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Abstract 
 
This paper discusses an evaluation methodology that can be used to assess the 
performance of intelligent techniques at detecting, as well as predicting, unauthorised 
activities in networks. The effectiveness and the performance of any developed 
intrusion detection model will be determined by means of evaluation and validation. The 
evaluation and the learning prediction performance for this task will be discussed, 
together with a description of validation procedures. The performance of developed 
detection models that incorporate intelligent elements can be evaluated using well 
known standard methods, such as matrix confusion, ROC curves and Lift charts. In this 
paper these methods, as well as other useful evaluation approaches, are discussed.  
 
 
Introduction 
 
Evaluation is the key in making significant progress in applying intelligent solutions and 
machine learning algorithms to real life problems, such as intrusion detection [Witten et. 
al. 2000]. However, systematic ways to evaluate how different learning methods work 
and to compare one with another are needed, as well as ways of predicting 
performance based on practical experiments using useful collected data. Evaluating the 
performance of machine learning schemes on a given problem, such as detecting and 
predicting unauthorised activities within a network, is an issue that is not easy as it 
sounds. So far, experiments have been conducted and it has been assumed that what 
is being predicted is the ability to classify different instances of normal and abnormal 
network traffic activities. In some other experimental situations, the prediction involves 
class probabilities, rather than only the classes themselves. For example, a developed 
model predicted a smurf activity and indicated that it was in a form of a probabilistic 
figure based on the behaviour of ICMP protocol. Therefore, a mechanism for 
maximising the success rate of the predictions and counting the cost of making wrong 
decisions and predictions is needed. In most practical intrusion detection situations, the 
cost of a misdetection error depends on the type of error it is, e.g. whether a positive 
signal was erroneously detected as negative or vice versa.  When developing an 
intelligent-based solution such as an intrusion detection model, and evaluating its 
performance, it is often essential to take these costs into consideration. 

www.ijde.org 



International Journal of Digital Evidence                             Summer 2004, Volume 3, Issue 1 
 

Evaluation Methodology 
 
The evaluation methodology should be based upon the reliability and precision of 
detecting unauthorised network activities, as well as a characterised prediction scheme 
using intelligent intrusion detection techniques. The evaluation methodology should fulfil 
the following requirements: 
 

• Evaluate the hypothesis that intelligent techniques such as machine learning can 
be used to differentiate between normal (legitimate) and abnormal (illegitimate) 
users, processes, or network activities. 

 
• Develop detection and prediction techniques appropriate for classifying, as well 

as identifying, system or network anomalies. The evaluation should provide 
acceptable estimation figures for the effectiveness of the classification obtained. 

 
• Develop an accurate, useful procedure of evaluation of the proposed techniques 

which could be used in the future. This will provide valid methods for comparing 
results obtained from the experiments and/or other similar development work. 

 
In order to evaluate an intrusion detection system that is characterised with prediction 
features, it is necessary to know both the probability of detecting an attack known as a 
True Positive (TP) and the probability of issuing a false alarm known as a False Positive 
(FP). The majority of current intrusion detection systems report different warning levels, 
which enable security managers to adjust an alert threshold that effectively trades off 
(TP) for (FP). The security manager is able to discover more attacks when lowering the 
threshold; however, the false alarms rate will probably increase. Similarly, the security 
manager can increase the threshold to decrease false alarms rate.  However, this may 
cause the system to miss other additional attacks. Knowing both TP and FP and how 
they fluctuate with the changes in the threshold, allows one to plot the information in a 
diagrammatic form.  Extracting knowledge from the generated plots, enables security 
managers to set thresholds to maintain the required amount of analysis effort and the 
desired security level. 
 
 
Performance Criteria 
  
The evaluation methodology mainly applies five criteria to measure the performance of 
intelligent detection models. In conjunction with any achieved statistical measurements, 
the cost of misclassification measurement is a useful measure to consider. In addition,  
the performance of probabilistic predictions, when considered a focus of attention 
component, is certainly important. The performance measurement approach can be 
summarised as follows: 
 

• Validate whether a simulation model features an acceptable representation of the 
real system, given the purpose of a simulation model [Kleijnen, 1999]. 
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• Evaluate the precision of the developed detector model using a confusion matrix 
[Witten et. al., 2000]. 

 
• Evaluate the performance of a developed detector model on an unseen test set 

using 10-fold stratified cross-validation [Witten et. al., 2000]. This can be applied 
when a dataset is used to train a developing model. 

 
• Measure the performance of a model and its cost of misclassification using Lift 

charts and ROC curves [Marchette, 2001]. 
 
The effectiveness of these measures can be summarised and tested for statistical 
significance of a particular developed model. For example, intelligent simulation tools 
that model intrusion detection should enable the use of several different evaluation 
features to conduct evaluation experiments and measurements. The primary goal of 
developing intelligent detection models, which function as prediction and classification 
mechanisms, is to predict the performance of a detector on new events and assess its 
error rate on unseen data (i.e. a dataset that played no part in the formation or training 
of the detector model under development). The ultimate goal in the detection task is to 
identify those potentially unauthorised activities and malicious occurrences in user 
processes or networks, while minimising the rate of incorrectly flagging normal 
behaviours, i.e. false positives. This is to minimise the rate of failing to identify 
unauthorised activities and malicious behaviours, i.e. false negatives. The false 
positives and false negatives rate of an entire detection system must be as low as 
possible. 
 
Even though it is possible to bundle the testing data back into the training data, the 
testing data used to test the developed detection model has to be kept separate from 
the training data. The reason for that is the amount of training data that is used to 
develop the detector model is often huge. In fact what is important is that error rates are 
quoted based on the separation of both training data and testing data. This matches the 
assumption made by Witten et. al. [2000] that both the training data and the test data 
are representative samples of the underlying problem. Provided both samples are 
representative, the error rate on the test set will give a true indication of future 
performance. The larger the training sample, the better the detection classification, 
although the returns begin to diminish once a certain volume of training data is 
exceeded. And, the larger the test sample, the more accurate the error estimate. 
However, it is possible to increase the level of confidence significantly through careful 
examination of the dataset, as well as related experiments. The accuracy of the error 
estimate can be quantified statistically. 
 
One of the dataset that is often used in the development and evaluation of intrusion 
detection models is generated by MIT Lincoln Lab [MIT Lincoln Lab], which was mostly 
recently updated in 2000. This dataset contains millions of instances in a form of 
network connections using different networks as well as application protocols. The 
learning procedures for developing network detector models can only receive the 
dataset as an input. In order to increase the efficiency of such experiments, 
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accommodate a huge dataset, and achieve accurate modelling and simulation results, 
high specification hardware is required. In such a developed detection model, the 
techniques used for the development can be easily compared, because all of them 
received the same training dataset as input. Therefore, it is possible to quantify the 
effect of the local structures on the parameter estimation and the structure selection of 
those developed detection models. 
 
 
Validation of Modelling & Training Dataset  
 
Validation determines whether a simulation model is an acceptable representation of a 
real system given the purpose of a simulation model [Kleijnen, 1999]. In this case 
simulation means experimentation, i.e., the model is used instead of the real system. 
Also, real data are used rather than simulated data; hence, experimentation is done 
using a simulated model rather than the real system. However, any experimentation 
calls for statistical analysis, which is only part of the whole validation process. The type 
of statistical procedure to use depends on the kind of data that is available for the 
analysis. When a model is created such as a detection model, it should be developed 
for a well defined purpose, and its validity and performance determined with respect to 
that purpose [Sargent, 1999]. If the purpose of a model is to answer particular 
questions, the validity of the model has to be determined with respect to each question. 
There are many validation techniques that can be used to validate a particular intrusion 
detection model. In Sargent [1999], sixteen various general validation techniques were 
discussed. These techniques were used for general purposes. However, only eight of 
them are applicable here to validate intrusion detection models that feature intelligent 
solutions. In addition combinations of the eight selected techniques can be used, which 
is quite acceptable within the verification and validation (V&V) community. The other 
validation techniques are excluded due to their irrelevance to the underlying problem. 
Following Sargent [1999], the selected validation techniques that can be used to 
validate simulated intrusion detection models are as follows. 
 

• Parameter Variability-Sensitivity Analysis: This technique consists of altering the 
values of the internal parameters of a developed model and its inputs to 
determine the effects upon the model’s behaviour and its output. The same 
relationships of change should be possible in the real system model. 

 
• Predictive Validation: The model is used to predict the system behaviour; 

consequently, comparisons can be made between the model’s prediction and the 
system’s behaviour to determine if they are similar. The empirical evidence could 
be used here to make the comparisons. 

 
• Operational Graphics: This is used to obtain various performance measures that 

graphically indicate the model behaviour with respect to time, i.e., the dynamic 
behaviours of performance indicators are visually displayed as the simulation 
model moves through time. 
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• Historical Data Validation: If historical data is available (or if data is collected on a 
system for building or testing the model), part of the historical data is used to 
train; hence, building the model and the remaining unseen part is used to test 
whether the model behaves in a similar manner to the real system. 

 
• Historical Methods: The three historical methods of validation are rationalism, 

empiricism, and positive economics. Rationalism assumes that everyone knows 
whether the underlying assumptions of a model are true. Logic deductions are 
used from these assumptions to develop the correct model. Empiricism requires 
every assumption, achieved model output and outcome to be empirically 
validated. Positive economics requires only that the model be able to predict the 
future and is not concerned with a model’s assumptions or structure (causal 
relationship or mechanism). 

 
• Multistage Validation: proposed by Naylor and Finger, [1967], this technique 

combines the three historical methods of rationalism, empiricism, and positive 
economics into a multistage process of validation. This validation method 
consists of, first developing the model’s assumptions on theory, observations, 
general knowledge, and function, second validating the model’s assumptions 
where possible by empirically testing them, and finally, comparing the input-
output relationships of the developed model to the real system. 

 
• Traces: The idea behind this technique is to trace the behaviour of different types 

of specific entities in the model. This is to determine if the model’s logic is correct 
and if the necessary accuracy is achieved. 

 
• Turing Tests: This validation test is based on the consultation of experts who are  

familiar with the underlying problem and knowledgeable about the operations of a 
system. They can be asked identify any differences between the developed 
model and a real system outputs. 

 
It is natural to measure a detector’s prediction performance in terms of the error rate 
[Witten et. al., 2000]. If the prediction is correct, then it is counted as a success; 
otherwise it is an error. Generally, in order to predict the performance of a detector on 
new input data, such as new incoming network traffic, its error rate must be assessed 
on an independent dataset that played no part in the formulation of the detector. There 
are two datasets that should be provided, the training data and the test data. The 
training data will be used to come up with the detector. Then the test data will be used 
to calculate the error rate of the final, optimised model. Each of the two sets must be 
chosen independently. The testing data set must be different from training data to get a 
reliable estimate of the true error rate and to get good performance in the optimisation 
or evaluation stage. The validation process will then be used to optimise the internal 
parameters of developed detector models, so to evaluate which approach would be 
more suitable. Provided all samples are representative, the error rate on the test set will 
give a true indication of future performance. 
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Generally, there is no straight forward way to tell whether a sample is representative or 
not. One possible way of evaluating the Bayesian Learning approach is to determine the 
error rate using stratified tenfold cross-validation. Stratification is a technique which 
ensures that random sampling is done in such a way as to guarantee that each class is 
properly represented in both training and test sets [Witten et. al., 2000]. The standard 
way of predicting the error rate estimate of a learning technique given a single, fixed 
sample of data is to use stratified tenfold cross-validation. This technique is used in 
such away that the dataset is divided randomly into ten parts, in each of which the class 
is represented in approximately the same proportions as in the full dataset. Each part is 
held out in turn and the learning scheme trained on the remaining nine-tenths; then its 
error rate is calculated on the holdout set. Thus the learning procedure is executed a 
total of ten times, on different training sets (each of which have a lot in common). 
Finally, the ten error estimates are averaged to yield an overall error estimate. The 
stratified tenfold cross-validation is considered to be a standard evaluation technique in 
practical terms. 
 
Due to the possible substantial variance in an individual tenfold cross-validation and the 
approximation of the true cross-validation error figure, it is possible to sample from the 
distribution of cross-validation experiments. This can be achieved by using different 
random partitions of a given dataset, treating error rates calculated in these cross-
validation runs as different, independent samples from a probability distribution. 
Therefore, by comparing the average error rate over several cross-validations for a 
learning model, it is possible to determine whether a mean of a set of samples of a 
cross-validation estimate is significantly greater or significantly less.  
 
 
Validation of Model’s Detection: A case study  
 
An intrusion detection model that is developed using a Bayesian network learning has 
been validated by comparing its output with a real system, EMERALD (Event Monitoring 
Enabling Responses to Live Disturbances) detection system’s output. The developed 
detector model has been automatically learned and trained from the MIT Lincoln Lab 
dataset. EMERALD is SRI’s environment for scalable, distributed intrusion detection 
and network monitoring [Marchette, 2001]. (Information on EMERALD can be obtained 
from many recent sources on intrusion detection [Amoroso, 1999, Bace, 2000, 
Marchette, 2001]). Figure 1 indicates that both the developed model output and 
EMERALD system are detecting buffer_overflow activities [Valdes et al, 2001]. In order 
to protect the data, part of the information on EMERALD’s output is hidden. A similar 
relationship of the developed model change appears in the real EMERALD system as a 
result of internal parameters changes. However, the developed model’s output provides 
a probabilistic figure to indicate its confirmed prediction.  
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Figure 1. Model’s detection validation 

 
 
Validation Remarks 
 

• The conducted experiments in both the developed model and EMERALD indicate 
the detection of buffer_overflow event. By altering the parameters’ values of the 
related variables in the developed detection model, the model’s probabilistic 
behaviour and prediction have been affected in a similar way to EMERALD’s 
output. However, the developed model’s output provides a probabilistic figure to 
indicate its confirmed prediction, which is not the case in EMERALD output. This 
relatively similar relationship has occurred in the developed model as well as the 
real system, hence it confirms both of the validation techniques, the parameter 
variability-sensitivity analysis and predictive validation, as mentioned earlier. 

 
• By knowing the underlying hypothesis of the developed detection model, i.e., its 

mathematical assumptions and its input/output relationships, the model’s output 
can be empirically validated by analysing those relationships. For example, the 
used dataset indicates that the buffer_overflow attack can result from an increase 
in the length of users’ network connections, which is determined by the model’s 
input variable “duration”  [MIT Lincoln Lab]. The developed model’s output does 
not only determine the detection probability, but represents a predictive figure for 
future similar events to buffer_overflow when changing the value of the model’s 
variable duration, taking into account the causal relationship among the model’s 
internal variables. This confirms the validation techniques of both the historical 
methods and the multistage validation. 
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Intelligence Evaluation and Analysis 
 
Intelligence means the capability of a detection model to automatically learn and predict  
the relationship among its internal variables. In this section, a targeted evaluation will be 
used to measure the quality of a detector model for the prediction of the target variable 
and its parameters with respect to an associated dataset. Once the detection model is 
learned, it is possible to evaluate its performance on a test set (ideally different from the 
training learning set). The tools that can be used for evaluating detection model are as 
follows [Marchette, 2001, BayesiaLab, 2003]: 
 

• Confusion Matrices allow the precise measurement of the performance of a 
model for each modality (events occurrence number, reliability -- proportion of 
the cases with a correct prediction, and precision -- proportion of the cases 
where the true value is correctly predicted); 

 
• ROC curves, which are centred on the parameter value of the target node 

(activity_type), and ; 
 

• Lift charts, which are centred on the parameter value of the target node as well. 
 
The following sections will focus on the use of a confusion matrix, ROC curves and Lift 
charts to evaluate network detector models. 
 
 
Confusion Matrix 
 
The effectiveness of a learning classifier is its ability to make correct classification 
decisions. There are several evaluation measures used for measuring effectiveness 
including reliability and precision. Classification  could be thought of as a number of 
binary decisions where each entry in an assignment table is given a {0, 1} score (a 
binary yes/on decision) [Witten et. al., 2000]. One parameter that is used for evaluation 
is the cost of making wrong decisions and wrong classifications. Optimising 
classification rate without considering the cost of the errors often leads to inaccurate 
results. In networks security terms the cost of incorrectly detecting abnormal network 
behaviour classification has a different cost to the incorrectly predicted normal 
classification outcome. In networks intrusion detection, the primary concern is a two-
class case attack “yes” or attack “no”. The four different possible outcomes of a single 
prediction are shown in Table 1, which is known as the confusion matrix for the two-
class case. The true positives (TPs) and true negatives (TNs) are correct classifications. 
The false positive (FP) is when the outcome is incorrectly predicted as yes (or positive), 
when it is in fact no (negative). A false negative (FN) is when the outcome is incorrectly 
predicted as negative, when it is in fact positive. These two kinds of errors will generally 
have different costs; likewise the two types of correct classification will have different 
benefits.  
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Table 1. Different outcomes of a two-class prediction 
 

True or real class
(or values)

Predicted class
(or values) Yes No

Yes True Positive (TP) False Negative (FN)

No False Positive (FP) True Negative (TN)
 

 
The confusion matrices that are shown in Figures 2 (a), (b), and (c) were produced for a 
developed intelligent detector model incorporated with Bayesian learning. These figures 
give  useful feedback about its performance. This detector has been developed and 
automatically learned using the MIT Lincoln Lab dataset. Three visualization modes are 
available, as follows: 
 

• Occurrence Matrix: number of cases for each Prediction/Real value, as shown in 
Figure 2 (a). The predictions of the model appear on the columns, the lines are 
representing the true (real) values that are in the dataset. 

 
• Reliability Matrix: ratio between each prediction and the total number of the 

corresponding prediction (sum of the line) , as shown in Figure 2 (b). 
 

• Precision Matrix: ratio between each prediction and the total number of the 
corresponding real value (sum of the column), as shown in Figure 2 (c).  
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(a) 

 
(b) 

 
(c) 

Figure 2. Confusion matrix for a developed intelligent Bayesian detector 
 
The confusion matrix indicates the classification results down the main diagonal i.e., 
TPs (assigned values for each abnormal parameter) and TNs (assigned values for 
normal parameter) values, and small, ideally zero, off-diagonal elements for both FPs 
(columns) and FNs (rows). 
 
The direct evaluation of a Bayesian network detector modelled for the prediction of a 
target variable such the activity_type can be realised by computing its total precision 
and reliability. The precision is the ratio between the number of correct predictions and 
the total number of predictions, i.e., the number of the true positives divided by the 
number of the true positives plus the false positives, as follows 
 

Precision =   100%TP
TP FP

×
+

 

 
Table 2 lists an alternative view of the main readings of the confusion matrix in figure 2, 
including the number of occurrences for both real and predicted values of all parameters 
of the activity_type variable as well as the achieved reliability and precision (main 
diagonal values) in Figures 2 (b) and (c). 
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Table 2. List of event parameters’ occurrences, reliability and precision 
 
Event parameter                      Occurrences Reliability (%) Precision (%)

Real Predicted
Apache2 794 798 98.99 99.49
Back 1098 1095 99.81 99.54
Buffer_overflow 22 28 53.57 68.18
ftp_write 3 1 100 33.33
Guess_password 4367 4400 98.93 99.7
Httptunnel 158 157 96.17 95.56
Imap 1 1 100 100
Ipsweep 306 415 72.28 98.03
Land 9 21 38.09 88.88
Loadmodule 2 1 100
Mailbomb 5000 5077 98.48 100
Mscan 1053 1073 95.99 97.81
Multihop 18 3 100 16.66
Named 17 14 64.28 52.94
Neptune 58001 57975 99.95 99.91
Nmap 84 84 100 100
Normal 60593 52692 95.33 82.9
Perl 2 0 0
Phf 2 2 50 50
Pod 87 31 80.64 28.73
Portsweep 354 416 83.89 98.58
Processtable 759 768 98.82 100
Ps 16 14 35.71 31.25
Rootkit 13 8 12.5 7.69
Saint 736 311 58.06 2.44
Satan 1633 2195 68.97 92.711
Sendmail 17 27 29.62 47.05
Smurf 164091 164324 99.85 100
Snmpgetattack 7741 15940 41.43 85.311
Snmpguess 2406 1376 62.05 36.69
Sqlattack 2 1 100
Teardrop 12 1 0 0
Udpstorm 2 0 0
Warezmaste

50

0

50

0
r 1602 1982 97.31 98.12

Worm 2 0 0
Xlock 9 11 45.45 55.55
Xsnoop 4 3 33.33 25
Xterm 13 16 43.75 53.84

0

 
 
 
Evaluation Remarks:  
 
The interpretation of the generated confusion matrix of Figure 2 as well as Table 2 is as 
follows: 
 

• The developed Bayesian network detector model has a high total precision of 
95.44 %. 

 
• In the case of apache2 unauthorised activity there are 794 cases in the 

evaluation dataset (True values). 
 

• There are 798 cases for which the detector model predicts apache2 for the target 
variable activity_type. 

 
• The prediction reliability for the apache2 unauthorised activity is 

790 100% 98.99%
790 8

× =
+

. 
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• The prediction precision for the apache2 unauthorised activity is 
790 100% 99.49%

790 4
× =

+
. 

 
• Due to the low representation of buffer_overflow in the training dataset, the 

achieved prediction reliability is 53.57% and the prediction precision is 68.18%. 
 

• For those unpredicted parameters, i.e., with zero or nearly zero prediction, such 
as Udpstorm or Teardrop, the achieved reliability and precision is zero. This is 
due to the inappropriate representation of those parameters. 

 
• Good classification results correspond to large numbers down the true main 

diagonal on the confusion matrix and small, ideally zero, off-diagonal elements. 
 
 
The ROC Curves and Lift charts 
 
One of the methods that is used for counting the cost and evaluating machine learning 
schemes is known as ROC (Receiver Operating Characteristics) curves, where the 
learner is trying to select samples of test instances that have a high proportion of 
positives [Witten et. al., 2000]. ROC] is a procedure derived from the early days of radar 
and sonar detection used in the Second World War, hence the name “Receiver 
Operating Characteristic” [O’Connell et. al., 2002 . ROC is used in signal detection to 
characterise the trade off between hit rate and false alarm rate over a noisy channel. 
The features supplied with ROC can be used to evaluate the performance of intrusion 
detection models that incorporate intelligent solutions. The ROC curve plots the number 
of positives included in the sample on the vertical axis (Y-axis), expressed as a 
percentage of the total number of positives or the true positive rate, against the number 
of false positives included in the sample, expressed as a percentage of the total number 
of false positives or the false positive rate, on the horizontal axis (X-axis).  
 
Another common graphical method used to evaluate and validate the machine learning 
solutions, and therefore used to evaluate intelligent detection models, is known as Lift 
chart technique. Lift charts are closely related to the ROC graphical technique as an 
evaluation measure. They are used in just the same situation as above, where the 
learner is trying to select samples of test instances that have a high proportion of 
positives. The lift chart represents the detection rate of the target variable value (Vertical 
axis) proportional to the number of processed cases (Horizontal axis) based on the 
order defined by the learned model. The Y-axis represents the number of responses 
obtained, and the X-axis represents the sample size as a proportion of the total dataset. 
The vertical axis is the same as the ROC curve, except that it could be expressed as a 
number of respondents. The horizontal axis is slightly different where the sample size is 
used rather than false positive rate. 
 
Figure 3 (a) depicts two ROC curves, one corresponding to an optimal model (red line), 
and the blue one corresponding to a model that returns uninformative target value 
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probabilities. In fact, the optimal curve indicates that all the cases with the target value 
have a probability greater than those without this target value. Figure 3 (b) depicts two 
lift charts, one corresponding to an optimal order (red line), and the blue one 
corresponding to random choice policy. The yellow line indicates the proportion of the 
target value in the base (p %). The lower left and upper right points correspond to no 
detection at all, with a response of 0, and a max detection rate, with a response of 
100%.  
 

false positive rate (%)

tr
ue

 p
os

iti
ve

 ra
te

 (%
)

ROC curve

(a) 
sample size (%)

de
te

ct
io

n 
ra

te
 (%

)
(n

um
be

r o
f r

es
po

nd
en

ts
)

Lift chart

 
(b) 

Figure 3. (a) ROC curves (b) Lift charts 
 
In the cases of both Lift charts and ROC curves, the resultant chart or curve, the top left 
corner is the place to be, at the very best, 100% true positive rate and/or detection rate. 
The operating part of both diagrams is the upper triangle, and the farther to the top left 
the better. The diagonal lines (blue lines) give the expected result for different sized 
random samples. The exact coordinates of all the indicated points that appear on the 
graphical zone of both diagrams correspond to the threshold value in the case of ROC 
curve (Figure 3 (a)) and correspond to the probability of the target value of the 
associated cases in the case of Lift chart (Figure 3 (b)). The overall results achieved 
from the generated ROC curves and Lift charts across all detected abnormal 
unauthorised network activities will be presented later.  
 
Table 3] summarises the two different ways of evaluating the same basic trade off, the 
number of true positives (TP), false positives (FP), true negatives (TN), and false 
negatives (FN), respectively [Witten et. al., 2000. A set of instances would be chosen 
with a high proportion of yes instances and a high coverage of the yes instances. 
Different techniques give different trade offs and can be plotted as two different lines, 
one on the ROC diagram and the other on the Lift chart. 
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Table 3. Both ROC and Lift curves’ measures are used to evaluate the FP vs. FN 
trade off 
  
Method Plot Axes Explanation of axes 

TP rate 
100%TP

TP FN
×

+
 

ROC curve TP rate vs. FP 
rate 

FP rate 
100%FP

FP TN
×

+
 

TP number of TPs Lift chart TP vs. subset 
size subset size 

100%TP FP
TP FP TN FN

+
×

+ + +
 

 
To generate a ROC curve for a developed intrusion detector, the system must first 
assign scores to both normal and abnormal (attacking activities) behaviour. These 
scores are then divided into two lists such that all the attacks are in one list and all the 
normal network use of connections in the other. The lists are then sorted with the higher 
scores first, assuming that the detector model tries to give attacks high figures and 
normal usage low figures. The curve is constructed by selecting different threshold 
values. For a given threshold, all entities with a score above that value are labelled as 
attacks by the detection model. Thus, given a threshold, the number of detections 
(attacks with a score above the threshold) and the number of false alarms (normal 
connections with a score above threshold) can both be determined. These two values 
are converted into percentages and plotted as one point on the ROC. After all points for 
all possible threshold values have been plotted, they are connected to form the ROC 
curve itself.  
 
Figures 4 depicts the obtained ROC curves for a developed Bayesian network detector 
model.  Figure 4 (a) shows the ROC curve for the activity_type parameter smurf. 
Normally, in a ROC curve it is better to be near the upper left-hand corner, at the very 
best, i.e.., the further to the top left the better. The upper left point (0,100) denotes the 
ideal case for accurate detection with minimum misclassification. The ROC curves that 
are shown in Figures 4 (b) and (c) indicate how the Bayesian network model performs 
for detecting snmpgetattack and ipsweep attacks. The jagged line in the ROC curves 
depends intimately on the details of the particular sample of test data. This sample 
dependence can be reduced by applying cross-validation; hence, the result is the 
smooth curve. The majority of the plotted ROC curves are in a form of multi-stepped 
straight lines for all of attacks’ parameter values. This is because the detection model 
produces probabilistic figures to indicate the occurrence of attacks. The best 
performance is provided by curves that pass beside the upper left region, which 
provides high detection accuracy with low false alarm rates. The lower left and upper 
right points correspond to no detection at all, and when connected together a resulted 
diagonal line would give the expected result for differently sized random samples, as 
shown earlier in Figure 3. All ROC curves in Figure 4 are lying to the top left, i.e., within 
the upper triangle above the diagonal connecting lower left and upper right points. The 
exact coordinates of all the indicated points that appear on the graphical zone of the 

www.ijde.org 14



International Journal of Digital Evidence                             Summer 2004, Volume 3, Issue 1 
 

achieved diagrams correspond to the threshold value in ROC curves. ROC curves 
depict the performance of a classifier regardless of class distribution. 
 

 
(a) (d) 

 
(b) 

 
(e) 

 
(c) (f) 

 
Figure 4: ROC curves of (a) smurf, (b) snmpgetattack, and (c) ipsweep, and 

Lift charts of (d) smurf, (e)  snmpgetattack, and (f)  ipsweep, attacks 
respectively 

 
The Lift charts are generated by having a learning scheme that outputs probabilities for 
the predicted class of each member of the set of test instances [Witten et. al., 2000]. 
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The next step is to find subsets of test instances that have a high proportion of positive 
instances, higher than in the test set as a whole. The instances are stored in 
descending order of predicted probability of yes. Then, to find a sample of a given size 
with the greatest possible proportion of positive instances, just read the requisite 
number of instances off the list, starting from the top. If each test instance’s class is 
known, it is possible to calculate the lift factor by simply counting the number of positive 
instances that the sample includes, dividing by the sample size to get a success 
proportion, and dividing by the success proportion for the complete test set to get a lift 
factor. All these steps were created to generate the Lift charts for each attack category, 
as shown in the Figures 4 (d), (e) and (f). 
 
Figure 4 depicts the obtained Lift charts for the developed Bayesian network detector 
model. Figure 4 (d) shows the Lift chart for the activity_type parameter smurf. Normally, 
in a lift chart near the upper left-hand corner is a good place to be, the further to the top 
left the better. The upper left point (0,100) denotes the ideal case for accurate detection 
with minimum cost. The Lift charts that are shown in figures 4 (e) and (f) indicate how 
the Bayesian network model performs for detecting snmpgetattack, and ipsweep 
attacks. 
 
Evaluation Remarks:  
 

• The ROC curves were generated for all the parameter values of targeted variable 
node activity_type. This node is part of a developed Bayesian detector model 
and includes different network attack types. All entries in each returned test list 
file were sorted by attack score, with the highest scores at the top of the list. 
Scoring was slightly different for the different  categories of attacks because DoS 
and probe attacks sometimes use thousands of network ICMP and UDP packets 
while others such as U2R and R2L attacks typically only use one or a few TCP 
protocol connections. This scoring was a fraction of packets associated to each 
particular attack that occur in the sorted list file above the ROC threshold setting. 
A threshold was then set to be above the highest score on the list, and then 
lowered progressively through all entries on the list. At each threshold value, a 
point on the ROC curve was plotted. This produced the developed detection 
model that is capable of finding the majority of packets associated with each high 
traffic probe or DoS attack. The ROC curves’ overall results across all network 
attacks feature the characteristics of the capability of a developed Bayesian 
network detector model to identify network anomalies found in the training data, 
as well as unseen test data. 

 
• Both the generated ROC curves and lift charts of figure 4, represent an effective 

measure for the validation of a detection process and whether a given attack 
classification is valid or not. They also indicate how effective a developed 
detector model is from the point of view of reducing false alarms. Figure 4 
indicates that a developed model led to a substantial reduction of false alarms, 
with significant increase in detection rates. This verifies that a developed 
detection technique actually extracted the right anomaly events for enabling 
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learning detection. The significance levels on the generated ROC curves and Lift 
charts can be used as tuning parameters for affecting a trade-off between 
detection rates (i.e., TPs) and false alarms (i.e., FPs). Larger significance levels 
lead to higher thresholds, and vice versa, as mentioned earlier. 

 
• The generated ROC curves and Lift charts indicate that each point on every 

curve corresponds to drawing a line at a certain position on a developed ranked 
list and counting the yeses and no’s above it, plotting them vertically and 
horizontally respectively. A good detection model would give most attacks a high 
score and most normal connections a low score. Consequently a curve which 
climbs very sharply to a point with a high detection rate and a low false alarm 
rate, and then levels out, is a good case. One metric derived from both ROC and 
Lift chart plots is the area under the curve, where 100% area is a perfect model 
and 50% is equivalent to random guessing. 

 
When one is faced with the problem of predicting a value of a particular variable (the 
value of target node), the evaluation of the Bayesian network detection model can be 
learned from the dataset by using both the number of the processed cases and the 
number of correct predictions [BayesiaLab, 2003]. For all the cases of the dataset, the 
probability of the target value is inferred and the cases are stored according to their 
probability in such a way that the most probable cases are placed at the beginning of 
the list. With a perfect detection model, the cases with the target value (p % of the 
population) are then placed in the first p % cases. With a random choice of the cases, 
the expected detection rate is directly given by the selection rate. If someone randomly 
selects x% of the cases, the expected detection rate of the cases with the target value is 
x%. 
 
Compare one network intrusion detection system that receives an average of 10,000 
packets a minute and is able to detect 10% (1000 packets) as unauthorised traffic, with 
another that receives an average of 15,000 packets a minute and is able to detect 8% 
(1200 packets) of unauthorised traffic. Which is better? It always depends on the 
relative cost of false positives, i.e. packets that are identified as unauthorised that are 
actually authorised, and false negatives, packets that are identified as authorised that 
are actually unauthorised. Therefore, ROC curves and Lift charts can be used to 
compare various intrusion detection models and provide a common approach for future 
intelligent detectors’ evaluations. However, different intelligent network intrusion 
detection models are based or trained on different datasets, so it is quite difficult to 
ensure effective comparison methods unless a common dataset is used for that 
purpose. 
 
Validation Remarks:  
 

• By using the ROC curves and Lift charts to measure the developed detection 
model performance, the model’s dynamic behaviour of the detection rate has 
been indicated with respect to the false positives and the sample data 
accumulated during the simulation time of the complete dataset, taking into 
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consideration that only part of the dataset is used for testing purposes. This 
confirms both of the validation techniques, the operational graphics and historical 
data validation. 

 
• Using a number of different techniques to measure the performance of the 

developed model such as the confusion matrix, ROC curves, and Lift charts, the 
accuracy of the achieved model’s detection performance is quite promising and 
encouraging.  The achieved high levels of reliability and precision of the 
developed model’s prediction confirm the Traces and Turing tests’ validation 
techniques.  

 
The evaluation and validation of any developed detection model has to be done in the 
presence of both normal and anomaly network traffic. This is to establish the 
performance of a developed detection model. Without normal traffic the total number of 
false alarms generated by the model for each attack cannot be identified.  Hence, the 
cost of maintaining the implemented system cannot be identified as well. The generated 
large corpus of normal, as well as anomaly network traffic, and the developed learning 
detector model made it possible to do the evaluation and performance measurement. 
The training data included a few months of background traffic with about 40 different 
types of automated attacks that were launched against particular victim machines. The 
training data was labelled indicating attacks, and unlabeled test data was used for a 
blind evaluation. The ROC curves and Lift charts were able to determine the attack 
detection rate as a function of the false alarm rate for the previously unseen test data. 
Results were analysed separately for each individual network attack using confusion 
matrix, ROC curves and Lift charts. Good use of training data has been made to 
develop an intelligent networked type detector based on Bayesian learning as a 
probabilistic approach.  
 
Conclusion 
 
In this paper, the evaluation methodology used to measure the performance of 
intelligent intrusion detection models has been discussed. A developed model has been 
trained to detect, as well as predict, unauthorised activities in networks using Bayesian 
techniques. The evaluation and validation criteria, as well as the learning prediction 
performance for this task, have been discussed. The evaluation methodology applied 
standard criteria to evaluate the performance of a developed Bayesian learning-based 
anomaly detection model. In conjunction with the achieved statistical measurements, 
the performance of probabilistic predictions was measured. The evaluation approach 
covered the measurement of the prediction performance for a developed detector model 
by, applying the informational loss function, evaluating the precision parameter using 
the confusion matrix, and measuring the performances of the models and their cost of 
misclassification using Lift charts and ROC curves which support 10-fold stratified 
cross-validation. The validation of a developed model is based on various combined 
techniques acceptable by the Verification and Validation (V&V) community, such as 
parameter variability-sensitivity analysis, predictive validation, operational graphics, 
historical data validation, historical methods, multistage validation, traces and Turing 
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tests. In order to achieve a significant level of confidence, a careful examination the 
dataset and related experiments has been carried out.  
  
The evaluation and validation of a developed detection model have been conducted to 
establish and measure the performance of an intelligent detection model. A similar 
relationship of a developed model change appears in a real EMERALD intrusion 
detection system as a result of internal parameters changes. However, the Bayesian 
developed model’s output provides a probabilistic figure to indicate its confirmed 
prediction. Having a probabilistic figure to indicate for a particular attack occurrence 
other than a black or white output will help in predicting future similar unauthorised 
anomalies. Both generated ROC curves and lift charts of figures 4 (a), (b), (c), (d), (e) 
and (f) respectively, represent an effective measure for the evaluation of the detection 
process and whether a given attack classification is valid or not. They also indicate how 
far a developed detector model is effective from the point of view of reducing the false 
alarms. The achieved results indicate that the developed model led to a substantial 
reduction of the false alarms, with significant increase in the detection rates. In general, 
the developed detector model can reliably detect many existing network attacks with low 
false alarm rates as long as examples of these anomalies are available for training. 
Also, as a probabilistic based detector, it is able to generalise to new attacks, and 
therefore, could minimise the false rate for unknown future anomalies.  
 
© 2004 International Journal of Digital Evidence 
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