
Optimizing Compilation with Preservation of Structural Code
Coverage Metrics to Support Software Testing

Raimund Kirner1∗, Walter Haas2

1School of Computer Science, University of Hertfordshire, Hatfield, United Kingdom
2Institute of Computer Engineering, Technische Universität Wien, Vienna, Austria

SUMMARY

Code-coverage-based testing is a widely-used testing strategy with the aim of providing a meaningful
decision criterion for the adequacy of a test suite. Code-coverage-based testing is also mandated for the
development of safety-critical applications, for example, the DO178b document requires the application of
the modified condition/decision coverage (MCDC).
One critical issue of code-coverage testing is that structural code coverage criteria are typically applied
to source code while the generated machine code may result in a different code structure due to code
optimizations performed by a compiler. In this work we present the automatic calculation of coverage
profiles describing which structural code-coverage criteria are preserved by which code optimization,
independently of the concrete test suite. These coverage profiles allow to easily extend compilers with
the feature of preserving any given code-coverage criteria by enabling only those code optimizations that
preserve it. Furthermore we describe the integration of these coverage profile into the compiler GCC.
With these coverage profiles we answer the question of how much code optimization is possible without
compromising the error-detection likelihood of a given test suite. Experimental results conclude that the
performance cost to achieve preservation of structural code coverage in GCC is rather low. Copyright c⃝
2011 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: structural code coverage, source-level test-data generation, coverage preservation

1. INTRODUCTION

Testing is an indispensable process to reduce to reliability of software errors. Our focus here is
to address the challenges associated with portable test-data generation. We assume that test-data
generation is guided by structural code coverage, for example, statement coverage, condition coverage,
or decision coverage. Structural code-coverage on its own is not a very robust coverage metric for
software testing, but it is a useful complementary metric that indicates program locations of weak
coverage by test data [1].

Using source-code based derivation of test data, it is the challenge to ensure that the test data fulfill
an analogous structural code-coverage metric at the machine-code level as they achieve at source-code
level. We call it analogous code-coverage metric, because several structural code-coverage metrics
make no sense at machine-code level, because, for example, the grouping of several conditions to a

∗Correspondence to: University of Hertfordshire, Hatfield, AL10 9AB, UK. E-mail: r.kirner@herts.ac.uk

Contract/grant sponsor: “Sustaining Entire Code-Coverage on Code Optimization” (SECCO)/Austrian Science Fund
(Fonds zur Förderung der wissenschaftlichen Forschung); contract/grant number: P20944-N13. & “Asynchronous and
Dynamic Virtualization through performance ANalysis to support Concurrency Engineering” (ADVANCE)/IST-FP7;
contract/grant number: IST-2010-248828.

1 for (i=0; i<n; i++)
2 {
3 a[i] = b[i];
4 }

⇒

1 for (i=0; (i+1)<n; i+=2)
2 {
3 a[i] = a[i];
4 a[i+1] = a[i+1];
5 }
6 if ((n%2)==1 && n>0)
7 {
8 a[i] = b[i];
9 i++;
10 }

Figure 1. Code example for loop unrolling with unrolling factor k = 2: Creating two instances of loop body
inside loop with extra code for the case that the iteration count of the original loop is not a multiple of k.

decision is a source-level concept that is not available at machine-code level. If a compiler performs
complex code optimizations that, for example, introduce new paths or change the reachability of some
statements [2], this may disrupt the structural code coverage achieved at the original program.

To motivate the problem, lets look at loop unrolling as shown in Figure 1. In the given example, a
test suite with {n=2} is sufficient to achieve statement coverage on the original code. However, after
loop unrolling, the same test suite will fail to achieve statement coverage, as the remainder iterations at
line 8 are not executed. Thus the transformed code contains statements that will not be tested with this
test suite. Of course, the effect of the transformation on coverage preservation depends on the concrete
test suite, e.g., a test suite with {n=3} will achieve full statement coverage of the transformed code.
However, assuming zero-knowledge about the test suite, the example already shows that loop unrolling
does not guarantee to preserve statement coverage.

We propose an approach toward the preservation of structural code coverage when transforming the
program [3, 4]. For this we use a so-called coverage profile, i.e., a pre-calculated table that specifies for
each structural code-coverage metric which code transformations of the compiler guarantee to preserve
it for all possible input programs. This program-independence is an important benefit compared to the
effort needed for testing-based correctness, e.g., as proposed for compiler debugging [5].

Such a coverage profile can be easily integrated into a compiler such that only those code
transformations are enabled that preserve the chosen structural code coverage. The conceptual
integration of coverage profiles into a compiler is shown in Figure 2. With this approach it is not
necessary anymore to trouble about code instrumentation of the optimized code in order to measure
the coverage. Instead one can measure the coverage for the non-optimized program, as our method then
guarantees coverage preservation for the optimized program. With these coverage profiles we answer
the question of how much code optimization is possible without compromising the error-detection
likelihood of a given test suite.

Besides the functional software testing, the preservation of structural code coverage is also of high
interest for hybrid timing analysis, i.e., an approach to determine the timing behavior of a program
based on the combination of execution-time measurements and program analysis [6, 7].

In our previous work we have formalized the structural code coverage metrics and developed
necessary and sufficient conditions for the preservation of different structural code coverage
metrics [4].

In this article we focus on the abstract specification of code transformations and on the calculation of
the coverage profiles and its integration into a compiler. Section 2 discusses related work. In Section 3
we describe some basic concepts of program structure and structural code coverage criteria. In
Section 4 we recapitulate the coverage preservation rules we introduced in [4]. The main contributions
of this article start with Section 5. Here we describe the framework to calculate the coverage profiles. In
Section 6 we demonstrate the calculation of coverage profiles with concrete examples. The integration
of the coverage preservation into the GCC compiler and the performance evaluation is described in
Section 7. Finally, Section 8 concludes this paper.

Intermediate

Code
Intermediate

Object Code

Source Code Selection
Coverage

Coverage Preservation Guard

Coverage−Preserving Compiler

Optimization X
Code Coverage

Profile X

Code

Figure 2. Application of a Coverage Profile

2. RELATED WORK

Structural coverage criteria are used as a supplementary criterion to monitor the progress of
testing [38]. The DO178b document introduces the modified condition-decision coverage (MCDC)
as a supplementary criterion for testing systems of safety-criticality level A [1]. Vilkomir proposes
solutions to overcome some weaknesses of MCDC [39]. Vilkomir and Bowen have formally modeled
structural code-coverage criteria using the Z notation [40]. The formalization we present in this article
is basically equivalent, with the difference that we also support hidden-control flow [41], which is
necessary to model code coverage for languages like ANSI C or ADA. Further, our notation is more
compact, which has shown to be helpful for developing coverage-preservation criteria.

Model-based development aims to use high-level system representations within the system
engineering process. For example, the Object Management Group proposes the Model-Driven
Architecture, which explicitly differentiates between platform-independent and platform-specific
models [42]. Models can be used to automatically generate source code. Another model-based
approach is model-based testing where abstract models are used to guide the generation of test
data [43, 44]. Using models to verify the correctness of the system requires evidence of the model’s
correctness [45].

Directly related to our work is the relationship of achieved model coverage and the resulting code
coverage. Baresel et al. analyzed this relationship empirically, finding some correlation between the
degree of model coverage and the resulting degree of code coverage [46]. Rajan et al. have shown for
MCDC that the correlation of the degree of model coverage and the degree of code coverage depends
on the code generation patterns [47]. With the approach presented in this article we are able to do better
than relying on accidental coverage correlations, which makes our approach a significant improvement
on testing safety-critical systems.

Elbaum et al. empirically studied the preservation of code coverage for software evolution with
different change levels. They concluded that even relatively small modifications in the software may
impact the coverage in a way that is hard to predict [48]. Their results also motivate our work for the
preservation of code coverage.

A method complementary to our approach is described by Harman et al. They use testability
transformation to produce a transformed program, which is then used by a test-data generator to
improve its ability of generating test data for the original program [49].

A problem related to the preservation of code coverage during code transformation is the compiler
correctness testing by Jaramillo et al. [5]. But while in the testing scenarios a high effort is required to
ensure preservation of certain properties, our approach based on coverage profiles ensures preservation
by design, i.e., it does not need any subsequent testing to show preservation of code coverage.

3. STRUCTURAL CODE COVERAGE FOR SOFTWARE TESTING

Structural code-coverage criteria are testing metrics to quantify the control-flow coverage of the
program for a given set of test data. In this section we describe a few exemplary structural code-
coverage metrics to show the calculation of structural code coverage preservation (SCCP) profiles.

3.1. Basic Definitions

In the following we give a list of basic definitions that are used to formally describe properties of
structural code coverage and conditions for preserving structural code coverage:

Program P We want to study whether structural code coverage is preserved for a program P
when applying some code transformations. P1 is used to denote the program code before these
transformations, and P2 for the program code after these transformations.

Basic block of a program P is a code sequence of maximal length with a single entry point at the
beginning and with the only allowed occurrence of a control-flow statement at its end. We denote the
set of basic blocks in a program P as B(P).

Control-flow graph (CFG) is used to model the control flow of a program [8]. A CFG G =
⟨N,E, s, t⟩ consists of a set of nodes N representing basic blocks, i.e., N = B(P), a set of edges
E : N ×N representing the control flow (also called control-flow edges), a unique entry node s, and a
unique end node t. Note that the restriction to a unique end node has been chosen for simplicity reasons
only; a formulation of coverage preservation with multiple end nodes would be straight-forward.

Program scope of a programP is a fragment of P with well-defined interfaces for entry and exit. We
denote the set of program scopes in a program P as PS(P). The general idea of program scopes is to
define structural code coverage at a coarser level than single program instructions. Program scopes in its
generic form are sets of program subpaths, where a subpath is any path within a program starting from
an arbitrary program node leading to another arbitrary program node. The individual sets or program
subpaths may even overlap. However, the concrete definition of a program scope is application specific.
For example, we have used different definitions of program scope to trade the number of required test
data against the number of required instrumentation points [9, 10].

Scoped path of a program scope ps is a sequence of control-flow edges from an entry point of the
scope to an exit point of the scope. In case of nested program scopes, the whole inner program scope
is a single block in the paths of the outer program scope. A scoped path of a program scope ps is
uniquely represented by its starting basic block and the necessary TRUE/FALSE evaluation result of all
conditions along the scoped path. We denote the set of scoped paths in a program scope ps as PP(ps).
The paths within a program P , i.e., the scoped paths where the program scope subsumes the whole
program, is denoted as PP(P).

Decision is a Boolean expression composed of logic predicates that are combined by Boolean
operators. Regarding the control flow, a decision is composed of one or more basic blocks. We denote
the set of decisions of a program P as D(P).

There are programming languages, where decisions are hidden by an implicit control flow. For
example, in ISO C due to the short-circuit evaluation the following statement a = (b && c);
contains the decision (b && c). The short-circuit evaluation of ISOC states that the second argument
of the operators && and || is not evaluated if the result of the operator is already determined by the
first argument. The correct identification of hidden control flow is important, for example, to analyze
decision coverage. Further details with respect to code coverage can be found in an earlier description
of the approach [4].

Condition is an logic predicate. The lowest-level predicates of a decision’s Boolean expression are
called conditions. A condition is composed of one or more basic blocks. If a condition occurs more
than once in the decision, each occurrence is a distinct condition [11]. We denote the set of conditions
of a decision d as C(d). The set of all conditions within a program P is denoted as C(P).

Input data ID defines the set of all possible valuations† of the input variables of a program.

Test data TD defines the set of valuations of the input variables that have been generated with
structural code coverage analysis done at source-code level. Since exhaustive testing is intractable
in practice, TD is assumed as a true subset of the program’s input data space ID: TD ⊂ ID. If we
would aim for exhaustive testing (TD = ID) there would be no challenge of structural code-coverage
preservation.

Note that a test case consists, besides the test data, also of the expected output behavior of the
program. Since we are primarily concerned with the preservation of structural code coverage with
consider only the test data.

Reachability valuation IVR(x) defines the set of valuations of the input variables that trigger the
execution of expression x, where x can be a condition, decision, or a basic block.

Satisfiability valuation IVT (x), IVF (x) defines the sets of valuations of the input variables that
trigger the execution of the condition/decision x with a certain result of x: IVT (x) is the input-data
set, where x evaluates to TRUE and IVF (x) is the set, where x evaluates to FALSE. The following
properties always hold for IVT (x), IVF (x):

IVT (x) ∩ IVF (x) ⊇ ∅

IVT (x) ∪ IVF (x) = IVR(x)

Note that IVT (x) ∩ IVF (x) can be different to the empty set in case of a surrounding
loop, allowing a single input-data item to cause both an evaluation to TRUE and to FALSE.

Consider the following example of ISO C code to get an intuition about the meaning of the
satisfiability valuations:

void f (int a,b) {
if (a==3 && b==2)

return 1;
return 0;

}

†Valuation of a variable means the assignment of concrete values to it. The valuation of an expression means the
assignment of concrete values to all variables within the expression.

For this code fragment we assume

IVR(a==3) = {⟨a, b⟩ | a, b ∈ int}

From this assumption it follows that

IVR(b==2) = {⟨3, b⟩ | b ∈ int}

(and not the larger set {⟨a, b⟩ | a, b ∈ int} due to the hidden control flow caused by the short-circuit
evaluation of ISO C [4]). From this it follows that

IVT (b==2) = {⟨3, 2⟩}

Only those input data that trigger the execution of condition b==2 and evaluate it to TRUE are within
IVT (b==2). With ⟨3, 2⟩ the conditions a==3 and b==2 are both executed and evaluated to TRUE.
Further, it holds that

IVF (b==2) = {⟨3, b⟩ | b ∈ int ∧ b ̸= 2}

The definitions of IVR(x), IVT (x), and IVF (x) depend on whether the programming language has
hidden control flow, for example, the short-circuit evaluation of ISO C [12].

3.2. Statement Coverage (SC)

Statement coverage (SC) requires that every statement of a program P is executed at least once.
Statement coverage alone is quite weak for functional testing [13] and should best be considered as
a minimal requirement. Using above definitions, we can formally define SC as follows:

∀b∈B(P). (TD ∩ IVR(b)) ̸= ∅ (1)

Note that the boundary recognition of basic blocks B(P) can be tricky due to hidden control-flow. A
statement in a high-level language like ISO C can consist of more than one basic block. For example,
the ISO C statement f=(a==3 && b==2); consists of multiple basic blocks due to the short-circuit
evaluation order of ISO C expressions.

Source-line coverage is sometimes used as an alternative to SC in lack of adequate testing tools.
However, without the use of strict coding guidelines, source-line coverage is not a serious testing
metrics, as it is typically possible to write whole programs of arbitrary size within one source line.

3.3. Condition Coverage (CC)

Condition coverage (CC) requires that each condition of the program has been tested at least once with
each possible outcome. It is important to mention that CC does not imply DC. A formal definition of
CC is given in Equation 2.

∀c∈C(P). (IVT (c) ∩ TD) ̸= ∅ ∧ (IVF (c) ∩ TD) ̸= ∅ (2)

Above definition of CC requires in case of short-circuit operators that each condition is really
executed. This is due the semantics of IVT (),IVF (). However, often other definitions are used that
do not explicitly consider short-circuit operators (as, for example, described by Hayhurst et al. [14]),
thus having in case of short-circuit operators only a “virtual” coverage since they do not guarantee that
the short-circuit condition is really executed for the evaluation to TRUE as well as for the evaluation to
FALSE.

For example, the following ISO C code fragment if(a<=3||a>=5) with the assumed input
data {⟨a⟩ | a ∈ {3, 5}} could be identified as incomplete CC according to Equation 2, but would be
undefined given the description of CC used by Hayhurst et al. [14].

3.4. Decision Coverage (DC)

Decision coverage (DC) requires that each decision of a program P has been tested at least once with
each possible outcome. Decision coverage is also known as branch coverage or edge coverage.

∀d∈D(P). (IVT (d) ∩ TD) ̸= ∅ ∧ (IVF (d) ∩ TD) ̸= ∅ (3)

3.5. Modified Condition/Decision Coverage (MCDC)

Modified Condition/Decision Coverage requires to show that each condition can independently affect
the outcome of the decision [1]. Thus, having n conditions in a decision, n+ 1 test cases are required
to achieve MCDC. Note that MCDC implies DC and CC. A formal definition of MCDC is given in
Equation 4 based on the set of input test data TD. It requires that for each condition c of a decision d
there exists two test vectors such that the predicate symbol unique Cause(c, d, td1, td2) holds, which
ensures that the two test vectors show different outcomes for c as well as d but the same outcomes for
all other conditions within d. This is exactly how MCDC is described above.

∀d∈D(P) ∀c∈C(d) ∃td1, td2∈TD. unique Cause(c, d, td1, td2) (4)

unique Cause(c1, d, td1, td2) ⇒ control Expr(td1, td2, c1)∧

control Expr(td1, td2, d)∧

∀c2∈C(d). (c2 ̸= c1)→

is invariantExpr ({td1, td2}, c2)

(5)

The predicate symbol control Expr(td1, td2, x) tests whether one of the test data td1, td2 is a member
of the input data set IVT (x) and the other one a member of the input data set IVF (x). If this predicate
symbol is TRUE it is guaranteed that the expression x evaluates to both, TRUE and FALSE.

control Expr(td1, td2, x) ⇒ (td1∈IVT (x) ∧ td2∈IVF (x)) ∨

(td2∈IVT (x) ∧ td1∈IVF (x))

The predicate symbol is invariantExpr (ID , x) tests whether the input-data set ID ⊆ ID provides a
constant outcome for the evaluation of x. Actually, the predicate symbol is invariantExpr (ID , x)
is used to test whether there exists a test-data subset {td1, td2} for a given condition, such that the
results of all other conditions remain unchanged. Thus, this predicate symbol is used to ensure that
each condition can independently control the output of the decision.

is invariantExpr (ID , x) ⇒ (ID ∩ IVT (x) = ∅) ∨ (ID ∩ IVF (x) = ∅);

Above definition of MCDC is the original definition given in the RTCA/DO178b document [1],
currently also called Unique-Cause MCDC. For the sake of code readability people often write their
code in a deliberately redundant way such that 100% Unique-Cause MCDC cannot be achieved [11].
In order to be able to achieve 100% coverage, some weaker forms of MCDC have been specified:
Unique-Cause + Masking MCDC and Masking MCDC. These alternative definitions of MCDC are
described in [4]. For the sake of simplicity, in this article we only focus on the original definition of
MCDC, i.e., Unique-Cause MCDC, as defined above. Extending above formal definition of MCDC
to Unique-Cause + Masking MCDC or Masking MCDC is straight-forward. One has to exchange
the predicate unique Cause(c1, d, td1, td2) by another predicate that formalizes the semantics of the
alternative MCDC criterion.

As a comment on MCDC, even though MCDC also implies DC, there are cases where DC can
find an error with a certain likelihood while MCDC can never find it. This is due to the specific way
MCDC resembles DC [15]. Furthermore Kandl et al. have shown that the error detection performance
of MCDC is quite different for three error categories [16].

3.6. Multiple Condition Coverage (MCC)

Multiple condition coverage (MCC) requires that each possible combination of outcomes of the
conditions of each decision is executed at least once. MCC implies both DC and CC. MCC is not
considered of high practical relevance, as it requires a rather large number of test cases: for n conditions
in a decision 2n tests are necessary.

3.7. Path Coverage (PC)

Path Coverage (PC) requires that each path of a program P has been tested at least once. Using our
above definitions, we can formally define PC as follows:

∀pp∈PP(P) ∃td∈TD. (IVR(BS(pp)) ∩ {td}) ̸= ∅ ∧

∀cT∈CT (pp). (IVT (cT) ∩ {td}) ̸= ∅ ∧

∀cF∈CF (pp). (IVF (cF) ∩ {td}) ̸= ∅

(6)

Since the number of paths within a program typically grows exponentially with the program size (PC
is even stronger than MCC), we do not consider PC to be a coverage metric of wide use in practice.
However, due to reasons explained in Section 4.1, we will use the preservation criterion of PC as a safe
approximation for the preservation criterion of scoped path coverage.

3.8. Scoped Path Coverage (SPC)

The scope of most of the structural code coverage metrics discussed so far basically spanned CFG edges
between basic blocks (SC, CC, DC, MCDC, MCC), except PC, which is actually spanning across the
whole program.

In order to define structural code coverage that goes beyond single CFG edges, but is well below the
complexity of PC, we have defined the concept of program scopes (see Section 3.1).

Scoped Path Coverage (SPC) requires that each path within a program scope is tested at least
once. Thus, there must be a test datum that covers all basic blocks along that path. Using our above
definitions, we can formally define SPC as follows:

∀ps∈PS(P) ∀pp∈PP(ps) ∃td∈TD. (IVR(BS(pp)) ∩ {td}) ̸= ∅ ∧

∀cT∈CT (pp). (IVT (cT) ∩ {td}) ̸= ∅ ∧

∀cF∈CF (pp). (IVF (cF) ∩ {td}) ̸= ∅

(7)

Note, that the condition “(IVR(BS(pp)) ∩ {td}) ̸= ∅” of Equation 7 ensures that in the pathological
case of having a program scope that is completely free of conditions, coverage of the only single path
in the program scope is guaranteed.

The number of required tests for SPC depends, besides the program complexity, also on the concrete
definition program scopes, which can be defined in a free way to fit particular application needs.

4. PRESERVATION OF STRUCTURAL CODE COVERAGE

The challenge of structural code-coverage preservation is to ensure for a given structural code coverage
of a program P1 that this code coverage is preserved while the program P1 is transformed into another
program P2. This scenario is shown in Figure 3. Of course if a program will be transformed, also the
sets of basic blocks B or the set of program decisions D may get changed. As shown in Figure 3, the
interesting question is whether a concrete code transformation preserves the structural code coverage
of interest.

When transforming a program, we are interested in the program properties that must be maintained
by the code transformation such that a structural code coverage of the original program achieved by
any test-data set TD is preserved at the transformed program. Based on these properties one can adjust

coverage(P1,TD) ≡ coverage(P2,TD)

(PS 1, B1, D1)

Program P1

(PS 2, B2, D2)

Program P2
transformation

?

Figure 3. Coverage-Preserving Program Transformation

a source-to-source transformer or a compiler to use only those optimizations that preserve the intended
structural code coverage. These coverage-preservation properties to be maintained have to ensure that
whenever the code coverage is fulfilled at the original program by any test suite TD then this coverage
is also fulfilled at the transformed program with the same test data:

∀TD. coverage(P1,TD) =⇒ coverage(P2,TD) (8)

It is important to note that this characteristic of coverage preservation is independent of the concrete
test suite TD. In the following we present the coverage preservation criteria for PC and SPC. The
coverage preservation criteria for SC, CC, DC, and MCDC are described in [4]. We use these coverage
preservation criteria together with abstract descriptions of the code transformations for the calculation
of the coverage profiles.

4.1. Preserving Path Coverage (PC)

To define a coverage preservation criterion for Path Coverage (Theorem 4.1) we use the auxiliary
predicate is CondTF enclosed(ID , CT , CF) given in Equation 9.

The predicate is CondTF enclosed(ID , CT , CF) is only True if there is at least one condition from
the set of conditions CT whose true-satisfiability valuation is a subset of the input data ID or there is at
least one condition from the set of conditions CF whose false-satisfiability valuation is a subset of the
input data ID . The predicate is CondTF enclosed is used for the coverage preservation criterion of
SPC to test whether for a condition in the transformed program with true/false-satisfiability valuation
ID there exist two conditions in the original program whose true/false coverage are a subset of ID .

is CondTF enclosed(ID , CT , CF) ⇒ ∃cT∈CT . IVT (cT) ⊆ ID ∨

∃cF∈CF . IVF (cF) ⊆ ID ;
(9)

As stated in Theorem 4.1, Equation 10 provides a coverage preservation criterion for PC.
Equation 10 essentially says that for each path pp′ of the transformed program there exists a path
pp such that the reachability of the first basic block of pp implies the reachability of the first basic
block of pp′. Further, Equation 10 states that for each condition c′ of pp′ that has to be evaluated to
TRUE, there exists a condition c of a path in the original program that will imply the TRUE evaluation
of c′ (by predicate is CondTF enclosed). Finally, Equation 10 states that for each condition c′ of pp′
that has to be evaluated to FALSE, there exists a condition c of a path in the original program that will
imply the FALSE evaluation of c′ (by predicate is CondTF enclosed).

Theorem 4.1
(Preservation of PC) Assuming that a set of test data TD achieves path coverage on a given program
P1, then Equation 10 provides a sufficient - and without further knowledge about the program and the
test data, also necessary - criterion for guaranteeing preservation of path coverage on a transformed
program P2. (Proof follows from the preservation proof of SPC by Kirner [4], as PS is the special case
of SPC where there is only one scope that covers the whole program: “pp∈PP(ps) ∧ ps∈PS(P)” is
simplified to “pp∈PP(P)” in case of PC)

∀pp′∈PP(P2). (∃pp∈PP(P1). IVR(BS(pp
′)) ⊇ IVR(BS(pp))) ∧

(∀c′∈CT (pp
′) ∃pp∈PP(P1).

is CondTF enclosed(IVT (c
′),CT (pp),CF (pp))) ∧

(∀c′∈CF (pp
′) ∃pp∈PP(P1).

is CondTF enclosed(IVF (c
′),CT (pp),CF (pp)))

(10)

4.2. Preserving Scoped Path Coverage (SPC)

The preservation of scoped path coverage was one of our initial drivers for doing research on structural
code coverage preservation. A formal definition of the coverage preservation criterion for SPC has
been given by Kirner [4]. However, we finally ended up with the conclusion that without having the
knowledge of the concrete definition of what a program scope is, it will not be possible to test coverage
preservation in practice.

Thus, instead of applying a specific coverage preservation criterion for SPC we took the approach
of applying the coverage preservation criterion for PC instead. Actually the coverage preservation
criterion of PC is a sufficient but not necessary criterion for the preservation of SPC.

5. AUTOMATIC CALCULATION OF COMPILATION PROFILES

This section presents the automatic calculation of coverage profiles. The implementations of the
coverage-profile calculations are based on search that directly follows the logic formulation of the
coverage preservation criteria. Nearly all coverage preservation criteria presented in Section 4 or being
described by Kirner [4] are based on set-theoretic relationships between input valuations. Therefore we
designed a program model which provides a set of basic relationships between input valuations. This
set is then used to construct the input-valuation relationships necessary to proof a certain kind of code-
coverage preservation, using a one-by-one implementation of the formalism presented in Section 4.
Thus, given the correctness proof of the formal coverage preservation criteria, little effort was required
to come up with a correct implementation of the coverage-profile calculation.

5.1. Program Model

Our code-coverage-analysis procedure internally uses an enhanced version of the CFG model [17]
introduced in Section 3.1. CFGs are frequently used program representations in discrete event
simulation and in different types of control-flow analysis and data-flow analysis (see, e.g., [18, 19,
20]). They are very illustrative objects and in most cases their structure can be derived directly
from the program under investigation. Our enhancements of the CFG are specifically tailored for
application of the preservation-analysis formalism introduced by Kirner [4] and in Section 4, and to
support the implementation of the coverage-preservation criteria in the mathematical software system
Mathematica. We will use the term analysis control-flow graph (abbreviated aCFG) to distinguish the
enhanced CFG from classical CFGs.

Formally, an analysis-control-flow graph (aCFG) is a directed connected graph defined by the tuple
P := ⟨B,C,D,R, s, t⟩, where B ∪ C ∪ {s, t} is the node-set of the aCFG, D is a partition of C and
R is a set of directed edges over B ∪ C ∪ {s, t}. Corresponding to the basic definitions in Section 3.1
the notation B(P) refers to the set B of basic blocks, C(P) refers to the set C of conditions and D(P)
refers to the set D of decisions.

Figure 4 illustrates the derivation of the aCFG model from the program code. It presents two possible
implementations of a branch-statement. A pseudo-code representation of the investigated snippet of a
program is shown in Figure 4(a). The branch-decision is composed of two conditions A and B linked
by a Boolean and-operator. If the decision evaluates to TRUE, a statement-sequence s1 is executed. If
the result is FALSE, execution continues with statement-sequence s2.

The first version of the aCFG shown in Figure 4(b) demonstrates an example of shortcut-evaluation
semantics. Shortcut evaluation, also called short-circuit evaluation, is used in some programming
languages to optimize the evaluation of Boolean expressions. The logical expression is only evaluated
as far as necessary to determine a final result. In the present example the evaluation of condition B
is skipped if evaluating condition A results to FALSE. In the aCFG there is a shortcut-edge ⟨A, s2⟩
to continue control-flow immediately with statement sequence s2 if execution of condition A results
FALSE. In contrast Figure 4(c) implements the same piece of code but without shortcut-evaluation
semantic. After evaluating condition A control flow always continues to evaluate condition B.

if A ∧ B then
s1;

else
s2;

endif

(a) Program code

s

A

B

s1 s2

t

❄

❄

❄✠ ❘

❘ ✠

δ1

δ2
δ3

δ4

δ5

δ6
δ7

TX

FF

TT
FF

(b) aCFG for shortcut
semantics

s

A

B

s1 s2

t

❄

✠❘

✠ ✲
❄

❘ ✠

ε1

ε2 ε3

ε4
ε5

ε6

ε7
ε8

TX FF

TT FF

TF

(c) aCFG for
non-shortcut semantics

Figure 4. Example of a branch statement and two possible representations by an aCFG, one with and
one without shortcut-evaluation semantics. Input-valuation sets associated with the edges of the graph are

denoted using the Greek letters δ, ε with an index.

The set B is called the basic-block set of the program P , because it comprises all nodes representing
the non-conditional statements of the program or program fragment. The set C is called the condition-
set of P . It comprises all nodes representing the conditions of the program. In the example Figure 4
the nodes s1 and s2 represent the operations inside the then and else branch. These are the only
non-conditional statements, and therefore they are assigned to the statement set B. In both graph
representations of Figure 4 the nodes labeled A and B represent the conditions, so the set C includes
the nodes A and B.

The node s is the unique point of entry (start node or entry node), and t is the unique point of exit
(called the end node or exit node) mentioned in Section 3.1. In principle, a program could have more
than one exit node. But so far we did not found a need for that, and so we focus on aCFGs with a single
exit node.

The set D, called the decision set, holds a partition of the condition set C into decisions and defines
the assignment of the conditions to decisions. The sub-graph representing a decision di ∈ D is treated
as a hyper-node [21]. In Figure 4(b) and Figure 4(c), e.g., the condition nodes A and B together form
the only one decision ⟨A,B⟩ of this example, which is the only one member of the set D. In the
graph drawings we enclose such groups of conditions with a dotted line to emphasize the hyper-node
representing the decision. We call edges with both endpoints being part of the same decision di internal
edges of the decision. If one endpoint of an edge is member of di while the other endpoint is not, the
edge is called an external edge of the decision. In Figure 4(b), for instance, the edge from condition
A to condition B is an internal edge, while the edge from condition A to statement sequence s2 is
an external edge of the decision ⟨A,B⟩. The order of conditions within a decision is defined by the
internal edges of the decision.

The set R is the set of directed control flow edges. Mathematically every edge of an aCFG is defined
as a tuple e := ⟨v, w,α, δ⟩. The pair v, w with v, w ∈ B ∪ C ∪ {s, t} defines the endpoints and the
direction of the edge. The node v is the origin of the edge and is called head of the edge, and w is the
destination of the edge and is called tail of the edge. The head of an edge e is denoted head(e) and the
tail node of an edge e is denoted tail(e) [22].

The component α is called the condition/decision label of edge e. If head(e) is not a condition,
the component α is empty. If head(e) is a condition, the condition/decision label tags the outgoing
edges of the node. Each condition includes a control-flow decision with a predefined set of possible
results. Depending on the result of executing the condition control flow continues with the outgoing
edge tagged with the result value. We use a two-parted condition/decision label, one label for the result
of the condition and one label for the expected final result of the decision the condition is part of.
Note, that our current implementation only deals with conditions and decision calculating the possible
results TRUE or FALSE. We do not directly model statements with more than two branches like the
switch-statement in C/C++, for example. Branches with more than two targets need to be modeled
by a cascade of two-target branches.

In the aCFG drawing a two-letter combination denotes the condition/decision-label. The condition
label is on the first position while the decision label is on the second position. The letter “T” means
TRUE, and “F” means FALSE. Each outgoing edge of a condition node must be tagged with one
possible results of the control-flow decision of the condition to find the correct successor where the
flow of control continues dependent of the result of the condition execution. The decision label stores
the possible result of the decision, as far as it is determined by the result of the currently evaluated
condition. If the final result is not yet determined we use the symbol “X” as decision label. Otherwise,
if the result of the decision is already determined, the decision label holds the final result of the
decision. For example, if condition A in Figure 4(b) evaluates TRUE, the final outcome of the decision
is determined by condition B, because of the and operation between the conditions. The other way
round, when A evaluates to FALSE, condition B is not able to change this result. Therefore, the edge
from condition A to condition B is tagged with “TX” to denote a condition outcome of TRUE with a
yet still undefined outcome of the corresponding decision {A,B}. On the other hand, the edge from
condition A to node s2 is tagged “FF” to denote, that the condition result FALSE also determines a final
decision result FALSE. The symbol “X” is only allowed on internal edges of a decision. External edges
of the decisions subgraph are required to be marked with concrete results of the decisions execution.
E.g.: The external edge of decision {A,B} from condition A to statement sequence s2 in Figure 4(b)
is tagged “FF”, because s2 is executed, if condition A evaluated to FALSE and the outcome of decision
{A,B} is FALSE in this case. However, as soon as the decision label on an outgoing edge of a condition
represents a final result of the decision, no subsequent execution of the decisions conditions is allowed
to change this result.

Our model also allows multiple edges between two nodes, as shown in Figure 4(c) for the
connections from condition A to condition B and from condition B to statement s2. At first sight
these double connections seem to be needles, because there is only one control-flow path. But the two
paths are logically different, because the input valuations may differ dependent of the evaluation result
of the condition. E.g., after evaluating condition A execution always continues evaluating condition
B, independent of the result of executing condition A, but the input-valuation sets may be different, if
conditionA evaluates to TRUE or FALSE. Furthermore, continuation of the control flow after evaluating
condition B does not only depend on the local result in node B. Only if condition B evaluates to
FALSE then execution will continue with the else branch. But in case of result TRUE the control flow
may continue in either directions dependent on the former result of condition A. Therefore two edges
for condition result TRUE with different decision results are necessary to model the difference in the
decision result.

The last component δ attaches a set of input valuations to the edge e. An input valuation id ∈ ID is
member of δ, if it triggers an execution path that includes e at least once. Note, that δ is a symbolic
value since no information is available about the members of the input-data set ID at analysis time.
For clarification it should be emphasized, that our definition of an execution path allows to include an
arbitrary number of instances of each edge. In graph theory this is often addressed as walk through

the graph [22]. In contrast to that, the common graph-theoretic definition of a path typically requires,
passing each edge at most once.

Note, that the reachability valuation and the satisfyability valuation as defined in Section 3.1 can
be transposed to the aCFG model in an obvious way by “summing up” the input-valuation sets on a
certain kind of incoming or outgoing edges. The reachability valuation set of a node is the union of
the input-valuation sets associated with the edges incoming to a node. The satisfyability valuation
is determined in an analogous way. For conditions the satisfyability valuation is the union of all
input-valuation sets associated with all outgoing edges marked with a certain condition label. When
determining reachability valuation or satisfyability valuation of a hyper node representing a decision,
the external incoming edges have to be used for calculating the reachability valuation, and the outgoing
edges with a certain decision label have to be used for unifying the input-valuation sets to calculate the
satisfyability-valuation set.

In Figure 4(b), for instance, the reachability valuation of s2 is IVR(s2) = δ5 ∪ δ3. The satisfyability
valuations of condition A are IVT (A) = δ2 and IVF (A) = δ3 and the satisfyability valuations of the
decision {A,B} are IVT ({A,B}) = δ4 and IVF ({A,B}) = δ3 ∪ δ5.

5.2. Analyzing Code Transformations

The principle of modeling relationships between input-valuation sets associated with the edges of the
aCFG is inspired by a class of graph-theoretic problems known as network flow theory [23]. Instead of
costs associated with the edges of the graph the valuations sets attached to each edge of an aCFG are
used and set-theoretic operations replace the arithmetic calculations. To provide basic relationships
between input valuations inside an aCFG we use a continuity property for input valuations. This
property is comparable to Kirchhoff’s current law in the theory of electrical networks. The property
is based on the assumption, that each input valuation triggers a path sourcing at the entry node and
terminating at the exit node. The only situation where some paths would not terminate at the exit node
would be the existence of an infinite loop inside the investigated peace of program. In the current
implementation we do not allow the existence of infinite loops. In addition, an execution path must
form a feasible continuous sequence of statements according to the program’s transition relation. In
other words, the sequence of edges representing an execution path must not contain any gaps. The tail
of an edge inside an execution path must be the head of its subsequent edge. The only exception is the
edge ending in the termination-node.

Therefore, the input-valuation sets associated with the incoming-external edges and the outgoing-
external edges of each node v ∈ B ∪ C must fulfill the following continuity property:

⋃

i=1...mk

δi =
⋃

i=1...nk

ϱi (11)

where each δi denotes the input-valuation set associated to one incoming edge of the considered node
v and ϱi denotes the input-valuation set associated with one outgoing edge of v.

Based on the continuity property for input-valuation sets described in Equation 11, it is easy to
determine several non-strict superset relations between input-valuation sets associated with edges
within the same aCFG. The principle is described below and illustrated in Figure 5. The determination
procedure has to be performed for each node of the considered aCFG, except s and t. In the following
description δ1, . . . , δm denotes the input-valuation sets associated with the incoming external-edges
of the inspected node, and ϱ1, . . . , ϱn denotes the input-valuation sets associated with the outgoing
external edges of the inspected node.

1. The equality
δ1 ∪ . . . ∪ δm = ϱ1 ∪ . . . ∪ ϱn

is given by the continuity property of Equation 11.
2. Using the equality (1), the following relations can be derived by set-theoretic considerations in

forward direction:
δ1 ∪ . . . ∪ δm ⊇ ϱi 1 ≤ i ≤ n

3. Using equality (1), the following backward relations can be derived by set-theoretic
considerations:

ϱ1 ∪ . . . ∪ ϱn ⊇ δi 1 ≤ i ≤ m

Note, that the same procedure can be used for hyper-nodes representing decisions mentioning the
external edges. In addition, a relation between the entry node and the exit node can be derived based
on the assumption that all execution paths originate at the entry node and terminate in the exit node.
So, there must be an equality between the union of the input-valuation sets associated to the incoming
edges of the exit node and the input-valuation set associated to the outgoing edge of the entry node.

We call input-valuation relations inside one aCFG local input-valuation relations or local relations
for short. Our procedure for determining such local input-valuation relations inspects all nodes except
entry node and exit node, and the hyper-nodes representing the decisions of the inspected program.
Walking through each node and hyper-node of the aCFG reveals a bundle of relations that can serve as
one basis for code-coverage preservation analysis.

❘ ✠
x

✠ ❘

Conservation Condition

=

✛

✛

❘ ✠
x

✠ ❘

Forward Relations

⊇

✛

❘ ✠
x

✠ ❘

Backward Relation

⊇

✛

Figure 5. Determining input-valuation relations based on the continuity property.

The basic relations mentioned so far only consider input-valuation sets associated with edges
incoming to and outgoing from the same node. Using the transitivity property of the superset-relation
δ ⊇ ϑ and ϑ ⊇ ϱ =⇒ δ ⊇ ϱ these basic relations can be expanded to get relations between input-
valuation sets associated with edges not adjacent to one node. These input-valuation relations work
equally for program structures inside a loop, as the input-valuations themselves do subsume all
iterations of any surrounding loop.

Example:
Consider again the representation of the branch-statement with shortcut-evaluation from Figure 4(b)

above. Inspecting the nodes A,B, s1, s2 and s, t reveals the following valuation-relations:

Node A ⇒ δ1 = δ2 ∪ δ3

δ1 ⊇ δ2

δ1 ⊇ δ3

Node B ⇒ δ2 = δ4 ∪ δ5

δ2 ⊇ δ4

δ2 ⊇ δ5

Node s1 ⇒ δ4 = δ6

Node s2 ⇒ δ3 ∪ δ5 = δ7

δ7 ⊇ δ3

δ7 ⊇ δ5

Nodes s, t ⇒ δ1 = δ6 ∪ δ7

δ1 ⊇ δ6

δ1 ⊇ δ7

Examples for additional relations obtained by transitivity of relations are δ1 ⊇ δ4 (using δ2 or δ6 as a
link) or δ1 ⊇ δ5 (using δ2 as a link).

✷

An important prerequisite for analyzing the effect of code optimizations in a systematical manner
is to keep track of the changes a transformation performed on the investigated piece of code. In our
solution we do this by creating a second aCFG representing the investigated piece of code after the
transformation has been performed, and by tagging the statements of the transformed program with
supplementary information to keep a reference to the situation before the transformation. We call the
aCFG, representing the transformed piece of code the transformed program and the aCFG representing
the code before the transformation has been performed the original program.

The idea to create references pointing from the statements of the transformed program to statements
of the original program is based on the observation, that a program transformation does not create
the transformed program from scratch without considering the statements of the original program. To
achieve the goal to tune the code for a given architecture, the code generator or compiler is free to
transform the program in any way as long as the transformed program computes the same results as
the original program specification. This can include reordering pieces of code as well as reducing
the number of operations, replace them or insert new instructions [24]. This means that the code
generator uses the statements of the original program as a kind of template to create the statements of
the transformed program. In most cases statements of the transformed program are either an exact copy
of the corresponding statements in the original program or they are modified versions of statements of
the original program. Even newly created statements are not completely independent of the statements
of the original program, since they are often added during the transformation to correct behavioral
differences caused by modifications of some statements.

We say that a statement of the transformed program performs the same function as a statement of
the original program, if the corresponding operations produce identical results for the same set of input
data. But if the corresponding program-statements produce different results only for a subset of the
input data then we say that the two operations perform a similar function. We call a pair of nodes
representing statements performing the same function or a similar function functional-related nodes.

If two nodes, with one located in the original program and one located in the transformed program,
perform the same function, then the input-valuations of the input-valuation sets associated to the
incoming edges of the nodes are mapped to the input-valuation sets of the outgoing edges in the same
way. Of course, this behavior is mandatory for non-conditional statements. Since nodes representing
non-conditional statements have only one outgoing edge, changes of their functions cannot change the
mapping of the input valuations from the incoming to the outgoing edges anyway. So the assessment of
changes in control flow caused by program transformations is focused on nodes representing conditions
and hyper-nodes representing decisions.

For nodes and hyper-nodes representing conditions and decisions, the mapping of the incoming
input-valuations to the outgoing branches is defined by the calculated result of the control-flow
decision. Therefore, the control-flow decision of the transformed program will be the same for the
same set of input data, as long as the condition respective decision performs the same function as in the
original program. On the contrary, if conditions or decisions are modified during a transformation, input
valuations associated with the incoming edges of the corresponding nodes may be mapped differently
to the outgoing edges, compared with the unmodified statement of the original program.

We characterize the notion of functional-related nodes and the two different levels of functional
relationship more precisely in the following way. Let’s assume a program transformation P1→P2.
Also let v be a node or hyper-node of the original program P1 which is functional related to the node
or hyper-node v′ of the transformed programP2. We also assume, that both are representing a condition
or a decision.

1. Two nodes v and v′ are said to be functional-equivalent nodes, if their reachability-valuations
and satisfyability-valuations meet the condition:

IVR (v) = IVR (v′) =⇒ IVT (v) = IVT (v′) and IVF (v) = IVF (v′) (12)

2. Two nodes or hyper-nodes v and v′ are said to be functional-similar nodes if at least one of the
satisfyability-valuation relations in Equation 12 is not an equality.

Please note, that Equation 12 also implies the weaker relations

(1) IVR (v) ⊆ IVR (v′) =⇒ IVT (v) ⊆ IVT (v′) and IVF (v) ⊆ IVF (v′)

(2) IVR (v) ⊇ IVR (v′) =⇒ IVT (v) ⊇ IVT (v′) and IVF (v) ⊇ IVF (v′)

In principle the same is true for functional-similar nodes, but the situation is more complex there.
A statement about the relation between IVT (v), IVT (v′) and IVF (v), IVF (v′) respectively is not
always possible when the equality between IVR (v) and IVR (v′) changes to a non-strict superset or
a non-strict subset. For example, consider the case, that for IVR (v) = IVR (v′) the satisfyability-
valuations are related IVT (v) = IVT (v′) and IVF (v) ⊆ IVF (v′). If the prerequisite IVR (v) =
IVR (v′) is dropped, only the following statements are valid:

(1) IVR (v) ⊆ IVR (v′) =⇒ IVT (v) ⊆ IVT (v′) and IVF (v) ⊆ IVF (v′)

(2) IVR (v) ⊇ IVR (v′) =⇒ IVT (v) ⊇ IVT (v′)

So, if IVR (v) ⊇ IVR (v′) is true no relation can be calculated between the satisfyability valuations for
IVF (v) and IVF (v′), because IVF (v) is only a subset of IVF (v′). If additional input valuations are
added, then no general statement is possible whether IVF (v) is less, equal or greater than IVF (v′).

Be aware that the concept of functional relations between nodes we used here to describe the effect
of a program transformation does not necessarily imply a strong semantic identity of the statements
represented by the pair of nodes. It just means, that both statements produce comparable results for
the same input-valuations in the sense of distributing the input valuations in the same or in a similar
manner. The program statements itself performing this task may be different. Consider for example a
transformation as shown in Figure 6. It transforms a program by increasing the loops step-size from
1 to 2 and adapting the body accordingly. In both versions of the program the loop is entered for the
same values of the variable N and possibly for an additional value, if N is an odd number. Therefore
the loop decisions will still distribute the input-valuations in a similar manner. So the loop-statement
of the original program and the transformed program will be classified as functional similar, although
they are semantically different.

loop i← 1 by 1 to N
body(i);

endfor

loop i← 1 by 2 to N
body(i);
if i+1 ≤ N then

body(i+ 1);
endif

endfor

Figure 6. Pseudo code of a simple loop transformation producing two equivalent loops with semantically
different but functional similar loop-statements.

With the help of the references in the transformed program the relationships between statements
can be broken down to relations of the input-valuation sets associated to the edges of the transformed
program and the input-valuation sets associated to the edges of the original program. In contrast to the
local relations inside one aCFG we call these relations inter-CFG relations. Many of the inter-CFG
relations can be derived systematically processing the nodes of the aCFG representing the transformed
program in top-down order. The basic principle of performing this procedure for a single node or
hyper-node is illustrated in Figure 7.

Since we assume that the remainder of the program is unchanged and therefore unaffected by the
transformation, it follows that the input-valuation sets associated to the outgoing edges of both entry
nodes are equal. This assumption is the basis for calculating other inter-CFG relations. With the help

Original Program

❄

IVR (v)

v

✠ ❘

IVT (v) IVF (v)

TX FX

Transformed Program

❄

IVR (w)

w

✠ ❘

IVT (w) IVF (w)

TX FX

Funct. equivalent nodes
IVR(v) = IVR(w)

⇓
IVT (v) = IVT (w)

and
IVF (v) = IVF (w)

Figure 7. Determining inter-CFG relations by functional node relationships.

of local relations inside both aCFGs and already existing inter-CFG relations calculated in prior steps
new relations can be created for the involved input-valuation sets of the investigated nodes of the
transformed program and its related node in the original program.

The systematically determined relations are not always sufficient to be able to prove a certain kind of
structural-code coverage. Especially relations that are determined by assumptions about the properties
of a program transformation are not always systematically derivable. In these cases, additional relations
derived from simple facts about the properties of the investigated transformation must be added
manually to the set of relations. In most cases they are created using some prior knowledge about
the behavior of a transformation.

Example:
To give an example for such a relation derived from the properties of a code transformation, consider

a loop transformation like loop interchange, for instance. A basic requirement for loop interchange is
that the same input must trigger the same number of iterations of the statements inside the innermost
loop in the transformed program as well as in the original program. Therefore, in the original programs
aCFG and the transformed programs aCFG the input-valuation sets associated to the edges entering
the innermost loop must be equal.

5.3. Implementation of the Coverage Profile Calculation

The automatic analysis for code-coverage profile calculation was implemented with the tool
Mathematica [25]. Since our analysis procedures are mostly one-by-one implementations of the
formal coverage-preservation criteria, it was beneficial to use such a specialized mathematical software
package which provides several built in functions for most of the extensively needed set-related data
structures and operations. Our implementation of the code-coverage-preservation analysis comprises
procedural implementations of the coverage-preservation conditions described by Kirner [4] and in
Section 4. In addition we implemented some auxiliary functions to automatically reveal relations
between input-valuation sets associated with the edges of the involved aCFGs as far as possible [26].

Prerequisite for the analysis is the existence of two aCFGs – one representing the structure of
the investigated piece of code before the investigated transformation is performed and one aCFG
to represent the structure of the same piece of code after performing the transformation. This pair
of aCFGs is a general model for the investigated optimizing transformation. The structures of the
aCFGs are derived from the way how the used compiler performs the investigated optimizing code
transformation. It is not created from a particular source code or object code. Therefore, creation of
the aCFGs and analysis of the code transformation has to be done only once for a particular compiler
version. The compilation profile resulting from analysis of all code transformations can be reused as
long as the compiler is not changed.

In addition to the pair of aCFGs some characteristic relations between the input-valuation sets of the
original programs aCFG and the aCFG of the optimized piece of program are established together with
the aCFGs. So the pair of aCFGs and the additional relations together represent the abstract description
of the investigated code transformation.

Preparation of automatic analysis for a certain code transformation always starts with converting
the given aCFG structures into Mathematica syntax [27]. In the current version this internal
implementation of the aCFGs must be created manually. Figure 8, for instance, illustrates the internal
representation of the aCFG from Figure 4(b).

To make sure, that the identifiers of the nodes are unique, we use integer numbers as internal
representations for nodes. The external used names are attached to the nodes as labels, but we did
not draw them in the graphs to keep the illustrations clearly arranged. Another internal detail of
programming is that we do not explicitly specify the condition set C, as it is already specified by
the members of the decision set D. Whenever needed, C is calculated from D.

B:={{"s1",3},{"s2",4}}
D:={{"decision1",{"A",1},{"B",2}}}
ST:={{"s",0},{"t",5}}
R:={{0,1,"",δ1},{1,2,"TX",δ2},{1,4,"FF",δ3},

{2,3,"TT",δ4},{2,4,"FF",δ5},{3,5,"",δ6},{4,5,"",δ7}}
P:=eCFG[B,D,R,ST]

Figure 8. Internal representation of the aCFG structure given in Figure 4(b) above. The condition set C is
omitted to avoid duplicate implementation of the same nodes in sets C and D.

When automatic calculation of coverage profiles is started, it first constructs an auxiliary graph for
maintaining the equality relations (=) and subset relations (⊇) between input-valuation sets derived
from the aCFG definition. This graph is similar to digraph models for relations [22]. The vertices of
the input-valuation relation graph are the representations of the input-valuation sets involved. The arcs
of the graph represent the subset relations implied by the basic properties of input-valuation relations.
For example, if δi ⊇ δj is true for some pair of input-valuation sets in the aCFG then a directed edge
δi → δj is added to the auxiliary graph. In case of δi = δj the auxiliary graph contains edges between
δi and δj in both directions.

The structure of the input-valuation-relation graph represents the direct input-valuation relations
gathered from continuity property Equation 11 and other directly derived relations. The nodes of the
auxiliary graph represent valuation sets or unions of valuation sets. Please note, that this graph is not
intended to be a complete representation of the relations. Especially it is not a transitive digraph, which
would require that the existence of an arc ⟨x, y⟩ and ⟨y, z⟩ implies the existence of arc ⟨x, z⟩ [22]. Of
course, the subset relations of the graph are transitive. But the intention of the input-valuation relation
graph is contrary to that. Its purpose is to serve as an auxiliary structure supporting the search for
transitivity relations based on already found basic relations “on the fly” whenever needed. A transitivity
relation is found by searching for walks between two vertices of interest.

The construction of the input-valuation-relation graph must be done only once, because the
information contained in the graph will not depend on the investigated coverage-preservation criteria.
The graph will then be passed to the particular analysis function as one of several arguments.

After constructing an auxiliary graph for the original code as well as the transformed code, these
graphs are glued together by adding additional relations derived from the properties of the investigated
code transformation. Some of these relations can be derived automatically, other must be added
manually. However, these relations between the input valuations of the original program and the input
valuations of the transformed program form the abstract description of the code transformation that we
use for the calculation of the coverage profiles.

After finishing the construction of the auxiliary graph the actual coverage-preservation analysis
can be started. All analysis functions take the auxiliary relation graph constructed in the preparation
phase, the aCFG of the original program and the aCFG of the transformed program as argument.
So far we have implemented coverage-preservation analysis functions for statement coverage (SC),
condition coverage (CC), decision coverage (DC), modified condition/decision coverage (MCDC) and
path coverage (PC). Beside documentary information they output a verdict TRUE or FALSE about the
ability of the transformation to preserve the mentioned coverage. The correctness of this verdicts relies
on providing a correct and precise abstract description of the code transformation.

To illustrate the principle function of the analysis, we will show here a simple example for useless
code elimination, proving that it preserves statement coverage. Useless code, also called dead code,
is reachable code which performs no computations that can affect final results [28]. In Figure 9 the
statement a:=3 in the second line obviously has no effect, since a is redefined in the third line. So the
second line of the original program is removed by the optimizing compiler. Useless code is often the
result of optimization steps passed before, although a program may include useless code before any
optimization is applied to it [2].

Figure 9(b) and (c) shows aCFG representations for the original and the transformed program.
Figure 9(b) shows the linear sequence of statementsP1 in its original structure. The input-valuation sets
associated with the edges are denoted δ1, . . . , δ4. Figure 9(c) shows the optimized structure P2. Node
13, which is assumed to be useless code, is omitted in the transformed program and the edge originating
at node 12 is directly connected with node 14. The edges of P2 are associated with input-valuation sets
ϱi to distinguish them from the input-valuation sets of P1.

b:= a + c;
a:= 3;
a:= b;

a) Code Example b) Original Program P1

s
1

2

3

4

5 t

❄

❄

❄

❄

δ1

δ2

δ3

δ4

c) Transformed Program P2

s’
11

12

14

15
t’

❄

❄

❄

ϱ1

ϱ2

ϱ3

Figure 9. USELESS CODE ELIMINATION: Example code with useless assignment a:=3 (a) and a pair of
aCFGs representing the program before (b) and after (c) applying useless code elimination.

As further preparation steps for coverage-preservation analysis, the local relations of the relevant
graphs have to be determined using the continuity property described in Section 5.2. In this case this is
a very easy job, since there are only non-conditional statements involved. Walking through nodes 2, 3
and 4 of P1 and the nodes 12 and 14 of P2 reveals:

δ1 = δ2, δ2 = δ3, δ3 = δ4
︸ ︷︷ ︸

P1

and ϱ1 = ϱ2, ϱ2 = ϱ3
︸ ︷︷ ︸

P2

and δ1 = ϱ1
︸ ︷︷ ︸

P1→P2

(13)

The transformation relation δ1 = ϱ1 is true by default, since we assume that the remainder of the
program is unchanged and therefore unaffected by the transformation.

Based on these relations, preservation of statement-coverage can now be proved using the
preservation condition for statement coverage [4]. The condition requires that for all b2 ∈ B(P2) a
b1 ∈ B(P1) exists with IVR (b2) ⊇ IVR (b1). To prove the condition for some pair {b2, b1}, one has
to find a path from IVR (b2) to IVR (b1) in the auxiliary relation graph representing the relation in
Equation 13. If the proof succeed for all non-conditional nodes in P2, statement coverage is proved for
the optimizing code transformation.

In the example in Figure 9 the proof has to inspect nodes 12 and 14 in P2. Let us assume, that
we start with node 12. IVR (12) = ϱ1 can be calculated with the rules given at end of Section 5.1.
We now search for some node in the set of the non-conditional nodes in P1, which fulfills the
preservation condition. Obviously, every non-conditional node of P1 fulfills the condition. So, we
take node 2 and calculate IVR (2) = δ2. With the equality ϱ1 = δ1 in Equation 13 the condition
IVR (12) ⊇ IVR (2) is proved. Continuing with node 14 of P2 and taking again node 2 of P1 we found

IVR (14) = ϱ2 = ϱ1 = δ1 = IVR (2), and the preservation condition has been proved. An example for
the possible output of the analysis functions is given at the end of Section 6.1 in Figure 11.

6. EXAMPLES OF COVERAGE PROFILE CALCULATIONS

This sections shows some examples of the coverage preservation analysis for several code
optimizations [26]. Each of the use-case descriptions first provides a brief description of the
applicability and the basic properties of the code transformation. For better understanding, a small
code example is given to illustrate how the transformation works. For easier understanding we use a
source-code like language for the code examples, although the optimizations may be performed on
intermediate-code level or object-code level. Secondly, the transformation conditions and the basic
facts for preservation analysis including aCFG models for the original and the transformed program
are explained. In the third part, some facts about the properties of the investigated code transformation
are described, as far as they are important for the coverage-preservation analysis. Finally, a summary
of the analysis results is given with formal arguments, why a particular kind of coverage has been
calculated as preserved or not preserved.

In the descriptions P1 always refers to the original version of the program and P2 refers to the
transformed program. To avoid confusion when relating the valuation sets of P1 and P2 in the aCFG
drawings, we use the notation δi for the valuation sets of the original code P1 and ϱi for the valuation
sets of the transformed code P2. Additional circles denote the entry-node and the exit-node. In addition,
the identifier with the lowest value of an aCFG is by convention associated with the entry-node, while
the identifier with the highest value inside an aCFG is associated with the exit-node. Decisions are
marked with a dotted oval enclosing all conditions the decision is composed of. A dotted line pointing
from the node or hyper-node of the transformed program to some node or hyper-node of the original
program emphasizes the functional relationship of a transformed statement in the original program to
a statement of the original program. But these relationships are only drawn in this way, if they are
important for the analysis. In addition, the string “ 6→ X” is sometimes placed beside a node of the
transformed program, to point out that this node is identical with node X in the original program. This
notation is used if the relation is important for better understanding of the use-case but is not of vital
importance for the calculation of coverage profiles.

The results of all coverage-preservation use cases presented in this section are summarized in Table I.

6.1. Condition Reordering with Short-Cut Evaluation

Algebraic simplifications use algebraic properties of operators like associativity, commutativity and
distributivity to simplify expressions [2]. Although these simplifications produce logically equivalent
expressions, they may cause unexpected changes in the flow of control. Under certain circumstances
these changes can disrupt structural code coverage if they change the order of conditions. This is
demonstrated in the following example of a branch with short-cut evaluation. Figure 10.a presents a
source-code level example for reordering the conditions inside the logical expression of an if-statement.
The compiler uses commutativity of the logical and operator to swap the conditions of the branch
decision.

Condition reordering is an example of a code transformation that is not a classical optimization.
It usually serves as a preparation step to apply further optimizing code transformations. Consider,
for instance, an expression which contains two sub expressions A ∧B and B ∧ A. Reordering the
operands in B ∧ A to A ∧B reveals the existence of two identical sub expressions. This enables further
application of optimizing transformations like algebraic simplifications or common sub-expression
elimination.

A possible aCFG structure for condition reordering is shown in Figure 10.b. The shortcut property
of the condition evaluation is characterized by the edge ⟨2, 5⟩ in the original program and ⟨12, 15⟩
in the transformed program. Compared with the example from Figure 10.a, node 2 represents the
condition “a > 0” and node 3 represents the condition “a < 10”. If condition 2 evaluates to False,
the second condition 3 is skipped, because the final result of the decision has been already obtained and

if (a > 0) ∧ (a < 10)
then

then statement;
else

else statement;
endif

⇒

if (a < 10) ∧ (a > 0)
then

then statement;
else

else statement;
endif

a) Possible code example for a reordering transformation of two conditions inside a branch
decision.

Original Program

1

2

3

4 5

6

❄

❄

❄✠ ❘

❘ ✠

δ1

δ2
δ3

δ4

δ5

δ6
δ7

TX

FF

TT
FF

Transformed Program

11

12

13

14 15

16

❄

❄

❄✠ ❘

❘ ✠

ϱ1

ϱ2
ϱ3

ϱ4

ϱ5

ϱ6
ϱ7

TX

FF

TT
FF

✛

✛

b) aCFGs of swapping the conditions of a branch with two conditions evaluated with short-cut
semantics and a non-empty else fork.

Figure 10. Transformation: CONDITION REORDERING

the result of the second condition is unable to change it. This behavior corresponds to the semantics of
the operators && and || in ISO C/C++ [12, 29] and to the semantics of the operators and then and or
else in ADA [30].

Since the connection ⟨2, 5⟩ and ⟨12, 15⟩ respectively can bypass the evaluation of the second
condition, some execution paths can get excluded to the second condition in the transformed program.
Consider, for example, a sequence of three test cases where the conditions evaluate to {TT, FF, TF},
with the first value of each pair assigned to condition 2 and the second assigned to condition 3. This
set of test-data achieves condition coverage in the non-transformed program, covering all possible
paths inside the decision. Due to the condition swap in the transformed program, the same set of test-
data now achieves that the conditions evaluate to {TT, FF, FT }. Due to the short-cut semantic the
path 11− 12− 13− 15− 16 is not covered anymore, because the test cases where the conditions 12
and 13 would evaluate FF and FT both bypass node 13 over the shortcut edge. Condition coverage is
therefore not achieved, because the second condition only goes into one direction.

The main property of the condition-reordering transformation is, that the statements in the then
branch of the transformed program fragment must be entered for the same input values than in the
original program. The same is true for the statements in the else branch. Therefore a valid condition
reorder transformation must fulfill the following formal properties: δ4 = ϱ4 for the then branch and
δ3 ∪ δ5 = ϱ3 ∪ ϱ5 for the else branch.

** SC-Preservation **
B(P2): {13, 14}
B(P1): {3, 4}
→→→ 1
IVR(13)== {ρ4} of P2 is related with
{{δ4} , {δ6} , {ρ4} , {ρ6}}
Nodes of P1 satisfying preservation condition: {3}
Accumulated scpf: True
→→→ 2
IVR(14)== {ρ3, ρ5} of P2 is related with
{{δ3} , {δ5} , {δ7} , {ρ3} , {ρ5} , {ρ7} , {δ3, δ5} , {ρ3, ρ5}}
Nodes of P1 satisfying preservation condition: {4}
Accumulated scpf: True
True

Figure 11. Sample Output Analyzing Statement Coverage for a IF-Statement with Two Conditions (with
short-circuit evaluation)

A sample output of the implemented automatic analysis function for Statement Coverage (SC) is
given in Figure 11. The output listing shows how the function makes use of the preservation criteria
to proof that statement coverage is preserved. The tool walks through each non-conditional statement
node B(P2) of the transformed code. Using the continuity relation together with the additional subset
relations on the valuation sets it determines those valuation sets that are a subset of valuation set IVR(x)
of the currently investigated node x. Finally, it searches for nodes in the original code that fulfil the
coverage-preservation condition for SC. In the first case this happens with node 3 and its valuation set
IVR(3) = δ4. The same principle is used to find node 4 as a counterpart for node 14.

The last line of the listing prints the function result which is TRUE in this case, meaning that
statement coverage has been successfully proved. The functions result-value can be used as one value
to be included into the coverage profile.

Statement Coverage is preserved, because of the main property of the transformation. δ4 = ϱ4
implies IVR (14) ⊇ IVR (4) and δ5 ∪ δ6 = ϱ5 ∪ ϱ6 implies IVR (15) ⊇ IVR (5).

Condition Coverage is not preserved, because due to the condition swap ϱ4 ⊆ δ2 and no concrete
relation can be given between ϱ2 and δ2. So the condition IVT (13) ⊇ IVT (ci) for some
ci ∈ {2, 3} cannot be proven.

Decision Coverage is preserved, because of the main property of the transformation.

Modified Condition/Decision Coverage is not preserved, since condition coverage is not preserved.

Path Coverage is not preserved, because for the same reasons as for condition coverage the
preservation condition cannot be proven for some paths involving node 13.

6.2. Loop Peeling

Loop peeling is a transformation used to resolve dependences inside a loop, if the source of dependence
is a restricted number of iterations like in the example in Figure 12.a. Peeling k iterations from the
beginning of a loop means replacing the first k iterations by k copies of the body plus the increment
and test code for the loop index variable. The peeled-out code is placed immediately ahead of the
loop [2]. Loop peeling can also involve iterations other than the first and the last. In this case the loop
must be separated first across the iteration causing the dependence [24].

The aCFG in Figure 12.b implements the general case of a loop transformed by peeling out the first
iteration (k = 1) of the loop. The termination check is assumed to be part of node 1 in the original
program at the entry of the loop. In addition to the loop-decision 15 a branch 11 is placed in front of

loop i ← 1 to N
A(i) ← A(i) + A(1);

endloop
⇒

A(1) ← A(1) + A(1);
loop i ← 2 to N

A(i) ← A(i) + A(1);
endloop

a) Example for application of loop peeling, taken from [24]. The computation uses the value
A(1) computed in the first iteration. Peeling out the first iteration produces a loop without
dependences that can be directly vectorized.

Original Program

0

1

2

3
❄

❄

✲ ✲

δ1

δ2δ3

δ4

TT

FF

Transformed Program

10

11

12

15 17

16

❄

❄

❄❄

❄

✲ ✲

ϱ1

ϱ2
ϱ3

ϱ4

ϱ8ϱ9

ϱ10

TT
FF

TT

FF

✙

❨

b) aCFGs of a loop peeling transformation with k=1 and a loop decision comprising a single
condition.

Figure 12. Transformation: LOOP PEELING

the copy of the loop body of the transformed program to avoid entering the loop, if the loop condition
is not fulfilled at the beginning. The statement dealing with the iteration variable is assumed to be part
of the loop body.

From point of view of code coverage analysis, this little change in code structure has severe effects on
preservation of all coverage criteria. This fact can be considered by an example. To keep the semantics
of the loop, the transformation has to fulfil the requirement that each set of input data triggers the
same number of executions of the loop body in the original and the transformed version. In the original
program, statement coverage, for instance, can be achieved by executing only the first iteration of the
loop. Now assume a set of test data, iterating the loop of the original version of the program exactly
once. Using the same test data set for the transformed versions only triggers the execution of the first
copy of the loop body (node 12 in the aCFG in Figure 12.b). The modified loop will not be entered,
because this would cause a second execution of the loop body, violating the basic requirement of the
transformation. Thus, the second copy of the loop body will never be triggered by the same set of test-
data, and the transformed program will fail to achieve statement coverage. The same applies to other
kinds of structural-code coverage.

The requirement, that the number of executions of the loop body has to be invariant with respect
to the transformation, implies the equality ϱ2 = δ2. Further considerations reveal the relation ϱ8 ⊆ δ2,
because the transformed loop is not entered for the first iteration. The relations ϱ3 ⊆ δ4 and ϱ10 ⊆ δ4
are a consequence of the basic properties derived from the continuity property Equation 11. All these
relations are found using the automatic determination functions for transformation relations.

Statement Coverage is not preserved. The preservation condition is not fulfilled for node 16, since
IVR (16) = ϱ8 ̸⊇ δ2 = IVR (2).

Condition Coverage is not preserved. Since ϱ8 ⊆ δ2 the preservation criteria IVT (15) ⊇ IVT (2)
cannot be proven for condition 15.

Decision Coverage is not preserved for the same reason as condition coverage.

Modified Condition/Decision Coverage not preserved, because neither condition coverage nor
decision coverage is preserved.

Path Coverage is not preserved, because the preservation condition is not fulfilled for paths including
node 16.

6.3. Loop Inversion

Loop Inversion, in source-language terms, transforms a while-loop with the loop-closing test at the
begin of the loop into a repeat/until loop with the loop-closing test at the end of the loop [2]. In
the simplest case it is save to execute the loop body at least once and no additional test is needed on
front of the transformed loop. Otherwise a branch decision is generated in front of the loop checking
the exit condition to avoid entering the loop if the loop condition is already false at the begin. This
second case is illustrated in the code example in Figure 13a).

The aCFGs for the general case of the loop-inversion transformation are presented in Figure 13b).
In the transformed version, decision ⟨12⟩ is a conditional branch, which is a modified copy of the
original loop decision. It protects the loop-body from execution, if the loop condition is FALSE from
the beginning. In addition, the original loop decision ⟨2⟩ is moved behind the loop body, acting as
transformed loop-decision ⟨14⟩.

The requirement to preserve the semantics of the loop, implies the equality δ2 = ϱ2 and δ2 = ϱ4
respectively. Informally spoken, this formal conditions means that the loop body of the transformed
program must be executed the same number of times for the same input-valuations as in the original
program. Splitting the loops-closing decision ⟨2⟩ into two decisions ⟨12⟩ and ⟨14⟩ causes a split of the
input-valuation set δ4 into ϱ3 ∪ ϱ6.

Statement Coverage is preserved, because ϱ2 = δ2 and therefore the preservation condition is
fulfilled for node 13.

Condition Coverage is not preserved, because of the split δ4 = ϱ3 ∪ ϱ6. Therefore δ4 ⊇ ϱ3 and
δ4 ⊇ ϱ6. So, the preservation condition cannot be proved.

Decision Coverage is not preserved for the same principle reason as described for condition coverage.

Modified Condition/Decision Coverage is not preserved, because neither condition coverage nor
decision coverage is preserved.

Path Coverage is not preserved. Paths including node 13 cannot fulfill the preservation condition for
a similar reason as described for condition coverage.

6.4. Condition Reordering without Short-Circuit Evaluation

The example in this section goes back to the condition reordering problem presented in Section 6.1. It
is a variation where all conditions are executed independently of the outcome of the other conditions
of the decision.

Besides SC and DC also CC, MCDC and PC are now preserved. The main difference here is, that
each condition can always decides on the full set of input valuations, because δ2 ∪ δ3 = ϱ2 ∪ ϱ3 is true.
Of course, the distribution between δ2, δ3 on one side and ϱ2, ϱ3 on the other side may differ.

The implementation in Figure 14 implements a fully evaluated branch decision with two conditions
connected by logical AND corresponding to the code example given in Figure 10a.

i ← 1;
while i ≤ N

loop body;
endwhile

⇒

i ← 1;
if (i ≤ N) then

do
loop body;

until (i > N);
endif;

a) Code example of moving the end test of a loop from before the loop to the end. The missing
check of the exit condition in front of the loop is performed with additional code.

Original Program

1

2

3

4
❄

❄

✲ ✲

δ1

δ2δ3

δ4

TT

FF

Transformed Program

11

12

13

14

15

❄

❄

✠

❄

❄

✲

ϱ1

ϱ2

ϱ3

ϱ4ϱ5

ϱ6

TT
FF

TT

FF

✙

❨

b) aCFGs for a loop inversion transformation with an additional loops-closing test placed in
front of the loop.

Figure 13. Transformation: LOOP INVERSION

Original Program

1

2

3

4 5

6

❄

✠❘

✠ ✲
❄

❘ ✠

δ1

δ2 δ3

δ4
δ5

δ6

δ7
δ8

TX FF

TT FF

TF

Transformed Program

11

12

13

1415

16

❄

✠❘

✠ ✲
❄

❘ ✠

ϱ1

ϱ2 ϱ3

ϱ4
ϱ5

ϱ6

ϱ7
ϱ8

TX FF

TT FF

TF

✛

✛

Figure 14. CONDITION REORDERING: Swapping conditions in a branch decision without short-cut
semantics.

Since the transformation just swaps the two conditions by leaving the evaluation semantic of the
decision unchanged, the input valuations entering the then and else branch must be kept unchanged.
This implies the equality δ4 = ϱ4 for the then branch and δ5 ∪ δ6 = ϱ5 ∪ ϱ6 for the else branch.

The full-evaluated branch statement preserves all kinds of structural-code coverage, because its
conditions always can decide on the full input-valuation sets entering the decision. Therefore the
produced input-valuation distribution of the conditions is exactly the same. In contrast to the shortcut
evaluation, there are no alternative paths where control flow can bypass some conditions.

Statement Coverage is preserved. This is implied by the equalities δ4 = ϱ4 and δ5 ∪ δ6 = ϱ5 ∪ ϱ6.

Condition Coverage is preserved, since ϱ2 ∪ ϱ3 = ϱ1 = δ1. Therefore ϱ4 = δ2 and ϱ5 ∪ ϱ6 = δ3
implies the preservation condition for node 13. The same is true for node 12.

Decision Coverage is preserved, because of the reasons described for condition coverage and decision
coverage.

Path Coverage is preserved, because of the equalities described above.

6.5. Strip Mining

Strip mining transforms a single loop into a nested loop operating on strips of the original one. The
outer loop steps through the iteration space in blocks of equal size, while the inner loop executes each
block. The optimization is used for memory management, for example, to fit the block size handled in
the inner loop to the characteristics of the machine [28, 31]. Another application is distributing loop
iterations for parallel processing. Strip mining adapts the code to the number of available processors,
or justifies iteration blocks for scheduling when single iterations produce not enough work for efficient
parallel execution [24]. A possible example for strip-mining the iterations of a for-loop is given in
Figure 15a).

The aCFG representations for automatic analysis are presented in Figure 15b). The loop decision
⟨2, 3⟩ is composed of two conditions 2 and 3. The decision of the original program is transformed to
two decisions: ⟨12, 13⟩ for the outer loop and ⟨14, 15⟩ for the inner loop. The conditions of decision
⟨12, 13⟩ are derived from the conditions of the original decision ⟨2, 3⟩. However, the two conditions
in decision ⟨14, 15⟩ are independent of the conditions in the original decision, as they represent the
boundary check and the exit test of the inner loop.

Like most loop transformations, the transformation condition for strip mining requires equality for
the number of iterations of the loop body for the same input. This implies the equality δ4 = ϱ9 as the
essential transformation relation. In addition, the transformation relation δ4 ⊆ ϱ4 is true for entering
the body of the outer loop, because all execution paths entering the inner loop have to pass this edge.
In addition, some execution paths not entering the inner loop may pass this edge, which is the reason
that the relation is not an equality.

Most of the essential transformation relations can be obtained systematically without utility
functions. On the other hand, the relation δ4 = ϱ9 is not determined completely and must be added
manually.

Statement Coverage is implied by δ4 = ϱ9.

Condition Coverage is not preserved. The preservation condition cannot be proved for conditions 14
and 15, because δ2 ∪ δ3 = ϱ2 ∪ ϱ3 ⊇ ϱ4 = ϱ7 ∪ ϱ8.

Decision Coverage is preserved, because of the following relations: δ4 = ϱ9, δ4 ⊆ ϱ10 ∪ ϱ11 for
decision {14, 15}, and δ4 ⊆ ϱ4, δ5 ∪ δ6 = ϱ5 ∪ ϱ6 for decision {12, 13}.

Modified Condition/Decision Coverage is not preserved because condition coverage is not
preserved.

Path Coverage is not preserved for the same principle reason as for condition coverage.

for i ← 1 to N do
loop body;

endfor;
⇒

for i ← 1 by 2 to N do
for i1 ← i to min(i+1,N) do

loop body;
endfor;

endfor;

a) Code example for strip mining: Dividing the execution of the left-hand side original loop
into strips with a length of 2.

Original Program

1

2

3

4

5

❄

☛❯

❄

✲

❥

✯

δ1

δ2
δ3

δ4

δ5

δ6

δ7

TX
FF

TT

TF
FF

Transformed Program

11

12

13

14

15

16

17

❄

☛❯

❄

☛❯

❄

②

✲
✿

❥

✯

ϱ1

ϱ2
ϱ3

ϱ4

ϱ5

ϱ6

ϱ7 ϱ8

ϱ9

ϱ12

ϱ10

ϱ11

TX
FF

TX
FF

TT

TF
FF

TF

FF

TT

✙
✙

b) aCFGs of Strip Mining: Dividing the iterations of a loop to operate on smaller strips of the
original loop.

Figure 15. Transformation: STRIP MINING

6.6. Branch Optimization

The purpose of this transformation is to eliminate unnecessary branches by reordering the code and
changing branch targets. Branches to branch instructions are often a result of a simple-minded code-
generation strategy [32, 2].

The prerequisite situation for branch optimization is comparable with useless code elimination,
especially when the branch instruction to remove is a branch to the next instruction. But the situation
is a little bit more complicated than it seems on the first view. A possible configuration representative
for some types of branch optimization problems is presented in Figure 16. Nodes 2 and 3 are assumed
to be unconditional branch statements, symbolized by using circled edges to connect them with their
successor. The situation illustrated with the aCFGs is the redirection of the unnecessary branch from
node 2 to node 3 directly to the target 4 of the second branch. The problem with this transformation
is, as shown on the righthand side of Figure 16, that the redirection possibly leaves the former branch
instruction 13 unconnected.

Branch optimization is an example showing some problems concerning our approach to analyze
single optimizations. The optimization obviously reduces the reachability of the bypassed branch

1: if a ̸= 0 goto 2;
...

2: if a ̸= 0 goto 3;
...

3: ...;

⇒

1: if a ̸= 0 goto 3;
...

2: if a ̸= 0 goto 3;
...

3: ...;

a) Code example for branch optimization: Passing the second branch is unnecessary and
therefore the first branch is redirected. In general, branch 2 cannot be removed afterwards,
because other branch statements may use it as a target.

Original Program

1

2

3

4

5

❄

✲

❄

❄

δ1

δ2

δ3

δ4

Transformed Program

11

12
"→ 2

13
"→ 3

14 "→ 4

15

❄

❄❄

❄

ϱ1

ϱ2

ϱ3

ϱ4

b) aCFGs model for a Branch Optimization.

Figure 16. BRANCH OPTIMIZATION: Redirecting a branch to a branch instruction directly to the branch
target.

instruction, and in the worst case it may produce unreachable code. Therefore, statement coverage
cannot be achieved in the transformed program. However, optimizations are normally followed by
a compiler phase to eliminate dead code. So in the worst case when the branch instruction 13 is
completely bypassed, the following dead-code elimination will re-establish statement coverage again.

This use-case also shows some limitations of the chosen program model and its implementation of
coverage preservation calculation. The classification TRUE for preservation of coverage criteria other
than statement coverage results from the default behavior due to the absence of conditions and decisions
in the investigated piece of code. This default behavior seems to makes sense, due to the assumption
that the remainder of the program is unchanged and not affected by the code transformation. On the
other hand, the implication DC =⇒ SC is obviously not correct. This contradiction is caused by
the fact that the investigated program fragment contains no conditions and decisions [13]. But if the
bypassed branch will not become a complete orphan, there must be some decision somewhere outside,
which addresses this statement, and this decision is now reduced somehow violating the preservation of
decision coverage. So the result TRUE for all preservation criteria except statement coverage is caused
by the absence of conditions and decisions as well as by the inability due to the restricted view, to
decide whether the bypassed instruction is dead code after the transformation or not.

Statement Coverage is not preserved, since IVR (13) ⊆ δ2 = IVR (3).

Condition Coverage is preserved by default, because the program fragment contains not condition.

Decision Coverage is preserved by default, because the program fragment contains no decision.

Modified Condition/Decision Coverage is preserved by default, because the program fragment
contains not conditions and decisions.

Path Coverage is classified as preserved by default. The reason for this behavior is, that it is assumed
that node 13 in Figure 16 is either connected by some other path or removed by dead-code
elimination. If node 13 is still connected to the remainder of the program, then by the assumption
that path coverage is achieved in the original program the path including 13 must be still covered
in the transformed program. If node 13 has become an orphan, then dead-code elimination will
also remove edge ⟨13, 14⟩. But then the program fragment will only comprise one path.

6.7. Use-Case Summary

Table I reflects the results of the coverage preservation for the code transformations presented in this
section. For the results of Branch Optimization, please refer to the remarks given in Section 6.6.

Code Optimization Coverage Preservation
SC CC DC MCDC PC

Cond. Reord. (short-circuit) ✓ · ✓ · ·
Loop Peeling · · · · ·
Loop Inversion ✓ · · · ·
Cond. Reord. (non short-circuit) ✓ ✓ ✓ ✓ ✓
Strip Mining ✓ · ✓ · ·
Branch Optimization · ✓ ✓ ✓ ✓

Table I. Calculated Coverage Profiles

7. COMPILER INTEGRATION

In the following we describe in more detail how the integration of the coverage profiles into a compiler
has been done and show some performance figures.

7.1. Implementation of the SCCP Mode

The calculation of the coverage profiles is described in Section 5. The principle of how to apply these
coverage profiles to a compiler has been already shown in Figure 2.

The following briefly describes how the coverage profiles have been integrated into the open-source
compiler GCC 4.5.2 [33, 34]. We have chosen GCC due to its mature code base and the availability to
numerous platforms, even processors mainly used in embedded applications. GCC is implemented in
ISO C with some additional configuration files from which code is generated automatically.

The following options have been added to the GCC option interface:

--sccp-enforce = metrics-list This option specifies the activation of the SCCP (structural code
coverage preservation) mode, which causes the compiler to focus on the coverage preservation
of the coverage metrics given as a comma-separated list. Currently, this list can include the items
SC (statement coverage), cc (condition coverage), dc (decision coverage), mcdc (modified
condition-decision coverage), and pc (path coverage). For example, to tell the compiler to
focus on the preservation of CC and DC, it has to be called with the following option:
--sccp-enforce=cc,dc.

--sccp-warn When the option --sccp-enforce=⟨metrics-list⟩ is given to the compiler, the
default mode is that the compiler disables all those code optimizations that have the potential to
disrupt the coverage metrics specified in ⟨metrics-list⟩. With the option --sccp-warn

struct sccp_coverage_profile_type
{
enum sccp_code_trans trans; /* id of code optimization */
unsigned int preserves_mask; /* each bit set represents a preserved metrics */
int *pflag; /* address of enabling flag of optimization */
const char *trname; /* name of code optimization */

};

extern struct sccp_coverage_profile_type sccp_coverage_profile[];

Figure 17. Source Code of Data Structure of Coverage Profiles

the compiler is meant to be switched to a passive coverage preservation mode, where no code
optimizations are guarded, but instead warnings are emitted, which inform the user that the
specified coverage metrics may have been disrupted.

At the current stage of implementation the functionality behind the option --sccp-warn has not
been fully implemented, as experiments so far haven’t shown real need for it. The command line
interface of GCC has been extended by adding the additional options into the file common.opt, from
where an existing script of GCC automatically generates the code for parsing and basic handling of the
options [34].

The coverage profiles have been added to the files opts.h and opts.c. In GCC all code optimizations
are already guarded by a control flag. For example, the variable flag unroll loops controls
whether the loop unrolling phase is called during compilation or not. GCC provides the flexibility
of enabling or disabling each of its supported code optimizations separately by an option, e.g.,
--unroll-all-loops enables loop unrolling. For convenience, there are also generic options to
specify the optimizations level of the form -Ox) and based on the optimization level x a specific
subset of the available code optimizations is enabled via their individual control variables. In opts.h
we have declared the data structure that stores all the coverage profiles. Figure 17 shows the source
code of this data structure. trans is an integer value that specifies the numerical identifier of each
code transformation. This list of identifiers for all supported code optimizations has been added as an
enumeration type in ISO C. The variable preserves mask is a bitmask where a one at a bit position
indicates that the corresponding coverage metric is preserved by the code transformation. pflag is
a pointer to the control variable of the optimization; it is used to disable code optimizations in case
that they do not preserve the requested coverage metrics. The entry trname holds the name of the
optimization, which is used for optimization logs.

The initialization of the vector of coverage profiles is done in the source file opts.c (variable
sccp coverage profile[] in Figure 17). The coverage profiles have been calculated according
to the method described in Section 5. The resulting coverage profiles for GCC 4.5.2 are given in
Table II. GCC itself has even more optimizations as those listed in this table. However, our approach
was to focus on those optimizations that are implicitly enabled or disabled by the generic optimization
option -Ox. The optimization level where the individual optimizations gets enabled or disabled are
shown in columnActivation. Furthermore, as shown in row 60-62, we have added support for some loop
optimizations which are not implicitly controlled by the option -Ox. The general code optimization
name each concrete code transformation belongs to is given in Column Optimization Name. Coverage
profiles for optimizations at function level, e.g., function inlining, apply to both subroutines and
methods of classes. Further description of the individual code transformations listed in Table II can
be found in the GCC documentation [33] using the option name given in column Command Line
Option. The source code of the prototype implementation of the SCCP compiler can be downloaded
from the homepage of the SECCO project [35].

What we already see from Table II is that most of the studied code optimizations of GCC do
preserve the individual structural code-coverage metrics. However, an empirical evaluation is necessary
to see quantitative values of how the activation of coverage preservation will have an impact on the
performance of the generated code.

No Optimization Name Command Line Option Activation SC CC DC MCDC PC
1 Align Branch Target Address falign-functions ≤ O1 ✓ ✓ ✓ ✓ ✓

2 Align Branch Target Address falign-jumps ≤ O1 ✓ ✓ ✓ ✓ ✓

3 Align Branch Target Address falign-labels ≤ O1 ✓ ✓ ✓ ✓ ✓

4 Align Branch Target Address falign-loops ≤ O1 ✓ ✓ ✓ ✓ ✓

5 Copy Propagation fcprop-registers ≥ O1 ✓ ✓ ✓ ✓ ✓

6 Defer Arg Pop Until Later fdefer-pop ≥ O1 ✓ ✓ ✓ ✓ ✓

7 Branch Delay Slot Filling fdelayed-branch ≥ O1 ✓ ✓ ✓ ✓ ✓

8 Forward Propagation fforward-propagate ≥ O1 ✓ ✓ ✓ ✓ ✓

9 Guess Branch Probabilities fguess-branch-probability ≥ O1 ✓ ✓ ✓ ✓ ✓

10 If Conversion fif-conversion ≥ O1 ✓ ✓ ✓ ✓ ✓

11 If Conversion fif-conversion2 ≥ O1 ✓ ✓ ✓ ✓ ✓

12 Detection of Pure/Const Functions fipa-pure-const ≥ O1 ✓ ✓ ✓ ✓ ✓

13 Detect local-only references fipa-reference ≥ O1 ✓ ✓ ✓ ✓ ✓

14 Constant Merging fmerge-all-constants ≥ O1 ✓ ✓ ✓ ✓ ✓

15 Constant Merging fmerge-constants ≥ O1 ✓ ✓ ✓ ✓ ✓

16 Stack Frame Creation Avoidance fomit-frame-pointer ≥ O1 ✓ ✓ ✓ ✓ ✓

17 Split Wide Types fsplit-wide-types ≥ O1 ✓ ✓ ✓ ✓ ✓

18 Constant Propagation (Conditional) ftree-ccp ≥ O1 ✓ ✓ ✓ ✓ ✓

19 Loop Inversion ftree-ch ≥ O1 ✓ ✓ ✹ ✹ ✹
20 Variable Renaming ftree-copyrename ≥ O1 ✓ ✓ ✓ ✓ ✓

21 Copy Propagation ftree-copy-prop ≥ O1 ✓ ✓ ✓ ✓ ✓

22 Useless Code Elimination ftree-dce ≥ O1 ✓ ✓ ✓ ✓ ✓

23 Diverse (incl. Jump Threading) ftree-dominator-opts ≥ O1 ✹ ✹ ✹ ✹ ✹
24 Useless Code Elimination ftree-dse ≥ O1 ✓ ✓ ✓ ✓ ✓

25 Redundancy Elimination (full only) ftree-fre ≥ O1 ✓ ✓ ✓ ✓ ✓

26 Forward Store Motion ftree-sink ≥ O1 ✓ ✓ ✓ ✓ ✓

27 Scalar Replacement of Aggregates ftree-sra ≥ O1 ✓ ✓ ✓ ✓ ✓

28 Copy Propagation ftree-ter ≥ O1 ✓ ✓ ✓ ✓ ✓

29 Caller Register Optimization fcaller-saves ≥ O2 ✓ ✓ ✓ ✓ ✓

30 Tail Merging (aka Cross Jumping) fcrossjumping ≥ O2 ✓ ✓ ✓ ✓ ✓

31 CSE (across BB) fcse-follow-jumps ≥ O2 ✓ ✓ ✓ ✓ ✓

32 Scalar Replacement of Aggregates fipa-sra ≥ O2 ✓ ✓ ✓ ✓ ✓

33 Influences Other Optimizations fexpensive-optimizations ≥ O2 ✓ ✓ ✓ ✓ ✓

34 Global CSE fgcse ≥ O2 ✓ ✓ ✓ ✓ ✓

35 Indirect Function Inlining findirect-inlining ≥ O2 ✹ ✹ ✹ ✹ ✹
36 Function Inlining finline-small-functions ≥ O2 ✹ ✹ ✹ ✹ ✹
37 Constant Propagation (Interproc.) fipa-cp ≥ O2 ✓ ✓ ✓ ✓ ✓

38 Reassign Reg-NRs in Moves foptimize-register-move ≥ O2 ✓ ✓ ✓ ✓ ✓

39 Optimize sibling/tail-recursive calls foptimize-sibling-calls ≥ O2 ✓ ✓ ✓ ✓ ✓

40 Peephole Optimization fpeephole2 ≥ O2 ✓ ✓ ✓ ✓ ✓

41 Register Move fregmove ≥ O2 ✓ ✓ ✓ ✓ ✓

42 Reorder Basic Blocks freorder-blocks ≥ O2 ✓ ✓ ✓ ✓ ✓

43 Reorder Functions freorder-functions ≥ O2 ✓ ✓ ✓ ✓ ✓

44 CSE frerun-cse-after-loop ≥ O2 ✓ ✓ ✓ ✓ ✓

45 Instruction Reordering fschedule-insns ≥ O2 ✓ ✓ ✓ ✓ ✓

46 Instruction Reordering fschedule-insns2 ≥ O2 ✓ ✓ ✓ ✓ ✓

47 Assume Strict Aliasing Rules fstrict-aliasing ≥ O2 ✹ ✹ ✹ ✹ ✹
48 Assume No Overflow fstrict-overflow ≥ O2 ✹ ✹ ✹ ✹ ✹
49 Bypass Subsumed Cond. Branches fthread-jumps ≥ O2 ✹ ✹ ✹ ✹ ✹
50 Switch Conversion ftree-switch-conversion ≥ O2 ✓ ✓ ✓ ✓ ✓

51 Partial Redundancy Elimination ftree-pre ≥ O2 ✓ ✓ ✓ ✓ ✓

52 Value Range Propagation ftree-vrp ≥ O2 ✓ ✓ ✓ ✓ ✓

53 Useless Code Elimination ftree-builtin-call-dce ≥ O2 ✓ ✓ ✓ ✓ ✓

54 CSE fgcse-after-reload ≥ O3 ✓ ✓ ✓ ✓ ✓

55 Function Inlining finline-functions ≥ O3 ✹ ✹ ✹ ✹ ✹
56 Function Cloning fipa-cp-clone ≥ O3 ✹ ✹ ✹ ✹ ✹
57 Predictive Commoning Optimization fpredictive-commoning ≥ O3 ✓ ✓ ✓ ✓ ✓

58 Loop Unswitching funswitch-loops ≥ O3 ✓ ✹ ✓ ✹ ✹
59 Loop Vectorization ftree-vectorize ≥ O3 ✓ ✓ ✓ ✓ ✓

60 Loop Unrolling funroll-loops explicit ✹ ✹ ✹ ✹ ✹
61 Loop Unrolling funroll-all-loops explicit ✹ ✹ ✹ ✹ ✹
62 No Loop Var Overflow funsafe-loop-optimizations explicit ✹ ✹ ✹ ✹ ✹

Legend: ✓. . . coverage preserved ✹. . . coverage not preserved
Table II. Coverage Preservation Profile for GCC (version 4.5.2)

In this section we presented the basic mechanism of how we implemented the SCCP profiles
in GCC. For other compilers we expect that the integration is of similar ease. However, what
made the implementation in GCC nice to test is the ability to control the activation of any code
optimization individually. The source code of the prototype implementation of the SCCP compiler
can be downloaded from the homepage of the SECCO project [35].

7.2. Evaluation

Table IV shows some quantitative numbers on the performance impact of the SCCP mode as
implemented in GCC 4.5.2. The first benchmark coremark is a synthetic benchmark suite from the
EEMBC organization, designed to measure the performance CPUs of embedded systems [36]. The
other benchmarks are taken from the standard worst-case execution time (WCET) benchmark suite
assembled by the Mälardalen University [37]. The Mälardalen WCET benchmarks have been slightly
modified in order to show the effects of different optimization levels. This modification consists of
adding a new entry routine that calls the original entry routine several times. With this modification
the program execution times become a more dominant timing contribution compared to the program
call overhead. The core mark benchmark is relatively large, aiming to show an average performance
impact by coverage preservation. The Mälardalen WCET benchmarks are relatively small with distinct
control-flow structures, having been selected to query the performance-impact range of coverage
preservation.

The experiments were run on a Mac OS-X 10.6 machine with an Intel Core 2 Duo processor running
at 3.06 MHz. The execution time measurements where done for different optimization settings of
the compiler, using a measurement accuracy of 1ms. The different compiler options are specified
in Table III. With the setting SCCP1 we test the performance impact in case of enforcing only the
most simple structural code coverage, i.e., statement coverage. In contrast, with SCCP2 we test the
performance impact in case of enforcing all supported coverage metrics.

Setting Command-line Option for GCC
O0 -O0
O1 -O1
O2 -O2
O3 -O3
FULL -O3 –unroll-loops –unroll-all-loops
SCCP1 -O3 –sccp-enforce –sccp=sc
SCCP2 -O3 –sccp-enforce –sccp=sc,cc,dc,mcdc,pc

Table III. Compiler Options for the Different Settings

From Table IV we actually see that the SCCP mode does quite well with respect to code performance.
First of all, we also see that it is not always the maximum optimization level that leads to the best
performance. For example, in case of benchmark insertsort the optimization level O2 shows a better
performance that O3. This can have different causes, e.g., a higher optimization level causes an increase
in code size, which subsequently can lead to a less performant code. As the setting of SCCP1 and
SCCP2 is based on the compiler option -O3, the most useful result is their comparison to the setting
O3. The setting FULL includes further loop optimizations that are not always beneficial, but are
interesting for comparison.

We have to note that some measurements for the benchmarks expint, fir, and fft1 are close to the
measurement accuracy, thus the relative comparison of the different settings does not make that much
sense for these benchmarks. However, these benchmarks still demonstrate that the SCCP modes are
competitive in performance, allowing for the same highly effective optimizations as in the settings O2,
O3, and FULL.

The execution time results of Table IV are summarized in Figure 18. The figure shows for each
benchmark the relative performance for the different compilation settings. A performance of 100%
of a compilation setting means that the execution time for this setting was minimal. As said above,

Measured Execution Time [ms]
Name #LOC O0 O1 O2 O3 FULL SCCP1 SCCP2
coremark 5569 109.0·103 48.4·103 43.5·103 35.2·103 36.0·103 35.9·103 35.7·103

statemate 1276 228.00 187.00 260.00 292.00 261.00 284.00 285.00
insertsort 91 48.00 33.00 21.00 25.00 27.00 28.00 27.00
compress 507 150.00 102.00 96.00 91.00 85.00 91.00 91.00
nsichneu 4253 128.00 45.00 38.00 40.00 39.00 40.00 40.00
qurt 166 45.00 27.00 29.00 28.00 24.00 29.00 28.00
adpcm 878 99.00 55.00 71.00 65.00 64.00 65.00 65.00
matmult 177 53.00 25.00 22.00 15.00 13.00 15.00 15.00
ludcmp 147 110.00 46.00 42.00 34.00 40.00 34.00 34.00
jfdctint 375 77.00 35.00 34.00 32.00 31.00 32.00 31.00
crc 128 31.00 19.00 20.00 18.00 18.00 18.00 18.00
edn 285 128.00 43.00 42.00 29.00 29.00 29.00 28.00
expint 157 1746.00 1399.00 2.00 3.00 2.00 3.00 2.00
fdct 239 74.00 27.00 28.00 20.00 19.00 20.00 20.00
fir 276 1006.00 348.00 347.00 2.00 2.00 3.00 2.00
fft1 219 63.00 19.00 12.00 2.00 3.00 3.00 3.00
ndes 231 171.00 106.00 54.00 37.00 38.00 37.00 37.00

Table IV. Performance evaluation of SCCP

 0%

20%

40%

60%

80%

100%

corem
ark

statem
ate

insertsort

com
press

nsichneu

qurt
adpcm

m
atm

ult

ludcm
p

jfdctint

crc
edn

expint

fdct
fir fft1

ndes

Effect of optimizations on performance (legend from left to right)

SCCP-extended GCC 4.5.2: Relative performance of generated code

O0 (1)
O1 (2)

O2 (3)
O3 (4)

FULL (5)
SCCP1 (6)

SCCP2 (7)

Figure 18. Performance comparison: the performance of each optimization opti is normalized to the minimal
performance of all optimizations: minj time(optj)

time(opti)

the results of expint, fir, and fft1 are close to the measurement granularity and thus their relative
presentation in Figure 18 has to be taken with care. However, from the remaining benchmarks we
already see good evidence that the activation of the SCCP mode does not have a significant performance
influence.

This leads to the conclusion that the gain in improved correctness trust of programs by having
ensured at machine-code level the same structural code coverage as at source-code level comes with
a low and mostly even negligible cost. The impact of this quite positive result can be quite manifold.
For our original motivation of measurement-based timing analysis [6, 10] this means that systematic
generation of test data at source-code level will become robust with respect to control-flow coverage.
The results also have a quite positive message for functional testing of software. For example in
embedded computing where performance based on code optimizations is highly important due to
the limitation of computing resources, the SCCP provides better trust in program correctness without
sacrificing processor utilization or battery lifetime.

8. SUMMARY AND CONCLUSION

In this article we addressed the rather novel field of preserving structural code coverage during program
transformation. A code transformer that take care of preserving structural code coverage has many
interesting applications. For example, this allows the realization of reliable and portable test-data
generators. Besides functional software testing, this is even interesting for measurement-based timing
analysis.

Our approach is based on the calculation of so-called coverage profiles, which are tables that store
the information of what code transformations guarantees the preservation of which structural code-
coverage metric. To calculate these coverage profiles, we developed a formal coverage preservation
criteria for each structural coverage metric and infer it with the abstract descriptions of the code
transformations. We have calculated such coverage profiles for statement coverage (SC), condition
coverage (CC), decision coverage (DC), modified condition-decision coverage (MCDC), and (scoped)
path coverage (PC).

The implementation of the coverage preservation mode into the GCC 4.5.2 compiler showed that the
preservation of structural code coverage in GCC comes at quite low cost. In most cases it was as good
as normal compilation with optimization flag -O3, and in cases where the additional loop optimizations
proved to be effective, the coverage preservation stayed slightly behind. In conclusion we have shown
that structural coverage preservation can be integrated into a compiler with quite reasonable effort and
we hope that this technique will be adopted by compiler vendors as well, especially in the domain of
embedded computing, where thorough testing of functional and extra-functional behavior is essential.

REFERENCES

1. RTCA. Software considerations in airborne systems and equipment certification. RTCA/DO-178B 1992.
2. Muchnick SS. Advanced Compiler Design & Implementation. Morgan Kaufmann Publishers, Inc., 1997. ISBN:

1-55860-320-4.
3. Kirner R. SCCP/x - a compilation profile to support testing and verification of optimized code. Proc. ACM Int.

Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES’07), Salzburg, Austria, 2007;
38–42.

4. Kirner R. Towards preserving model coverage and structural code coverage. EURASIP Journal on Embedded
Systems 2009; 2009, doi:10.1155/2009/127945.

5. Jaramillo C, Gupta R, Soffa ML. Debugging and testing optimizers through comparison checking. Electronic
Notes in Theoretical Computer Science Apr 2002; 65(2):83–99. COCV’02, Compiler Optimization Meets Compiler
Verification (Satellite Event of ETAPS 2002).

6. Wenzel I, Kirner R, Rieder B, Puschner P. Measurement-based timing analysis. Proc. 3rd Int’l Symposium on
Leveraging Applications of Formal Methods, Verification and Validation, Porto Sani, Greece, 2008.

7. Kirner R, Puschner P, Wenzel I. Measurement-based worst-case execution time analysis using automatic test-data
generation. Proc. 4th International Workshop on Worst-Case Execution Time Analysis, Catania, Italy, 2004; 67–70.

8. Aho AV, Sethi R, Ullman JD. Compilers, Principles, Techniques, and Tools. Addison-Wesley, 1997. ISBN: 0-201-
10088-6.

9. Wenzel I, Rieder B, Kirner R, Puschner P. Automatic timing model generation by CFG partitioning and model
checking. Proc. Conference on Design, Automation and Test in Europe (DATE’05), IEEE: Munich, Germany, 2005;
606–611.

10. Bünte S, Zolda M, Tautschnig M, Kirner R. Improving the confidence in measurement-based timing analysis. Proc.
14th IEEE International Symposium on Object-oriented Real-time distributed Computing, Newport Beach, CA,
USA, 2011.

11. Chilenski JJ. An investigation of three forms of the modified condition decision coverage (MCDC) criterion.
Technical Report DOT/FAA/AR-01/18, Boeing Commercial Airplane Group Apr 2001.

12. ISO. Programming Languages – C. 2nd edn., ISO/IEC 9899:1999, 1999. Technical Committe: JTC 1/SC 22/WG
14.

13. Myers GJ. The Art of Software Testing. John Wiley & Sons, 1979.
14. Hayhurst KJ, Veerhusen DS, Chilenski JJ, Rierson LK. A practical tutoral on modified condition/decision coverage.

Technical Report NASA/TM-2001-210876, National Aeronautics and Space Administration, Hampton, Virginia
May 2001. Available in pdf format.

15. Bhansali PV. The mcdc paradox. SIGSOFT Software Engineering Notes May 2007; 32(3):1–4, doi:http://doi.acm.
org/10.1145/1241572.1241581.

16. Kandl S, Kirner R. Error detection rate of MC/DC for a case study from the automotive domain. Proc. 8th IEEE
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’10), Waidhofen/Ybbs,
Austria, 2010.

17. Allen FE. Control flow analysis. SIGPLAN Not. 1970; 5(7):1–19, doi:http://doi.acm.org/10.1145/390013.808479.
18. Shivers O. Control-flow analysis in scheme. Proc. ACM SIGPLAN Conference on Programming Language Design

and Implementation, 1988; 164–174, doi:http://doi.acm.org/10.1145/53990.54007.
19. Cota BA, Fritz DG, Sargent RG. Control flow graphs as a representation language. WSC ’94: Proceedings of the

26th conference on Winter simulation, Society for Computer Simulation International: San Diego, CA, USA, 1994;
555–559.

20. Heintze N. Control-flow analysis and type systems. Proc. of 2nd International Symposium on Static Analysis, LNCS,
vol. 983, Springer: Glasgow, UK, 1995; 189–206.

21. Harel D. On visual formalisms. Commun. ACM 1988; 31(5):514–530, doi:http://doi.acm.org/10.1145/42411.42414.
22. Gross JL, Yellen J. Graph Theory and Its Applications. 2nd edn., Chapman and Hall/CRC, 2006.
23. Ahuja RK, Magnanti TL, Orlin JB. Network Flows: Theory, Algorithms and Applications. PRENTICE HALL,

1993.
24. Allen R, Kennedy K. Optimizing Compilers for Modern Architectures. Elsevier Academic Press, 2002.
25. Wolfram S. The Mathematica Book. 4th edn., Cambridge University Press, 1999.
26. Haas W. Automatic coverage-profile calculation for code optimization. Master’s Thesis, Technische Universität

Wien, Vienna, Austria Dec 2010.
27. Skiena SS. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Addison-

Wesley Publishing Co., 1990.
28. Mercer R. The convex fortran 5.0 compiler. Proceedings of the 3rd International Conference on Supercomputing,

Vol. 2, 1988.
29. Organisation IS. ISO/IEC 14882:2003 Programming Languages - C++. American National Standards Institute:

New York, 2003. Technical Committe: JTC 1/SC 22/WG 21.
30. Ada reference manual iso/iec 8652:1995(e) with technical corrigendum 1 language and standard libraries.
31. Padua DA, Wolfe MJ. Advanced compiler optimizations for supercomputers. Commun. ACM 1986; 29(12):1184–

1201, doi:http://doi.acm.org/10.1145/7902.7904.
32. Lowry ES, Medlock CW. Object code optimization. Commun. ACM 1969; 12(1):13–22, doi:http://doi.acm.org/10.

1145/362835.362838.
33. Stallman RM, GCC Developer Community. Using the GNU Compiler Collection. GNU Press, Boston, USA Dec

2010. GCC version 4.5.2, available online at http://gcc.gnu.org/gcc-4.5/.
34. Stallman RM, GCC Developer Community. GNU Compiler Collection Internals. GNU Press, Boston, USA Dec

2010. GCC version 4.5.2, available online at http://gcc.gnu.org/gcc-4.5/.
35. Vienna University of Technology. The SECCO project: Sustaining entire code-coverage on code optimization. web

page (http://pan.vmars.tuwien.ac.at/secco/). Accessed in May 2011.
36. Coremark v1.0. Web page (http://www.coremark.org) 2009. Accessed online in Dez. 2011.
37. Mälardalen research and technology centre WCET benchmarks. Web page (http://www.mrtc.mdh.se/

projects/wcet/) 2009. Accessed online in April 2011.
38. Whalen M, Rajan A, Heimdahl M, Miller S. Coverage metrics for requirements-based testing. International

Symposium on Software Testing and Analysis, Portland, USA, 2006.
39. Vilkomir SA, Bowen JP. From MC/DC to RC/DC: Formalization and analysis of control-flow testing criteria.

Formal Aspects of Computing Mar 2006; 18(1):42–62. DOI: 10.1007/s00165-005-0084-7.
40. Vilkomir SA, Bowen JP. Formalization of software testing criteria using the z notation. Proc. 25th Annual

International Computer Software and Applications Conference, Honolulu, Hawaii, USA, 2001; 351.
41. Chilenski JJ, Miller S. Applicability of modified condition decision coverage to software testing. Software

Engineering Journal Sep 1994; 7(5).
42. Object Management Group. MDA Guide. Version 1.0.1 edn. June 2003. Document number: omg/2003-06-01.
43. Broy M, Jonsson B, Katoen JP, Leucker M, Pretschner A ((eds.)). Model-based Testing of Reactive Systems, Lecture

Notes in Computer Science, vol. 3472. Springer, 2005. ISBN: 3-540-26278-4.
44. Heimdahl MPE, Whalen M, Rajan A, Miller SP. Testing strategies for model-based development. Technical Report

NASA/CR-2006-214307, National Aeronautics and Space Administration, Hampton, Virginia Apr 2006. Available
in pdf format.

45. Rajan A, Whalen M, Heimdahl M. Model validation using automatically generated requirements-based tests. Proc.
10th IEEE High Assurance Systems Engineering Symposium, Dallas, USA, 2007.

46. Baresel A, Conrad M, Sadeghipour S, Wegener J. The interplay between model coverage and code coverage. Proc.
of Int’l European Conference on Software Testing, Analysis and Review (EuroSTAR 2003), to appear, 2003.

47. Rajan A, Whalen M, Heimdahl M. The effect of program and model structure on MC/DC test adequacy coverage.
Proc. 30th Int’l Conference on Software Engineering, Leipzig, Germany, 2008.

48. Elbaum S, Gable D, Rothermel G. The impact of software evolution on code coverage information. Proc.
International Conference on Software Maintenance, 2001; 169–179.

49. Harman M, Hu L, Hierons R, Wegener J, Sthamer H, Baresel A, Roper M. Testability transformation. IEEE
Transactions on Software Engineering Jan 2004; 30(1).

