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Meteor science

Estimating meteor rates using Bayesian inference
Geert Barentserl'], Rainer Aritf] Hans-Erich Fréhlich?

A method for estimating the true meteor rate A from a small number of observed meteors n is derived. We
employ Bayesian inference with a Poissonian likelihood function. We discuss the choice of a suitable prior and
propose the adoption of Jeffreys prior, P(\) = A=%®  which yields an expectation value E(\) = n + 0.5 for any
n > 0. We update the ZHR meteor activity formula accordingly, and explain how 68%- and 95%-confidence

intervals can be computed.

1 Introduction

The formula commonly used to estimate the Zenithal
Hourly Rate (ZHR) of meteors as given in the Hand-
book of the International Meteor Organization (IMO;
Rendtel & Arlt, 2008) and used in many meteor activ-
ity graphs (e.g., Arlt & Barentsen, 2006), is given by:
Vot + 1

ith = — 1
with o= YTt ()

1
E(ZHR) = Mot 1

where ni¢ is the total number of meteors counted in a
number of observing intervals (nyt = Y, n;) and T is
the observing time weighted by a given correction factor
for each interval (T'= 3", Teg,i/Ci).

The use of ngo + 1 rather than ni. often surprises
observers, because it yields a ZHR which is larger than
zero even when no meteors are observed. Whilst Arlt
(1999) already indicated that ngot+1 is used to account
for the effects of small-number statistics, this paper will
explain the formula in more detail. However, contrary
to the earlier publications, we will suggest that no;+0.5
rather than n¢. + 1 is the most appropriate formula.

We will first describe the problem of small-number
statistics in §2. We then describe the solution using
Bayesian inference in §3, followed by a discussion on the
choice of the prior assumptions in §4. In §5 we explain
how confidence intervals may be computed, and in §6 we
provide examples. Finally in §7 we discuss the effect of
correction factors and in §8 we present the conclusions.

2 Problem description

As explained by Bias (2011) in a recent issue of this
journal, the observed meteor rate often tends to un-
derestimate the true meteor rate due to small-number
statistics. This may be understood using the follow-
ing example: if we would attempt to estimate the fre-
quency of winning the lottery based on a small group of
10 players, we are most likely to find that none of these
players have ever won and that the winning frequency
equals zero. Of course the true probability of winning
the lottery is slightly larger than zero, but the quan-
tity cannot reliably be obtained by extrapolating from
a small number of players.

An identical effect occurs when the ZHR is extrapo-
lated from a low number of meteors. Indeed, even when

zero meteors are observed in an interval of finite length,
the true average rate may well have been larger than
zero because we know that the interplanetary space is
not empty. The observer might have been unlucky, or
the interval might have been short with respect to the
true rate. Such situation may occur even during major
showers, e.g. when computing rates for 1-minute inter-
vals. The ZHR formula must take this into account in
order to produce reliable estimates in all situations.

3 Solution: Bayesian inference

A common technique used in statistics to estimate pa-
rameters in the presence of sparse data is called Bayesian
inference. In brief, one constructs a parameterized model
which one thinks describes the source of the data. The
probability of this model to have produced the data
is then computed for each possible set of parameters,
taking into account any known prior constraints on the
parameters. The resulting set of probabilities is called
the posterior distribution, from which expectation val-
ues and confidence intervals for the free parameters may
be derived.

In our case, the data is the observed meteor rate
n (in arbitrary time T'). Our only free model param-
eter is the true meteor rate A (i.e. ZHR). There are
many values of A which may explain a given n, each
having the conditional probability P(A|n). This nota-
tion means the probability of finding A given that one
has seen n meteors. This is the posterior probability
described earlier which may be estimated using the the-
orem by Bayes:

P = TS, @

where P(n|)) is the generative model, i.e. the known
probability to see n meteors for a given true rate A.
We may assume that meteors appear in a random way
following a Poissonian law for independent events:

Are~ A

P(nl)) = =

3)
The function P(n) serves to normalize the distribution
to unity, while P(\) expresses what we know about how
probable each of the possible true rates A are. This
function is called the prior and, ideally, should be a
probability distribution on its own. The challenge is to



2 WGN, THE JOURNAL OF THE IMO XX:X (200X)

decide what we can assume about P()\) beforehand?

4 Choice of the prior

The criteria for choosing a suitable prior P()\) is a sub-
ject of debate in the statistical community. On one
hand, one may decide to construct a prior based on pre-
vious evidence, for example the meteor activity in the
past decade. This is called an informative prior. On the
other hand, one may prefer a prior which contains only
vague or general information and is not biased towards
past observations. This is called an objective prior.

Whether or not it is appropriate to include previous
observations in the computation of meteor rates is a
philosophical question. However, given the intrinsically
variable nature of meteor showers, we suggest that an
objective prior is the only practical approach. We dis-
cuss the choice of such prior in what follows.

4.1  Uniform prior

A natural choice is a uniform prior P(\) = constant,
i.e. all values of \ are assumed to be equally likely. A
uniform prior leads to a distribution which cannot be
normalized, and is called an improper prior. Any limit
on ZHR, and be it very high, makes the distribution
normalizable though, that is, asymptotically a uniform
prior is not a problem.

Let us see what the uniform prior implies for the
inferred rate. The expectation value of the true meteor
rate is defined as the sum of every possible value of A
times its posterior probability. (In this paper, we also
use the terms “average” or “mean” as synonyms for
expectation value.) For a continuous quantity such as
A, the expectation value is a normalized integral over
all A\ which, for a uniform prior, reads:
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/OOA: e M dA
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= n+1.

E(})

Similarly, the error estimate for E(\) follows from the
mathematical definition of the variance, often referred
to as o2:
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The expectation value of the true activity rate is
thus given by (n + 1) with spread of the distribution
of 0 = v/n+ 1. These quantities are then simply di-
vided by the weighted time 7" to obtain the ZHR. This
explains the formula given in the IMO Handbook.

4.2  Exponential prior

A uniform prior may not be ideal if we want to express
the fact that very large rates are very unlikely. Almost
all rates ever obtained are below say 1000 meteors per
hour. A suitable prior will decrease with rate, and it is
mathematically convenient to use power functions like

(6)

where 0 < a < 1. Such a power-law has the advantage
that we can use I'-functions for the derivation of E(\).
The resulting expectation value now involves the prior
and is

P(\) =1/x17,

AP(A)P(n|\)dX
E(\) = :

o0
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(7)

where the lower integral is to normalize the posterior
distribution. Now, let’s make use of the I'-functions for

which
/ Ae N\
0

holds. We do not need to know how I' is computed, we
only need its properties to derive the expectation value:

nl=nl'(n)=T(n+1) (8)
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Similarly, the variance is:
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= (n+14+a)(n+a)-2n+a)?+(n+a)
= n+a, (10)

The expectation value of the true activity rate is
thus given by (n + «) with a spread ¢ = v/n + «, for
a given prior 1/A1=%. Again, these priors are normaliz-
able for 0 < « < 1 by enforcing a limitation of the valid
range.

One question remains: which is the most appropri-
ate value to adopt for a? On one hand, the uniform
prior (o = 1) yields the expectation value n + 1, which
is likely to overestimate the meteor rate due to assump-
tion that any arbitrarily large rate is equally likely as
the zero rate. On the other hand, the prior 1/A (a = 0)
yields a “traditional” extrapolation E(\) = n, which is
likely to underestimate the rate as explained previously.
It appears appropriate to adopt a prior somewhere in-
between 0 < a < 1.

4.3 Jeffreys prior; a = 0.5
The problem of choosing a suitable prior for a Pois-
sonian process exists in other fields (e.g. radioactive
decay counts, neutrino detections). An axiomatic solu-
tion has previously been proposed by Harold Jeffreys.
He required that a prior should be “invariant under
reparameterization”, i.e. a prior should not depend on
the variable investigated (Jeffreys 1946, 1961; Kass &
Wasserman 1996). One could, for example, be inter-
ested in the rate A as well as in the mean time between
events p = 1/X. The priors for both expectation values
should be compatible. For general relations between
different quantities, the requirement of compatibility is
written mathematically as

P(N)dA = P(u)dp. (11)
For a Poissonian distribution, such a general compati-
bility is achieved for a prior a« = 0.5. In this case, the
estimate is not specific to either computing the rate or
the mean time lapse or something else.

Because there are no further statistical principles to
decide which prior is to be preferred, we suggest the use
of Jeffreys prior

P(A\) =1/A"2, (12)
for future estimates of the rate. The expectation value
for the meteor rate is then

E(A\)=(n+0.5)++vn+0.5. (13)
An illustration of the posterior distribution P(A|n) un-
der the assumption of Jeffreys’ prior is shown in Figure 1
for different values of n.

Note that in most cases, when n is large (n > 0.5),
the differences between the various priors are negligable.

5 Confidence intervals

The standard deviation o = y/n + 0.5 characterizes the
spread in the posterior distribution around the expec-
tation value. In the case of a Gaussian distribution,

the standard deviation corresponds to a confidence in-
terval (i.e. the 68%-confidence interval of a Gaussian
distribution is located between —1c and +1o0 from the
mean).

However, the posterior P(Aln) does not follow a
Gaussian shape and is more similar to a Poissonian
distribution (though a Gaussian shape is approached
for large n). The posterior is asymmetric with a tail
towards high meteor rates, which makes it somewhat
misleading to characterize the uncertainty with a single
number. A better way to characterize the uncertainty
is to compute the (asymmetric) error margins of the
68%-confidence interval. This may be done as follows.

Given the posterior distribution

)\n—1+o¢e—>\

PO = Foray

(14)
The corresponding cumulative distribution function is
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with the incomplete I' function which for integers n > 0
can be computed as

n—1 1k
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(16)

By integrating the cumulative distribution function nu-
merically for different probabilities (P’ = 2.5%, 16%,
84%, and 97.5%), we obtain useful quantiles which cor-
respond to the central 68%- and 95%-confidence inter-
vals.

These quantiles are shown in Table 1, given as a mul-
tiplier of the true rate. For example, after computing
the ZHR, one may look up the corresponding relative
margins for a given ny.; in Table 1 and obtain the 68%-
interval by computing ZHR - des 10w (negative margin)
and ZHR - dgs high (positive margin).

It is interesting to note that the 68% interval ap-
proaches symmetry from not 2 3, while the 95% inter-
val is more sensitive to the wings and remains asym-
metric even beyond ngo > 1000.

For n; larger than about 30, the 68%-interval ap-
proaches a Gaussian shape and the margins can be ap-

proximated using ¢ = v/niot + 0.5/T (= ZHR/v/n¢o¢ + 0.5).

Finally, we remind the reader that the margins in
Table 1 only represent the uncertainty which is due to
Poissonian statistics. The true uncertainty of a ZHR es-
timate is likely to be somewhat larger due to observing
errors (e.g., uncertainty in the limiting magnitude de-
termination). Fortunately, the impact of such observing
errors is likely to be small when data from a sufficient
number of independent observers is averaged.

6 Examples

Now let us consider the formula using a few examples.
If one meteor was seen in five minutes, the rate equals
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Figure 1: Posterior distribution P(A|n) of the true meteor rate under Jeffreys’ prior (a = 0.5), plotted for different
observed rates (n = 0,3,6). Vertical lines indicate the position of the expectation values E(A) = n + 0.5.

Table 1: Margins of the 68%- and 95%-confidence in-
tervals, given as multipliers to the ZHR. After comput-
ing ZHR = (ntot + 0.5)/T, the £-values can be ob-
tained by computing ZHR - dgs 10w (negative margin)
and ZHR - 0g3 high (positive margin) for the appropriate

Ntot -

Mot 095low  068Jow  068,high 095 high
0 -1.00 -0.96 40.99 +4.02

1 -093 -0.72 40.73 4212

2 -083 -0.59 +40.59 +1.57

3 -0.76 +0.51 +1.29

4 -0.70 +0.45 +1.11

5 -0.65 +0.41 +0.99

6 -0.61 +0.38 +0.90

7 -0.58 +0.36 +0.83

8 -0.56 +0.34 +0.78

9 -0.53 +0.32 +0.73
10 -0.51 +0.30 +0.69
11 -0.49 +0.29 +-0.66
12 -0.48 +0.28 +0.63
13 -0.46 +0.27 +0.60
14 -0.45 +0.26 +0.58
15 -0.43 +0.25 +0.56
16 -0.42 +0.24 +0.54
17 -0.41 +0.24 +0.52
18 -0.40 +0.23 +0.50
19 -0.39 +0.22 +0.49
20 -0.39 +0.22 +0.48
22 -0.37 +0.21 +0.45
24 -0.36 +0.20 +0.43
26 -0.34 +0.19 +0.42
28 -0.33 +0.19 +0.40
30 -0.32 +0.18 +0.38

E(ZHR) = 2405 = 18.071%5. When zero meteors are

seen during five minutes, the rate equals ZHR = 6.07273.
The error margins are actually so close to symmetric
that we can always give a single value for the error bars,

ie. ZHR = 18 +£ 13 and ZHR = 6 £ 6 respectively.
Although the rounded margins suggest so, the lower
margin is not zero!

If zero meteors were seen in four hours, the rate
equals to ZHR = 0.12575-125 Tndeed, rates can only be
constrained to values close to zero when no meteors are
observed for a very long period. A more “normal” case
for a minor shower would be say a total of 12 meteors
in a total of 4 hours, delivering ZHR = 3.1 £0.9. A
larger number of meteors of say 34 meteors in 11 hours
gives simply ZHR = 3.1 & 0.5 with the above error for
large meteor numbers.

7 The influence of correction factors

In the previous sections we have ignored the specific
correction factors which are used to obtain a standard-
ized ZHR (e.g. to account for limiting magnitude and
radiant elevation). Given two rates; one without cor-
rection, A and one with correction, A, we have assumed
there is a factor f which does not depend on the rate:

fa=2A (17)
Indeed, for a set of IV observing periods being combined
in one expectation value for A, all having different cor-
rection factors f;, we obtain

T e AN U™ = 52 i g
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- nl'ng'nN
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(X fo)" e T T(nuor + )
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=S5 (18)

In other words, our method may be applied regardless
of the values of the correction factors.
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8 Discussion and conclusion

In conclusion, we recommend to compute ZHR values
using the term n + 0.5:

(ntot + 05) 7"6'5_1111

E(ZHR) = 19
( ) Teff sin hR ’ ( )

with error margins:
AzZHR — —ZHR (20)

VNt + 0.5 ’

Note that for niot < 30, the error margins listed in
Table 1 should be used instead of Eqn. to obtain a
68%-confidence interval.

This method of computing the ZHR adds a small
bias taking into account the asymmetry of possible rates.
In particular, it is essential to adopt the method when-
ever rates are based on less than ~ 10 meteors. Such sit-
uations commonly occur when a major shower is anal-
ysed using very short (e.g. 1-minute) intervals. When
computing a rate based on a number of observing peri-
ods (indexed with @), never ever compute the rate from
n; + 0.5 for individual periods and average them after-
wards. A more accurate estimate is based on the sum
of meteors from these observing periods, and hence on
ntot + 0.5. Finally, it is, of course, much better to have
enough observations and large enough n, that the sub-
tleties of choosing a good prior are no longer important,
ie. Ngot > 0.5.

Comprehensive information about Bayesian infer-
ence in general and the choice of priors can be found
in e.g. Kass &Wasserman (1996) and Bolstad (2007;
Chapter 10 for priors).
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