ± 0.01, p = 0.50 ± 0.01 and r = 0.50 ± 0.01 generating TNf =
0.25(+0.02− 0.03), TPf = 0.25(+0.02− 0.01), FPf = 0.25(+0.02− 0.01) and
FNf = 0.25(+0.02− 0.01). This gives some indication of the amount of error
that can be expected due to rounding errors. Adding rounding error values
also overcomes the problem where the performance values are identical. This
can be an issue for some equations because it can lead to a division by error
in some cases e.g. equation 15.

4.2 Validating the Re-Computation Technique on m x n Cross-Validation
Experiments

Many studies report average performance values reported over m runs of the
same experiment. It is possible that over a set of m runs, the performance
values may vary, for example Elish and Elish (2008) report the standard de-
viation of their performance values. It is possible that the average values may
not allow an accurate re-computation of the confusion matrix′. In order to test
the accuracy of re-computing the confusion matrix′ on real data we carried
out a m x n cross-validation fault prediction experiment which produced all

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 197

14 David Bowes et al.

of the performance measures described in Table 5. The accuracy of the re-
computation was assessed by selecting a subset of the performance measures
(calculated as averages over the m runs) described in Table 5 as the input for
the re-computation process. The re-computed confusion matrix′ was then used
to re-compute the remaining performance measures. These are then compared
against the original values from the fault prediction experiment.

4.3 Fault Prediction Experiment

In order to evaluate the re-computation on as wide a set of values of dif-
ferent performance measures as possible, 12 dataset were used with different
learners. The fault prediction experiment used twelve frequently used NASA
datasets (Table 6) obtained originally from MDP. The data was cleaned using
the protocol described in (Gray et al., 2012) with the exception that dupli-
cate tuples were not removed, this was because the learners chosen perform
differently when duplicates are present Gray et al. (2012) and we wanted to
produce as wide a range of performance measures as possible. Three learn-
ers were used: RPART, Random Forest and Naive Bayes. These were chosen
for their simplicity, speed and varying performance (Hall et al., 2012). The
statistical programming language R was used to perform our experiments.

Table 6: Summary statistics for NASA datasets before cleaning

Dataset Language
Total

KLOC
No. of

Modules
%Faulty
Modules

CM1 C 20 505 10
KC1 C++ 43 2109 15
KC3 Java 18 458 9
KC4 Perl 25 125 49
MC1 C & C++ 63 9466 0.7
MC2 C 6 161 32
MW1 C 8 403 8
PC1 C 40 1107 7
PC2 C 26 5589 0.4
PC3 C 40 1563 10
PC4 C 36 1458 12
PC5 C++ 164 17186 3

We used a 10-fold stratified cross-validation experiment. This involved
splitting a dataset into 10 sets (folds) of tuples in such a way that each of
the 10 sets has the same proportion of faulty to none faulty tuples as the
population from which the folds were derived. 10 sub experiments are then
performed by using one of the folds as a test set and the rest are combined
to form a training set. Some of the datasets have a very small proportion of
tuples which are faulty (MC1 and PC2). This lack of tuples for the minority

198 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 15

class hinders learners in their ability to learn the features of a faulty tuple.
The imbalance can be altered in the training set by oversampling the minority
class. SMOTE (Chawla et al., 2002) was used to increase the number of the
minority class in the training sets by synthetically generating new examples
from existing examples of the minority class from the training set. The train-
ing set was then randomised so that the 10 sub experiments do not always
present the tuples to the learner in the same order. Each learner was then
tuned and trained on the training set which resulted in a new model. Each
model was then used to predict the class for every item in the test set. Each
10-fold cross-validation experiment was repeated 10 times for each dataset and
learner combination.

This experiment follows the guidelines for performing a fault prediction
study described by Gray et al. (2012) and Hall and Bowes (2012). The fault
prediction experiment is summarised in Algorithm 1 (Appendix B).

4.4 Computing the Performance Measures

A set of performance measures for each learner on each dataset was then
calculated using Algorithm 2 (Appendix C) which is described as follows.
After a model was built, each tuple in the test set was categorised as TP if
the tuple was faulty and predicted as faulty, TN if the tuple was not faulty
and predicted as not faulty, FP is the tuple was not faulty but predicted as
faulty and FN if the tuple was faulty but predicted as not faulty. The 10-
fold cross validation strategy resulted in all tuples being classified. The total
number of TP, TN, FP and FN tuples was then calculated for each cross-
validation experiment. These values were then used to calculate the following
performance measures: accuracy (a), error rate (er), precision (p), probability
of false alarm (pf), recall (r), specificity (spec), type I (t1) and type II (t2)
described in Table 3. NB the proportion of faulty instances (d) is also reported
as it is also calculated from the confusion matrix′ even though it is not a
performance measure. The results are presented in Fig 16. This shows that
the performance measures are not the same for all datasets and that there is
some variation in the performance measures for an individual dataset, probably
due to the resampling caused by carrying out the experiment 10 times and by
using SMOTE.

The average values of each performance measure was then calculated over
the 10 runs of each experiment.

To test the re-computation of the confusion matrix (confusion matrix′) each
set of pre-requisite performance measures in Table 5 were taken from the av-
erage values obtained in the experiment above. The pre-requisite performance
measures were then used by DConfusion to compute confusion matrix′ which
then allowed us to re-compute the remaining performance measures not in the

6 Full results can be found in the supporting material at
https://bugcatcher.stca.herts.ac.uk/DConfusion/analysis.html

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 199

16 David Bowes et al.

Plot of Means

Dataset

A
ve

ra
ge

 M
et

ric
 V

al
ue

0.
0

0.
2

0.
4

0.
6

0.
8

CM1 KC3 MC1 MW1 PC2 PC4

● ●
●

●

●

●

●
●

●

●

●

● Metric

● a
d
er
p
pf
r
spec
t1
t2

Fig. 1: Performance Measure Values for Different Datasets

set of performance measures used as the input for DConfusion (see Algorithm
2).

4.5 Evaluating the Re-Computed Performance Values

For each dataset/learner combination, we have both the original average per-
formance measure pi for each performance measure in {a, er, p, pf, r, spec, t1, t2}
and p′i, we calculate the difference to get the absolute error (delta). We also

200 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 17

divide the delta by pi to determine the percentage error7.

perri = 100 ∗ pi − p′i
pi

(17)

Table 7 shows that across all datasets, learners and performance measures,
the maximum absolute error is 0.003615 and the average average error is -
0.0000194. The plot of percentage distribution of the absolute error (Fig 2)
also demonstrates that the absolute error is very small with the majority of
absolute error values between -0.005 and 0.005. The frequency distribution of
the percentage error (Fig 3) shows that the range of percentage error is from
-5.0% to 5.0%. The few items where the percentage error is greater than 1.0%
from the mean are listed in Table 8. This shows that the very few instances
(14 out of 1944) occur for two particular datasets MC1 and PC2 which are
the most highly imbalanced datasets. In all cases, p′ is always relatively small
(< 0.09). Another observation is that MC1 is always associated with Naive
Bayes and PC2 is always associated with Random Forest.

Table 7: Distribution of the absolute error (delta) for all datasets, learners and
performance measures

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.0036 -0.000 0.0000 -0.0000 0.0000 0.0036

7 Percentage error is not completely correct, as p approaches 1 for many of the performance
measures, it becomes increasingly difficult to have a proportionally increasing error, therefore
it is to be expected that p values close to 1 will have a small perr value.

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 201

18 David Bowes et al.

Absolute Error

F
re

qu
en

cy

−0.010 −0.005 0.000 0.005 0.010

0
20

0
40

0
60

0
80

0
10

00
12

00

Fig. 2: Frequency Distribution of the Absolute Error (delta) for all Samples.

Percentage Error

F
re

qu
en

cy

−4 −2 0 2 4

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Fig. 3: Percentage Distribution of the Percentage Error for all Samples.

202 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 19

Table 8: Instances where the Percentage Error > 1.0%

Dataset Learner Pre-Reqs† Performance
Measure

p p′ Delta Percentage
Error

MC1 3 3 t1 0.0803 0.0767 -0.0036 -4.5011
MC1 3 3 pf 0.0803 0.0767 -0.0036 -4.5011
MC1 3 3 er 0.0820 0.0784 -0.0036 -4.3895
MC1 3 7 p 0.0296 0.0283 -0.0013 -4.3876
MC1 3 8 p 0.0296 0.0283 -0.0013 -4.3876
MC1 3 2 p 0.0296 0.0283 -0.0013 -4.3876
MC1 3 6 p 0.0296 0.0283 -0.0013 -4.3735
MC1 3 4 p 0.0296 0.0283 -0.0013 -4.3735
MC1 3 5 p 0.0296 0.0283 -0.0013 -4.3733
PC2 2 7 p 0.0384 0.0381 -0.0004 -1.0171
PC2 2 8 p 0.0384 0.0381 -0.0004 -1.0171
PC2 2 2 p 0.0384 0.0381 -0.0004 -1.0171
MC1 3 1 d 0.0044 0.0046 0.0002 *4.5911
MC1 3 9 d 0.0044 0.0046 0.0002 *4.6918

* NB the difference in percentage error is due to rounding errors.
† Pre-requisites used to re-compute the confusion matrix′ see Table 5

Keys
Learner: 1=RPART, 2=Random Forest, 3=Naive Bayes

Performance Measure: p=precision,pf=probability of false alarm, t1=type I, er=error
rate, d=proportion faulty

5 Constructing the Confusion Matrix for some Example Studies

We have transformed the predictive performance data produced by 600 mod-
els reported in 42 published studies. A list of these studies is provided in Ap-
pendix A. Space restrictions make it is impossible to report the detail for all
these transformations. Consequently in this section we present transformations
for eight examples. We chose these eight examples to illustrate re-computing
the confusion matrix from a range of different original measures.

5.1 Case Studies

Table 9 illustrates the original performance measurement data reported by
our eight case study papers. Table 9 shows that a wide range of different
measurement data is reported by these eight papers. Given this range it is
difficult to evaluate how the performance of these models compares against
each other.

We have re-computed the confusion matrix for these eight case studies
(shown in Table 10). Based on this confusion matrix data, we have computed
the f-measure and MCC data for each case study (also shown in Table 10). It
is now possible to comparatively evaluate the predictive performance of these
case studies using this common set of data8.

8 The aim of this paper is to provide an approach by which others may perform compar-
ative analysis of fault prediction models. A comparative analysis is complex and requires

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 203

20 David Bowes et al.

Table 9: Reported Performance Measurement Data

Study pd pf Error Rate Type I Type II Precision Recall Accuracy
1 0.3134 0.3127 0.2826
2 0.682 0.621 0.641
3 0.471 0.0834 0.8515
4 0.1615 0.1304 0.2830
5 0.25 0.49 0.805
6 0.717 0.8087 0.7586
7 0.442 0.415 0.918
8 0.4624 0.4442 0.2258

1. Khoshgoftaar and Seliya (2004)
2. Catal et al. (2007)

3. Kutlubay et al. (2007)
4. Seliya et al. (2005)

5. Ma et al. (2006)
6. Zhou and Leung (2006)

7. Jiang et al. (2008)
8. Yi et al. (2010)

Table 10: Computed Performance Measurement Data

Study TPf TNf FPf FNf f-measure MCC
1 0.0163 0.6710 0.3063 0.0064 0.0944 0.1288
2 0.3335 0.3075 0.1555 0.2035 0.6501 0.2845
3 0.0575 0.7940 0.0732 0.0646 0.4549 0.3755
4 0.1461 0.6924 0.1038 0.0577 0.6441 0.5457
5 0.7567 0.0483 0.1448 0.0502 0.3311 0.2487
6 0.3762 0.3824 0.1509 0.0905 0.7601 0.5228
7 0.8873 0.0307 0.0433 0.0387 0.4281 0.3842
8 0.4962 0.0596 0.4268 0.0174 0.2114 0.1662

6 Threats to Validity

There are internal and external validity issues that need to be considered when
using our approach to re-computing the confusion matrix.

6.1 Internal Validity

Divide by zero problems. Several of our formulas are based on divisions.
Where some figures are very similar we encounter divide by zero problems. This
division problem is exacerbated by rounding of very small numbers. These
small numbers may be very different, but when rounded become the same
number. Such numbers suffer from divide by zero issues.

many factors to be taken into account, e.g. the aims of the predictive model. It is beyond
the scope of this paper to provide a full comparative analysis of studies against each other.

204 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 21

Data uncertainty. Identifying the balance of faulty and non-faulty units
is an important part of our re-computing method. However in a few studies
there is inconsistency in the class distribution figures. For example, although
an author may have cited a particular class distribution, when we calculate the
distribution figure inherent within the results reported (i.e. via the calculation
of d), the distribution is different to that stated by the authors. Similarly in
some papers where the same data set has been used the distribution varies be-
tween experiments. This inconsistency casts some uncertainty over the results
in such cases. We suspect that this distribution inconsistency is partly the re-
sult of a particular machine learner dealing with the data that it is processing
differently to other learners, and partly the result of studies not reporting the
data pre-processing that they have applied.

6.2 External Validity

Model tuning. Some models may have been developed to maximise a partic-
ular quality (e.g. to reduce false positives). Such models are likely to perform
best when their performance is expressed using measures that are sympathetic
to the qualities for which the model has been built. Interpreting the perfor-
mance of such models via alternative performance measures should be treated
with caution.

7 Discussion

The process of translating the performance measures reported by studies to
the confusion matrix reveals a variety of performance issues with studies that
we now discuss.

7.1 Erroneous Results

In some cases our translation to the confusion matrix demonstrated that the
original results reported by some studies could not have been possible. For
example we found an error in Wang and Li (2010). This error was revealed as
our transformations would not work correctly. As a result of this we emailed
the authors to clarify the problem. The authors confirmed that a typographical
error had crept into their final draft. False Alarms were reported instead of
False Positives. It is easy for such errors to creep into published work, especially
in an area as complex as fault prediction. Without very careful interpretation
such errors can easily be missed and be misleading.

7.2 Definitions of Measures

While performing our transformations we have had difficulty in making sense
of the figures reported in some studies. The reason for this was that a number

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 205

22 David Bowes et al.

of studies have used non-standard definitions for some well-known performance
measures (e.g. Zhou and Leung (2006) does not use a standard definition of
Precision and Pai and Dugan (2007) does not use the standard definitions
of Sensitivity and Specificity (in both cases, the issues were confirmed by
emailing the authors)). Although the definitions used were given in the paper,
it is difficult for a reader to pick-up on the nuances of measurement definitions
(usually provided via formulae). Consequent mis-understanding could have
serious implications for subsequent model users.

7.3 Reporting Performance Based on Predicting Non-Faulty Units

Some papers have reported performance measures based on predicting the
majority (non-faulty class) rather than the minority (faulty) class. In some of
these cases it is also not made clear that the predictive performance is on the
majority class. These issues can be very misleading when trying to evaluate
predictive performance. For example, Elish and Elish (2008) has been a very
influential fault prediction study using Support Vector Machines (SVM). Their
study has been cited more than 60 times and is considered a pivotal paper in
the use of SVMs. Table 11 shows the very good Accuracy, Precision and Recall
performances reported by Elish and Elish for SVM using datasets cm1, pc1,
kc1 and kc3 (taken from Elish and Elish (2008)).

Table 11: Accuracy, Precision and Recall Elish and Elish (2008)

Dataset Accuracy Precision Recall
cm1 0.9069 0.9066 1.0000
pc1 0.9310 0.9353 0.9947
kc1 0.8459 0.8495 0.9940
kc3 0.9328 0.9365 0.9958

Our process to re-compute the confusion matrix would not work on these
figures when we assumed that the values for Precision and Recall were based
on the non-faulty class. Tables 12 and 13 show our workings for this re-
computation. Our workings suggest that Elish and Elish have reported the
performance of their SVM models based on predicting non-faulty units rather
than faulty units, this was confirmed by e-mailing the authors. Since the vast
majority of units in data sets are non-faulty (ranging between 84.6% and 93.7%
in their case), predicting the majority class is very easy and so high perfor-
mance figures are to be expected. Such models are not useful. Our findings
are complementary to those of several other authors who report problems re-
producing the high predictive performances reported by Elish and Elish when
using their SVM settings. For example Arisholm et al. (2010) reports that most
papers report a far lower Recall value. de Carvalho et al. (2008) and de Car-
valho et al. (2010) used the same SVM settings. de Carvalho et al. (2008)

206 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 23

reported Specificity and Sensitivity values and de Carvalho et al. (2010) re-
ported Precision and Recall for both the faulty and non-faulty classes which
are similar to our re-computed values.

Table 12: Frequency of the Class Identified as “True” and the Frequency of
the Faulty class

Dataset Computed d 1 - Computed d Reported Fault Frequency
cm1 0.9037 0.0963 0.097
pc1 0.9311 0.0689 0.069
kc1 0.8462 0.1538 0.154
kc3 0.9370 0.0630 0.063

Table 13: SVM Confusion Matrix of the Majority Class

Dataset TPf FNf FPf TNf

cm1 0.9037 0.0000 0.0931 0.0032
pc1 0.9261 0.0049 0.0641 0.0049
kc1 0.8412 0.0047 0.1490 0.0051
kc3 0.9330 0.0039 0.0633 ∗-0.0002
∗ demonstrates that rounding errors occur.

Using our technique it is possible to calculate the Precision and Recall of
the faulty units in Elish and Elish’s study. Table 14 shows the results of this
calculation. Table 14 suggests that the performance of the SVMs in the Elish
and Elish study is much less positive. Table 14 shows that f-measure ranges
from 0.0 to 0.12. This is compared to their original maximum f-measure of
0.96.

Table 14: Performance Measures for the Faulty Class using the Values from
Table 13

Dataset Accuracy Precision Recall f-measure
cm1 0.9069 1.0000 0.0332 0.0643
pc1 0.9310 0.5000 0.0710 0.1244
kc1 0.8463 0.5204 0.0331 0.0622
kc3 0.9328 -0.0541 -0.0032 -0.0060

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 207

24 David Bowes et al.

8 Empirical SE, V2.0

Re-computing the confusion matrix is a stepping stone to allowing the results
of fault prediction studies to be compared and benchmarked. We propose that
empirical fault prediction studies v2.0 should provide finer grained results
including the prediction for every instance in a dataset for every run. The
model for each run should also be stored so that future research can investigate
the ‘decisions’ that the models are making. Reporting the full set of results and
models would make the experimental results more transparent and therefore
less likely to produce misleading conclusions.

We recognise that a tremendous amount has been achieved by Tim Men-
zies et al and the PROMISE repository9 which has provided the data for per-
forming many fault prediction studies. We now suggest that the PROMISE
repository is extended for empirical studies v2.0 to include the fine grained
results and models from fault prediction studies. This would allow both cate-
gorical and continuous studies to be reported and compared which would bring
together a larger body of knowledge. Defining how the data and the models
should be recorded is an open question, but making it future proof will be the
greatest challenge.

9 Conclusion

The predictive performance of published fault prediction models is expressed
using a variety of different performance measures. This makes it difficult to
compare the performance of published prediction models. We have presented
an approach that enables the accurate re-computation of the confusion matrix
for studies originally reporting a variety of performance measures. From the
confusion matrix a range of other performance measures can be calculated
with a good degree of accuracy. Expressing the performance of fault prediction
models using a consistent set of measures allows comparative analysis. Our
approach has several advantages, including that it:

– allows comparative analysis of a set of fault prediction models in terms of
a preferred predictive quality.

– makes meta-analysis possible across the many fault prediction studies pub-
lished.

– enables the validation of the performance figures reported in published
studies.

The advantages of our approach have benefits for fault prediction researchers,
practitioners and reviewers. Researchers can use our approach to evaluate pre-
dictive performance across sets of models and perform meta-analysis of these
models. An evidence base of fault prediction can be built by researchers that
will enable more informed future model building research. Practitioners can
express model performance to reflect the qualities that they are interested

9 Now based at https://code.google.com/p/promisedata/

208 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 25

in, for example practitioners wanting a model that values finding as many
faults as possible might might predominately focus on Recall. Practitioners
are then in a more informed position to select a model that is appropriate for
their development context. Reviewers of fault prediction studies can use our
process as a relatively easy way to check that no errors have crept into fault
prediction studies. Without our ‘ready reckoner’ checking performance figures
in studies submitted for review is difficult. Model builders could themselves
use our process as a ‘ready reckoner’ to check their own figures are correct.
Model builders and reviewers doing this checking could improve the quality of
the fault prediction work that is published.

Overall the approach that we present could significantly improve the qual-
ity of fault prediction studies and enable meta-analysis and bechmarking across
studies. Achieving this is very important as it will help this research area to
mature and grow. Such maturation could ultimately expand the industrial
uptake of fault prediction modelling.

References

Arisholm E, Briand LC, Fuglerud M (2007) Data mining techniques for build-
ing fault-proneness models in telecom java software. In: Software Reliability,
2007. ISSRE ’07. The 18th IEEE International Symposium on, pp 215 –224

Arisholm E, Briand LC, Johannessen EB (2010) A systematic and comprehen-
sive investigation of methods to build and evaluate fault prediction models.
Journal of Systems and Software 83(1):2–17

Baldi P, Brunak S, Chauvin Y, Andersen C, Nielsen H (2000) Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinfor-
matics 16(5):412–424

Batista G, Prati R, Monard M (2004) A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD Ex-
plorations Newsletter 6(1):20–29

Bowes D, Hall T, Gray D (2012) Comparing the performance of fault pre-
diction models which report multiple performance measures: recomputing
the confusion matrix. In: Proceedings of the 8th International Conference
on Predictive Models in Software Engineering, ACM, New York, NY, USA,
PROMISE ’12, pp 109–118

de Carvalho AB, Pozo A, Vergilio S, Lenz A (2008) Predicting fault proneness
of classes trough a multiobjective particle swarm optimization algorithm. In:
Tools with Artificial Intelligence, 2008. ICTAI ’08. 20th IEEE International
Conference on, vol 2, pp 387–394

de Carvalho AB, Pozo A, Vergilio SR (2010) A symbolic fault-prediction model
based on multiobjective particle swarm optimization. Journal of Systems
and Software 83(5):868–882

Catal C, Diri B, Ozumut B (2007) An artificial immune system approach for
fault prediction in object-oriented software. In: Dependability of Computer

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 209

26 David Bowes et al.

Systems, 2007. DepCoS-RELCOMEX ’07. 2nd International Conference on,
pp 238 –245

Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) Smote: synthetic mi-
nority over-sampling technique. Journal of Artificial Intelligence Research
16(1):321–357

Chawla NV, Japkowicz N, Kotcz A (2004) Editorial: special issue on learning
from imbalanced data sets. SIGKDD Explorations 6(1):1–6

Cruzes DS, Dyb̊a T (2011) Research synthesis in software engineering: A ter-
tiary study. Inf Softw Technol 53:440–455

Denaro G, Pezzè M (2002) An empirical evaluation of fault-proneness models.
In: Proceedings of the 24th International Conference on Software Engineer-
ing, ACM, New York, NY, USA, ICSE ’02, pp 241–251

Elish K, Elish M (2008) Predicting defect-prone software modules using sup-
port vector machines. Journal of Systems and Software 81(5):649–660

Forman G, Scholz M (2010) Apples-to-apples in cross-validation studies:
pitfalls in classifier performance measurement. SIGKDD Explor Newsl
12(1):49–57

Gray D, Bowes D, Davey N, Sun Y, Christianson B (2011) Further thoughts on
precision. In: Evaluation and Assessment in Software Engineering (EASE)

Gray D, Bowes D, Davey N, Sun Y, Christianson B (2012) Reflections on the
nasa mdp data sets. Software, IET 6(6):549 –558

Hall T, Bowes D (2012) The state of machine learning methodology in soft-
ware fault prediction. In: International Conference on Machine Learning and
Applications (ICMLA)

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic liter-
ature review on fault prediction performance in software engineering. Soft-
ware Engineering, IEEE Transactions on 38(6):1276 –1304

He H, Garcia E (2008) Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering pp 1263–1284

Jiang Y, Cukic B, Ma Y (2008) Techniques for evaluating fault prediction
models. Empirical Software Engineering 13(5):561–595

Kamei Y, Monden A, Matsumoto S, Kakimoto T, Matsumoto K (2007) The
effects of over and under sampling on fault-prone module detection. In:
Empirical Software Engineering and Measurement, 2007. ESEM 2007. First
International Symposium on, pp 196 –204

Kaur A, Sandhu PS, Bra AS (2009) Early software fault prediction using real
time defect data. In: Machine Vision, 2009. ICMV ’09. Second International
Conference on, accept, pp 242–245

Khoshgoftaar T, Seliya N (2004) Comparative assessment of software qual-
ity classification techniques: An empirical case study. Empirical Software
Engineering 9(3):229–257

Koru A, Liu H (2005) Building effective defect-prediction models in practice.
Software, IEEE 22(6):23 – 29

Kutlubay O, Turhan B, Bener A (2007) A two-step model for defect density
estimation. In: Software Engineering and Advanced Applications, 2007. 33rd
EUROMICRO Conference on, pp 322 –332

210 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 27

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classifica-
tion models for software defect prediction: A proposed framework and novel
findings. Software Engineering, IEEE Transactions on 34(4):485 –496

Ma Y, Guo L, Cukic B (2006) Advances in Machine Learning Applications
in Software Engineering, IGI Global, chap A statistical framework for the
prediction of fault-proneness, pp 237–265

Mende T, Koschke R (2010) Effort-aware defect prediction models. In: Soft-
ware Maintenance and Reengineering (CSMR), 2010 14th European Con-
ference on, pp 107–116

Menzies T, Dekhtyar A, Distefano J, Greenwald J (2007a) Problems with
precision: A response to ”comments on ’data mining static code attributes
to learn defect predictors’”. Software Engineering, IEEE Transactions on
33(9):637 –640

Menzies T, Greenwald J, Frank A (2007b) Data mining static code attributes
to learn defect predictors. Software Engineering, IEEE Transactions on
33(1):2 –13

Fenton N, Neil M (1999) A critique of software defect prediction models. Soft-
ware Engineering, IEEE Transactions on 25(5):675–689

Ostrand T, Weyuker E, Bell R (2004) Where the bugs are. In: ACM SIGSOFT
Software Engineering Notes, ACM, vol 29, pp 86–96

Ostrand T, Weyuker E (2007) How to measure success of fault prediction
models. In: Fourth international workshop on Software quality assurance: in
conjunction with the 6th ESEC/FSE joint meeting, ACM, pp 25–30

Pai G, Dugan J (2007) Empirical analysis of software fault content and fault
proneness using bayesian methods. Software Engineering, IEEE Transac-
tions on 33(10):675 –686

Pizzi N, Summers A, Pedrycz W (2002) Software quality prediction using
median-adjusted class labels. In: Neural Networks, 2002. IJCNN ’02. Pro-
ceedings of the 2002 International Joint Conference on, vol 3, pp 2405 –2409

Seliya N, Khoshgoftaar T, Zhong S (2005) Analyzing software quality with lim-
ited fault-proneness defect data. In: High-Assurance Systems Engineering,
2005. HASE 2005. Ninth IEEE International Symposium on, pp 89 –98

Sun Y, Castellano C, Robinson M, Adams R, Rust A, Davey N (2009) Using
pre & post-processing methods to improve binding site predictions. Pattern
Recognition 42(9):1949–1958

Turhan B, Kocak G, Bener A (2009) Data mining source code for locating
software bugs: A case study in telecommunication industry. Expert Systems
with Applications 36(6):9986–9990

Wang T, Li Wh (2010) Naive bayes software defect prediction model. In: Com-
putational Intelligence and Software Engineering (CiSE), 2010 International
Conference on, accept, pp 1–4

Yi L, Khoshgoftaar TM, Seliya N (2010) Evolutionary optimization of software
quality modelling with multiple repositories. Software Engineering, IEEE
Transactions on 36(6):852–864

Zeller A, Zimmermann T, Bird C (2011) Failure is a four-letter word: a parody
in empirical research. In: Proceedings of the 7th International Conference

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 211

28 David Bowes et al.

on Predictive Models in Software Engineering, ACM, New York, NY, USA,
Promise ’11, pp 5:1–5:7

Zhang H, Zhang X (2007) Comments on ”data mining static code attributes
to learn defect predictors”. Software Engineering, IEEE Transactions on
33(9):635 –637

Zhou Y, Leung H (2006) Empirical analysis of object-oriented design met-
rics for predicting high and low severity faults. Software Engineering, IEEE
Transactions on 32(10):771 –789

A List of Papers from which we have Re-Computed Confusion
Matrices.

E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining techniques for building fault-proneness models in

telecom java software. In ISSRE ’07. The 18th IEEE Intern Symp on, pages 215 –224, 2007.

E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive investigation of methods

to build and evaluate fault prediction models. Journal of Systems and Software, 83(1):2–17, 2010.

C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu. Putting it all together: Using socio-technical

networks to predict failures. In 20th International Symposium on Software Reliability Engineering, pages 109–119. IEEE,

2009.

L. Briand, W. Melo, and J. Wust. Assessing the applicability of fault-proneness models across object-oriented

software projects. Software Engineering, IEEE Transactions on, 28(7):706 – 720, 2002.

B. Caglayan, A. Bener, and S. Koch. Merits of using repository metrics in defect prediction for open source

projects. In FLOSS ’09. ICSE Workshop on, pages 31–36, 2009.

G. Calikli, A. Tosun, A. Bener, and M. Celik. The effect of granularity level on software defect prediction. In

Computer and Information Sciences, 2009. ISCIS 2009. 24th International Symposium on, pages 531 –536, 2009.

C. Catal, B. Diri, and B. Ozumut. An artificial immune system approach for fault prediction in object-oriented

software. In Dependability of Computer Systems, 2007. DepCoS-RELCOMEX ’07. 2nd International Conference on, pages 238

–245, 2007.

C. Cruz and A. Erika. Exploratory study of a uml metric for fault prediction. In Proceedings of the 32nd ACM/IEEE

Intern Conf on Software Engineering, pages 361–364. 2010.

A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz. Predicting fault proneness of classes trough a multiobjec-

tive particle swarm optimization algorithm. In Tools with Artificial Intelligence, 2008. ICTAI ’08. 20th IEEE International

Conference on, volume 2, pages 387–394, 2008.

A. B. de Carvalho, A. Pozo, and S. R. Vergilio. A symbolic fault-prediction model based on multiobjective

particle swarm optimization. J of Sys & Soft, 83(5):868–882, 2010.

G. Denaro and M. Pezzè. An empirical evaluation of fault-proneness models. In Proceedings of the 24th International

Conference on Software Engineering, ICSE ’02, pages 241–251, NY, USA, 2002. ACM.

L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of fault-proneness by random forests. In Software

Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium on, pages 417 – 428, 2004.

T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented metrics on open source software

for fault prediction. Software Engineering, IEEE Transactions on, 31(10):897 – 910, 2005.

Z. Hongyu. An investigation of the relationships between lines of code and defects. In Software Maintenance, 2009.

IEEE Intern Conf on, pages 274–283, 2009.

Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating fault prediction models. Empirical Software Engineering,

13(5):561–595, 2008.

S. Kanmani, V. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai. Object-oriented software fault predic-

tion using neural networks. Information and Software Technology, 49(5):483–492, 2007.

A. Kaur and R. Malhotra. Application of random forest in predicting fault-prone classes. In Advanced Computer

Theory and Engineering, 2008, Internl Conf on, 37–43, 2008.

A. Kaur, P. S. Sandhu, and A. S. Bra. Early software fault prediction using real time defect data. In Machine

Vision, 2009. Intern Conf on, pages 242–245.

T. Khoshgoftaar and N. Seliya. Comparative assessment of software quality classification techniques: An em-

pirical case study. Empirical Software Engineering, 9(3):229–257, 2004.

212 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 29

T. Khoshgoftaar, X. Yuan, E. Allen, W. Jones, and J. Hudepohl. Uncertain classification of fault-prone software

modules. Empirical Software Engineering, 7(4):297–318, 2002.

A. Koru and H. Liu. Building effective defect-prediction models in practice. Software, IEEE, 22(6):23 – 29, 2005.

O. Kutlubay, B. Turhan, and A. Bener. A two-step model for defect density estimation. In Software Engineering

and Advanced Applications, 2007. 33rd EUROMICRO Conference on, pages 322 –332, 2007.

Y. Ma, L. Guo, and B. Cukic. Advances in Machine Learning Applications in Software Engineering, chapter A statistical

framework for the prediction of fault-proneness, pages 237–265. IGI Global, 2006.

T. Mende and R. Koschke. Effort-aware defect prediction models. In Software Maintenance and Reengineering

(CSMR), 2010 14th European Conference on, pages 107–116, 2010.

T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. Software

Engineering, IEEE Transactions on, 33(1):2 –13, 2007.

O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno. Spam filter based approach for finding fault-prone software

modules. In Mining Software Repositories, 2007. ICSE ’07. International Workshop on, page 4, 2007.

O. Mizuno and T. Kikuno. Training on errors experiment to detect fault-prone software modules by spam

filter. In Procs European Software Engineering Conf and the ACM SIGSOFT symp on The foundations of software engineering,

ESEC-FSE ’07, pages 405–414, 2007. ACM.

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and static code

attributes for defect prediction. In Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th Intern Conf on, pages 181–190.

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy. Change bursts as defect predictors. In

Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium on, pages 309–318.

A. Nugroho, M. R. V. Chaudron, and E. Arisholm. Assessing uml design metrics for predicting fault-prone

classes in a java system. In Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on, pages 21–30.

G. Pai and J. Dugan. Empirical analysis of software fault content and fault proneness using bayesian methods.

Software Engineering, IEEE Trans on, 33(10):675–686, 2007.

A. Schröter, T. Zimmermann, and A. Zeller. Predicting component failures at design time. In Proceedings of the

2006 ACM/IEEE international symposium on Empirical software engineering, pages 18–27. ACM, 2006.

N. Seliya, T. Khoshgoftaar, and S. Zhong. Analyzing software quality with limited fault-proneness defect data.

In High-Assurance Systems Engineering, 2005. IEEE Internl Symp on, pages 89 –98, 2005.

S. Shivaji, E. J. Whitehead, R. Akella, and K. Sunghun. Reducing features to improve bug prediction. In

Automated Software Engineering, 2009. ASE ’09. 24th IEEE/ACM International Conference on, pages 600–604.

Y. Singh, A. Kaur, and R. Malhotra. Predicting software fault proneness model using neural network. Product-

Focused Software Process Improvement, 5089:204–214, 2008.

A. Tosun and A. Bener. Reducing false alarms in software defect prediction by decision threshold optimization.

In Empirical Software Engineering and Measurement, ESEM 2009. International Symposium on, pages 477–480.

B. Turhan and A. Bener. A multivariate analysis of static code attributes for defect prediction. In Quality

Software, 2007. Intern Conf on, pages 231 –237, 2007.

O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Haesen. Mining software repositories

for comprehensible software fault prediction models. Journal of Systems and Software, 81(5):823–839, 2008.

R. Vivanco, Y. Kamei, A. Monden, K. Matsumoto, and D. Jin. Using search-based metric selection and over-

sampling to predict fault prone modules. In Electrical and Computer Engineering, 2010, Canadian Conf on, pages 1–6.

L. Yi, T. M. Khoshgoftaar, and N. Seliya. Evolutionary optimization of software quality modeling with multiple

repositories. Soft Engin, IEEE Trans on, 36(6):852–864, 2010.

Y. Zhou and H. Leung. Empirical analysis of object-oriented design metrics for predicting high and low severity

faults. Software Engineering, IEEE Trans on, 32(10):771–789, 2006.

T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In Predictor Models in Software Engi-

neering, 2007. PROMISE’07, page 9, 2007.

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 213

30 David Bowes et al.

B Fault Prediction Experiment Algorithm

Data: n=10 the number of folds
Data: m=10 the number of times to repeat the experiment
Data: dsets<- c(”PC5”, ”KC1”,”CM1”,”KC3”,”KC4”,”MC1”,

”MC2”,”MW1”,”PC1”,”PC2”,”PC3”,”PC4”)
Data: learners<- c(rpart,rf,nb)
for runid in 1:m do

for each dataset in dsets do
create n stratified folds;
for each fold in 1:n do

testing<-foldn;
training<-dataset-foldn;
training′ <-smote(training);
randomise(training′);
tp[fold]<-c(training′,testing);

end
for each learner in learners do

for each fold in 1:n do
tuneLearner on tp[fold].training′;
model<-trainLearner on tp[fold].training′;
prediction<-evaluate model on tp[fold].testing;
resultrunid,dataset,learner,fold <-prediction;

end
resultrunid,dataset,learner <-aggregate(resultrunid,dataset,learner,fold);

end

end

end

Algorithm 1: Generating the prediction data using a 10 x 10-fold stratified
cross-validation experiment

214 Appendix B. Additional Papers

Title Suppressed Due to Excessive Length 31

C Re-Computing the Confusion Matrix′ Algorithm

Data: dsets<- c(”PC5”, ”KC1”,”CM1”,”KC3”,”KC4”,”MC1”,
”MC2”,”MW1”,”PC1”,”PC2”,”PC3”,”PC4”)

Data: learners<- c(rpart,rf,nb)
Data: performance-measures<- c(p, r, a, pf, d, t1, t2, er, spec)
Data: pre-requisiteperformance-measures<-

c({p, r, pf},{r, a, spec},{p, r, a}..{t1, t2, er})
Data: m=10 the number of times the experiment was repeated
for each pre-requisite-set in pre-requisite-performance-measures do

eval-performance-measures¡-performance-measures - pre-requisite-set;
for each dataset in dsets do

for each learner in learners do
for runid in 1:m do

compute TP,TN,FP,FN;
end
for each performance-measure in pre-requisite-set do

compute mean(performance-measure) over
resultdataset,learner,runid=1:m;
if performance-measure in pre-requisite-set then

compute stddev(performance-measure) over
resultdataset,learner,runid=1:m;

end

end
using mean performance-measures re-compute confusion-matrix′ ;
using confusion-matrix′ re-compute eval-performance-measures′;
compare mean of eval-performance-measures against
eval-performance-measures′;

end

end

end

Algorithm 2: Evaluating the conversion from performance measure to a
confusion matrix and then to other performance measures

B.6. DConfusion: A technique to allow cross study performance evaluation of fault prediction
studies. 215

	Introduction
	Aim
	Introduction
	Thesis and Research Questions
	Contributions to Knowledge
	Structure of this Dissertation

	A Summary of Defect Prediction
	Introduction
	What is a Defect?
	What is the Purpose of Defect Prediction?
	What is Defect Prediction?
	Code Defects

	Variables Used in Defect Prediction Studies
	Independent Variables
	Dependent Variables

	 Modelling Techniques
	Continuous Techniques
	Categorical Techniques

	Data Quality and Data Cleaning
	Model Building Approaches
	Building Generalisable Models
	Testing the Generalisability of Models

	Issues of Model Building Specific to Machine Learning
	Dealing with Datasets which are Unbalanced
	Machine Learning Model Optimisation
	Model Tuning
	Reordering the Training Data

	Measuring the Performance of a Model
	Measuring the Performance of Categorical Prediction Models

	Summary of Techniques
	Conclusion

	Contribution of Papers
	Introduction
	RQ1: Does the measurement protocol for the independent variables affect the metric values produced?
	RQ2: Is there an effective method for deriving the dependent variables for defect prediction?
	RQ3: Which factors (dataset, learner) affect the performance of defect prediction studies?
	RQ4: Are the results of machine learning studies reliable/trustworthy?
	Summary of my Contribution to each Main Paper

	Papers
	Paper 1: Calibrating program slicing metrics for practical use.
	Paper 2: The Inconsistent Measurement of Message Chains.
	Paper 3: Evaluating Three Approaches to Extracting Fault Data from Software Change Repositories.
	Paper 4: A Systematic Literature Review on Fault Prediction Performance in Software Engineering.
	Corrigendum

	Paper 5: Comparing the performance of fault prediction models which report multiple performance measures: recomputing the confusion matrix.
	Corrigenda

	Paper 6: The State of Machine Learning Methodology in Software Fault Prediction.

	Conclusion
	Reflection on the Research Questions
	Main Findings
	Analysis

	Future Work
	Statistical Analysis of the Impact of Different Measurement Protocols on being able to Predict Defects
	Measurement Protocols
	Reporting Protocols
	The Need for Replication Studies
	Ensuring Consistency in Machine Learning Approaches
	Building Repositories of Comparable Data
	Why not What!

	Final Remarks

	References
	Appendices
	Reviewers' Comments for promise2012
	Additional Papers
	Cohesion metrics: the empirical contradiction.
	Using program slicing data to predict code faults.
	Program slicing-based cohesion measurement: the challenges of replicating studies using metrics.
	Developing fault-prediction models: What the research can show industry.
	SLuRp: a tool to help large complex systematic literature reviews deliver valid and rigorous results.
	DConfusion: A technique to allow cross study performance evaluation of fault prediction studies.

