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AFFINIZATION OF CATEGORY O FOR QUANTUM GROUPS

E. MUKHIN AND C. A. S. YOUNG

Abstract. Let g be a simple Lie algebra. We consider the category Ô of those modules over

the affine quantum group Uq(ĝ) whose Uq(g)-weights have finite multiplicity and lie in a finite

union of cones generated by negative roots. We show that many properties of the category of the

finite-dimensional representations naturally extend to the category Ô. In particular, we develop the

theory of q-characters and define the minimal affinizations of parabolic Verma modules. In types

ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula

for their characters.

1. Introduction

Let g be a simple Lie algebra and q ∈ C
× transcendental. In this paper we consider the category

Ô of modules over the affine quantum group Uq(ĝ) such that after the restriction to Uq(g) the

dimensions of the weight spaces are finite, and the set of non-trivial weights belongs to a finite

union of cones generated by negative roots. This category was originally defined in [Her04]. It is a

tensor category which includes the finite-dimensional modules. The simple objects in Ô are highest

weight Uq(ĝ)-modules with highest ℓ-weights given by arbitrary sets of rational functions (fi)i∈I

with the property fi(0)fi(∞) = 1, i ∈ I, I being the set of nodes of the Dynkin diagram of g (see

Theorem 3.6 below). Our motivation for the study of Ô is twofold.

First, many results from the category of finite-dimensional Uq(ĝ)-modules can be easily extended

to the much richer category Ô. For example, we have in Ô the classification of irreducibles by high-

est ℓ-weights, and the notions of fundamental modules, Kirillov-Reshetikhin modules and minimal

affinizations. In type sl2, the irreducible modules are tensor products of evaluation modules. We

define a theory of q-characters which gives an injective ring homomorphism from the Grothendieck

ring of Ô to a certain formal ring possessing many properties which allow us to study it combina-

torially.

Second, we are trying to find a new way to study the minimal affinizations of the finite-

dimensional modules. Minimal affinizations, which are analogs of the evaluation modules that

exist only in type A, received a lot of attention, see [CP94b, Cha95, CP95, CP96a, CP96b, Her07,

Mou10, MY11, MY12] but are still poorly understood in general. In the non-affine setting, impor-

tant information about the finite-dimensional modules comes from the study of Verma modules,

which have a much simpler structure. Inspired by this idea we initiate the study of minimal

affinizations of Verma modules, which naturally leads us to the category Ô.

We establish the foundations of the theory of the category Ô, for the most part modifying the

well-known methods initially developed by many authors for the finite-dimensional modules. As

one notable exception, we give a proof of the classification of the minimal affinizations somewhat
1
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different from the classical papers [Cha95, CP95]; see Theorem 5.7. We use the theory of q-

characters and treat types ABCFG simultaneously. In these types a minimal affinization is not

only a minimal element with respect to the partial order defined in [Cha95], but the least element.

In this paper we do not the consider the types, D and E, whose diagrams have a trivalent node.

Our main finding is that the minimal affinizations of the generic parabolic Verma modules (and

many other modules) considered as Uq(g)-modules indeed have a simple character similar to the

Weyl denominator. For example, if λ =
∑

i∈I λiωi is a g-weight written in terms of the fundamental

weights and none of λi is an integer, we conjecture that the character of the minimal affinization

of the Verma module with highest weight λ is given by

χλ = eλ
∏

α∈∆+

1

(1− eα)mα
,

where ∆+ is the set of positive roots of g and for a positive root α =
∑

i∈I αiωi we define mα =

max
i∈I

{αi} ∈ Z≥1.

This formula and many similar formulae, see Conjecture 6.5, were found and partially checked

with the help of a computer based on the use of the algorithm of [FM01]. We give proofs only in

some special cases, e.g. in types An, B2, based on known results for finite-dimensional modules,

but the simplicity of the answer suggests that a general proof may be not very difficult.

We would like to acknowledge the paper [HJ11] where the authors studied the stable limits of

the Kirillov-Reshetikhin modules, which are minimal affinization of finite-dimensional modules with

highest weights λ = nωi, as n → ∞. Those limits are representations of an algebra which is slightly

different from the standard quantum affine group. Instead of going to that limit we study the

analytic continuation with respect to n, see §3.4. That, in particular, allows us to stay with the

standard quantum affine group.

The paper is structured as follows. After summarizing background material in §2, in §3 we define

the category Ô, classify its simple objects (Theorem 3.6), and develop the theory of q-characters

for Ô. We also briefly discuss analytic continuation (§3.4) and the restricted duals of objects in

Ô (§3.5). In §4 we consider the case g = sl2 and give a description of the simple objects in Ô

in terms of tensor products of evaluation modules. Affinizations, and in particular minimal and

least affinizations, are introduced in §5. Theorem 5.7 classifies least affinizations in types ABCFG.

Finally, §6 contains a series of conjectural formulae for the Uq(g)-characters of least affinizations of

parabolic Verma modules, and of certain other representations.

Acknowledgements. From October 2010 until December 2011, the research of CASY was funded by

the EPSRC, grant number EP/H000054/1. The research of EM is supported by the NSF, grant

number DMS-0900984. Computer programs to calculate q-characters were written in FORM [Ver].

2. Background

2.1. Cartan data. Let g be a complex simple Lie algebra of rank N and h a Cartan subalgebra

of g. We identify h and h∗ by means of the invariant inner product 〈·, ·〉 on g normalized such

that the square length of the maximal root equals 2. With I = {1, . . . , N}, let {αi}i∈I be a set of
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simple roots, and {α∨
i }i∈I , {ωi}i∈I , {ω

∨
i }i∈I the corresponding sets of, respectively, simple coroots,

fundamental weights and fundamental coweights. Let C = (Cij)i,j∈I be the Cartan matrix. We

have

2 〈αi, αj〉 = Cij 〈αi, αi〉 , 2 〈αi, ωj〉 = δij 〈αi, αi〉 ,
〈
ω∨
i , αj

〉
= δij =

〈
α∨
i , ωj

〉
.

Let r∨ be the maximal number of edges connecting two vertices of the Dynkin diagram of g.

Thus r∨ = 1 if g is of types A, D or E, r∨ = 2 for types B, C and F and r∨ = 3 for G2. Let

ri =
1
2r

∨ 〈αi, αi〉. The numbers (ri)i∈I are relatively prime integers. We set

D := diag(r1, . . . , rN ), B := DC;

the latter is the symmetrized Cartan matrix, Bij = r∨ 〈αi, αj〉.

Let Q (resp. Q+) and P (resp. P+) denote the Z-span (resp. Z≥0-span) of the simple roots and

fundamental weights respectively. Let ≤ be the partial order on h∗ (and in particular on P and Q)

in which λ ≤ λ′ if and only if λ′ − λ ∈ Q+. If η =
∑

i∈I miαi ∈ Q+, define height(η) =
∑

i∈I mi.

Let ∆ ⊂ Q be the set of roots of g and ∆+ = ∆ ∩Q+ the set of positive roots.

Let ĝ denote the untwisted affine algebra corresponding to g. Let Ĉ = (Cij)i,j∈{0}∪I be the ex-

tended Cartan matrix, α0 be the extra simple root of ĝ, r0 =
1
2r

∨ 〈α0, α0〉, D̂ = diag(r0, r1, . . . , rN )

and B̂ = D̂Ĉ.

Fix a transcendental q ∈ C
×. For each i ∈ I let

qi := qri .

Define the q-numbers, q-factorial and q-binomial:

[n]q :=
qn − q−n

q − q−1
, [n]q! := [n]q [n− 1]q . . . [1]q ,

[
n

m

]

q

:=
[n]q!

[n−m]q! [m]q!
.

2.2. Quantum Affine Algebras. The quantum affine algebra Uq(ĝ) in the Drinfeld-Jimbo real-

ization [Dri87, Jim85] is the unital associative algebra over C with generators (x±i )i∈Î , (k
±1
i )i∈Î

subject to the relations

kik
−1
i = k−1

i ki = 1, kikj = kjki, (2.1)

kix
±
j k

−1
i = q±B̂ijx±j ,

[x+i , x
−
j ] = δij

ki − k−1
i

qi − q−1
i

,

1−Cij∑

r=0

(−1)r

[
1− Ĉij

r

]

qi

(x±i )
rx±j (x

±
i )

1−Ĉij−r = 0, i 6= j.

The algebra Uq(ĝ) can be endowed with the coproduct, antipode and counit given by

∆(ki) = ki ⊗ ki,

∆(x+i ) = x+i ⊗ ki + 1⊗ x+i ,

∆(x−i ) = x−i ⊗ 1 + k−1
i ⊗ x−i ,

S(x+i ) = −x+i k
−1
i , S(x−i ) = −kix

−
i , S(k±1

i ) = k∓1
i ,
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ǫ(ki) = 1, ǫ(x+i ) = ǫ(x−i ) = 0,

making it into a Hopf algebra.

There exists another presentation of Uq(ĝ), due to Drinfeld [Dri88]. In this presentation Uq(ĝ)

is generated by x±i,n (i ∈ I, n ∈ Z), k±1
i (i ∈ I), hi,n (i ∈ I, n ∈ Z \ {0}) and central elements c±1/2,

subject to the following relations:

kikj = kjki, kihj,n = hj,nki,

kix
±
j,nk

−1
i = q±Bijx±j,n,

[hi,n, x
±
j,m] = ±

1

n
[nBij]qc

∓|n|/2x±j,n+m, (2.2)

x±i,n+1x
±
j,m − q±Bijx±j,mx±i,n+1 = q±Bijx±i,nx

±
j,m+1 − x±j,m+1x

±
i,n,

[hi,n, hj,m] = δn,−m
1

n
[nBij ]q

cn − c−n

q − q−1
,

[x+i,n, x
−
j,m] = δij

c(n−m)/2φ+
i,n+m − c−(n−m)/2φ−

i,n+m

qi − q−1
i

,

∑

π∈Σs

s∑

k=0

(−1)k

[
s

k

]

qi

x±i,nπ(1)
. . . x±i,nπ(k)

x±j,mx±i,nπ(k+1)
. . . x±i,nπ(s)

= 0, s = 1− Cij,

for all sequences of integers n1, . . . , ns, and i 6= j, where Σs is the symmetric group on s letters,

and φ±
i,n’s are determined by equating coefficients of powers of u in the formula

φ±
i (u) :=

∞∑

n=0

φ±
i,±nu

±n = k±1
i exp

(
±(q − q−1)

∞∑

m=1

hi,±mu±m

)
. (2.3)

Note that φ+
i,−n = φ−

i,n = 0 for all n ∈ Z>0, and φ±
i,0 = k±1

i .

We have x±i,0 = x±i for all i ∈ I.

The subalgebra of Uq(ĝ) generated by (ki)i∈I , (x±i )i∈I is a Hopf subalgebra of Uq(ĝ) and is

isomorphic as a Hopf algebra to Uq(g), the quantized enveloping algebra of g. In this way, Uq(ĝ)-

modules restrict to Uq(g)-modules. The Cartan involution of Uq(g) is defined by

ϕ(x±i ) = −x∓i , ϕ(k±1
i ) = k∓1

i , i ∈ I. (2.4)

We shall need the following quantum-affine analog ϕ̂ of the Cartan involution. By definition,

[Cha95], ϕ̂ is the algebra automorphism whose action on generators is:

ϕ̂(x±i,r) = −x∓i,−r, ϕ̂(hi,r) = −hi,−r, ϕ̂(k±1
i ) = k∓1

i , ϕ̂(c±1/2) = c∓1/2. (2.5)

Note that

ϕ̂
(
φ±(u)

)
= φ∓(u−1). (2.6)

Let Û± ⊂ Uq(ĝ) be the subalgebras generated by (x±i,r)i∈I,r∈Z, and U± ⊂ Uq(g) the subalge-

bras generated by (x±i )i∈I . Let Û0 ⊂ Uq(ĝ) be the subalgebra generated by c±1/2, (ki)i∈I and
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(hi,r)i∈I,r∈Z6=0
, and U0 ⊂ Uq(g) the subalgebra generated by (ki)i∈I . We have the following trian-

gular decompositions of Uq(g) and of Uq(ĝ) [CP94a]:

Uq(ĝ) = Û−.Û0.Û+ (2.7)

Uq(g) = U−.U0.U+. (2.8)

It is known [Dam98] that on representations of Uq(ĝ) on which c acts as the identity,

∆φ±
i (u) = φ±

i (u)⊗ φ±
i (u) mod Û− ⊗ Û+. (2.9)

3. The category Ô

3.1. Definition of Ô. Let : h∗ → (C×)N be the surjective homomorphism of abelian groups

such that ∑

i∈I

λiωi := (qλ1
1 , qλ2

2 , . . . , qλN

N ).

By a slight overloading, we use the word weight to refer to an N -tuple

̺ = (̺i)i∈I ∈ h∗ ≡ (C×)N .

Since q is not a root of unity, the restrictions of to P and in particular to Q+ are injective; let

P and Q+ denote their respective images. Then h∗ inherits from h∗ the usual partial order:

̺ ≤ ̺′ ⇔ ̺−1̺′ ∈ Q+. (3.1)

A Uq(g)-module V is a weight module if

V =
⊕

̺∈h∗

V̺ , V̺ = {v ∈ V : ki.v = ̺iv}. (3.2)

We call V̺ the weight space of weight ̺, and nonzero elements v ∈ V̺ weight vectors of weight ̺.

We say ̺ ∈ h∗ is a weight of V if dimV̺ > 0.

Definition 3.1. We say a Uq(g)-module V is in category O if:

(i) V is a weight module all of whose weight spaces are finite-dimensional.

(ii) There exist a finite number of weights ̺1, . . . , ̺k ∈ h∗ such that every weight of V is in⋃k
j=1

{
̺jx

−1 : x ∈ Q+
}
.

Let us define an ℓ-weight module to be any Uq(ĝ)-module on which the actions of the generators

(hi,r)i∈I,r∈Z6=0
commute pairwise.

Proposition 3.2. Every simple Uq(ĝ)-module V whose restriction as a Uq(g)-module is in O is an

ℓ-weight module. Moreover it can be obtained by twisting, by an automorphism of Uq(ĝ), a module

in which c1/2 acts as the identity.

Proof. Since the invertible central element c1/2 acts as a multiple of the identity on any simple

module, there exists a τ ∈ C such that c1/2.v = τv for all v ∈ V . Then each weight space V̺

carries a representation of the 3-dimensional Lie algebra generated by hi,r, hj,s and (c − c−1). By

Definition 3.1 part (i), V̺ is finite-dimensional. The Weyl algebra C[x, p]/ 〈xp− px− 1〉 does not



6 E. MUKHIN AND C. A. S. YOUNG

admit finite-dimensional representations. Therefore τ2− τ−2 = 0. Hence c− c−1 acts as zero on V .

This proves the first part. If τ2 = −1 then the map

c1/2 7→ τ−1c1/2, ki 7→ ki, hi,r 7→ τ−|r|hi,r, x±j,s 7→ (∓1)sx±j,s

defines an automorphism of Uq(ĝ); twisting by it we indeed arrive at a module on which c1/2 acts

as the identity. On the other hand if τ = −1, we may twist by the automorphism of Uq(ĝ) defined

by

c1/2 7→ −c1/2, ki 7→ ki, hi,r 7→ hi,r, x±j,s 7→ (∓1)sx±j,s,

with the same result. �

Definition 3.3. We say a Uq(ĝ)-module is in category Ô if its restriction as a Uq(g)-module is in

category O and c1/2 acts as the identity on V .

Definitions 3.1 and 3.3 were stated in [Her04].

The category O is a subcategory of the abelian monoidal category of all Uq(g)-modules. It is clear

that O is closed under taking quotients, submodules and finite direct sums, and tensor products.

Therefore O is an abelian monoidal category.

Likewise, Ô is an abelian monoidal subcategory of the category of all Uq(ĝ)-modules. Every

V ∈ Ob Ô is an ℓ-weight module.

Remark 3.4. Because we wish O to be closed under tensor products, we do not require that every

object V of O be finitely generated as a Uq(g)-module. Similarly, inside our category Ô there

is a subcategory consisting of those objects that are finitely generated as Uq(ĝ)-modules. This

subcategory contains all simple objects of Ô (these are classified in Theorem 3.6 below) and is

strictly smaller than Ô. It is an interesting question whether this subcategory is closed under

taking tensor products.

3.2. Classification of simple objects. Given V ∈ Ob Ô, the decomposition (3.2) into weight

spaces can be refined as follows. An ℓ-weight is any N -tuple of sequences of complex numbers

γ ≡ (γ±i,±r)i∈I,r∈Z≥0
,

such that γ+i,0γ
−
i,0 = 1 for every i ∈ I. Given an ℓ-weight γ we define its weight to be

wt(γ) := (γ+i,0)i∈I ∈ h∗.

Then for every weight ̺ of V we have, c.f. (2.3),

V̺ =
⊕

γ:wt(γ)=̺

Vγ , Vγ = {v ∈ V : ∃k ∈ Z>0, ∀i ∈ I, r ≥ 0
(
φ±
i,±r − γ±i,±r

)k
.v = 0} ,

where the sum is over all ℓ-weights of weight ̺. We call Vγ the ℓ-weight space of ℓ-weight γ. We

say γ is an ℓ-weight of V if dim(Vγ) > 0. If v ∈ Vγ is nonzero and moreover φ±
i,±r.v = γ±i,±rv for all

i ∈ I, r ∈ Z≥0, then v is called an ℓ-weight vector of ℓ-weight γ. Every ℓ-weight space contains an

ℓ-weight vector. If v ∈ V is nonzero and x+i,r.v = 0 for all i ∈ I, r ∈ Z, then we say the vector v is

singular.
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We say V ∈ Ob Ô is a highest ℓ-weight representation of highest ℓ-weight γ if V = Uq(ĝ).v for

some singular ℓ-weight vector v ∈ Vγ . By (2.7) dim(Vγ) = 1, so v is unique up to scale; we call it

the highest ℓ-weight vector of V .

Definition 3.5. We say an ℓ-weight f = (f±
i,±r)i∈I,r∈Z≥0

is rational if there is an N -tuple of

complex-valued rational functions (fi(u))i∈I of a formal variable u such that, for each i ∈ I, fi(u)

is regular at 0 and ∞, fi(0)fi(∞) = 1, and

∞∑

r=0

f+
i,ru

r = fi(u) =

∞∑

r=0

f−
i,−ru

−r

in the sense that the left- and right-hand sides are the Laurent expansions of fi(u) about 0 and ∞,

respectively.

LetR be the set of rational ℓ-weights. R forms an abelian group, the group operation (f ,g) 7→ fg

being given by component-wise multiplication of the corresponding tuples of rational functions.

In what follows, we do not always distinguish between a rational ℓ-weight f and the corresponding

tuple (fi(u))i∈I of rational functions. Note that in terms of the latter, we have

wt(f) = (fi(0))i∈I .

For every weight ̺, let V (̺) be the irreducible Uq(g)-module with highest weight ̺. Recall that

V (̺) is unique up to isomorphism and is finite-dimensional if and only if ̺ ∈ P+; see [CP94a],

chapter 10.

For every rational ℓ-weight f , let us write L(f) for the irreducible Uq(ĝ)-module with highest

ℓ-weight f . By definition, L(f) is unique up to isomorphism. Moreover L(f) and L(f ′) are not

isomorphic unless f = f ′. Every highest ℓ-weight Uq(ĝ)-module with highest ℓ-weight f ∈ R has

L(f) as a quotient.

Recall [CP94b] that L(f) is finite-dimensional if and only for each i ∈ I the rational function fi(u)

is of the form fi(u) = qdegPi

i Pi(uq
−2
i )/Pi(u) for some polynomial Pi(u) with constant coefficient 1,

called a Drinfeld polynomial. Observe that this is a stronger condition than wt(f) ∈ P+.

We can now state the following theorem, which classifies the simple objects in Ô.

Theorem 3.6. The map f 7→ L(f) defines a bijection between R and the isomorphism classes of

simple objects in Ô.

Proof. Suppose V ∈ Ob Ô is irreducible. Then it follows from part (ii) of Definition 3.1 that V

contains a singular ℓ-weight vector, say v. Since V is irreducible, V = Uq(ĝ).v, so V is a highest ℓ-

weight representation. Thus it is enough to show that a highest ℓ-weight irreducible representation

V is in Ô if and only if its highest ℓ-weight f is rational.

We shall first show that for each i ∈ I, dim(Vwt(f )αi
−1) < ∞ if and only if f is rational. By

(2.7), Vwt(f)αi
−1 is spanned by the vectors x−i,r.v, r ∈ Z.
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Suppose dim(Vwt(f)αi
−1) < ∞. Then there exists N > 0 and a1, a2, . . . , aN ∈ C, a1 6= 0 6= aN ,

such that
∑N

j=1 ajx
−
i,j.v = 0. For all s ∈ Z,

0 = (qi − q−1
i )x+i,s

N∑

j=1

ajx
−
i,j.v =

N∑

j=1

aj(f
+
i,j+s − f−

i,j+s). (3.3)

Here it is understood that f+
−n = f−

n = 0 identically for all n > 0. So 0 =
∑N

j=1 ajf
+
i,j+s for all

s ≥ 0. Letting f+
i (z) :=

∑∞
n=0 z

nf+
n , we have that

f+
i (z)

N∑

j=1

ajz
N−j =

N∑

j=1

∞∑

s=−j

zs+Najf
+
i,j+s =

N∑

j=1

−1∑

s=−j

zs+Najf
+
i,j+s

=

N∑

j=1

bjz
N−j , where bj =

N∑

ℓ=1

aℓf
+
i,ℓ−j.

Similarly, 0 =
∑N

j=1 ajf
−
i,j+s for all s < −N . Letting f−

i (z) :=
∑∞

n=0 z
−nf−

−n, we have

f−
i (z)

N∑

j=1

ajz
N−j =

N∑

j=1

b′jz
N−j, where b′j =

N∑

ℓ=1

aℓf
−
i,ℓ−j.

The remaining equations of (3.3) are then b−s = b′−s for −N ≤ s < 0. Thus f+
i (z) and f−

i (z) are

the Laurent expansions, about 0 and ∞ respectively, of the rational function

bN + zbN−1 + z2bN−2 + · · ·+ zN−1b1
aN + zaN−1 + z2aN−2 + · · ·+ zN−1a1

.

Finally, the constraint that f+
i,0f

−
i,0 = 1 yields

bN
aN

b1
a1

= 1.

Hence f+
i (z) and f−

i (z) are indeed of the required form.

Conversely, suppose f+
i (z) and f−

i (z) are as above for some N > 0. Then a similar calculation

shows that x+i,s
∑N

j=1 ajx
−
i,M+j.v = 0 for all M ∈ Z. Since V has no singular vectors which are

not scalar multiples of v, it follows that
∑N

j=1 ajx
−
i,M+j.v = 0, i.e. that for all M ∈ Z, the vectors

{x−i,M+j.v : j = 1, 2, . . . , N} are linearly related. By applying this result finitely many times,

any given vector x−i,r.v can be expressed as a linear combination of, say, the vectors {x−i,j .v : j =

1, 2, . . . , N}. That is, Vwt(f)αi
−1 is finite-dimensional.

To complete the proof, we note that if Vwt(f)αi
−1 is finite-dimensional for every i ∈ I then every

remaining weight space Vwt(f)α−1 , α ∈ Q+, of V is finite-dimensional too. This follows by an

induction on height(α) exactly as in [CP94b], §5, proof of case (b). �

The “only if” part of the theorem was proved in [Her04], Lemma 14.

3.3. q-Characters. Recalling the definition of the group R of rational ℓ-weights, Definition 3.5,

let us define a subgroup Q ⊂ R, the group of l-roots, as follows. For each j ∈ I and a ∈ C
×, define

Aj,a ∈ R by

(Aj,a)i(u) = qBji
1− q−Bjiau

1− qBjiau
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for each i ∈ I. Note that wt(Aj,a) = αj. We call each Aj,a a simple l-root. The reader should be

warned that in [FR98, FM01] what we call Aj,a was instead labelled Aj,aqj .

Let Q be the subgroup of R generated by Ai,a, i ∈ I, a ∈ C
×. Note that Q is a free group, i.e.

the Aj,a are algebraically independent. Let Q± be the monoid generated by A±1
i,a , i ∈ I, a ∈ C

×.

We call the latter the positive/negative l-roots.

There is a partial order ≤ on R in which f ≤ g if and only if gf−1 ∈ Q+. It is compatible with

the partial order (3.1) on h∗ in the sense that f ≤ g implies wtf ≤ wtg.

Definition 3.7. The q-character of V ∈ Ob Ô is the formal sum of its ℓ-weights, counted with

multiplicities:

χq(V ) :=
∑

f∈R

dim(Vf )f ∈ Z[R].

One also has the usual Uq(g)-character map

χ(V ) :=
∑

λ∈h∗

dim(Vλ)λ ∈ Z
[
h∗
]

for any V ∈ ObO. It is clear that χ(V ) = (wt ◦χq)(V ) for all V ∈ Ob Ô.

Proposition 3.8. Suppose f and g are ℓ-weights of V ∈ Ob Ô, and i ∈ I. Then

Vg ∩
⊕

r∈Z

x±i,r(Vf ) 6= {0} =⇒ g = fA±1
i,a for some a ∈ C

×.

Proof. Let (vk)1≤k≤dimVf
be a basis of Vf in which the action of the φ±

i,r is upper-triangular, in the

sense that for all i ∈ I and 1 ≤ k ≤ dimVf ,

(φ±
i (u)− f±

i (u)).vk =
∑

k′<k

vk′ξ
±,k,k′

i (u), (3.4)

for certain formal series ξ±,k,k′

i (u) ∈ uC[[u]]. (The leading order is u1: recall that φ±
i,0 act diagonally.)

Let (wk)1≤k≤dimVg
be a basis of Vg in which the action of the φ±

i,r is lower-triangular, in the sense

that for all i ∈ I and 1 ≤ k ≤ dimVg,

(φ±
i (u)− g±i (u)).wℓ =

∑

ℓ′>ℓ

wℓ′ζ
±,ℓ,ℓ′

i (u),

for certain formal series ζ±,ℓ,ℓ′

i (u) ∈ uC[[u]]. Consider for definiteness the case of x+j (z) (x−j (z) is

similar). For all 1 ≤ k ≤ dim(Vf ),

(x+i (z).vk)g =

dim(Vg)∑

ℓ=1

λk,ℓ(z)wℓ

for some formal series λk,ℓ(z) ∈ C[[z]] for each ℓ, 1 ≤ ℓ ≤ dim(Vg). It follows from the defining

relations (2.2) that

(qBij − uz)x+i (z)
(
φ+
j (u)− f+

j (u)
)
.vk =

(
(1− qBijuz)φ+

j (u)− (qBij − uz)f+
j (u)

)
x+i (z).vk
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where x+i (z) :=
∑

r∈Z z
−rx+i,r. On resolving this equation in the basis of Vg above and taking the

wℓ component, we have

(qBij − uz)
k−1∑

k′=1

ξ+,k,k′

j (u)λk′,ℓ(z) =
(
(1 − qBijuz)g+j (u)− (qBij − uz)f+

j (u)
)
λk,ℓ(z)

+ (1− qBijuz)

ℓ−1∑

ℓ′=1

λk,ℓ′(z)ζ
+,ℓ′,ℓ
j (u). (3.5)

Suppose Vg ∩ (x+i (z)(Vf )) 6= {0}. Then there is a smallest K such that (x+i (z).vK)g 6= 0 and then

a smallest L such that λK,L(z) 6= 0. So (3.5) gives, in particular,

0 =
(
(1− qBijuz)g+j (u)− (qBij − uz)f+

j (u)
)
λK,L(z). (3.6)

This must hold for all j ∈ I. For each j ∈ I, (3.6) is an equation of the form 0 = λk(v)
∑∞

n=0 u
n(b

(i)
n +

c
(i)
n v) for the formal Laurent series λK,L(v), with b

(i)
n , c

(i)
n ∈ C for all n ∈ Z≥0. Equivalently, for

each i ∈ I, it is a countably infinite set of first order recurrence relations on the series coefficients

of λK,L(v). There are non-zero solutions if and only if there is an a ∈ C
× such that b

(i)
n /c

(i)
n = −a

for all n ∈ Z≥0 and all j ∈ I. That is,

g+j (u)
(
f+
j (u)

)−1
= qBij

1− q−Bijua

1− qBijua

as an equality of power series in u. Similar arguments hold for φ−
i (u). �

This proposition has a number of important corollaries. First,

Corollary 3.9. Suppose f and g are ℓ-weights of V ∈ Ob Ô, and v ∈ Vf and w ∈ Vg are nonzero.

If i ∈ I and a ∈ C
× are such that w ∈ spanr∈Z x

±
i,r.v and

(g)i = (fA±1
i,a )i, i.e. gi(u) = fi(u)q

2
i

1− q−2
i au

1− q2i au
,

then g = fA±1
i,a . �

As is the case for finite-dimensional Uq(ĝ)-modules, the q-characters of the simple objects in Ô

have the following “cone” property.

Corollary 3.10. For all f ∈ R, χq(L(f )) ∈ fZ[A−1
i,a ]i∈I,a∈C× . In particular, all ℓ-weights of L(f)

are rational.

Proof. Given (2.7) and Proposition 3.8, this follows from Theorem 3.6. �

Let Groth(Ô) be the Grothendieck ring of Ô. For all V ∈ Ob Ô, the class [V ] ∈ Groth(Ô) is a

Z-linear combination of the classes [L(f)] ∈ Groth(Ô), f ∈ R, of the irreducibles in Ô.

Theorem 3.11. χq defines an injective ring homomorphism Groth(Ô) → Z[R].

Proof. It is clear that χq(W ) = χq(U) + χq(V ) whenever U, V,W ∈ Ob Ô are such that [W ] =

[U ] + [V ] in Groth(Ô), i.e. whenever there is a short exact sequence 0 → V → W → U → 0 of

Uq(ĝ)-modules.
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To show that χq(V ⊗W ) = χq(V )χq(W ) we argue as in [FR98]. For each ℓ-weight f of V , let

(vf ,k)1≤k≤dimVf
be a basis of Vf in which the action of the φ±

i,r is upper-triangular, c.f. (3.4); and

likewise for each ℓ-weight g of W let (wg,k)1≤k≤dimWg
be an upper-triangular basis of Wg. Then

it follows from (2.9) that (vf ,k ⊗ wg,ℓ) is a basis of (V ⊗ W )fg in which the action of the φ±
i,r is

upper-triangular. Thus, ℓ-weights are multiplicative across tensor products, and their multiplicities

are additive, as required.

The classes [L(f)] ∈ Groth(Ô), f ∈ R, of the irreducible representations are linearly inde-

pendent, because their images under χq are linearly independent. Injectivity of χq follows from

this. �

Corollary 3.12. All ℓ-weights of representations in Ô are rational. �

We also need the following proposition.

Proposition 3.13. Suppose L(f) ∈ Ob Ô and L(g) ∈ Ob Ô are such that L(f)⊗L(g) is irreducible.

Then L(f)⊗ L(g) ∼= L(fg) ∼= L(g)⊗ L(f) as Uq(ĝ)-modules.

Proof. Let v ∈ L(f) and w ∈ L(g) be highest ℓ-weight vectors. Since L(f) ⊗ L(g) is irreducible,

to show that it is isomorphic to L(fg) it is, by Theorem 3.6, enough to show that v ⊗ w is

a singular ℓ-weight vector in L(f) ⊗ L(g) and has ℓ-weight fg. That v ⊗ w has ℓ-weight fg

follows from (2.9). That v ⊗ w is singular follows exactly as in the case of finite-dimensional

modules, c.f. [CP94a]. Finally, L(g)⊗ L(f) contains L(fg) = L(f)⊗ L(g) as a subquotient. But

χ(L(f)⊗ L(g)) = χ(L(g)⊗ L(f)). Hence L(g)⊗ L(f) ∼= L(fg). �

3.4. Analytic continuation. In this subsection we observe that if the rational highest ℓ-weight f

depends rationally on an additional parameter x ∈ C then the normalized Uq(g)-character of L(f),

χ̃(L(f)) := λ
−1

χ(L(f )), where λ = wt(f),

is the same for almost all x. In fact, for each positive integer n, χ̃(L(f )) modulo weights µ such

that height(λ− µ) > n, is the same for all but finitely many x.

We use the following standard lemma from linear algebra.

Lemma 3.14. Let V,W be complex vector spaces, with dimW < ∞, and let Ai(u) : V → W ,

i ∈ N, be a countable set of linear operators rationally depending on a complex parameter x. Let

dA(x) = codimV

(⋂
i∈N kerAi(x)

)
. Assume that for all x ∈ C, dA(x) < ∞.

Then there exists a finite set S ⊂ C such that for all x1, x2 ∈ C \ S and x3 ∈ S we have

dA(x1) = dA(x2) ≥ dA(x3). �

Proposition 3.15. Let fi(u, x), i ∈ I, be rational functions of u and x such that for each x ∈ C,

fi(u, x) defines a rational ℓ-weight f(x). Then for all α ∈ Q+ there exists a finite set S ⊂ C such

that for all x1, x2 ∈ C \ S and x3 ∈ S we have

dim (L (f (x1)))wt(f)α−1 = dim (L (f (x2)))wt(f)α−1 ≥ dim (L (f (x3)))wt(f)α−1 .

Proof. By induction on height(α), making use of Lemma 3.14. �
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3.5. Dual modules. Given V ∈ ObO we shall write V ∗ for the restricted left dual of V . That is,

V ∗ is the space of linear maps λ : V → C with finite support on a weighted basis of V , equipped

with the left Uq(g)-action given by (x.λ)(v) = λ(S(x).v). It is clear that V ∗ is a weight module

whose weight spaces are all finite-dimensional.

If V ∈ ObO is highest weight then V ∗ is lowest weight.

If V ∈ Ob Ô then V ∗ is also a Uq(ĝ)-module; moreover if V is highest ℓ-weight then V ∗ is lowest

ℓ-weight, in the obvious sense.

Let R(g) denote the irreducible lowest ℓ-weight Uq(ĝ)-module with lowest ℓ-weight g.

Proposition 3.16. For all f ∈ R, L(f)∗ ∼= R(f−1) as Uq(ĝ)-modules.

Proof. L(f)∗ is irreducible and so isomorphic to some R(g); we shall now show that g = f−1.

Indeed, by definition the following diagram commutes for all x ∈ Uq(ĝ):

L(f)∗ ⊗ L(f) L(f)∗ ⊗ L(f)

C C

x

id

λ⊗ v x.(λ⊗ v) = x(1).λ⊗ x(2).v

λ(v) λ(S(x(1))x(2).v) = λ(v).

Now suppose we take λ to be the lowest weight vector in L(f)∗ and v to be the highest weight

vector in L(f). Note λ(v) 6= 0. It follows from (2.9) that

φ±
i (u).(λ⊗ v) = φ±

i (u).λ ⊗ φ±
i (u).v = g±i (u)f

±
i (u)λ⊗ v.

Therefore g±i (u)f
±
i (u)λ(v) = λ(v) identically, which can hold only if the rational functions fi(u)

and gi(u) obey gi(u)fi(u) = 1, as claimed. �

Given a rational ℓ-weight f , let us define f † by

f †
i (u) =

1

fi(u−1)
. (3.7)

Note that f† is again a rational ℓ-weight, and that (f †)† = f . From (2.5–2.6) one sees that

R(f−1)ϕ̂ ∼= L(f †), where ϕ̂ denotes the pull-back via the Cartan involution. Hence we have the

following.

Corollary 3.17. For all f ∈ R, L(f †) ∼= (L(f)∗)ϕ̂ as Uq(ĝ)-modules. �

4. Description of irreducibles in category Ô when g = sl2

Throughout this section, g = sl2. Recall [Jim85, CP91] that for any a ∈ C
× there is a homomor-

phism of algebras eva : Uq(ŝl2) → Uq(sl2) such that eva(c
1/2) = 1 and

eva(x
+
1,r) = q−rarkr1x

+
1 , eva(x

−
1,r) = q−rarx−1 k

r
1. (4.1)

These maps are called evaluation homomorphisms, and the pull-backs of Uq(sl2)-modules by the

eva are called evaluation modules. One of the first key results in the theory of finite-dimensional

representations of quantum affine algebras is that every irreducible Uq(ŝl2)-module is isomorphic to
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a tensor product of evaluation modules [CP91]. In this section we give the analogous description

of the irreducibles in Ô.

4.1. Strings. Let V (µ)a ∈ Ob Ô denote the pull-back via eva of the irreducible Uq(ŝl2)-module

V (µω1), a ∈ C
×, µ ∈ C. It is finite-dimensional if and only if µ ∈ Z≥0. It is irreducible, with

highest ℓ-weight given by the rational function

Sµ(a) : u 7→ qµ
1− q−µ−1au

1− qµ−1au
. (4.2)

We refer to any rational function of u of this form as a string.

Definition 4.1. We say that two strings Sµ(a) and Sν(b), a, b ∈ C
×, µ, ν ∈ C, are in general

position if

(1) if µ /∈ Z≥0 and ν /∈ Z≥0 then aq−µ−1 /∈ bqν−1−2Z≥0 and bq−ν−1 /∈ aqµ−1−2Z≥0 ;

(2i) if µ ∈ Z≥0 and ν /∈ Z≥0 then neither bq−ν−1 nor bqν−1 lie in aqµ−1−2Z≥0 ∩ aq−µ−1+2Z≥0 ;

(2ii) if ν ∈ Z≥0 and µ /∈ Z≥0 then neither aq−µ−1 nor aqµ−1 lie in bqν−1−2Z≥0 ∩ bq−ν−1+2Z≥0 ;

(3) if µ ∈ Z≥0 and ν ∈ Z≥0 then the sets

aqµ−1−2Z≥0 ∩ aq−µ−1+2Z≥0 and bqν−1−2Z≥0 ∩ bq−ν−1+2Z≥0

are either disjoint, or one is contained in the other.

We say that the string Sµ(a) starts at aq−µ−1 and ends at aqµ−1. We call a string finite if it

starts to the left of its end, where we say a is to the left of b if a ∈ bq−2Z≥0 . Thus Sµ(a) is finite if

and only if µ ∈ Z≥0. If Sµ(a) is finite we associate it with the finite set

aqµ−1−2Z≥0 ∩ aq−µ−1+2Z≥0 = {aq−µ−1, aq−µ+1, . . . , aqµ−3, aqµ−1},

and we say b is inside Sµ(a) if it belongs to this set. In this language, two strings are in general

position if and only if

(1) if neither string is finite then neither string starts to the left of the end of the other;

(2) if one string is finite and the other is not, then the non-finite string neither starts nor ends

inside the finite one;

(3) if both strings are finite then their sets are either disjoint or one is contained in the other.

The final part is the usual condition for finite-dimensional representations, c.f. [CP91, CP94b].

The reader should be warned that in [CP91] the q-string corresponding to (4.2) is defined not to

include the element aq−µ−1, in contrast to our convention.

Proposition 4.2. If L(f) ∈ Ob Ô then the corresponding rational function f(u) can be written in

the form

f(u) =
r∏

k=1

Sµk
(ak), µ1, . . . , µr ∈ C

×, a1, . . . , ar ∈ C
× (4.3)

in such a way that each pair (Sµi
(ai), Sµj

(aj)), 1 ≤ i < j ≤ r, is in general position.

Proof. It is clear that any rational function f(u) obeying the conditions of Definition 3.5 can be

written in the form (4.3). (We require µ1, . . . , µr 6= 0 so that all factors are non-trivial. If f(u) = 1

we have r = 0.) To see that these factors may be chosen to be pairwise in general position we argue
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as follows. If not all pairs are in general position, then by definition we can always find some pair,

call it (Sµ(a), Sν(b)), such that bq−ν−1 ∈ aqµ−1−2Z≥0 but bqν−1 /∈ aqµ−1−2Z≥0 ∩ bq−ν−1+2Z≥0 . Let

us write

Sµ(a) =:
A−1 −Au

B−1 −Bu
, Sν(b) =:

C−1 − Cu

D−1 −Du
.

We swap this pair for the new pair (Sµ′(a′), Sν′(b
′)) defined by

Sµ′(a′) :=
A−1 −Au

D−1 −Du
, Sν′(b

′) :=
C−1 − Cu

B−1 −Bu
.

Obviously Sµ(a)Sν(b) = Sµ′(a′)Sν′(b
′). By inspection one checks that the new pair are in general

position. We shall now argue that after some finite number of such swaps all pairs will be in

general position. Consider the partial ordering on tuples (µ1, . . . , µr) ∈ C
× defined as follows: let

s(µ1, . . . , µr) be the weakly increasing r-tuple obtained by discarding any µk /∈ Z>0, sorting those

that remain into weakly increasing order, and then appending entries ∞ as needed. Then we say

(µ1, . . . , µr) < (ν1, . . . , νr) if and only if s(µ1, . . . , µr) precedes s(ν1, . . . , νr) lexicographically; that

is, if and only if for some k ≥ 1, s(µ1, . . . , µr)k < s(ν1, . . . , νr)k and s(µ1, . . . , µr)ℓ = s(ν1, . . . , νr)ℓ

for all 1 ≤ ℓ < k. In the swapping procedure above at least one of µ′, ν ′ is always a positive integer

and moreover

min({µ′, ν ′} ∩ Z>0) < min(({µ, ν} ∩ Z>0) ∪ {∞}).

Thus, repeated swapping produces a strictly decreasing sequence of tuples. So the swapping process

must terminate, and all pairs are then in general position. �

Remark 4.3. In contrast to the case of finite-dimensional representations, this factorization is not

always unique. For example

S−5(a)S−9(a) = q−5 1− q4au

1− q−6au
q−9 1− q8au

1− q−10au

= q−7 1− q4au

1− q−10au
q−7 1− q8au

1− q−6au
= S−7(q

−2a)S−7(q
2a)

and both (S−5(a), S−9(a)) and (S−7(q
−2a), S−7(q

2a)) are in general position.

4.2. Irreducible tensor products. The following proposition, stated in [CP91] for finite-dimensional

modules, remains valid in Ô.

Proposition 4.4. There is a basis (vi)0≤i≤dim(V (µ)a)−1 of V (µ)a on which the action of the gener-

ators x±1,k is given by:

x+1,k.vi = akqk(µ−2i+1)[µ− i+ 1]qvi−1,

x−1,k.vi = akqk(µ−2i−1)[i+ 1]qvi+1.

(Here v−1 ≡ 0 and, if dim(V (µ)a) < ∞, vdim(V (µ)a) ≡ 0.) �

Proof. The check is straightforward, using (4.1) and the usual basis of the irreducible Uq(sl2)-module

V (µω1). �
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Proposition 4.5. In the dual basis (v∗i )0≤i≤dim(V (µ)a)−1 of (V (µ)a)
∗ the action of the generators

x±1,k is given by:

x+1,k.v
∗
i = −akq−k(µ−2i−3)−(µ−2i−2)[µ− i]qv

∗
i+1,

x−1,k.v
∗
i = −akq−k(µ−2i−1)+(µ−2i)[i]qv

∗
i−1.

Proof. By direct calculation, making use of the relation eva ◦S = S ◦evaq2 satisfied by the antipode

of Uq(ŝl2) [CP91]. (One checks this equality on the Chevalley generators (2.1), using the relations

k0 ≡ k−1
1 , x+0 ≡ x−1,1k

−1
1 and x−0 ≡ k1x

+
1,−1.) �

Theorem 4.6. Let a1, . . . , ar ∈ C
× and µ1, . . . , µr ∈ C

×. The tensor product

V (µ1)a1 ⊗ · · · ⊗ V (µr)ar (4.4)

is irreducible if and only if each pair (Sµi
(ai), Sµj

(aj)), 1 ≤ i < j ≤ r, is in general position.

Proof. We show this first for the case r = 2. Consider V (µ)a⊗V (ν)b. As representations of Uq(sl2),

V (µω1)⊗ V (νω1) =

M⊕

i=0

V
(
(µ+ ν − 2i)ω1

)

where

M =




min({µ, ν} ∩ Z≥0) if {µ, ν} ∩ Z≥0 6= ∅,

∞ otherwise.

For each 0 ≤ p ≤ M , let Ωp ∈ V (µω1)⊗ V (νω1) be a Uq(sl2)-highest weight vector of the Uq(sl2)-

submodule V
(
(µ+ ν − 2p)ω1

)
. Exactly as in [CP91], §4.8, one verifies that, for each 1 ≤ p ≤ M ,

Ωp generates a proper Uq(ŝl2)-submodule of V (µ)a ⊗ V (ν)b if and only if

b

a
= qµ+ν−2p+2.

Thus V (µ)a ⊗ V (ν)b has a submodule not containing Ω0 if and only if

b

a
/∈ {qµ+ν−2p+2 : 1 ≤ p ≤ M}.

(V (µ)a ⊗ V (ν)b)
∗ ∼= (V (ν)b)

∗ ⊗ (V (µ)a)
∗ is lowest weight as a Uq(sl2)-module. Let Ω∗

0 be a

Uq(sl2)-lowest weight vector of (V (µ)a ⊗ V (ν)b)
∗. It is unique up to scale and it annihilates every

element except Ω0 of any basis of V (µ)a ⊗ V (ν)b consisting of weight vectors.

The module V (µ)a ⊗ V (ν)b has a proper submodule containing Ω0 if and only if (V (ν)b)
∗ ⊗

(V (µ)a)
∗ has a factor module containing Ω∗

0; that is, if and only if (V (ν)b)
∗ ⊗ (V (µ)a)

∗ has a

submodule not containing Ω∗
0. Given Proposition 4.5, a similar calculation to the one referred to

above shows that this is the case if and only if

a

b
/∈ {qµ+ν−2p+2 : 1 ≤ p ≤ M}.

Therefore, V (ν)a ⊗ V (µ)b has no proper submodule, i.e. is irreducible, if and only if

a

b
/∈ {q±(µ+ν−2p+2) : 1 ≤ p ≤ M}.
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By inspection one verifies that this condition holds precisely when (Sµ(a), Sν(b)) are in general

position.

Turning to the general case, for the “only if” part we argue as follows. Suppose some pair

(Sµi
(ai), Sµj

(aj)), 1 ≤ i < j ≤ r, is not in general position. If the tensor product (4.4) is irreducible

then it is irreducible for all orderings of the tensor factors, c.f. Proposition 3.13. So it is enough

to show it is reducible for some ordering of the tensor factors. Pick any ordering in which V (µi)ai
and V (µj)aj are adjacent; then the tensor product is indeed reducible, because it has a factor

V (µi)ai ⊗ V (µj)aj which is reducible, as above.

Now we prove the “if” part. The argument is essentially as in [CP91], and is by an induction

on the number r of tensor factors. We have the case r = 2 above. For the inductive step, we may

suppose that V (µ1)a1 ⊗ · · · ⊗ V (µr−1)ar−1 is generated as a Uq(ŝl2)-module by a tensor product of

highest weight vectors of the tensor factors,

Ω′ := v0 ⊗ · · · ⊗ v0 ∈ V (µ1)a1 ⊗ · · · ⊗ V (µr−1)ar−1 ,

and therefore that V (µ1)a1 ⊗ · · · ⊗ V (µr−1)ar−1 ⊗ V (µr)ar is generated as a Uq(ŝl2)-module by the

vectors (Ω′ ⊗ vi)0≤i≤dim(V (µr)ar
. We now argue by induction on i that Ω′ ⊗ vi ∈ Uq(ŝl2).Ω, where

Ω := Ω′ ⊗ v0. This is trivially true for i = 0. For the inductive step, suppose Ω′ ⊗ vj ∈ Uq(ŝl2).Ω

for all 0 ≤ j ≤ i, and consider the action of x−1,k on Ω′ ⊗ vi.

Recall from [CP91] the following property of the comultiplication of the quantum loop algebra

U := Uq(ŝl2)/(c
1/2− id). Let X± be the subspaces of U spanned by (x±1,k)k∈Z. Then for all k ∈ Z≥1,

∆x−1,k ≡ x−1,k ⊗ 1 +

k−1∑

i=0

φ+
1,i ⊗ x−1,k−i modulo UX+ ⊗ UX2

−.

Therefore if we let dk,j be the eigenvalue of φ
+
1,k on the highest weight space of V (µ1)a1⊗· · ·⊗V (µj)aj ,

set br := arq
µr−2i and bj := ajq

µj for each 1 ≤ j < r, and define

Ak,j :=
k−1∑

p=0

dp,jb
k−p
j+1 ,

then for all k ∈ Z≥1 we have

x−1,k.(Ω
′ ⊗ vi) =

r−1∑

j=0

Ak,j

(
id⊗j ⊗ x−1 ⊗ id⊗(r−j−1)

)
.(Ω′ ⊗ vi). (4.5)

Note that A = (Ak,j)1≤k≤r,0≤j≤r−1 is a square matrix. To complete the proof it is enough to show

that detA 6= 0, for then equation (4.5) allows Ω′ ⊗ vi+1 to be expressed as a linear combination

of x−1,k.(Ω
′ ⊗ vi), 1 ≤ k ≤ r, which completes the inductive step on i, and consequently also the

inductive step on r.

It was shown in [CP91] that

detA = q
∑r−1

j=1 µj

t∏

j=1

bj
∏

k>j

(
bk − q−2µjbj

)
.

If detA = 0 then there exist j, k such that either
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(1) 1 ≤ j < k < r and aj = qµj+µkak, or else

(2) 1 ≤ j < k = r and aj = qµj+µr−2iar.

The first of these is impossible since Sµj
(aj) and Sµk

(ak) are in general position. For the second,

by making use of the freedom noted above to reorder the tensor factors, we may assume that

dimV (µr)ar ≤ dim(V (µj)aj ) for all 1 ≤ j ≤ r. That is, if any of the tensor factors have finite

dimension, then none have dimension lower than V (µr)ar . Now if µr ∈ Z≥0 then i < µr and so (2)

is also ruled out since Sµj
(aj) and Sµk

(ak) are in general position. �

Remark. The q-character of V (µ)a ∼= L(Sµ(a)) is

χq(L(Sµ(a))) = Sµ(a)

dimL(Sµ(a))−1∑

k=0

k−1∏

ℓ=0

A−1
1,aqµ−1+2ℓ .

5. Least affinizations

In this section our main result is Theorem 5.7, which classifies the least affinizations in types

ABCF and G.

5.1. Definition of least affinizations. It is natural to consider affinizations of the simple objects

of O, in the sense of the following definition, which is adapted directly from the case of finite-

dimensional representations discussed in [Cha95].

Definition 5.1. A simple module L(f) ∈ Ob Ô is an affinization of V (µ) ∈ ObO if wt(f) = µ.

Two affinizations of V (µ) are equivalent if they are isomorphic as Uq(g)-modules.

Our first observation is that L(f) and L(f †), c.f. (3.7), are equivalent affinizations of wt(f).

Proposition 5.2. For all f ∈ R, L(f) and L(f †) are isomorphic as Uq(g)-modules.

Proof. For any V ∈ ObO, (V ∗)ϕ ∼= V as Uq(g)-modules, where (V ∗)ϕ is the pull-back via the Cartan

involution ϕ of V ∗. This is clear since S(ki) = k−1
i = ϕ(ki), so χ(V ) = χ((V ∗)ϕ). Consequently,

the result follows from Corollary 3.17. �

Recall that an element X of a partially ordered set (P,≺) is said to be minimal if there is no

Y ∈ P such that Y ≺ X, and is said to be least if Y � X for all Y ∈ P . A partially ordered set

has at most one least element. If a least element does exist then it is the unique minimal element.

For each µ ∈ h∗, there is a partial order on the equivalence classes of affinizations of V (µ), defined

as follows. Let L(f), L(f ′) ∈ Ob Ô be two affinizations of V (µ). We say that the class of L(f)

weakly precedes that of L(f ′) if and only if for all α ∈ Q+ either

(i) dim(L(f)µ−α) ≤ dim(L(f ′)µ−α), or

(ii) there exists an β ∈ Q+ such that β ≤ α and dim(L(f)µ−β) < dim(L(f ′)µ−β).

This partial order is given in terms of the dimensions of Uq(g)-weight spaces, but it could equiva-

lently have been defined in terms of multiplicities of Uq(g)-module composition factors.

Definition 5.3. A minimal (resp. least) affinization of V (µ) ∈ ObO is an equivalence class of

affinizations of V (µ) which is minimal (resp. least) with respect to this partial order. By a slight

overloading we say also that any representative of such a class is a minimal (resp. least) affinization.
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Definition 5.4. A Kirillov-Reshetikhin module is any least affinization of V (µωk), µ ∈ C, k ∈ I.

Proposition 5.5. The module L(f) is Kirillov-Reshetikhin if and only if fj(u) = δjkq
µ
k
1−q−µ−1

k
au

1−qµ−1
k

au

for some a ∈ C
×.

Proof. If f is of this form, then all non-highest weights of L(f) are dominated by µωk − αk. If

fk(u) is a string then dim(L)V (µωk−αk)
= 1; otherwise dim(L)V (µωk−αk)

> 1, c.f. Theorem 4.6. �

Note that the least affinization of the irreducible Uq(sl2)-module V (µω1), µ ∈ C, is an evaluation

module, V (µ)a (in the notation of §4).

In view of Proposition 3.15, minimal (resp. least) affinizations with generic highest weights are

limits (or rather analytic continuations) of minimal (resp. least) affinizations of finite-dimensional

modules. Namely, let λ =
∑

i∈I λiωi. Let I = J⊔K. Fix λj, j ∈ J , to be equal to given nonnegative

integers. Let

χ̃(λ) := λ
−1

χ(L(f))

be the normalized character of a least affinization L(f) of V (λ).

Corollary 5.6. There exists a limit

lim
λk→∞
k∈K

χ̃(λ),

where λk run over N, and this limit is equal to χ̃(λ) with generic λk ∈ C, k ∈ K.

Proof. This follows from Proposition 3.15. �

Note that in particular there exists a limit of the normalized characters of Kirillov-Reshetikhin

modules and it is equal to the normalized character of the Kirillov-Reshetikhin module with generic

nontrivial component. Compare [HJ11].

In fact, in a similar way, there exists an analytic continuation of χq(L(f)) with λk ∈ Z≥0, k ∈ K,

which is equal to χq(L(f )) with generic λk ∈ C, k ∈ K.

5.2. Classification of minimal affinizations in types ABCFG. For the remainder of this sec-

tion we suppose g is of type ABCF or G. We pick a straight labelling of the Dynkin diagram in

which Bij 6= 0 only if |i− j| ≤ 1.

In these cases the following theorem, which is the main result of §5, shows that every simple

object V ∈ ObO has a least affinization.

Theorem 5.7. Given λ ∈ h∗ \ {0}, an affinization L(f) of V (λ) is least if and only if there is an

c ∈ C
× and an ǫ ∈ {+1,−1} such that, for each i ∈ I,

fi(u) = qǫλiBii/2 1− ciq
−ǫλiBiiu

1− ciu
,

where c1 = c and ci+1q
−ǫλi+1Bi+1,i+1 = ciq

−ǫBi,i+1 for each 1 ≤ i < rank(g).

The rest of §5 is devoted to proving this theorem. After some preliminary lemmas in §5.3, in

§5.4 we treat the case in which λ has support at the two end nodes of the Dynkin diagram; in §5.5
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we treat the case in which λ has support at the two end nodes and one other node. Finally, the

theorem is proved in §5.6.

Let τa : Uq(ĝ) → Uq(ĝ), a ∈ C
×, be the automorphism defined by its action on generators

according to

τa(x
±
i,r) = a±rx±i,r, τa(φ

±
i,±m) = a±rφ±

i,±m, τa(k
±1
i ) = k±1

i ;

then we have

τ∗a (L(f ))
∼= L(ta(f)), (5.1)

where ta : R → R is defined by (tafi)(u) := fi(au).

It follows from Theorem 5.7 that if L(f) and L(f ′) are least affinizations of V (λ) then there

exists an a ∈ C
× such that either f = ta(f

′) or f = ta(f
′†), c.f. (3.7).

Our strategy for identifying least affinizations relies on computing “the top” part of the q-

character, in the following sense. For each 0 ≤ M ≤ N = rank(g), define

WM :=

{
−

M∑

k=1

αik : j 6= k =⇒ ij 6= ik

}
.

We write χq(L(f))|M for the q-character of L(f) truncated to include only those terms whose

weights lie in wt(f)WM . In certain cases, we shall compute χq(L(f))|M for each 0 ≤ M ≤ N .

That is, informally speaking, we shall consider all weights that can be reached from the highest

weight by lowering at most once in each simple direction. As it turns out, this is sufficient to

distinguish least affinizations from others.

5.3. Preliminary lemmas. Let ÛJ be the subalgebra generated by (x+i,r)i∈J,r∈Z, (x−i,r)i∈J,r∈Z,

(hi,r)i∈J,r∈Z\{0} and (k±1
i )i∈J subject to the relations (2.2). Given a rational ℓ-weight f = (fi(u))i∈I ,

we write fJ for the ℓ-weight (fi(u))i∈J of ÛJ , and L(fJ) for the irreducible ÛJ -module with highest

ℓ-weight fJ .

Similarly, let UJ be the subalgebra generated by (x+i,0)i∈J , (x
−
i,0)i∈J and (k±1

i )i∈J . Given a weight

ρ ∈ h∗ of Uq(g) we write ρJ be for weight (ρi)i∈J of UJ , and V (ρJ) for the irreducible UJ -module

with highest weight ρJ .

Lemma 5.8. Let I1, I2, . . . , Ik be subdiagrams of I such that the corresponding diagram subalgebras

gI1 , gI2 , . . . , gIk of g are simple and pairwise commuting. Let L(f) ∈ Ob Ô with highest ℓ-weight

vector v. Then (
ÛI1 ⊕ · · · ⊕ ÛIk

)
.v ∼= L(f I1)⊗ · · · ⊗ L(f Ik

).

Proof. Let k = 1. Suppose w ∈ ÛI1 .v is a singular vector with respect to ÛI1 . Then, on weight

grounds, w is a singular vector with respect to Uq(ĝ). Therefore, since L(f) is irreducible, w is

proportional to v. Hence ÛI1 .v is irreducible.

For general k the lemma follows by the mutual commutativity of the gIk . �

Lemma 5.9 (The restriction lemma). Let J ⊆ I. An affinization L(f) ∈ Ob Ô of V (µ) is least

only if the simple ÛJ -module through a highest ℓ-weight vector v of L(f) is a least affinization of

V (µJ).
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Proof. Suppose there is a J ⊆ I such that ÛJ .v is not least. Then there is another affinization of

V (µJ), say L(sJ), whose equivalence class does not weakly succeed that of L(fJ). It follows that the

class of L(g) does not weakly succeed that of L(f), where the rational ℓ-weight g = (gi(u))i∈I,r∈Z≥0

of Uq(ĝ) is given by

gi(u) :=




si(u) if i ∈ J,

fi(u) if i ∈ I \ J.

�

Corollary 5.10. A Uq(ĝ)-module L(f) ∈ Ob Ô is a least affinization only if fi(u) is a string – c.f.

(4.2) – for each i ∈ I.

Proof. We use the restriction lemma with J = {i}. Let v be a highest ℓ-weight vector of L(f).

It follows from the results of §4 that
(
Û{i}.v

)
wt(f)αi

−1
has dimension 1 if fi(u) is a string and

dimension ≥ 2 otherwise. �

In the following lemma, we use ≃ to denote equality up to a multiplicative constant.

Lemma 5.11 (Expansion lemma). Suppose f is an ℓ-weight of V ∈ Ob Ô. Suppose v ∈ Vf and

i ∈ I are such that x+i,r.v = 0 for all r ∈ Z.

(i) If fi(u) ≃
1−cu
1−au with a 6= c, then

x+i,s

(
x−i,r.v − arva

)
= 0 for all s ∈ Z,

for some ℓ-weight vector va ∈ V
fA−1

i,a
. In particular, va ≡ x−i,0.v modulo

⋂
r∈Z ker x

+
i,r.

(ii) If fi(u) ≃
1−cu
1−au

1−du
1−bu , with a 6= b and {a, b} ∩ {c, d} = ∅, then

x+i,s

(
x−i,r.v − (arva + brvb)

)
= 0 for all s ∈ Z,

for some ℓ-weight vectors va ∈ V
fA−1

i,a
and vb ∈ V

fA−1
i,b
.

In particular va ≡
bx−

i,0−x−
i,1

b−a .v and vb ≡
ax−

i,0−x−
i,1

a−b .v modulo
⋂

r∈Z ker x
+
i,r.

(iii) If fi(u) ≃
1−cu
1−au

1−du
1−au , with a /∈ {c, d}, then

x+i,s

(
x−i,r.v − (arva + rarv′a)

)
= 0 for all s ∈ Z,

for some linearly independent vectors va, v
′
a ∈ V

fA−1
i,a
.

In particular va ≡ x−i,0.v and v′a ≡ (a−1x−i,1 − x−i,0).v modulo
⋂

r∈Z ker(x
+
i,r).

Proof. Given Corollary 3.9, it is enough to show that statements (i), (ii) and (iii) hold in the

irreducible Û{i}-module W whose highest weight is v. So in the rest of this proof, we work in W .

Let ϕi,s := φ+
i,s − φ−

i,s.

In case (i) we have ϕi,s.v = αas(1− c
a) for some α ∈ C

× and thus, for all r, s ∈ Z,

(ϕi,r+s − arϕi,s).v = 0, and hence x+i,s(x
−
i,r.v − arw) = 0,

where wa = x−i,0.v ∈ W .
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In case (ii) we shall show that for all r, s ∈ Z,

x+i,s

(
x−i,r.v − arwa − brwb

)
= 0,

where wa =
bx−

i,0−x−
i,1

b−a .v and wb =
ax−

i,0−x−
i,1

a−b .v. This follows from

((a− b)ϕi,r+s + (arb− bra)ϕi,s + (br − ar)ϕi,s+1).v = 0,

which in turn holds because

ϕi,r.v = vβ

(
ar−1 (a− c)(a− d)

a− b
+ br−1 (b− c)(b − d)

b− a

)

for some β ∈ C
×.

Finally in case (iii) we shall show that for all r, s ∈ Z, x+i,s(x
−
i,rv − (arw + rarw′)) = 0 where

w := x−i,0v and w′ := a−1x−i,1v − x−i,0v. For this it is enough to show that x+i,s(x
−
i,rv − arx−i,0v −

rar−1x−i,1v + rarx−i,0v) = 0 is singular, which is true if and only if
(
ϕi,r+s − arϕi,s − rar−1ϕi,s+1 + rarϕi,s

)
.v = 0.

This is true, given that

ϕi,r.v = vγ

(
(r + 1)ar

(
1−

c

a
−

d

a
+

cd

a2

)
+ ar

(
c

a
+

d

a
−

2cd

a2

))

for some γ ∈ C
×.

Similar direct calculations show that, in each case (i), (ii) and (iii), the given vectors in W have

the ℓ-weights claimed, and are not in
⋂

r∈Z ker(x
+
i,r) and hence are not zero. �

5.4. The case of two nodes. We write

δa,b :=




1 if a = b,

0 otherwise
and δ̌a,b :=




0 if a = b,

1 otherwise.

Given any a, c ∈ C
×, define:

a1 := a, and ai+1 := aiq
−Bi,i+1 for each 1 ≤ i ≤ N − 1, (5.2)

cN := c and ci−1 := ciq
−Bi−1,i for each 2 ≤ i ≤ N,

and then, for 0 ≤ K,S ≤ N , let

fK,S := f ·

(
K∏

k=1

A−1
k,ak

)
·

(
S∏

s=1

A−1
N+1−s,cN+1−s

)
.

Proposition 5.12. Suppose f ∈ R is of the form

f1(u) = qµB11/2 1− q−µB11au

1− au
, fN(u) = qνBNN /2 1− q−νBNN cu

1− cu
, (5.3)

for some µ, ν ∈ C
×, and fj(u) = 1 for all 1 < j < N . For each 0 ≤ M < N ,

χq(L(f))|M =

M∑

K=0

fK,M−K.
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while

χq(L(f ))|N =
N−1∑

K=1

fK,N−K + fN,0δ̌aN ,cq−νBNN + f0,N δ̌c1,aq−µB11 . (5.4)

Proof. Let v0,0 be a highest ℓ-weight vector of L(f) and define

vK,L := (x−K,0x
−
K−1,0 . . . x

−
1,0)(x

−
N+1−L,0 . . . x

−
N−1,0x

−
N,0)v0,0.

We shall first show by induction on M that for all 0 ≤ M < N , vK,M−K ∈ L(f)fK,M−K
and that

(vK,M−K)0≤K≤M is a basis of
⊕

λ∈WM
L(f)λ. This is true for M = 0. Assume it is true for some

M < N − 1. By definition of the WM ,
⊕

λ∈WM+1
L(f)λ is then spanned by the vectors

{
x−i,r.vK,M−K : 0 ≤ K ≤ M, r ∈ Z,K < i < N + 1−M +K

}
.

For all K + 1 < i < N −M +K, x−i,r.vK,L = 0.

Now we claim that for each K such that 0 ≤ K ≤ M ,

x−N−M+K,r.vK,M−K = crN−M+Kx−N−M+K,0.vK,M−K ∈ L(f)fK,M−K+1
(5.5)

for all r ∈ Z. Indeed, on weight grounds, x+i,sx
−
N−M+K,r.vK,M−K = 0 for all i /∈ {K,N −M +K}.

For M = 0, the claim then follows from Lemma 5.11 part (i). For M > 0, when K > 0 we need

also the fact that (5.5) holds at the previous step in the induction on M :

x−N−M+K,r.vK−1,M−K = crN−M+Kx−N−M+K,0.vK−1,M−K,

from which, since

x+K,sx
−
N−M+K,r.vK,M−K = x−N−M+K,rx

+
K,s.vK,M−K = x−N−M+K,r.vK−1,M−Kλs

for some coefficients λs ∈ C, we have

x+K,s(x
−
N−M+K,r − crN−M+Kx−N−M+K,0).vK,M−K = 0.

Hence x+i,sx
−
N−M+K,r.vK,M−K = 0 for all i 6= K. The claim then follows from Lemma 5.11 part (i).

By a similar argument, for each K such that 0 ≤ K ≤ M − 1,

x−K+1,r.vK,M−K = arK+1x
−
K+1,0.vK,M−K ∈ L(f)fK+1,M−K

for all r ∈ Z. Since M < N − 1, [x−K+1,0, x
−
N−M+K,0] = 0. Hence, for all 0 ≤ K ≤ M ,

x−K+1,0.vK,M−K = x−N−M+K+1,0.vK+1,M−K−1 = vK+1,M−K.

This completes the inductive step.

We turn to computing χq(L(f))|N . Note that for all 1 < K < N ,

(fK−1,N−K)K(u) = q−BK−1,K
1− qBK−1,KaK−1u

1− q−BK−1,KaK−1u
q−BK,K+1

1− qBK,K+1cK+1u

1− q−BK,K+1cK+1u
, (5.6)
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while

(f0,N−1)1(u) = qµB11/2 1− q−µB11au

1− au
q−B12

1− qB12c2u

1− q−B1,2c2u
,

(fN−1,0)N (u) = q−BN−1,N
1− qBN−1,N aN−1u

1− q−BN−1,N aN−1u
qνBNN/2 1− q−νBNN cu

1− cu
. (5.7)

Let us consider the generic case in which all of these rational functions are in lowest terms as

written – i.e. there are no cancellations – and in which none have poles of second order. Now

certainly,

L(f)|N = span1≤K≤N,r∈Z x
−
K,r.vK−1,N−K.

Suppose d ∈ C
× \ {aK , cK}. Then by the previous part, for all j 6= K, fK−1,N−KA−1

K,dAj,e is not

an ℓ-weight of L(f)|N−1 for any e ∈ C
×. Hence, by Proposition 3.8, for all v ∈ L(f)fK−1,N−KA−1

K,d

we have x+j,r.v = 0 for all j 6= K, r ∈ Z. So if x−K,r.vK−1,N−K had a nonvanishing component w

in L(f)
fK−1,N−KA−1

K,d
, then we would have to have x+K,s.w 6= 0 for some s ∈ Z (otherwise w would

be singular). But, by Lemma 5.11 part (ii), we know that modulo vectors in
⋂

r∈Z kerx
+
K,r, every

x−K,r.vK−1,N−K is in the span of the following two vectors:

(aKx−K,0 − x−K,1).vK−1,N−K ∈ L(f)fK−1,N+1−K
,

(cKx−K,0 − x−K,1).vK−1,N−K ∈ L(f)fK,N−K
.

Therefore fK,N−K, 0 ≤ K ≤ N , and no others, are the ℓ-weights of L(f)|N .

Now, the defining relations of Uq(ĝ) include

x−K,1x
−
K+1,0 − q−BK,K+1x−K+1,0x

−
K,1 = q−BK,K+1x−K,0x

−
K+1,1 − x−K+1,1x

−
K,0

and we saw above that

x−K,1.vK−1,N−1−K = aKx−K,0.vK−1,N−1−K and x−K+1,1.vK−1,N−1−K = cK+1x
−
K+1,0.vK−1,N−1−K .

Hence, for any 1 ≤ K ≤ N − 1, the vector

u := (cKx−K,0 − x−K,1).vK−1,N−K = (cKx−K,0 − x−K,1)x
−
K+1,0.vK−1,N−1−K

is equal to

(aK+1x
−
K+1,0 − x−K+1,1).vK,N−1−K = (aK+1x

−
K+1,0 − x−K+1,1)x

−
K,0.vK−1,N−1−K . (5.8)

And on ℓ-weight grounds x+i,r(L(f )fK,N−K
) = 0 for all i /∈ {K,K +1}. Hence every vector v in the

ℓ-weight space L(f)fK,N−K
is of the form

v = λu+w + y,

where

w ∈

(
⋂

s∈Z

ker x+K,s

)
∩
(
spanr∈Z x

−
K,r.vK−1,N−K

)

and

y ∈

(
⋂

s∈Z

ker x+K+1,s

)
∩
(
spanr∈Z x

−
K+1,r.vK,N−1−K

)
.
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Now by considering 0 = [x+K+1,s, x
−
K,r].vK−1,N−K we see that w ∈

⋂
s∈Z ker x

+
K+1,s. So w = 0.

Similarly y = 0. Therefore u spans L(f)fK,N−K
, and dim(L(f)fK,N−K

) = 1, as required.

For f0,N and fN,0 the logic is simpler because there is no need to identify vectors. On ℓ-weight

grounds and by Lemma 5.11 part (ii) one finds dim(L(f)f0,N
) = dim(L(f)fN,0

) = 1.

It remains to consider the exceptional cases in which cancellations or coincident poles occur in the

functions (fK−1,N−K)K(u) as written in (5.6–5.7). In view of Lemma 5.11, the dimensions of the

‘outermost’ ℓ-weight spaces L(f)f0,N
and L(f)fN,0

drop to zero under exactly the conditions spec-

ified in (5.4). On the other hand one finds that there are no conditions under which the dimensions

of the ℓ-weight spaces L(f)fK,N−K
, 1 ≤ K ≤ N − 1, drop to zero. Suppose for example that a can-

cellation occurs in (fK−1,N−K)K for some 1 < K ≤ N : say q−BK−1,KaK−1 = qBK,K+1cK+1. That

is, aK+1 = cK+1. Then there is a double pole in (fK,N−K−1)K+1 and dim(L(f)fK+1,N−K−1
) = 2,

which is correctly reflected in the expression (5.4) since fK+1,N−K−1 = fK,N−K in this case. �

Corollary 5.13. For all µ, ν ∈ C, an affinization L(f) of V (µω1 + κωN ) is least if and only if

f1(u) = qµB11/2 1− aq−µB11u

1− au
, fN(u) = qνBNN /2 1− cq−νBNNu

1− cu
,

for some a, c ∈ C obeying at least one of the following equations:

aq−
∑N−1

i=1 Bi,i+1 = cq−νBNN , aq−µB11 = cq−
∑N−1

i=1 Bi,i+1 . (5.9)

Proof. If L(f) obeys one of the two conditions (5.9) then L(f †) obeys the other, and by Proposition

5.2, both define the same equivalence class. The result is then immediate from Proposition 5.12 �

Remark 5.14. If V (µω1 + κωN ) is finite-dimensional, i.e. µ, κ ∈ Z≥0, at most one of the equations

(5.9) can hold. However, for infinite-dimensional modules they are not mutually exclusive. In type

A2, for example, the least affinization of V = V (µω1 − µω2) is the class of L(f), where

f1(u) = qµ
1− aq−2µu

1− au
, f2(u) = q−µ 1− aqµ−1u

1− aq−µ−1u
, a ∈ C

×.

This is an evaluation module, so L(f) ∼= V as Uq(g)-modules. By the usual Weyl character formula,

all weight spaces of V are one-dimensional.

5.5. The case of three nodes. Now given any b ∈ C
×, define

bj := b, and bi−1 := biq
−Bi−1,i for each 1 < i ≤ j,

bi+1 := biq
−Bi,i+1 for each j ≤ i < N,

and, for 0 ≤ K,L < j and 0 ≤ R,S < N + 1− j,

fK,L,R,S := fA−1
j,b

(
K∏

k=1

A−1
i,ai

)(
L∏

ℓ=1

A−1
j−ℓ,bj−ℓ

)(
R∏

r=1

A−1
j+r,bj+r

)(
S∏

s=1

A−1
N+1−s,cN+1−s

)
.

Proposition 5.15. Suppose the rational ℓ-weight f is of the form

f1(u) = qµB11/2 1− q−µB11au

1− au
, fj(u) = qκBjj/2

1− q−κBjjbu

1− bu
, fN (u) = qνBNN/2 1− q−νBNN cu

1− cu
,
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for some µ, κ, ν ∈ C
×, and fk(u) = 1 for all k /∈ {1, j,N}. Suppose further that

bq−κBjj ∈ {aj , cj}. (5.10)

Then

χq(L(f))|≤N =

j−1∑

K=0

N−j∑

S=0

fK,S + δ̌
aj ,bq

−κBjj

N−1∑

K=j

N−K∑

S=0

fK,S + δ̌
cj ,bq

−κBjj

N−1∑

S=N−j+1

N−S∑

K=0

fK,S

+ δ̌
aj ,bq

−κBjj δ̌aN ,cq−νBNN fN,0 + δ̌
cj ,bq

−κBjj δ̌c1,aq−µB11f0,N

+ δ
aj ,bq

−κBjj δcj ,bq−κBjj f j,N−j (5.11)

+

j−2∑

L=0

j−1−L∑

K=0

N−j−1∑

R=0

N−j−R∑

S=0

fK,L,R,S

+ δ̌b1,aq−µB11

N−j−1∑

R=0

N−j−R∑

S=0

f0,j−1,R,S + δ̌bN ,cq−νBNN

j−2∑

L=0

j−1−L∑

K=0

fK,L,N−j,0

+ δ̌b1,aq−µB11 δ̌bN ,cq−νBNN f0,j−1,N−j,0.

Proof. This follows from arguments analogous to those used in the proof of Proposition 5.12. The

monomials fK,S arise by lowering starting at the ends of the Dynkin diagram. The new possibility,

as compared to Proposition 5.12, is that one can also start to lower from node j, giving rise to

monomials fK,L,R,S. To understand the term δ
aj ,bq

−κBjj δcj ,bq−κBjj in (5.11), note that

(f j−1,0,0,N−j−1)j(u) = qκBjj/2
1− q−κBjjbu

1− bu
q−Bj−1,j

1− qBj−1,jaj−1u

1− aju
q−Bj,j+1

1− qBj,j+1cj+1u

1− cju
.

(5.12)

When both aj = bq−κBjj and cj = bq−κBjj hold, only one of the denominators 1 − aju = 1 − cju

cancels, which still leaves one string ending at aj = cj . Thus f j,N−j appears in χq(L(f)) with

multiplicity 1. �

Remark 5.16. The condition (5.10) is included in order that, after cancellations, (5.12) is the

product of at most two strings. The formula given for χq(L(f))|≤N is actually still valid even if

(5.10) is false. One can prove it using a generalization of the expansion lemma, Lemma 5.11, to

the case of three strings. We do not need this result.

Corollary 5.17. Given µ, κ, ν ∈ C, an affinization L(f) of V (µω1 + κωj + νωN ) is least if and

only if

f1(u) = qµB11/2 1− aq−µB11u

1− au
, fj(u) = qκBjj/2

1− bq−κBjju

1− bu
, fN (u) = qνBNN/2 1− cq−νBNNu

1− cu
,

for some a, b, c ∈ C
× such that either

(I) aq−
∑j−1

i=1 Bi,i+1 = bq−κBjj and bq−
∑N−1

i=j Bi,i+1 = cq−νBNN , or

(II) aq−µB11 = bq−
∑j−1

i=1 Bi,i+1 and bq−κBjj = cq−
∑N−1

i=j Bi,i+1 .

Proof. If L(f) obeys (I) then then L(f †) obeys (II), so by Proposition 5.2 both (I) and (II) define

the same equivalence class. It follows from Proposition 5.15 that all other equivalence classes of
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affinizations of V (µω1 + κωN ) strictly succeed this class. So it is indeed least. Note in particular

that it strictly precedes the class defined by

(III) aq−
∑j−1

i=1 Bi,i+1 = bq−κBjj and bq−µBjj = cq−
∑N−1

i=j Bi,i+1 , or

(IV) aq−µB11 = bq−
∑j−1

i=1 Bi,i+1 and bq−
∑N−1

i=j Bi,i+1 = cq−νBNN .

By Proposition 5.12, (I-IV) are the only affinizations that are least for the subdiagrams {1, . . . , j}

and {j, . . . , N}. The term (5.11) vanishes in cases (I) and (II) but not in cases (III) and (IV). �

5.6. Proof of Theorem 5.7. First we restate Theorem 5.7 in the following form. We pick and

fix, for this subsection, a λ ∈ h∗ \ {0}. Let i1 < i2 < · · · < iK be such that λ =
∑K

k=1 bkωik , bk 6= 0.

Then we must show that an affinization L(f) of V (λ) is least if and only if

fik(u) = qbkBikik
/2 1− q−bkBikikaku

1− aku
, 1 ≤ k ≤ K, (5.13)

and fi(u) = 1 for all i ∈ I \ {i1, . . . , iK}, where ak ∈ C
×, 1 ≤ k ≤ K, are such that either

(I) ak+1q
−bk+1Bik+1,ik+1 = akq

−
∑ik+1−1

i=ik
Bi,i+1 for all 1 ≤ k < K or

(II) akq
−bkBik,ik = ak+1q

−
∑ik+1−1

i=ik
Bi,i+1 for all 1 ≤ k < K.

Now, in view of Corollaries 5.13 and 5.17, this statement is equivalent to the following proposition.

Proposition 5.18. An affinization L(f) of V (λ) is least if and only if

(1) L(f{ik}
) is least for each 1 ≤ k ≤ K, and

(2) L(f{ik,ik+1,...,ik+1}
) is least for each 1 ≤ k ≤ K − 1, and

(3) L(f{ik,ik+1,...,ik+2}
) is least for each 1 ≤ k ≤ K − 2.

Proof. The “only if” part follows from Lemma 5.9 and Corollaries 5.10, 5.13 and 5.17.

For the “if” part, suppose f is such that conditions (1–3) hold. Then f is of the form given in

(5.13).

When K = 1 for every weight µ 6= λ of L(f), then µ ≤ λ− αi1 and the result is clear. So suppose

that λ has support at K ≥ 2 nodes. Let L(s), s ∈ R, be any affinization of V (λ) and w a highest

ℓ-weight vector of L(s). Define

A(2) :=
{
k ∈ {1, 2, . . . ,K − 1} : Û{ik ,ik+1,...,ik+1}.w is not least

}
,

A(3) :=
{
k ∈ {1, 2, . . . ,K − 2} : Û{ik ,ik+1,...,ik+2}.w is not least

}
.

We first make the following observation:

If A(2) = A(3) = ∅ then L(s) and L(f) are isomorphic as Uq(g)-modules. (5.14)

Indeed, by Lemma 5.9 and Corollaries 5.13 and 5.17, A(2) = A(3) = ∅ holds only if f and s are of

the form given in (5.13). Then, as noted in §5.2, there exists an a ∈ C
× such that either f = ta(f

′)

or f ∼= ta(f
′†), c.f. (3.7), and therefore (5.14) follows from Proposition 5.2.

Now we consider the case that A(2) 6= ∅ or A(3) 6= ∅. We shall show that the class of L(f) strictly

precedes that of L(s) in the partial order. By Proposition 5.12, for all k ∈ A(2)

dim
(
L(s)λ−αik

−αik+1−...−αik+1

)
> dim

(
L(f)λ−αik

−αik+1−...−αik+1

)
.
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By Proposition 5.15, for all k ∈ A(3)

dim
(
L(s)λ−αik

−αik+1−...−αik+2

)
> dim

(
L(f)λ−αik

−αik+1−...−αik+2

)
.

It remains to compare weight spaces with weights that are not dominated by weights of the form

λ − αik − αik+1 − . . . − αik+1
, k ∈ A(2), or λ − αik − αik+1 − . . . − αik+2

, k ∈ A(3). Let µ be any

such weight. Then there exist simple, pairwise commuting, diagram subalgebras g1, . . . , gT of g

with corresponding subdiagrams I1, . . . , IT , and elements α(t) ∈ Q+
It

for each 1 ≤ t ≤ T , such that

µ = λ−
∑T

t=1 α
(t) and such that, for each 1 ≤ t ≤ T , {ik, ik + 1, . . . ik+1} 6⊆ It for all k ∈ A(2) and

{ik, ik +1, . . . , ik+2} 6⊆ It for all k ∈ A(3). It follows from the observation (5.14) above that for each

1 ≤ t ≤ T , L(sIt) is isomorphic to L(f It) as a Uq(g)-module. Therefore, by Lemma 5.8, we have:

dim (L(s)µ) = dim
(
L(sI1)µI1

⊗ . . . L(sIT )µIT

)

=

T∏

t=1

dim
(
L(sIt)µIt

)
=

T∏

t=1

dim
(
L(f It)µIt

)

= dim
(
L(f I1)µI1

⊗ . . . L(f IT )µIT

)
= dim (L(f)µ) .

Hence the class of L(f) strictly precedes that of L(s) in the partial order, as required. �

6. Character conjectures

In this section we give a series of three conjectures, of increasing generality, for the classical

(i.e. Uq(g)-) character of certain irreducible representations in Ô. Our main interest is in the

least affinizations of Verma modules, and these provide our starting point. Computer experiments,

using the algorithm of [FM01], suggest that their characters have a simple form, similar to the

Weyl denominator.

Conjecture 6.1 (Least affinization of the generic Verma module). Suppose g is of type ABCF or

G. Let L(f) ∈ Ob Ô be a least affinization of V (λ), where λ =
∑

i∈I λiωi with λi /∈ Z for any i ∈ I.

Then

χ(L(f)) = λ
∏

α∈∆+

(
1

1− α−1

)max
i∈I

〈ω∨
i ,α〉

.

This conjecture is known to hold in at least two special cases:

Proposition 6.2. Conjecture 6.1 is true in types An, n ∈ Z≥1, and B2.

Proof. In type A, least affinizations are evaluation modules. So the least affinization L(f) of an

irreducible Verma module V is isomorphic to V as a Uq(g)-module. The formula for χ(L(f)) in

Conjecture 6.1 is therefore correct, because it agrees with the usual character formula for Verma

modules, i.e. the Weyl denominator. (Note that in type A, maxi∈I 〈ω
∨
i , α〉 = 1 for all α ∈ ∆+.)

In type B2, for all k, ℓ ∈ Z≥0 the least affinization L(f) of V (kω1 + ℓω2) has as its Uq(g)-module

decomposition [Cha95]

L(f) ∼=

⌊ℓ/2⌋⊕

i=0

V (kω1 + (ℓ− 2i)ω2)
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(with α1 the long root). By analytic continuation, c.f. Corollary 5.6, the least affinization L(f) of

the generic λ ∈ h∗ has character

χ(L(f)) =

∞∑

i=0

χ
(
V
(
λ− 2iω2

))
= λ

∞∑

i=0

(ω2)
−2i 1

1− α−1
1

1

1− α−1
2

1

1− α−1
1 α−1

2

1

1− α−1
1 α−2

2

using the usual character formula for Verma modules. Since 2ω2 = α1 + 2α2, on summing the

geometric series one has

χ(L(f)) = λ
1

1− α−1
1

1

1− α−1
2

1

1− α−1
1 α−1

2

(
1

1− α−1
1 α−2

2

)2

.

as in Conjecture 6.1. �

Conjecture 6.1 is the special case J = I of the following.

Conjecture 6.3 (Least affinization of the generic parabolic Verma module). Suppose g is of type

ABCF or G. Suppose λ ∈ h∗ has support on some subdiagram J ⊆ I (i.e. λ =
∑

j∈J λjωj) and

that λj /∈ Z for any j ∈ J . Let L(f) ∈ Ob Ô be a least affinization of V (λ). Then

χ(L(f)) = λ
∏

α∈∆+

(
1

1− α−1

)max
j∈J

〈ω∨
j ,α〉

.

In many situations this conjecture can be deduced from existing results for finite dimensional

modules.

Proposition 6.4. Conjecture 6.3 is true in the following cases.

(1) In type An, n ∈ Z≥1.

(2) In type G2 for Kirillov-Reshetikhin modules associated to the long node.

(3) In type Bn with J ⊆ {1, 2, 3} (where n is the short node).

In addition, it agrees with the conjectured Uq(g)-module decompositions given in [HKOTY99] for

the Kirillov-Reshetikhin modules for the long node in type Cn.

Proof. The arguments are as in the proof of Proposition 6.2. In type A, the given character formula

is just the usual character of the generic parabolic Verma module in type A.

In type G2 the least affinization of V (kω2), where α2 is the long root, is a Kirillov-Reshetikhin

module whose Uq(g)-module decomposition is
⊕k

r=0 V (rω2); see [CM07]. Since ω2 = 3α1+2α2, the

result follows as in case of B2 in the proof of Proposition 6.2. Similarly, in type Bn with J ⊆ {1, 2, 3},

the result follows from Uq(g)-module decompositions that can be found in [Mou10]. �

Conjecture 6.3 can be generalized somewhat further, as follows. Given X ⊆ I, let X denote the

smallest connected subset of I such that X ⊆ X . For any i 6= j ∈ I, the subdiagram {i, j} admits

a straight labelling (i = j1, j2, . . . , jK−1, jK = j) of its nodes: that is, one in which Bjk,jℓ < 0 if and

only if |k − ℓ| = 1 (and in which jk 6= jℓ if k 6= ℓ). Given a rational ℓ-weight f , we may factor the

|I|-tuple of rational functions (fi(u))i∈I as follows. For each i ∈ I,

fi(u) =
∏

a∈C×/qZ

f
(a)
i (u), (6.1)
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where every pole and every zero of f
(a)
i (u) lies in aqZ.

Conjecture 6.5. Suppose that for each a ∈ C
×/qZ and each i ∈ I there is an na(i) ∈ Z≥−1, an

X ∈ C and an r ∈ Z such that

f
(a)
i (u) = X(1 − aqru)na(i).

Letting

S(a) := {i ∈ I : na(i) = −1} , U (a) := {i ∈ I : na(i) > 0} ,

suppose further that

(1) for all i, j ∈ S(a) with i 6= j, we have U (a) ∩ {i, j} 6= ∅;

(2) for every i ∈ S(a), j ∈ U (a) such that {i, j} ∩ (S(a) ∪ U (a)) = {i, j}, there is a straight

labelling (i = j1, j2, j3, . . . , jK = j) of {i, j} such that

f
(a)
i (u) =

X

1− aqru
, f

(a)
j (u) = W

(
1− aqr−

∑K−1
t=1 Bjt,jt+1

)n
,

for some r ∈ Z, n ∈ Z>0 and X,W ∈ C
×;

(3) for every j ∈ U (a),

na(j) ≥ |Na(j)| − 1 where Na(j) :=
{
i ∈ S(a) : {i, j} ∩ (S(a) ∪ U (a)) = {i, j}

}
.

Then

χ(L(f)) = wt(f)
∏

a∈C×/qZ

χ(a), χ(a) =
∏

α∈∆+

(
1

1− α−1

)max



0,
∑

i∈S(a)
〈ω∨

i ,α〉−
∑

j∈U(a)

na(j)〈ω∨
j ,α〉





.

(6.2)

Note that condition (3) is redundant except when the node j is trivalent.

To see that Conjecture 6.5 does entail Conjecture 6.3, let us give the following.

Proof of Conjecture 6.3 assuming Conjecture 6.5. Let i1 < i2 < · · · < iK be the nodes of J . With-

out loss of generality, suppose f obeys condition (I) in Theorem 5.7. (If not, reverse the ordering

of the Dynkin diagram.) Now we apply Conjecture 6.5. For each 1 ≤ k ≤ K there is exactly one

a ∈ C
×/qZ such that ik ∈ S(a); and for this a, U (a) = {ik+1} when k < K, while U (a) = ∅ when

k = K. Thus Conjecture 6.5 implies

χ(L(f)) = λ

K∏

k=1

∏

α∈∆+

(
1

1− α−1

)max
(
0,
〈
ω∨
ik
,α
〉
−
〈
ω∨
ik+1

,α
〉)

,

where for convenience we define ω∨
iK+1

:= 0. The result follows provided we can show that

K∑

k=1

max
(
0,
〈
ω∨
ik
, α
〉
−
〈
ω∨
ik+1

, α
〉)

= max
1≤k≤K

〈
ω∨
ik
, α
〉
.

And indeed, this equality is a consequence of the following statement, which can be seen by case-

by-case inspection: Let g be of type ABCF or G and rank N , and pick a straight labelling of the

nodes of the Dynkin diagram; then for any positive root α, the N -tuple (〈ω∨
i , α〉)1≤i≤N is unimodal,
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i.e. there is a k such that
〈
ω∨
1 , α

〉
≤
〈
ω∨
2 , α

〉
≤ · · · ≤

〈
ω∨
k , α

〉
≥ · · · ≥

〈
ω∨
N−1, α

〉
≥
〈
ω∨
N , α

〉
.

As an obvious consequence, all sub-tuples are also unimodal. �

For Kirillov-Reshetikhin modules on end nodes in types E6,E7,E8, Conjecture 6.5 can be matched

against the conjectured Uq(g)-module decompositions of [HKOTY99].

It is known [CP96a] that in types D and E the classification of minimal affinizations becomes

more subtle in irregular cases: that is, for highest weights orthogonal to the simple root associated

to the trivalent node. All other highest weights are called regular. We believe that Conjecture 6.5

applies in particular to minimal affinizations of parabolic Verma modules whose highest weights

are regular.

Conjecture 6.5 also applies to certain other modules, as the following examples illustrate.

Type A4. 1 32 4

• If

f
(a)
1 (u) =

1

1− au
, f

(a)
2 (u) = 1− aq3u, f

(a)
3 (u) =

1

1− au
, f

(a)
4 (u) = 1

then

χ(a) =
1

1− α1
−1

1

1− α3
−1

1

1− α3
−1α4

−1

1

1− α1
−1α2

−1α3
−1

1

1− α1
−1α2

−1α3
−1α4

−1 .

• If

f
(a)
1 (u) = 1− aq3u, f

(a)
2 (u) =

1

1− au
, f

(a)
3 (u) = 1− aq3u, f

(a)
4 (u) = 1

then

χ(a) =
1

1− α2
−1 .

Type F4. 1 32 4

• If

f
(a)
1 (u) = 1, f

(a)
2 (u) = 1− aq5u, f

(a)
3 (u) =

1

1− au
, f

(a)
4 (u) = 1− aq3u

then

χ(a) =
1

1− α3
−1

1

1− α2
−1α3

−2

1

1− α1
−1α2

−1α3
−2 .

• If

f
(a)
1 (u) = 1− aq7u, f

(a)
2 (u) = 1, f

(a)
3 (u) =

1

1− au
, f

(a)
4 (u) = 1− aq3u

then

χ(a) =
1

1− α3
−1

1

1− α2
−1α3

−1

(
1

1− α2
−1α3

−2

)2 1

1− α1
−1α2

−1α3
−2

1

1− α2
−1α3

−2α4
−1

×
1

1− α1
−1α2

−2α3
−2

1

1− α1
−1α2

−2α3
−3α4

−1

1

1− α1
−1α2

−2α3
−4α4

−2

1

1− α1
−1α2

−3α3
−4α4

−2 .
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To discuss the condition (3) in Conjecture 6.5, let us consider type D5,

1
3

2

4

5 .

The reason for including the condition (3) is that computer experiments suggest that the formula

for χ(a) in (6.2) is not valid for

f
(a)
1 (u) = 1−aq4u, f

(a)
2 (u) =

1

1− aqu
, f

(a)
3 (u) = 1−aq4u, f

(a)
4 (u) =

1

1− aqu
, f

(a)
5 (u) =

1

1− aqu
.

Here na(3) = 1 < 3 − 1 = |Na(3)| − 1, so condition (3) is not satisfied. On the other hand, the

following does fall within the scope of the conjecture:

f
(a)
1 (u) = 1−aq4u, f

(a)
2 (u) =

1

1− aqu
, f

(a)
3 (u) = (1−aq4u)2, f

(a)
4 (u) =

1

1− aqu
, f

(a)
5 (u) =

1

1− aqu
;

and computer checks indicate that the formula for χ(a) is valid in this case.

Finally, we find that in certain cases, the formula (6.2) appears to be valid even though condition

(3) is not satisfied. For example if

f
(a)
1 (u) = 1, f

(a)
2 (u) =

1

1− aqu
, f

(a)
3 (u) = 1− aq4u, f

(a)
4 (u) =

1

1− aqu
, f

(a)
5 (u) =

1

1− aqu

then the formula in (6.2) for χ(a) does appear to hold.
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