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Abstract 

This thesis describes a novel application of an artificial neural network and 

links together the two diverse disciplines of electroanalytical chemistry and 

information sciences. 

The artificial neural network is used to process data obtained from a 

Differential Pulse Anodic Stripping (DPAS) electroanalytical scan and produces as 

an output, predictions of lead concentration in samples where the concentration is 

less than 100 parts per billion. 

A comparative study of several post analysis processing techniques is 

presented, both traditional and neural. Through this it is demonstrated that by using 

a neural network, both the accuracy and the precision of the concentration 

predictions are increased by a factor of approximately two, over those obtained 

using a traditional, peak height calibration curve method. Statistical justification for 

these findings is provided 

Furthermore it is shown that, by post processing with a neural network, good 

quantitative predictions of heavy metal concentration may be made from instrument 

responses so poor that, if using tradition methods of calibration, the analytical scan 

would have had to be repeated. 

As part of the research the author has designed and built a complete computer 

controlled analytical instrument which provides output both to a graphical display 

and to the neural network. This instrument, which is fully described in the text, is 

operated via a mouse driven user interface written by the author. 
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1.1.1. Overview of the work 

Environmental pollution, whether accidental or deliberate, has far reaching 

consequences and the determination of trace quantities of heavy metals in such 

places as foodstuffs, ground water and soils is an increasingly important issue. 

Determination of such levels in a laboratory remote from the source is time 

consuming and costly and so the trend is towards on site determination using 

portable instrumentation. 

Many analytical techniques can be used to assess concentration levels of such 

substances as lead, cadmium and thallium. The electrochemical technique used in 

this work, Differential Pulse Anodic Stripping at a Thin Film Mercury Electrode, is 

one of a class of techniques collectively called Voltammetry. Using a special 

rotating electrode, it is fast, requires equipment that can easily be made portable and 

yet is capable of determining the concentration of electroactive species in solution 

down to the parts per billion level. 

Artificial neural networks (the word artificial being used to distinguish them 

from biological neural networks) are computational devices, loosely based around 

the operation of the brain, which have the capability to learn. They have existed in 

the academic world of computing for some time but are only now receiving growing 
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attention as tools in real world applications. They are usually written in software but 

some hardware implementations do exist. Recent years have seen a steady increase 

in the number of application areas where they may be usefully employed. 

A neural network has many interesting properties. One of these is the ability 

to form an arbitrarily complex mapping between some presented input data and 

some corresponding desired output data. Others include the ability to process noisy 

data and the ability to generalise, that is produce meaningful output when presented 

with input data that does not fall into one of its learnt mappings. 

The research reported here links together these two rather different disciplines 

of analytical chemistry and artificial neural networks. The author, who cannot claim 

to have a background in chemistry, has applied the pattern recognition and 

generalisation power of artificial neural networks to the response obtained from a 

particular method of trace metal analysis. The detailed aim of the work is given in 

the next section but in general terms the work is an investigation into whether neural 

networks can help to provide a more accurate and precise prediction of trace metal 

concentration than is currently available using Differential Pulse Anodic Stripping 

with existing post analysis data processing techniques. 

There are two areas where it is claimed improvements might be made in the 

existing technique. One is the use of neural networks to extract more information 

from the analytical data so obtained than is currently done, by using a neural 

network to post process the response obtained from the analytical instrument. A 

second area is the optimisation of the analytical parameters, in advance of an 

analysis, by using a neural network operating in a control loop. It will be shown that 

improvement in this latter area is not as necessary as it first appears given the results 

of investigations into post processing by neural network. 
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The work follows a traditional approach. As it was desired to investigate the 

control of the analysis itself it was necessary to be familiar with the operation of the 

equipment which it was my intention to control. To this end it was decided that 

rather than be bound by the constraints of a commercial instrument, all the 

necessary equipment to perform the chemical analysis and obtain the required data 

would be constructed by the author prior to any study of neural network 

architectures and their particular application to this area. 

Accordingly the following items specific to the task were designed, built and 

tested by the author 

1. The rotating Thin Film Mercury Electrode and analytical cell arrangement. 

2. The electronic hardware providing potentiostatic control of the electrode and 

the current measuring facilities. 

3. The electronic hardware required to provide remote computer control of the 

potentiostat and its numerous operational features. 

4. A suite of computer software which can be used to set the operational 

parameters, carry out the required analytical functions, store the results and 

display and process the resulting voltammogram. This was written as both an 

interactive, mouse driven user interface and as a file oriented, batch 

processing interface which allowed automatic running. 

A photograph showing the complete arrangement is reproduced in figure 1. 

Further photographs showing details of various parts are given in chapter 4. 
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Figure 1. Photograph of the equipment built by the author for 
this study 

Key: (a) analytical cell and working electrode holder, (b)Relay for electrode 
motor and electrically operated valve for gas purge, (c) Interfacing, control 
and potentiostat electronics, (d) 48 Opto isolators used to isolate (c) from the 
computer, (e) 50 Way ribbon cable leading to the computer 

Following the testing of the analytical system the focus of the work shifted to 

a study of neural networks and their application to this area. Data drawn from 

various sources were used: synthetic data, real data obtained from the analysis of 

lead in curry powder and real data from prepared lead standards. Neural networks 

and traditional techniques were used with data obtained using the computerised 

instrument to predict lead concentrations in the parts per billion region. 

Some of the neural networks used in this work to process the voltammograms 

obtained from analytical runs were written by the author in Pascal. Others were 
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written using Visual Basic© to build networks from a set of primitive tools available 

in NeuroWindowsTM, a commercial package produced by Ward Systems Incl. The 

bulk of the work however was carried out using NeuroShell 2TM from the same 

company, which simplifies the task of changing architectures and network 

parameters. All the pre-processing software was written in Pascal by the author. 

1.1.2. Overview of this thesis 

As this thesis encompasses two different disciplines it was felt appropriate to 

offer a number of areas of background study. Readers with an information science 

background will find relevant background material on voltammetry and its 

development in Chapter 2, section 2.1 whereas chemists requiring information on 

neural networks are directed to section 2.2. 

Chapter 3 brings these two areas together with a study of the existing 

applications of artificial intelligence in general and neural networks in particular, to 

the field of analytical chemistry. Sections 3.2 and 3.3 in this chapter follow this up 

with a justification of the aims of this work in the light of the current research. 

Chapter 4 begins by describing the construction of the special electrode 

needed and the 'wet chemistry' analytical apparatus. The construction of the 

electronics which controls this apparatus is described next in section 4.2 followed in 

section 4.3 by a description of the interfacing software that enables a remote 

computer to drive the instrument. 

The work relating to the major part of this study, that of post processing the 

instrument response by neural network begins in chapter five. This chapter details 

the experimental methods and electrochemical parameters used, the neural network 

architectures considered and the methods of data analysis employed. It first covers 

the preliminary work with curry powder, presents the results of this and outlines the 
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reasons why this line of research was curtailed. The latter part of the chapter deals 

with the important work on processing data from lead standards by neural network 

and gives the quality metrics by which the comparative study is carried out. 

The results of the lead standards study are presented in chapter six, providing 

evidence in both graphical and tabular form. Each method studied is presented in 

turn. The chapter concludes with a summary of all the results obtained from this 

part of the work. 

Chapter seven contains a discussion of the results obtained and the 

observations that may be made from them. Arguments regarding error analysis are 

given. 

Finally, chapter eight presents the conclusions reached by the author and links 

these to the original aims of this work. It is claimed that the application of a neural 

network to this branch of electroanalytical chemistry would indeed improve the 

technique and statistical justification for this claim is given. The concluding section 

of this chapter discusses further research arising out of this study. 

The appendices reproduce the author's published papers, contain details of the 

testing of the electronics and outline other avenues of research that were investigated 

during the course of this work. 

This study cannot claim to make broad inroads into the leading edge of neural 

network technology research nor has a new electroanalytical technique been 

developed. Instead this thesis brings together the work of two very different 

disciplines and presents a novel application of neural networks to an area that has so 

far received little attention. Furthermore, it shows the application of neural networks 

to trace metal analysis by differential pulse stripping voltammetry to have immediate 

advantages and future promise. 
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The central hypothesis of this work is that a neural network can be used to 

advantage to process data obtained from an electrochemical analysis using 

differential pulse anodic stripping and provide a prediction of the concentration of 

electroactive material present. Several proposals may be made. 

0 It is proposed that a neural network could be trained to provide a prediction 

of toxic metal concentration with an accuracy and precision exceeding that 

available using traditional calibration curve techniques. 

0 It is further proposed that by encoding knowledge of the instrumental 

parameters in force at the time, such predictions of concentration might be 

made over a greater range than currently possible . 

" Finally it is proposed that a neural network may also be used as a controller 

in order to obtain optimum analytical conditions within a small range of 

operational parameters. 

The overall aim is therefore to develop the above hypothesis by building 

hardware and software appropriate to the task, by qualitatively investigating the 

feasibility of post analytical data processing by neural network and by quantitatively 

comparing traditional and proposed methods. 



23 

2. Background Studies 
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2.1.1. Overview of the theory 

Table 1, Page 24. lists some of the more common methods that have been 

used at one time or another, together or alone as a means of obtaining analytical 

information. Voltammetry, the technique used in this work, is the name given to a 

class of electroanalytical methods whereby a time varying potential is applied 

between two electrodes placed in a solution and the resulting changing current is 

measured to provide information about the chemical species present in the solution. 

Although the technique was originally called Polarography, nowadays the term 

Polarography is normally reserved for the special case of voltammetry where the 

electrode in question is formed by a continuously renewable drop of mercury at the 

end of a fine capillary tube. 

The birth of voltammetry (actually using a polarographic method) is usually 

attributed to Heyrovsky2,3 in 1924, although he had been working on an associated 

problem for four years before this. In 1924, together with his colleague Shikata, he 

developed an automatic instrument to change continuously the potential applied to a 

mercury drop electrode and plot the resulting current - potential curve. They called 

this instrument a Polarograph4. The early historical development of Polarography 

may be found in several sources s, 6,7, s, 9,10 and it is not the intention to elaborate 

further in any great detail here. 
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Response Measured Electrical Variable Name or Description of 
Controlled Method 

E I (maintained at 0) Potentiometry 

E versus volume of reagent I (maintained at 0) Potentiometric titrations 

i vs E E Voltammetry / Polarography 
. (Linear scan) 

(Cyclic voltammetry) 
or (Pulse methods) 

(Stripping voltammetry) Al vs. E 

Weight of deposit i or E Electrogravimetry 

I/R (conductance) versus E Conductometric titrations 
volume of reagent 

i versus volume of reagent E Amperometric titrations 

Coulombs (current x time) E or i Coulometry 

Table 1. Summary of electrochemical methods of analysis 

The general principles behind the technique are as follows. When a pair of 

electrodes are immersed in a solution three electrochemical processes may occur, 

reduction, oxidation or non Faradic. Reduction results in the plating of a metal onto 

the electrode from solution, Oxidation causes the stripping of metal from the 

electrode back into solution. A general term for these processes is a redox reaction. 

They both produce a flow of electrons across the electrode-solution interface, are 

governed by Faraday's laws and are appropriately known as Faradic processes. The 

third process, non-Faradic, does not result in a net flow of electrons across the 

interface and is due to changes in the structure of the electrode-solution interface or 

the electrical environment of the electrode. 
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2.1.1-1. Linear Scan Voltamme 

If the potential of an electrode is changed, an electroactive species in solution 

will begin a Faradic plating or stripping process once the applied potential exceeds 

what is known as the decomposition potential. This is determined by the formal 

potential of the species in question. If the potential applied to the electrode is 

changed still further in the same direction once the reaction has begun, the current 

due to the redox reaction will depend upon this potential as this determines how fast 

the reaction can proceed. At sufficiently high potentials (up to about 2V) the rate of 

reaction is so high that all of the electroactive material arriving at the electrode 

undergoes a redox reaction. The Faradic current therefore reaches a limiting value 

which depends upon how fast the species can reach the electrode. 

If the electrode is rotated then a forced convection is set up with a net flow of 

solution towards the electrode, thereby increasing the quantity of electroactive 

material available for reaction. Details of the effects of this rotation are discussed in 

Fried". When the electrode is stationary however, the rate of now of electroactive 

species depends upon its rate of diffusion which itself depends upon the 

concentration of this species in the solution. This means that if a linear potential 

sweep is applied to an electrode, a diffusion controlled reaction will cause a 

maximum, limiting current that depends upon the species concentration. Hence this 

limiting current is a candidate for an analytical method. Further descriptions of 

special forms of voltammetry can be found in Anderson12 and Wightman13 

2.1.1.2. Pulse Voltammetrv 

The electrode-solution interface contains a small region of solution close to 

the electrode, called the double layer, with a reduced number of free ions due to 

adsorption in the electrode. Therefore there exists, at this interface, a capacitor with 
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the electrode and the solution a short distance away acting as the plates and the 

double layer, behaving as the dielectric. An important non Faradic process is the 

charging current that flows into the electrode due to the charging of this 'capacitor' 

when the potential of the electrode is changed. With typical solid electrode the 

capacitance is very small and the time for which the exponentially decreasing 

charging current is appreciable is very short, of the order of micro seconds. 

In pulse voltammetry, described in many papers by Osteryoung14, ls and also 

by Murphy16, use is also made of the fact that when a pulse is applied to the 

electrode, so charging the double layer, the capacitive current decays exponentially 

with time according to 

i=E e-`IRC {1} 
R 

Where E is the potential applied between the working electrode and the 

reference electrode, R is the resistance of the solution in the double layer and C is 

the capacitance of the double layer. Immediately after the pulse however, the 

Faradic current decays as the electroactive species immediately in the vicinity of the 

electrode becomes exhausted. This Faradic current, however, decays more slowly 

than the non Faradic, capacitive current. 

Therefore if a current measurement is made at a short time after the 

application of the pulse the majority of the current measured will be due to the 

Faradic process and the detection limit, relative to a linear scan method, will be 

lowered. 

The waveform for normal pulse voltammetry where the pulses increase in 

amplitude, is shown in fig 2. 
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This waveform is little used these days as the current-potential response 

obtained has a sigmoidal shape rather than the more easily processed peak shape 

obtained with differential pulse techniques. Preference is therefore given to 

differential pulse wave forms. 

-0.6 

v W. E. 

(Volt) 

-0.2 
Time 

Figure 2. Typical input waveform for normal pulse voltammetry 

2.1 1.3. Differential Pulse Voltammetrv 

In differential pulse voltammetry the pulses are superimposed either on a 

rising potential ramp or on a stepped ramp, the latter being more suited to digital 

computer control. Figure 3 shows both of these waveforms on the same potential 

axis with the stepped ramp, as used for this work, shown in the upper of the two 

waveforms. The current is measured before and after the pulse and the two values 

are subtracted. This results in a peak shaped response of Ai against applied potential 

(figure 4) as the electrode potential sweeps though the region of the Faradic process 

for the species in question. In both fig 2 and fig 3, A and B are the two points 
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where the current is measured and subtracted for each pulse. The use of a 

differential pulse waveform with computerised instrumentation is described in 

Bond'7 using a polarographic technique. Bond thought his work unusual since he 

used pulses with a width similar to the time interval between the pulses , unlike 

previous workers who used pulse widths ten or more times smaller that the pulse 

interval. In this work the author has also found that using a simple pulse with a 

mark space ratio of 1: 1 provides perfectly good results. 

-0.6 

v W. E. 

(volt) 

-0.2 

Figure 3. Typical Input waveforms for differential pulse 
voltammetry 

2.1.1.4. Differential Pulse Stripping Voltammetrv 

Differential pulse stripping voltammetry is described in Wang, 18 Kopanica'9 

and Brainina20. The electrode used is mercury, either in the form of a drop or as a 

thin film that is plated on to a solid substrate. In common with the work described 

in this thesis, Graabaek21 used a thin film of mercury on a glassy carbon substrate 

Time 
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for his electrode. When using this type of electrode the substrate is first 

electroplated with mercury, usually whilst rotating. Then it is placed in the solution 

under test and the electroactive species is allowed to accumulate into the mercury by 

the application of a constant potential that causes the species to plate the mercury 

and so form an amalgam with it. During the final, analysis, phase the differential 

pulse waveform is applied in such a direction that the species is stripped out of the 

mercury, producing the Faradic reaction. 

r= 
cc 

0 

U 

U 

0 

Figure 4. Ideal response from differential pulse voltammetry 

The benefit of the stripping method is that since, due to the previous 

accumulation, the concentration of the species in the mercury is very much higher 

than in the analyte, this method provides considerably higher sensitivity than non 

stripping methods. 

It should be noted that as an alternative to pre plating the electrode with 

mercury, it may be simultaneously plated with mercury and the species in question. 

Increasing potential -> 
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This technique, used for the bulk of this current work, is more fully described on 

page 146. 

In addition Pomeroy22 contains useful information on the technique of using 

thin film mercury electrodes. He includes a schematic diagram of a three electrode 

potentiostat circuit and gives full details of the electrode preparation and analytical 

procedure. The use of this electrode with differential pulse voltammetry is also 

mentioned in DeAngelis23, who achieved a detection limit of 10 ng ml-1 for lead in 

organic materials, although his electrode plating times were of the order of several 

minutes. 

Additional material on voltammetry may be found in Copeland24,25 and 

Edwards26, both of whom give an overview but with Copeland offering a more 

detailed analysis. The related technique of staircase voltammetry is discussed by 

Svensmark27 and Eisner28, both of whom continued to rotate the electrode during the 

analytical scan. Eisner confirms the theoretical relationships, published several times 

elsewhere by his co-author Osteryoung, between the response and the analytical 

parameters. He also reports that the sensitivity of staircase voltammetry was about 

the same as the differential pulse method. 

Square wave anodic stripping, which uses a slightly different waveform to that 

used in differential pulse stripping has been reported by Anderson29, Mlakar30 and 

Feldman31 with the latter employing a continuously rotating electrode, similar to 

Eisner. 

A more general discursive treatment of the instrumentation involved in the 

above techniques may be found in Christie32, who investigated instrumental 

artifacts, Beebe33, who looks at process analytical chemistry and Bersier34,35 who 

compares several alternative methods. More detailed comparisons are found in 
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Bond, 36 Anderson37 and later Willard38, all of whom used polarography with a basic 

form of computerised instrumentation. Very readable accounts of the effects of the 

pulse shape on response may be found in Parry39 and Rifkin40 
, the former dealing 

with normal pulse at a mercury drop electrode and the latter with differential pulse 

at a thin film electrode. 

2.1.2. Computer control of equipment 

A simple overview of the techniques involved in interfacing is given in Gates41 

and Okamura42. Gates in particular gives 8086 assembly code for interfacing and 

data collection and shows, in rather primitive BASIC, how Savitzky-Golay type 

smoothing, discussed further on page 33, might be applied. Interestingly, given the 

source of the article, an example is given of data collection from a polarographic 

analysis of lead in gasoline. 

More thorough background material may be found in He43, Betteridge44 and 

Tacusse145, all of whom present a discussion of recent progress in microprocessor 

instrumentation. Betteridge offers a very thorough overview of microcomputer 

applications in chemistry, whilst Tacussel concentrates upon voltammetry and 

polarography. Gunasingham46 and Osteryoung47 give a good introduction to the 

instruments used, including computers. 

Keller and Osteryoung48 produced an early computerised instrument in 1971 to 

perform pulse polarography and smooth the data by ensemble averaging and a year 

later Landowne49 worked on a similar system for gas chromatograms. By 1980 

Gran6li50 was using a microcomputer system with a fixed waveform for stripping 

analysis. Browns' and Gustine52 investigated the possibility of a more versatile 

instrument whilst Paul53 looked at the use of a 6502 processor controlling twin 
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working electrodes in order to reduce inter metallic compound formation by plating 

the interfering metal on one electrode and the metal under test on the other. 

The data processing techniques available were enhanced by Kalcher54 in 1986 

who investigated synthetic baselines and by both Imainoss and Lysaght56 in 1991who 

looked at the constraints imposed by laptop computers. 

An interesting parallel development appeared in 1984 when Ziegler57 studied 

the possibility of producing a command language for data processing. This was 

followed up in 1989 by Miller58 and Thomas59 who produced a language for 

performing voltammetric analysis and by Gerth60 who in 1992 extended the concept 

into an object oriented system. 

2.1.3. Smoothing and noise filtering 

A general procedure for noise filtering is given in Carr61 who describes useful 

electronic methods of noise filtering. The effect of smoothing on such parameters as 

peak shape and peak height were investigated by Bromba62 in 1983 but not until 

some years later were proposals put forward on optimum sampling techniques by 

Deutscher63. DeNoyerM in 1990 used a maximum likelihood method of smoothing 

data which appears to be very successful and a year later Lee65 used principal 

components analysis to do the same thing. 

Fourier transforms, an overview of which is given in Aubanel66 and which 

were used in this work as a means of reducing the dimension of the data vectors, 

were used by Horlick67 as a means of smoothing spectra. The same technique was 

used by Hayes68 for polarographic data and the advantages and disadvantages of this 

method over floating least squares discussed. Felinger69 describes an advanced 

windowing method with the fourier transform and claims a significant improvement 

of the signal to noise ratio. 
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The Savitzky-Golay7° filter is the method used in this work to smooth and 
differentiate the data displayed by the graphics module of the analytical software. 

The work of these authors elegantly calculates and tabulates the coefficients of the 

polynomials that should be convoluted as a sliding window with serial data in order 

to produce the desired amount of smoothing or differentiation. The smoothing can 

then be done with the minimum of computational expense. 

It must be noted however that Savitzky's original work, published in 1964 

contains errors in some of the tabulated results and that one of the equations given is 

incorrect. These errors were not corrected until eight years later when in 1972 

Steiner7l recalculated the values using the correct equation. It is the values tabulated 

by Steiner that are used in this work. Interestingly, a recent work by Bromba72, who 

gives hints on the application of Savitzky-Golay filters, makes no mention of the 

original errors or the subsequent corrections. 

2.1.4. Curve fitting and digital simulation of voltammetric curves 

There have been many papers over the last thirty years which have addressed 

the equations describing voltammetric responses to various analytical procedures. 

The equations described in some of these have been used in this work to simulate 

responses in order to create a database of model responses for neural network 

training. This part of the research is described more fully in appendix two. A 

general background of curve fitting in this area of chemistry may be found in 

several references73,74,75,76. 

Two papers by De Vries77'78 should, however, be seen as the starting point for 

any further investigation. Following a paper in 1964 presenting an approximate 

theory of anodic stripping voltammetry suitable for high rates of potential change 

and thick mercury films (e. g. 2 Vmin-1 and 100µm), De Vries presented an exact 
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treatment in 1965. These papers are very theoretical however and are not suitable 

for direct translation into code for modern computers. This work was followed up 

in 1967 by a third paper79 which concentrated more on linear sweep voltammetry 

and a more refined approximate theory was developed. Osteryoung8O investigated 

modelling linear scan voltammetry by a series of single potential steps. He found 

good agreement with the theory of De Vries. This was taken up by Rifkin' in a 

very comprehensive and significant paper in which he investigated the effects of 

pulse duration and inter pulse time and by Dillard82,83 who looked at the effect of 

modulation amplitude and who, three years later looked at the same problem from a 

finite differences perspective". Ruzic85 presented an overview of the emerging 

theory in 1978 and clearly stated the confusing nomenclature in use regarding the 

term differential pulse (fig 3), used to describe the type of waveform used in this 

work and derivative pulse (fig 2), used when the same current sampling technique is 

used on normal pulse wave forms. Heijne86 also derived the equation by a 

theoretical method, was criticised for a discontinuity at zero pulse height by Kies87 

and developed a new model in a paper published two years later88. 

Since that time a number of publications have looked at curve fitting applied 

to this area of analytical chemistry many of which may hold potential for future 

workers in neural network applications associated with this branch of chemistry. 

Bond89 used a quadratic to fit the baseline and remove the unwanted background 

current. This same technique was also used throughout the simulations performed in 

this work, further discussed in appendix two. Mellado90 developed a rather primitive 

set of programs written in BASIC to approximate differential pulse polarograms. 

Several researches'have studied applications of the Kalman filter91 to analytical 

chemistry. The principles of this algorithm are quite well covered in Rutan92 and 

also in Yongnian93, the latter using the filter to improve curve resolution in 
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differential pulse polarography. Seelig94,95 used the algorithm to optimise the signal 
in noise corrupted returns from anodic stripping voltammetry and also made 

comparisons between this and non recursive estimation methods. Poulisse96 looked 

at multicomponent analysis using spectrometric data whilst Wentzel197 compared the 

use of the FFT in three different non electrochemical analytical fields. However, 

little further work appears to have been done recently in this area. 

2.1.5. Resolution enhancement and mathematical post processing 

This has been the subject of many papers since Perone98 described using 

second order derivative techniques as a means of enhancing the sensitivity of peak 

position measurements when analysing polarograms. Later Grushka99 took up this 

topic and looked at the limits of the technique when applied to overlapping peaks 

and presented useful results which showed the range of the method as a function of 

signal to noise ratio, separation and peak height. A similar topic was investigated by 

Oppenheimer1°° who looked at ways of determining the lowest limit for reliable 

measurement. Mitchell'0' published an interesting technique which involved fitting a 

series of least squares regression equations and then using the equation displaying 

the narrowest confidence limits as a means of measuring an unknown sample. 

Various mathematical techniques have been investigated for the resolution of 

overlapping curves. Gutknecht102 fitted computer generated 'standard' curves to the 

polarogram, Bond103 also used standard curves which were successively subtracted 

from the polarogram until only a single peak remained. Grotch'04,105 used a form of 

table lookup against a library of curves and Caruana106 resolved the spectra into a 

series of gaussians using a least squares fit. Several authors 107,108,109,110 have used 

principal components analysis to resolve separate influences on a complex 

instrument response resulting in spectral information and novel modifications to the 

algorithms have also recently been proposed' 11,112,113. 
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Both Caruana and Glajchl14 presented criteria for goodness of fit of a given 

estimated mixture, the latter also offering a simple method to quantify peak 

separation by measuring the valley depth from a line fitted at a tangent to two 

adjacent peaks. Recently, Toftl15 has also published a novel resolution parameter but 

one which may be calculated prior to curve resolution. 

Not surprisingly, many workers have used the Fast Fourier Transform (FFT) 

as an aid to resolution enhancement. A mathematical overview of the FFT is given 

in Elliot116. Grabaric'17 used it to sharpen polarographic peaks mathematically and 

Skarjune118 developed an enhanced version of the algorithm using less 

multiplications. More recently, Jackson'19 compared the application of the fourier 

transform and maximum likelihood theories to curve fitting with particular emphasis 

to overlapped bands in spectroscopy. 

Engblom120,121 used the FFT to find peak parameters such as position and 

width as well as to enhance the resolution. This was done using the assumption that 

voltammetric peaks may be approximated by the function 

{2} P(x) = 
cosh2 

Q 

[b(x - c)] 

where a= height, b=a width parameter and c= the peak position and x 

represents the potential. This equation was also used in this current work to generate 

synthetic curves for training neural networks and also for the calculation of an 

objective function when investigating resolution enhancement using a genetic 

algorithm ( see chapter 9). Genetic algorithms are very well described in Davis122 

and Goldberg 123 . 
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2.2.1. Introduction 

Neural networks are computational models which model the relationship 

between a set of inputs and a set of outputs. In this work the inputs are values of 

current taken from the voltammetric peak and the output is the concentration of a 

chemical species. Once the internal model of the data has been formed novel inputs 

can generate outputs, sometimes themselves novel, which fit the internal model. 

Unlike algorithmic prediction processes however, the model used by the network 

does not have to be determined a priori but can be derived, or learnt, by the neural 

network through the computational process known as training. The model thus 

created may be very complex and contain relationships that were hitherto unknown 

in the input - output data. 

2.2.2. General Neural Network Structure 

A neural network could be considered, in some elementary sense, as 

computationally equivalent to a neuron in the brain. Like the brain a neural network 

consists of many simple units connected together by a large number of weighted 

links, with each unit receiving input from many sources. Indeed the weights are 

often called synaptic weights, to increase further the correspondence between the 

real and artificial neuron. The input units obtain their input from external sources 

whilst other units obtain their input from the single output that each unit produces. 

The path of this output is split and terminates, via the weighted link, at the input of 

the receiving unit. Note that although the output path is split, the output value is 

transmitted unchanged to all receiving units. Some units, called the output units, 
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send their output back to the real world to be converted into appropriate responses. 

Figure 5 shows a typical connection schematic for the units in a multi layer neural 

network having three inputs and two outputs organised into three layers of units. 

Note that in this work, when the number of network layers is mentioned, this should 

be taken to include the untrained input layer. Hence the three layer network shown 

below has two trainable synaptic weight matrices. 

input 
Layer 

Hidden 
Layer 

Output 
Layer 

Figure 5. Schematic of a3 layer neural network 

Since each unit receives many inputs, and the entire network may contain 

many output units, the input and output data are usually considered to be vectors of 

real numbers which are mapped to the real world parameters corresponding to each 

element of the vector. The processing carried out by each unit to convert the vector 

of input values into an output, i. e. the transfer function is quite simple and is 

described below. 

First the weighted inputs are combined to form a single value, often by simply 

forming a weighted sum of the inputs using 
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n 

Il =: wuxi {3} 
i=l 

Here Il is the combined weighted input to unit i, wU is the weight on the link 

from unit j to unit i and xj is the unweighted signal coming from unit j (this assumes 

that the output of unit j is sent to the input of unit i). The weights may be positive or 

negative. 

Once the combined weighted input has been calculated the unit calculates the 

value of its output signal. In early work, such as Rosenblatt's Perceptron'24, 

described in more detail later, this was simply set to +1 or -1 depending upon the 

value of II relative to some threshold value. It is more common nowadays to use a 

non linear activation function such as the logistic sigmoid function, 

AI) 
l+e 

whose shape is shown in figure 6. 
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Figure 6. Shape of logistic function 
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It has been shown125 that using this function, which varies between 0 and 1 as I 

varies between ± oc a network can form much richer mappings between input and 

output. It also has the advantage that its derivative is easy to compute, being given 

by. 

df(I) 
=f(I) x(I-f(I)) dI {5} 

This gives a speed advantage during training when the derivative must be 

calculated many times. The threshold concept is still retained in some networks by 

having a simulated additional input to each unit with an activity fixed at at +1 but, 

like other inputs, having a weight that can modify this activity to increase or 

decrease the overall input to the unit. 

The processing in the unit can therefore be described graphically by figure 7. 
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Figure 7. Simple processing unit 
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Starting from an initial set of random weights, the algorithm used to train the 

units changes the synaptic weights during the learning phase in order to produce the 

desired output for each input pattern. Supervised networks are those which learn by 

being repeatedly presented with a training set of data containing many examples of 

input vectors and the corresponding output vector. From this the actual error in the 

network's output can be determined and the weights adjusted accordingly. 

Unsupervised networks are those which are not given any target output for the 

training set and instead change the weights so as to classify the input vectors into 

clusters, based upon features discovered in the training set, which in some way 

preserve the natural topology present in the original data set. 

2.2.3. Development 

The first theorists to conceive of the fundamentals of neural computing as 

opposed to analytical neural modelling or neural-physiological research were 

McCulloch and Pitts'26. In 1943 they devised a digital neuron with pre-set weights, 

which was unable to learn, but which could classify its inputs into one of two 

classes, so effectively performing a Boolean operation. 

2.2.3.1. The oerceatron 

In 1949 Hebb127 proposed that learning in the brain was achieved by changes 

in the connection strength between neurons, i. e. the weights, that were proportional 

to the activation of the neuron undergoing a learning process. Rosenblatt'24 

employed this idea in the first trainable, two layer network which he called a 

Perceptron. This was trained by presenting a set of input data to the network and 

calculating the weighted sum as previously described. The output y was then 

calculated from this weighted sum using the simple activation function 
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+lifI>B 

y= Oif -B 5156 

-1 ifI <-0 

0= some threshold value 
{6} 

If the Perceptron produced an incorrect answer, the vector of weights on the input 

were altered according to the following. 

Wnew = Wola +tz 

where 

t= desired output, +1 or -1 
w�,, = new vector of weights 

woad = original vector of weights 
x= vector of input values 

{7} 

Rosenblatt also proposed a three layer network with internal, hidden units 

but was unable to devise a method of training it as he could not see a way of 

obtaining the error in these hidden units. 

Widrow and Hoff 28 developed an improvement to the Perceptron training 

algorithm in 1960 which is referred to as "minimum error", "least mean squares" or 

"delta rule" learning. Using this rule the output of the unit is found as before, with 

the threshold set at zero. The error E in the output is then found by simply 

subtracting the actual output from the desired output for that input pattern. Finally 

the weights are adjusted according to; 

Wnew = Wold +ßEx {8} 

where /3 is a variable learning rate between zero and one. This process is repeatedly 

applied until the unit no longer makes an error. This resulted in a unit that was able 
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to generalise, that is produce a sensible output for an input that it had not previously 

seen during training. 

In 1969 however, Minsky and Papert129 published their famous book 

'Perceptrons... ' which showed the limitation of the Perceptron to be that it could 

only make classifications for problems that were linearly separable, i. e. one where, 

with n inputs, the decision boundary is a hyperplane in n dimensions. This meant 

that it could not even learn the two input XOR function where, as shown in figure 

8, the decision boundary separating the two classes of output in two dimensions is 

not a line but a closed figure. 

1 

Input 2 

0 

Decision boundary 

Input 1 XOR Input 2 

Figure 8. Decision boundary for the two input XOR function 

This proof and the lack of a suitable algorithm for updating weights in a multi 

layer network so damped research enthusiasm that activity was very low for the next 

five years. 

0 Input 11 
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2.2.3.2. 
- 

Higher Order Networks 

Higher order networks appear to overcome the linear separability problem 

however. This term implies a threshold logic unit similar to a Perceptron that uses 

an input vector with an increased dimension, formed by including the raw data 

elements and also higher order terms obtained by combinations of the raw data 

elements or functions of them. This type of network was also used in this current 

work where the input dimensionality was increased by taking not only the real 

inputs, x1... xn, representing value of voltammetric current, but also the product of 

each pair of input values. i. e. 
(XI)., (XI 

X X2 
)-I (XI 

X x3), ... 
(XI 

X xn 
), (X2)) (x2 

X x3), 
(X2 

X x4), ... 
(X2 

X xn), 
... 

(xn) 
" 

{91 

A study of high order networks was made by in 1987 by Giles130 who found 

them superior to simple two layer networks for character recognition. 

2.2.3.3. Multi Layer Networks and Back Propagation of Error 

During the years following Minsky and Papert's work, other network models 

were developed by workers such as Kohonen131, who built an 'associative memory', 

Anderson132 with his 'brain state in a box', Grossberg133, (who has 146 publications 

listed in Klimasauskas134) and Carpenter135, who developed adaptive resonance 

theory. However, it was not until the independent formulation of the 

backpropagation algorithm, first by Werbos136 in 1974 without much publicity and 

subsequently by Parker137 in 1982 that work on the multi layer Perceptron (MLP) 

developed further. The algorithm they produced was refined and widely published in 

1986 by McClelland and Rumelhart138 in a book that has since become a standard 

reference text. 

The backpropagation algorithm is a variation of the minimum error algorithm 

discussed above. For each pattern in the training set the input activity is processed 
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as previously described, using a sigmoidal activation function, through to the output 

units. The error in each output unit j is then found by subtraction. 

Ejutput _ y; 
desired actual 

{10) 

This error is then propagated backwards through the middle, or hidden, layers 

of units to the input layer being weighted at each unit by the same weights used 

during the forward activation pass. That is, the error in a hidden unit i is the 

weighted sum of the errors in all the units j to which it sends its output. The 

significance of the error is related to the current sensitivity of the unit, i. e. how 

much a small change in Il influences the output y. In order to take this into account 

the weighted sum of the errors is finally multiplied by the derivative of the 

activation function giving 

d Ihiddrnl n 

Ehiaam 
j=1 

{11} 

This is repeated for previous layers with the meaning of the suffix 'output' being the 

layer immediately following the hidden layer. 

The training process, which may take some time and is not guaranteed to 

succeed, consists of repeatedly presenting each input - output vector pair in the 

training data set to the network until the error in the network output falls to an 

acceptable level. 

A multi layer Perceptron (MLP) trained using the back propagation algorithm 

is capable of classifications in non linear problems and can, for example, learn to 

model the two input XOR function. 

Good introductions to neural computing may be found in Lippmann139 and 

Kohonen'40 with elementary practical advice on building neural networks in 
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Kosko14' and Nelson142. Haykin143 provides a comprehensive coverage with 

numerous references and Blum, 144 Freeman'45 and Pao'46 offer in depth practical 

advice on building neural networks, including computer code. Müller147 and 

Fausett148 offer a mathematical description whilst McCord149 describes a method of 

building a neural network in Lotus 123®. Zupan150 gives a sound overview of the 

fundamental techniques concentrating upon the chemical problems to which neural 

networks are currently applied. 

A study of learning speeds in back propagation was carried out by Fahlman'5' 

in 1987 and a faster version of the back propagation algorithm called quickprop 

described. Other workers have investigated various aspects of the back propagation 

MLP. Hirose152 investigated varying the number of hidden units, but was only able 

to provide rough guidelines on the optimum number to use for a given problem. 

(Consequently, in the current work the author used an empirical method to find the 

optimum number, see page 178). 

Weir153 looked at automatically changing the learning rate during learning and 

Rigler154 scaled the errors that are back propagated. Gaussian activation functions 

in the hidden layer were investigated by Weymaere155 who also suggested training 

the network first on a subset of the training data and then retraining using the 

complete training set but starting with weights obtained on the subset. 

2.2.3.4. The General Regression Neural Network 

The general regression neural network, fully described in Specht156, also 

belongs to the class of supervised networks but does not train using back 

propagation. It has the advantage of being able to train quickly on sparse data sets. 

There are as many neurons in the hidden layer as there are training patterns. It 

works by measuring how far in N dimensional space a new input pattern is from the 
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patterns in the training set, where N is the number of inputs in the pattern. When a 

new pattern is presented to the network the output that is predicted by the network is 

a proportional amount of all of the outputs in the training set. This proportion is 

based upon how far the new pattern is from the known patterns in the training set. 

In essence, the network's estimate for an output associated with a particular 

test set input can be thought of as a weighted average of all observed training set 

output values, where each observed value is weighted according to the distance 

between its input vector and the unknown input vector whose output it is to 

determine. Two ways of measuring the distance between two vectors can be used, 

the Euclidean distance, a straight line in N dimensional space and City Block, the 

distance measured along the N axes. 

A smoothing parameter a- is used which affects the network's ability to 

generalise. A very large value tends to cause the estimated output to become the 

sample mean of the training outputs. As a approaches zero the output for an 

unknown vector assumes the output value of the training vector closest to the 

unknown vector. At intermediate values all values of training output are taken into 

account but those for training vectors closer to the test vector are given more 

weight. The search for the optimum value of o is described later. 

2.2.3.5. Temporal Processing 

Temporal processing was investigated by Lang157 and Kämmerer158, both of 

whom constructed training sets from time delayed windows of speech in the 

frequency domain. Networks incorporating temporal processing internally however 

were first formulated by Jordan159 by feeding the output of the network for one 

input pattern presentation back to the input on the next pattern presentation, i. e. a 

recurrent network. This work was enhanced by ElmanI60,161,162 who also fed back 
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outputs from the hidden layer to the input layer. Torreele163 used a genetic algorithm 

to build a recurrent network for the difficult problem of a temporal multiplexor. 

This system supplied bit strings one bit at a time and classified the strings by using 

the first n bits as an unsigned address pointing to one of the remaining, temporarily 

later, bits which was taken to be the target category. Torreele claimed the genetic 

algorithm approach produced a smaller network than would have previously been 

thought necessary. 

Some interesting ways of describing and analysing a temporal waveform using 

a string representation of the waveform are to be found in FuIM and Pavilidis165, 

both of whom describe a syntactic method of analysing such patterns and give 

algorithms for peak detection and pattern matching. The relevant part of the work of 

Pavilidis was applied to electrocardiograms and carotid pulse wave forms. The 

shape of these wave forms is very similar to that found in a multicomponent 

voltammogram. Recently Roberts and Tarassenko166,167 used electrocardiograms in 

conjunction with neural networks to determine, successfully, the various sleep states 

in a human subject based upon the peaks in the waveform. Eberhart168 used three 

and four layer neural networks to successfully detect spikes in 

electroencephalograms, another waveform that is similar to a complex polarogram. 

2,2.3.6. Process Control 

Process control by neural networks was the subject of the work by Levin169 

who used a simulated plant and Jang'7° who looked at the inverted pendulum 

problem. Lister, 171 as well as applying an MLP to the field of plasma control in 

Tokamak research, looked at the problem of de convoluting synthetic overlapping 

gaussians by modelling the two gaussians using a three layer MLP. The work of 

these authors seems to suggest that the non linear modelling capabilities of neural 

networks made them strong candidates for real time control. Appendix two contains 
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details of work similar to that of Lister, that was carried out by the author of this 

thesis using the sech2 curve to model overlapping voltammetric peaks. 

The work reported in this thesis investigated the use of three types of neural 

network. The two layer perceptron, the multi layer perceptron and the general 

regression neural network. 
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3. Review of Previous Work and 
Justification of Aims 

An early mention of using computerised pattern matching in analytical 

chemistry is by Jurs172 et al. This team investigated the predictive ability of binary 

classifiers modelled along the lines of the Adaline but cascaded in a tree formation. 

This enabled them to make useful decisions about the presence or absence of a 

particular atom in low resolution petroleum mass spectrometry data obtained from 

the American Petroleum Institute Research Project 44 . Although this required 300 

training patterns, with each one consisting of 155 peak positions, they achieved an 

average of 90.6% in recognising the presence of an oxygen atom in a test set of 

spectra. 

Using the same data Kowalski173 extended this work by modifying the 

algorithms in order to produce a continuous real valued output where different 

values of output corresponded to different oxygen numbers. For example, an output 

of 1 might represent 1 atom and output of 2 might represent 3 atoms so that an 

intermediate value of 1.7 might represent 2 atoms. They found that the 

interpolation of output values was not linear but nevertheless a simple form of multi 

component classification could be performed, producing a classification of one out 

of several possible categories. Both of the previous authors went on to apply similar 
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techniques to infrared spectra174 and a combination of infrared spectra, melting point 

and boiling point175 

The previous work was carried out using pure spectra, that is spectra derived 

from only one compound. Wangen176 artificially combined seventeen 14 MeV 

neutron induced gamma ray spectra in order to produce mixtures containing various 

known percentages of each element. These were then subjected to pattern 

classification using a binary classifier. The binary target was a value indicating 

whether or not the pattern contained a given percentage, 0.1 %, 1.0% or 10.0%, of 

the element in question. The classifier thus performed semiquantitative 

classification. Prediction percentages were as high as 99.7% but it must be noted 

that, whilst this was not using pure spectra, it was achieved on different mixtures of 

the same set of spectra in the absence of noise and statistical deviation. 

An architecture resembling modern neural networks was later investigated by 

Jurs177, again using the petroleum mass spectrometry data. In addition to applying 

transformations to the input data of binary classifiers, Jurs adapted the architecture 

to create a 'committee machine' using two layers of normal binary threshold logic 

units. The first layer of units consisted of multiple sets of ordinary binary 

classifiers, each of which was presented with the input pattern and formed an output 

corresponding to the most probable classification. Instead of using this output 

directly however, Jurs fed it into a second classifier which used as its input pattern, 

the vector of outputs from the previous layer. This classifier then produced a final 

classification based upon the one decided upon by the majority of the first level 

units. 

An interesting approach to the production of the training and test sets was used 

by Jurs. A subset of the entire data set was used. Training patterns that participated 

in training were retained and the rest removed from the training set. This was 
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repeated for different subsets until only 172 training patterns were required to 

produce 100% classification on all 600 original patterns. However, since at one time 

or another all patterns had influenced the training, either by being selected to be in 

the training set or just as importantly, by not being selected, there no longer existed 

an independent set of patterns by which the efficacy of the classifier could be 

measured. 

Up to this point however, no serious consideration had been made of the 

experimental deviations present in real analytical data, nor had the classification 

results been evaluated on anything other than a statistical basis. In 1971 Sybrandt178 

chose stationary electrode polarography as the source of experimental data used to 

investigate the qualitative analysis of mixtures involving overlapping instrumental 

signals. 

Sybrandt used a similar process to Wangen to produce the pattern vectors, 

starting with data from a vector of polarographic current measurements at 2mV 

intervals produced by the separate analysis of single component Cd(II), In(III)and 

Sb(III) samples each at 5x 10-'M. In all 36 vectors were produced containing the 

expected statistical variations in peak position, peak height and background noise. 

Sets of three vectors, one for each species, were selected and each one 

multiplied by a random number. The three vectors were then added to produce semi 

synthetic three component mixtures at various relative concentrations. The 

classifier's task was to qualitatively identify one particular species in the presence of 

peaks due to other species and, in the case of Cd(II) and In(III) with peak potentials 

separated by approximately 40 mV, in the presence of overlapping peaks. 
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In spite of this overlap, Cd(II) was identified correctly up to a 1: 10 Cd: In 

concentration ratio, although the ability on previously unseen test set data as well as 

for some of the training set data fell to a 1: 4 ratio. 

A later development of this work by Sybrandt179 saw the first use of 

parameterised input vectors being presented to a classifier, in this case using features 

extracted from the zero, first and second derivatives of the polarograms. 

Classification accuracy improved to 90% for 20: 1 peak height ratios. 

Synthetic mixtures of real, pure, components were also used by Tunnicliff180, 

in an effort to train a learning machine to predict the properties of samples from 

their mass spectrographs. Also included in the training set were synthetic NMR 

spectra, refractive index and density. The machine was tested using real 

experimental data. Whilst the work showed some degree of success, the synthetic 

NMR data was generated without any additional noise. Thus too much weight was 

given to this part of the input and the resulting performance was not as good as it 

could have been if real NMR data had been used. 

Over the next few years a growing number of attempts were made to use 

pattern recognition procedures in analytical chemistry. Thomas181 investigated 

parameter optimisation in Anodic Stripping Voltammetrty (ASV), Byers'82 looked at 

structural characterisation of herbicides using cyclic staircase voltammograms as the 

source of his data, processing these using the Fourier transform and ak nearest 

classifier and Kaplan'83 embedded the software into a complete, although rather 

primitive, computer driven instrument. 

The processing of analytical chemical data by Partial Least Squares Regression 

began to appear around 1983 although the technique grew out of work by Wold1M in 

the late sixties. Between 1981and 1983 Wold used this method on multivariate 
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problems in econometrics and the social sciences'85"86. This use of PLS 

concentrated upon so called 'mode B' PLS i. e. a formative model of the systems. 

The chemometric version of PLS, presented in 1983 by Wold et al'87 fell under the 

so called 'mode A' or reflective PLS model. The difference between mode A and 

mode B is primarily that in Mode B only one major contributing factor is extracted 

from the multivariate data in order to explain the relationships between several 

blocks of data. Mode A on the other hand is concerned with extracting as many 

factors as are necessary in order to adequately model the relationship between just 

two blocks of variables, the known X 'spectrum' and the unknown Y giving rise to 

the spectrum. 

The technique was adopted by Lindberg'88 in 1983 who, in addition to 

presenting an algorithm for the process, showed that even severely overlapped 

spectra could be resolved by this method. However it was claimed in 1986 by 

Geladi and Kowalski'89 , correctly in this author's opinion, that much of the 

literature on PLS did not present the method in a complete and easily understandable 

manner. Geladi and Kowalski attempted to correct this in a tutorial on the method 

which remains one of the few such papers to graphically describe the process. Since 

then the technique has been extended by Wold'90,191, first in 1989 and again in 1992 

to incorporate non linear PLS modelling. In this latter paper he also lays down a 

challenge of comparing non linear PLS with a neural network approach, drawing a 

parallel between the data processing requirements of the two techniques. 

Comparisons between PLS and other multivariate techniques when applied to 

chemical analysis were made by Haarland and Thomas in 1988192,193 who used both 

simulated and real infrared data from glasses to quantify components of the glass 

related to quality control. Whilst their work indicated that PLS compared favourably 

with other techniques, for example principal components regression, they were 
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unable to fully justify their findings due to the restricted number of samples used. 

De Weijer'94 compared PLS with neural networks in the identification of yarns from 

their physical properties and concluded that neural networks were superior. 

The use of true neural networks in analytical chemistry made their first 

appearance in 1990 when Long'95 trained a back propagation network to estimate the 

protein content of wheat from its near infrared spectrum and investigated the effect 

of changing the network parameters. He concluded that the linear transfer function 

performed better than the sigmoid in this application. His results using a neural 

network were as good as, or very slightly better than using principal component 

regression. Long went on to use back propagation to classify jet fuel using a 'one 

out of n' output encoding system applied to chromatographic data'96. 

Since these papers the use of neural networks and associated techniques in 

chemistry has increased significantly. Wythoff197 used a simple back propagation 

network to identify signal peaks in infrared spectra. The system was essentially 

interactive and so heavily dependant on the users choice of input data but an 

important conclusion in this work was that including in the input data points 

corresponding to noise improved the network's ability to differentiate between a 

noise peak and a true peak. Many other researchers198,199,200,201,202 have also used 

or compared combinations of principal component analysis and neural networks, 

although most applied the techniques to infrared spectra. 

A three layer neural network was used by Gemperline203 who compared its use 

with PCR when processing both simulated and real UV spectra. He concluded that 

the network performed better in the presence of noise than did PCR. The question of 

noise was taken up by Allanic204 who used a neural network to identify fluorescence 

spectra. He found that the neural network could cope well with an artificially added 

70 % noise. Borggaard205 used an interesting combination involving using partial 
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least squares (PLS) and neural networks applied to near infrared spectra of latex 

spheres in water, where the percentage of latex was required and in those obtained 

from meat when determining the fat content. He found that networks could perform 

much better than PLS and PCA in this situation. 

Fluorescence spectra were used by McAvoy206 who found that the 

backpropagation MLP out performed linear techniques in deconvoluting 

fluorescence spectra obtained from mixtures of amino acids. They were also used by 

Blank207'208 who accepted the challenge of Wold and used both real and synthetic 

data to investigate non-linear forms of PLS and PCR compared to a Back 

Propagation neural network. He concluded that the neural networks only performed 

better than the non connectionist methods when the sizes of the training sets used are 

sufficiently large to constrain the model yet extensive enough to provide adequate 

sampling of the mapping surface. 

Data from Pyrolysis Mass Spectrometry has been used by Goodacre and 

processed using neural networks when analysing amino acids in glycogen209, 

investigating bioprocesses210 and for detecting the adulteration of olive oils by other 

seed oils211. A sigmoidal transfer function in a back propagation network was used 

for this work and the results, although impressive, do show marked non linearity at 

the two extremities of the calibration range due to the compression afforded by the 

sigmoid. The majority of the networks trained by the author in the development of 

this thesis use linear transfer functions instead on the output layer and the resulting 

networks do not suffer from the above problem. 

The problem of deconvoluting overlapping peaks was investigated using a 

neural network by Gallant212 who used a neural network architecture originally 

designed as an adaptive controller for robots. Synthetic chromatograms were 

processed by feature extraction from the zero and second derivatives. The network 
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was found to provide rapid de convolutions over a range of peak heights, widths and 

resolutions. 

Recent sources relating to current applications of neural networks in chemistry 

can be found in Gasteiger213, who discusses network architecture's and applications 

in chemical reactivity, process control, elucidation of chemical structure from 

spectra and secondary structure of proteins and De Weiger who discusses the use of 

neural networks to perform peak fitting. In this paper he uses a Pearson VII function 

to model the peaks. This method has also been used with good results by this author 

(see appendix two). 

Kateman214 on the other hand, challenges the acceptance of neural networks in 

analytical chemistry and offers guidelines on validation techniques necessary for 

general acceptance. 
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Nearly all of the literature on the use of neural networks in processing 

analytical chemistry data used infrared spectra as its starting point. As yet, apart 

from the author's own work, nothing appears to have been published concerning 

their use in qualitatively processing data from voltammetric analysis. This is 

significant as the nature of IR spectra tends to lend itself to neural network 

processing as each input may simply be devoted to a particular frequency. By 

analogy it may appear that when processing data from differential pulse stripping 

voltammetry each network input may be devoted to a particular potential. Whilst in 

broad terms this is correct, and is the approach taken in this work, it must be 

remembered that the position of the stripping peak along that potential axis will vary 

with scan number (see chapter 5), so complicating the issue. 

The works comparing PLS and neural nets also appears to have been targeted 

on IR spectra, except where simulated data is used. In addition the general 

consensus to this point is that there is little difference between the performance of 

PLS and neural networks. One exception is the work by Nxs215 who showed that 

whilst the equations for the regressions formed by PLS and feed forward, 

backpropagation type neural networks were essentially the same, the neural 

networks performed better than the traditional methods which tended to over fit the 

data. Nxs concluded that if neural networks are used "in the right way" then they 

could be a good method for prediction. However he felt that they were more 

difficult to understand and that their results were more difficult to visualise. 
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Few papers address the problem of automating the calibration process or 

discuss the merits of sophisticated calibration over the method of standard addition. 

A notable exception is Bond216, who compared linear calibration and standard 

addition methods for the quantification of trace level of cadmium in sea water, 

concluding that direct calibration methods may be used. Williams217 also discusses 

this problem when he describes a hand held instrument for environmental 

monitoring of cadmium, copper and lead using ASV and a linear peak height 

calibration method. Palys218 used a computer to design, run, collect and analyse data 

from electrochemical experiments involving staircase voltammetry but the system 

used in this case was an expert system not a neural network and the object was to 

gain information regarding the reaction mechanisms. Finally Smits219 briefly 

mentions the use of instrumental parameters as an additional network input when 

classifying algae using flow cytometer data operating at different laser power 

settings. 

This work, in addition to applying neural networks in a field that has so far 

received little attention, will show that neural networks may be applied to 

quantitative chemical analysis in a way that is easy both to understand and visualise. 

It will also show that the error and confidence in the concentrations made are 

superior to those obtained by other methods. 
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4. Construction of Experimental 
Apparatus 
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4.1.1. The working electrode 

The working electrode itself, onto which the mercury film is plated, consists 

of a small disc of glassy carbon that has been polished to a mirror finish. Figure 9 

shows the general arrangement and a photograph of the actual electrode 

manufactured by the author is shown in figure 10. 

A sleeve was constructed from a 2.5 cm diameter rod of PTFE that was 

drilled to accept a2 mm diameter silver steel rod and then turned down to an 

outside diameter of 6 mm. A short rod of glassy carbon was then inserted as a tight 

push fit with a small phosphor bronze spring between it and the silver steel rod. The 

other end of the silver steel rod was then arranged on small ball bearings in a 

holder, also turned from PTFE, so that the steel rod, the 6 mm PTFE sleeve and 

the glassy carbon electrode could rotate about their mutual axis. 

A brass pulley and a silver slip ring arrangement were manufactured and fitted 

to the top of the rod so that a drive belt could turn the electrode whilst an electrical 

connection could be made via the slip ring to the silver steel rod and hence to the 

spring and glassy carbon electrode. The drive motor for this was salvaged from a 
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computer disc drive and, although not yet utilised in this work, has a tachogenerator 

attached which could be used for accurate speed control. 

slip ring (silver) 

silver steel rod 
brass pulley 

PTFE bearing holder 

bearing PTFE sheathing 

glassy carbon rod 

Figure 9. Cross section of the working electrode manufactured for 
this work 

Once manufactured, the end of the electrode was polished until the glassy 

carbon rod had a mirror finish and the surface of it lay in the same plane as the 

surrounding, polished PTFE. 
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Figure 10. Photograph of the working electrode manufactured for 
this work 

4.1.2. The analytical cell arrangement 

The cup which contains the analyte to be studied is a disposable 20 ml 

polystyrene beaker. The author constructed a holder arrangement out of perspex 

which allowed the cup to be easily positioned and removed whilst ensuring that the 

relative positions of the cup and the three electrodes remained the same every time it 

was used. A photograph of the arrangement is shown in figure 11. 

The working electrode could also be removed easily for cleaning and polishing 

as the slip ring brushes were mounted on a swinging arm which could be moved out 

of contact with the slip ring. 
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The auxiliary electrode was manufactured from a short length of platinum wire 

sealed into a glass capillary. Following the example of Svensmark27, this electrode 

was connected to ground to minimise capacitance effects. 

Originally the author manufactured several silver-silver chloride reference 

electrodes from glass tubes using standard methods. The porous plugs for these were 

reclaimed from fibre tipped pens. Although these electrodes performed quite well in 

earlier work, it was noticed that the peak positions obtained were not consistent 

enough for quantitative work. The reference electrode finally used was a refillable 

calomel electrode (3.5M KCl) from Kent Taylor (part Number 1431-210). 

Figure 11. Photograph of the analytical cell arrangement built by 
the author 



64 

A mirror fitted below the electrode was used whilst the electrode was rotating 

to confirm that the plating of the electrode with mercury was proceeding normally. 

The relatively thick films formed during pre-plating could be seen as a dull finish 

slowly appearing on the previously shiny electrode surface. 

The films formed during in situ plating are too thin to dull the electrode 

appreciably but an novel alternative way of viewing the progress was used. A 

bright light was reflected from the mirror onto the rotating glassy carbon in such a 

way that when the electrode was viewed in the mirror, the filament of the lamp 

could be seen reflected again from the surface of the glassy carbon. As the mercury 

plates the electrode, light being reflected from the mercury droplets travels a shorter 

distance than that being reflected from the carbon surface. The thin film interference 

pattern formed by this path difference could easily be detected as colours which 

changed steadily as the mercury thickness increased. (This might also have been 

used as a way of measuring the mercury thickness. ) 
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4.2.1. Brief review of relevant literature 

From Ohm's law, it can be stated that the potential difference V across a 

resistor R carrying a current I is given by 

V= JR f12} 

All systems that supply a current possess internal resistance and this causes an 

internal potential drop, which increases as the current increases. This manifests 

itself as a reduction in the output potential available over the component being 

supplied with current. In voltammetry the apparent resistance of the cell changes as 

the redox reactions take place resulting in a changing current through the internal 

resistance of the supply. Potentiostats are electronic circuits that, within a certain 

range, overcome this effect and maintain an accurate and constant pre-defined 

output potential regardless of the demand for current. 

A reasonable source of potentiostatic applications can be found in von 

Fraunhofer220, which, although rather out of date, does give the theoretical 

background and schematic circuit diagrams for potentiostats. Blanchet221 gives the 

circuit for a potentiostat and the schematic for a computer controlled interface. 

Stabilisation is a problem in potentiostats where high gain amplifiers are used with 

very high input impedances. Cath222 gives a rather simplistic overview of current 

measurement procedures whilst over several years Booman223, Brown224, 
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Kanazawa225 and Meyer226 independently investigated stabilisation methods with 

potentiostats with a view to maximising the stability of the circuit. 

More sophisticated applications are given in Tallman227, who discusses a 

computerised potentiostat capable of measuring current to a full scale deflection of 

100 pA, Harrington228,229 who considered multiple electrode potentiostats and 

Candela230 who reported on a digital pulse generator capable of producing 10 ns 

resolution pulses with a duration of 330 ns to several hours. However, although 

having a finer resolution, this pulse generator was less versatile than the function 

generator produced by Bond231 ten years earlier. 

4.2.2. Overview of the hardware 

The requirements of the control hardware were that it should be capable of; 

" maintaining the potential of an electrode at a value dictated by the control 

software 

" measuring the small current passing through this electrode 

" be able to store one measurement, take another and find the difference 

between the two values 

" be able to operate with a wide range of currents and current differences 

" be able to offset the current measurements by a variable amount 

The system should be capable of performing the above operations under the 

control of the microcomputer as far as possible so that easily reproducible 

parameters could be obtained. The control electronics were therefore built in such a 

way that control signals on various lines (called Address lines, Al to An, in this 
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work) could control the operation of analogue switches and multiplexors used to 

alter the operational parameters of the hardware. 

The microcomputer chosen to run the software and to interface with the 

external control hardware was an IBM AT type machine. This machine is widely - 

available in laptop and desktop versions and so the system would lend itself to 

portability. The microprocessor in the development system was an Intel 80386 

running at a speed of 40 MHz. A 40 MHz IIT-3C87 maths co-processor was 

installed and the system had 8 Mb of memory. 

4.2.4. The Programmable Input Output Card 

The card used to interface the computer to the analytical electronics was a 48 

line programmable I/O card (PIO-48, from Blue Chip Technology). This card uses 

two 8255 chips. These each appear to the software as four contiguous bytes, the first 

three bytes are the data ports which perform the communication with the external 

device and the last byte is a control register which controls the function and 

operation of the other three ports. 

Each chip refers to its data ports as A, B, C. Since this card uses two chips, 

the ports are referred to in this work as A, B and C for the first three data ports 

(lowest address in the memory map) and A', B' and C' for the last three ports. The 

card was installed at a base address of 300hex. Thus the relative addresses of the 

various ports and control registers can be found from table 3 on page 69. 

The 8255 can be configured in various ways, setting each port individually to 

eight bits input or eight bits output. The exception to this is port C (and port C' in 

the case of this board). This port can be configured so that the four high and four 

low bits can be independently set as outputs or inputs. Advantage was taken of this 

to give twelve bits wide input and output by assigning Port A and the lower four bits 
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of port C as outputs (data bits 0 to 7 through A and bits 8 to 11 through C) and port 

B together with the upper four bits of port C as inputs (bits 0 to 7 through port B 

and bits 8 to 11 through port C). 

All the ports in the second chip (A', B' and C') were configured as outputs in 

order to control various functions on the electrode control board. The various bits in 

these ports are referred to in this work as 'Address Lines' and given the designation 

AO to A23. 

Port Bit Function Assignment 
Port A Bit 0 Output D/A DBO 
Port A Bit 1 Output D/A DB1 
Port A Bit 2 Output D/A DB2 
Port A Bit 3 Output D/A DB3 
Port A Bit 4 Output D/A DB4 
Port A Bit 5 Output D/A DB5 
Port A Bit 6 Output D/A DB6 
Port A Bit 7 Output D/A DB7 
Port B Bit 0 Input A/D DBO 
Port B Bit I Input A/D DB1 
Port B Bit 2 Input A/D DB2 
Port B Bit 3 Input A/D DB3 
Port B Bit 4 Input A/D DB4 
Port B Bit 5 Input A/D DB5 
Port B Bit 6 Input A/D DB6 
Port B Bit 7 Input A/D DB7 
Port C Bit 0 Output D/A DB8 
Port C Bit I Output D/A DB9 
Port C Bit 2 Output D/A DB10 
Port C Bit 3 Output D/A DB11 
Port C Bit 4 Input A/D DB8 
Port C Bit 5 Input A/D DB9 
Port C Bit 6 input A/D DB10 
Port C Bit 7 Input A/D DB11 

Table 2. Programmers model of Plo data ports 

These assignments are summarised in table 2 on page 68 which shows the 

programmer's model of the data lines and table 3 on page 69 which shows the 
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programmer's model of the control 'Address Lines'. The need for the control 

functions shown will be explained shortly. 

Port Bit Ribbo 
n 

Pin 
No. 

Centronics 
Pin No. 

Function Address 
Line No. 

A' 0 2 26 I/E Current Offset Range 0 
A' 1 4 27 ---- "" ---- 1 
A' 2 6 28 I/E Sensitivity 2 
A' 3 8 29 ----- ""- 3 
A' 4 10 30 ---- "" ---- 4 
A' 5 12 31 ----- "" ---- 5 
A' 6 14 32 ---- "" ---- 6 
A' 7 16 33 ----- "" ---- 7 

B' 0 18 34 Delta Amp Gain 8 
B' 1 20 35 ----- " -"- 9 
B' 2 22 36 RLY4 D-Amp Input pin 19 Gmd 

(1) / from SH2 0 
10 

B' 3 24 37 RLY5 Gmd WE (1) / not Gmd (0) 11 
B' 4 26 38 S/H 1 12 
B' 5 28 39 S/H 2 13 
B' 6 30 40 R/C for A/D Converter 14 
B' 7 32 41 15 

Cl 0 34 42 Gas Purge on (RLY6) 16 
Cl 1 36 43 Electrode Rotate On (RLY7) 17 
C' 2 38 44 18 
Cl 3 40 45 19 
Cl 4 42 46 I/E Offset 20 
C' 5 44 47 ----- "" ---- 21 
C' 6 46 48 ----- "" ---- 22 
C' 7 48 49 ----- "" ---- 23 

Table 3. Programmers model of PIO control 'address lines' 

4.2.5. The Electrode Control and Current Measuring Hardware 
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An interface circuit between the PIO board and the electroanalytical cell was 

constructed by the author. The entire circuit performed several discrete functions. 

The individual functions were; 

1. Conversion of the digital signal from the computer into an analogue 

potential. 

2. The application of this potential to the working electrode via a 

potentiostat. 

3. Filtering the resulting cell current through a suitable filter to remove 

unwanted noise. 

4. The measurement of the instantaneous cell current by converting it to 

a potential using one of several sensitivity levels, with the facility to 

offset any large dc component. 

5. Storing a previous converted measurement whilst making another and 

calculating the difference between them, with amplification if 

necessary. 

6. Converting the final potential to a digital signal for transmission to 

the CPU. 

These functions were designed and implemented in hardware as separate 

modules. The relationships between the various modules is shown in figure 14 on 

page 74. Their function, operation and construction is discussed separately below 

with further details in appendix 6. 

Photographs of the equipment are reproduced in figures 12 and 13. 
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Figure 12. Photograph of the potentiostat and control electronics 
built by the author 

Figure 12 shows the internals of the potentiostat, interfacing and control 

electronics. The front panel of this equipment is detailed in figure 13, where the 

digital display and various manual controls may be seen. 

The entire circuit was built on a prototyping expansion card originally 

supplied as part of some Nascom 3 Z80 microcomputer development systems. When 

building was complete this card was fitted into a metal box with plug and socket 
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connections for all external devices. A smoothed power supply providing + 15v, - 

Figure 13. Photograph showing the front panel of the control 
electronics 

The wiring system used was point to point using fine insulated wire. This 

made subsequent modifications and corrections to the board easier and also allowed 

the elimination of earth loop problems by taking each ground pin back individually 

to a common ground point on the A/D converter chip. Power supplies for each 

device were decoupled at the point of connection to the chip by grounding through a 

1OOnF capacitor. 

Switches have been provided on the front panel for switching the filter circuit 

in or out, for switching in buffered offsets to the I/E converter and the differential 

amplifier and for isolating all three electrodes from the rest of the circuit. After the 

15v, +-5v, -5v and 0v was used. 
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prototyping stage the I/E offset switch and its associated potentiometer circuit were 

disconnected and this function incorporated on the main board and controlled by the 

computer. ( see fig 24 on page 88 for the circuit). 

In order to facilitate testing, the interfaces between the modules were brought 

out to a 16 way DIL socket on the board. A separate circuit was built and housed in 

its own case and fitted with a 16 way DIL plug and a 50 way Centronics plug. This 

'test box' circuit, when plugged into the 16 way DIL and the Centronics plug 

ordinarily used for the computer interface, allowed manual setting of any 12 bit 

digital input signal, visual confirmation on LED's of any 12 bit output digital signal 

and a number of other functions. After initial testing was complete the 16 way DIL 

socket was used as a means of picking up signals which were taken, via a multipole 

switch, to a digital meter on the front panel. This allows the user to observe either 

the output potential of the DAC, the potential of the working electrode with respect 

to the reference electrode, the current flowing in the working electrode, the output 

potential of the I to E converter or the potential held in the first sample and hold 

device. 

4.2.6. The Digital to Analogue Converter and Potentiostat Module 

4.2.6.1. Construction 

The circuit for this module is shown in figure 15 on page 76. The D/A 

converter was built using the AD 667 digital to analogue converter chip232. For this 

application it was configured to have a 12 bit unlatched input bus and an output 

range of ±2.5v by grounding all latch address decode pins (12,13,14,15), 

connecting output range pins 2 to 9 and 1 to 3 together and connecting pins 7 and 4 

to pin 6 via 10092 trimmers. The msb of the12 bit input bus was passed through an 
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inverter. This enabled two's complement encoding of the digital input to be used, 

thus simplifying the driving software. 
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Figure 14. Block diagram showing module relationships 
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The potentiostat is a simple two op amp design after von Fraunhofer220 and 

Jayaweera233. A NE5534N was chosen as the control amplifier as it has very low 

noise characteristics combined with a high output drive capability. The feedback op 

amp is a AD645JN precision, low noise, FET input device with an input bias 

current of 3pA. The gain of this device was fixed at unity. 

4.2.6.2. Operation 

Ignoring capacitive effects, the equivalent circuit of a three electrode 

electrochemical cell may be considered to be two resistors in series due to the 

analyte resistance. These are Rs, the 'series' resistor, between the Auxiliary 

Electrode (A. E. ) and the Reference Electrode (R. E. ) and Rc, the 'control' resistor, 

between R. E. and the Working Electrode (W. E. ). The potentiostat attempts to keep 

the potential difference between R. E. and W. E. constant and equal to the applied 

potential 

Assume that initially no current is flowing and that by changing the digital 

signal on the DAC the potential on the inverting input of OA1 is made more positive 

with respect to ground. This results in the output of OA1 becoming more negative. 

The A. E., connected to this output, will now also become more negative with 

respect to the W. E. which is connected to virtual ground. i. e. the W. E. will be 

polarised anodically and stripping may take place from its surface. This will alter 

the electrical characteristics of the analyte near the W. E. hence changing Re. If this 

change is to reduce Re (as it would be if more ions were now present near the 

W. E. ) then the potential drop across it - and hence between R. E. and W. E. - would 

decrease. 
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Figure 15. D/A converter and potentiostat module 
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However, since the W. E. is connected to virtual ground the only way that this 

can occur is for R. E. to become more positive. This increased positive potential is 

buffered through the very high input impedance OA2 and applied to the inverting 

input of OA1. The output of OA1 (and hence of the A. E. ) will now become more 

negative. This increases the current flowing through Rc, increasing the potential 

drop across it and restoring the potential difference between R. E. and W. E. 

In this way the potential of the W. E. with respect to the R. E. is kept constant 

regardless of changes in the cell impedance due to chemical reactions. 

5 ----------------------------------------------- ---- 
11I11I1I 

1I11I1I1 
1I1111I1 

1I11I111 
1III11 

11II1II1 
1I1IIIt 

----- __-___ 
1I1II1II 

OI1IIII111 

1111I11 
CL I1II1111 

ö 
1I1I1I11 
1111I1III 

11I1 
1111I 

1111II111 
11111111 

1111111I 
1111111 

-rJ 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 

Input Code (base 10) 

Figure 16. D/A converter calibration 

4.2.6.3. Performance 

The AD667 was calibrated using the test box described earlier. An input code 

of 00000000 0000 was applied and RV1 adjusted until the output was -5.0V. Then 

an input code of 1111_1111_1111 was applied and RV2 adjusted to give an output 
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of +4.997V. Finally the output was measured using a digital voltmeter for various 

input codes and the calibration chart shown in figure 16 on page 77 produced. 

The operation of the potentiostat was tested using the dummy cell shown in 

figure 17 on page 78. The computer software was used to apply a potential of 0.293 

V (wrt R. E. ) to the working electrode and this potential was measured with a digital 

voltmeter while the resistance of the potentiometer between the W. E. and the R. E. 

was slowly reduced. No change in this potential was observed until a critical value 

of resistance was reached, after which the potential fell rapidly as the potentiostat 

saturated and was no longer able to maintain the desired potential. Subsequent 

calculations indicated that, until saturation, the current in the working electrode was 

steadily increasing from about 3.0 nA whilst the potential was remaining constant. 

A. E R. E W. E. 

==l=Qj 
103.8k 100k 

Figure 17. Dummy cell used to test the potentiostat 

The operation of the potentiostat was also tested under working conditions by 

plating lead from a solution of lppm lead in 0.1M KNO3 onto a rotating glassy 
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carbon electrode that had bccn plated with mercury (using O. OIg/dm3 lead nitrate in 

0.1M nitric acid) for 30s. hic plate potential applied by the software was changed 
in 100 mV steps from zero to -900 rnV whilst the actual potential of the W. E. was 

measured wrt the R. E. using a digital voltmeter. During this time the cell 

characteristics arc known to change, the cell current being higher around -500 mV 

when the lead plates the clectrodc. Figure 18 shows that the actual potential of the 

W. E. did indeed follow that applied by the software in spite of the changes in cell 

characteristics, thus indicating the correct operation of the potcntiostat within this 

rangc of W. C. currcnt. 
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Figure 18. Plot confirming correct operation of the potentlostat. 
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4.2.7. The Filter Module 

This part of the circuit was built so that the filter could be excluded via a 

switch on the front panel and the signal from the potcntiostat passed directly to the 

I/E converter. However it was found that adequate signals could be obtained without 

filtering. Therefore although provision for its inclusion was available, the filter 

circuit was not completed and the switch left permanently in the 'filter bypass' 

position. This part of the circuit is shown in fig 19 on page 81. 

4.2.8. The Current To Voltage Converter Module 

This classical design, shown in figure 20 on page 83, uses a single op amp, 

the 741 acting as a current follower. tvestka234 (1986) showed that an improved 

current to voltage converter with better stability could be achieved by slightly 

modifying the basic circuit. This involved isolating the input to the op amp via a 

resistor. In the present circuit this is done using a 4.7kfl resistor. 

The feedback resistor cmploycd can be set to one of six different values, i. e. 

conversion sensitivities, using one of two AD7590 analogue switches us. These 

packages each contain four, single pole switches, controlled by a separate input 

lines. The value of each resistor, the sensitivity that it produces and the address line 

pattern controlling it arc given in table 4 on page 82. 
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Address Line pattern Feedback 
Resistance 

Nominal 
Sensitivity 

nAN 

A7 A6 AS A4 A3 A2 

0 0 0 0 0 1 120kf2 8000 

0 0 0 0 1 0 240kf2 4000 

0 0 0 1 0 0 500kf2 2000 

0 0 1 0 0 0 1. OMn 1000 

0 1 0 0 0 0 2.2Mf1 500 

1 0 0 0 0 4.7MC1 250 

Table 4. Current to voltage converter sensitivities 

Davis236 discussed the assumption that no current flows into the op amp of a 

current to voltage converter, i. e. it is at virtual ground. In fact this can never be the 

case as the Op Amp needs some input current in order to work. In reality the input 

appears as an inductor whose impedance varies with frequency. With the step inputs 

expected in the present work this would cause the cell current to overshoot and 

'ring'. This would appear as a voltage over the double layer in excess of that applied 

by the potentiostat. In this case the current to voltage converter output may saturate 

momentarily. 

A method of reducing this apparent inductive input is to shunt the feedback 

resistor with a capacitor224º2, Bczman137 shows how the value for this capacitor can 

be deduced. The values used in figure 20 appear to be adequate. 
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4,2.8.2. Operation 

Once the appropriate signals are set on address lines A2 to A7, a particular 

feedback resistor and impedance matching capacitor combination are selected. The 

current 1w. c. flowing from the cell is summed with the offset current from the offset 

module and is presented to the inverting input of the 741 Op Amp via the 4.7kfl 

resistor. The 741 produces an output voltage over the feedback resistor which 

attempts to balance that on the input. This produces a current equal to but in the 

opposite sense to that applied, producing the virtual earth. Ignoring the inductive 

effect, the potential at the output is given by 

E., t=Asx1'. {13} 

whcrc Rib is the feedback resistor and lit, is the cell current. 

The performance of the Current to Voltage convcrtcr was investigated by 

using the dummy ccll shown in figure 21. 

A. E RE W. E. 

2.46M 148.5k 

Figure 21. Dummy cell used to test current to voltage converter 

Using the computer software to be described later, a linear scan was 

performed from -100 mV to +100 mV at a rate of 330 mVs-1. The potential 
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applied and the measured current though the W. E. was recorded. This was 

performed at each of six current to voltage sensitivities and each of four differential 

amplifier gains. No current offsct was used. 

Uneu Scan " Sens: 2000 nAN. Offset: 0. Range: SuA, Gain x1 Scan Rate 0.33 V/s 

0.72 

7.68 

5.04 

3.0 

1.50 

"0.48 

"2.52 

-4.50 

"0.0 

"8.64 
"10.08 

"0.7 "0.50 "0.42 "0.28 -0.14 0 0.14 0.28 0.42 0.56 0.7 

Voltage Applied V 

Figure 22. Results of a linear scan used during the testing of the IIE 
converter 

Since there was a 148.5 fl resistor between the W. E. and the R. E., the 

resulting plot of current against applied W. E. potential showed the expected linear 

relationship. With some sensitivities and gains however, saturation of the current to 

voltage converter was observed. resulting in an indication that current was not 

changing in spite of a change in PD. The results of a typical run indicating 
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saturation arc shown in figure 22 on page 85. The proportional part of each graph 

was used to calculate a value for the resistance between the R. E. and the W. E. If 

the switching between different sensitivities and gains does not introduce an error 

this should be always be equal to 148.5 0 

The results of this operation are shown in figure 23 on page 86 where the 

percentage error in calculating the resistance is plotted against the sensitivity for all 

four gains. }-lcre the value for I has been calculated from the resulting A/D output 

assuming the sensitivities in table 4. 

0.5 ---- ---- ---- -' ----- 

%*(tor-0.5 -- - ----- r- _r --- 

----. 
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-13-xt 
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-{3-x18 
-ý-x64 

Figure 23. Graph of error in I to E converter with sensitivity at 
different gains 

These results show that within an acceptable degree of error, changing the 

sensitivity and / or the gain during the lifetime of a single experimental run is 

possible without introducing undue distortion into the results obtained. 
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The values of W. C. current causing saturation at each sensitivity and gain 

setting were also recorded. These results are given in appendix 5. 

4.2.9. The Current to Voltage Converter Offset Module 

The current to voltage converter offset module is shown in figure 24 on page 

88. The purpose of this module was to allow the 'backing off' of any large current 

component present in the response. It will offset the current 1µ 
. e. by a positive or 

negative amount, the value of which is determined by the settings of offset range 

and offset number. Offset numbers from -7 to +8 arc available, each at two ranges. 

It should be noted that offset number does not refer to an absolute offset current 

value but is used to give an indication of the approximate value where settings -8 

and +7 correspond to approximately -1.244 IiA to + 1.213 pA for the lower offset 

range and from -12.500 ItA to +12.120 µA for the higher range. Details of each 

offset value that may be obtained arc given in appendix 5, table 44 on page 286 and 
in figure 25 on page 91. 
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Figure 24. Current to Voltage Converter Offset Module 
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4.2.9.1, Construction 

The circuit consists of a potentiometer that can tap off any one of 16 points in 

a nominal range of f5 V. A 606713E lpole, 16 way analogue switch, is used with a 

resistor chain of 15 x 390 fl resistors to provide a digitally controlled potentiometer. 

The ends of the resistor chain are taken to + 15V and -15V respectively via 5kfI 

trimmers adjusted to give approximately 10V over the resistor chain in equal steps 

with OV at the centre tap. The output of this potentiometer is buffered via a 741 and 

fed via either 1Mf2 or 100kfl resistor to the input of the Current to Voltage 

converter. The value of this resistor is switched by a AD7590 four pole analogue 

switch and sets the range of offset to give approximately f5jA or ±50µA 

respectively. 

The range and the offset number can be controlled by the microcomputer by 

setting bits on the appropriate address lines. These address lines are indicated in 

table 46, Page 288 but further details of the switching codes and offset currents 

obtained are given in appendix 5 in table 42, page 284 and table 43 on page 285. 

Once the settings have been determined, the potential at the appropriate tap 

point will appear at the common pin, pin 1, of the 4067BE 16 way switch. This 

potential is then buffered by the 741 and fed into pins 9 and 11 of the AD7590 

analogue switch. Depending upon the signals on pins 5 and 6 this potential then 

appears on pin 10 or 12. This causes a current to flow through either the 100kfl or 

the IMf2 resistor, the remote end of which is held at virtual earth at the current to 

voltage converter. The offset current can be isolated from this Op Amp by the a 

switch on the front panel which controls sub miniature relay RLY 3. 



90 

4.2.9.3. Performance 

The output from the appropriate pin of the AD7590 offset range analogue 

switch (i. e. Pin 10 when using the S 1tA range and Pin 12 when using the 50 to 

range) was measured with respect to ground using a high impedance digital 

voltmeter. The potential of Pin 2 on the I/E converter Op Amp was also measured 

with respect to ground. These two readings gave the potential across the appropriate 

resistor (100M or IMfl). From this the actual offset current flowing for each 

setting could be calculated. This is shown in figure 25 on page 91 (and tabulated in 

appendix 5, table 44, page 286). The sensitivity setting in force is 1000 nA/V. 

The curves shown here indicate that the relationship of current to offset 

number is not linear for the higher values of offset. This is particularly obvious 

when on the 50µA range. Whilst this does not constitute not a problem, the offset 

current being relative and not absolute, the reason for it is indicated in figure 26 on 

page 91, which shows the potential over to the 100kf2 offset resistor (Vpot) and the 

potential of the I/E Op Amp input Pin 2 (Vi/c both plotted independently against 

the offset number for the 51iA range. 

It can be seen that whilst the offset potentiometer resistor chain is producing a 

linear output (Vpot)t the potential of the I/E Op Amp input Pin 2 (Vi/,. ) begins to 

rise at about offset number ±3. This is the point when saturation begins and the 

input to the 1/E Op Amp can no longer be held at virtual ground. 
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4.2.4.6. The Differential Amplifier Module 

An AD625 programmable gain instrumentation amplifier' was used as a 

follow on stage to the 1/C converter. This module is necessary for differential pulse 

analytical methods where the difference in current between two consecutive readings 

is required, not the absolute value of either. This module allows a voltage 

representation of the current at the previous reading to be stored and subtracted from 

the present reading. This difference may be amplified if the two reading would 

otherwise result in a small peak height. 

4.2.10. Construction of the Differential Amplifier Module 

The AD625 amplificr was programmed by a resistor network and a 

multiplexor following guidelines in the databook238 to provide a software 

programmable gain of xl, x4, x16 and x64. The final circuit is shown in figure 27 

on page 93. 

A 7509 dual 1 to 4 multiplexor was used to switch in pairs of resistors into the 

sense/drive circuit of the AD625. This multiplexor is controlled by software using a 

binary code on address lines 8 and 9. 

The two inputs to the AD625 differential amplifier were each fed from AD585 

sample and hold IC's. These took as their input the output of the 1/E converter at the 

time the hold signal was applied. Thus the voltage representation of the current held 

by S/H 2 was subtracted from the representation of the current held by S/H 1. 
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Provision was made for grounding the inverting input via relay 4 under 

software control on address line 10. This enabled the amplifier to be used as a 

simple, non differential amplifier during linear scan techniques by sampling using 

S/H 1 only, connected to the non inverting input. 

The output of this module was taken directly to the Analogue to Digital 

Converter. 

4 2.10.1. Operation 

A potential with respect to ground is presented to pin 2 of both sample and 

holds from the output of the I/E converter. This potential represents a current 

flowing through the electrochemical cell. 

In the case of a linear scan technique the inverting input to the amplifier would 

be grounded. A sample signal is sent to S/H 1 on address line 12, followed a short 

time later by a hold signal. Address lines 8 and 9 have selected appropriate taps on 

the resistor chain so as to provide the correct gain and feedback resistors for the 

required amplified gain. The held potential is amplified by the differential amplifier 

which produces an output to the A/D converter module. 

In the case of a differential pulse technique S/H 1 and 2 will be given a 

sample signal on address lines 12 and 13 respectively. Just before the pulse S/H 2 is 

set to hold and the pulse applied by changing the potential applied to the 

potentiostat. Just before the end of the pulse S/H 1 is set to hold. The amplifier then 

amplifies the difference between the values of the two held voltages and both sample 

and holds are set to sample again. 
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4.2.10.2. Performance 

The amplifier was tested using the dummy cell circuit shown in fig 17 on page 

78. A potential, measured with a digital voltmeter, of 0.039 V was applied at the 

non inverting input of the amplifier with the inverting input grounded. The output of 

the amplifier was then measured at each of the gains using both a digital voltmeter 

and the software written by the author. The results are shown in table 5 on page 95. 

These indicate that the differential amplifier circuit is producing the gains required. 

Set Output PD Output Calculated Calculated 
Gain using PD using Gain Using Gain using 

Digital Software Voltmeter Software 
Voltmeter V 

V 

X1 0.039 0.038 1.00 0.97 

x4 0.158 0.160 4.05 3.95 

x16 0.657 0.665 16.85 16.00 

x64 2.55 2.582 65.38 62.40 

Table S. Gain calibration of differential amplifier 

42 11. The Differential Amplifier Offset Module 

The differential amplifier offset module is shown in fig 28 on page 96. This 

simple circuit uses a 741 to create a buffered potentiometer and can be used to offset 

the amplifier output by a potential in either the positive or the negative direction to 

the offset pin 7 on the differential amplifier. Relay (RLY 5) allows for zero offset 

by grounding pin 7. 
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Since it was not anticipated that this operation would be required except whilst 

setting up the apparatus, this control was brought out to the front panel and not 

supplied as a computer controlled function. A simple modification could however 

provide this function under computer control. 

4.2.12. The A/D Converter Module 

42 12.1. Construction 

The analogue to digital converter module is shown in fig 29 on page 98. This 

uses a AD574A, single chip 12 bit D/A to convert the output of the differential 

amplifier into a digital value for transmission to the computer. 

Following the guidelines in the databook239, the device was connected in 

bipolar mode by connecting two 100fl trimmers between pin 12 (bipolar offset) and 

pin 8 (ref out) and also between pins 10 (ref in) and 8. The input span was selected 

as 10v by connecting the output of the differential amplifier to pin 13 (range select). 

The output was selected as full 12 bit by connecting pin 2 (12/not 8 bit) to +5v and 

pin 4 (A0) to 0v. 

The above connections gave the chip the capability to convert analogue 

potentials in the range ±5.0 V with a resolution of 1.22 mV in full 12 bit mode. 
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4.2.12.2. Operation 

When it is required to perform a conversion the software takes pin 5 (read / 

convert) low. This starts the conversion during which any further changes on the 

input will be ignored. At the completion of the conversion the pin 28 (status) goes 

high. This pin can be polled or used to provide an interrupt. However since the 

maximum conversion time is guaranteed to be only 35µs, in this work a simple 

software delay loop is used to ensure that at least 35µs passes between starting the 

conversion and reading the data from the output. 

Address line A14 is used for the read / convert signal. The software therefore 

sends a read signal (logic 1)on address line A14 whilst the exciting potential is sent 

to the potentiostat. When the measured current is required to be read by the software 

a convert signal (logic 0) is placed on A14 and a short delay loop entered while the 

conversion is carried out. At the end of this time the data is read from the port and 

the read signal once again placed on A14. 

4.2.12.3. Performance of the A/D Converter 

The two 100fl trimmers were used to calibrate the chip using the test box 

described previously. Using this box a potential of -4.998v (' LSB above negative 

full scale) was applied and the trimmer -fsd trimmed in order to obtain the first 

transition from 000000000000 to 000000000001 on the output. This was 

detected via the 12 leds on the test box. Next a potential of +4.996 (1 'h LSB below 

positive full scale) was applied and trimmer +fsd trimmed in order to obtain the last 

transition from 1111_1111_1110 to 11111111_1111. After this calibration the D/A 

was tested at several potentials between these ranges and found to convert correctly 

within 1.22 mV. A calibration graph is shown in fig 30 on page 100. 
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4.3.1. Overview 

All the electroanalytical software that controls the potentiostat, applies the 

voltammetric wave form, reads the resultant current and processes the received data 

has been written in 80386 assembly language and Turbo Pascal® version 7. It is 

organised as a series of software layers. Each of these layers provides functions 

which, although complex within the layer, are regarded as being simple atomic 

functions by the layer above. The lowest level, called here the Hardware Interface 

Layer, controls the operation of the 48 way programmable Input / Output Card and 

thus the operation of the potentiostat and associated analytical hardware. The next 

layer, called the Logical Analysis Layer, is an intermediate 'system' level layer and 

executes the algorithms necessary to carry out a particular electrochemical analysis 

or Thin Film Mercury Electrode (TFME) production. The highest, the User 

Interface Layer presents to the user a mouse driven interface providing those 

operations that would be familiar to a electroanalytical chemist. 

A similar set of layers performs the graphical functions responsible for 

plotting and manipulating a voltammogram. Once again these consists of a Low 

Level Graphics layer providing primitive graphics screen functions, a logical layer 

which provides as atomic those higher level functions required to graph data on an 

XY plot and a User Interface Layer which is accessed when the user wishes to 

display or manipulate a voltammogram. 

The logical relationships between the layers is shown in Table 6, Page 102. 
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User Interface 

Logical Analysis Logical Graphics 

Layer Layer 

Hardware Interface Low Level Graphics 

Layer Layer 

Table 6. Layered structure of the electroanalytical software 

Each of the layers described above was designed, written and compiled as a 

number of separate units which provide various abstract views of data via member 

functions accessed through the interface section. 

A useful feature of Turbo Pascal is the ability to use the keyword ASM. 

Following this keyword the programmer can program directly in 80x86 assembly 

language and yet remain within the Pascal source code file. During the compilation 

process the compiler switches from compile mode to assemble mode as required. 

Procedures and functions may be written that pass parameters and return values in a 

Pascal style yet internally contain nothing but assembly language. This feature was 

used to code the lowest level where I/O port access and bit manipulations were 

required. 

Subsequent sections will describe the software layers in a top down fashion 

from the User Interface layer down to the lower levels. 
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4.3.2. User Interface Layer 

The features in this layer are best described by figure 31 which illustrates the 

structure of the drop down menus. 

Option choices are indicated using 'radio button' dialogue boxes and values 

are entered using 'text box' dialogue boxes. A sample of each type of dialogue box 

is given here, figure 32 showing radio buttons and figure 33 showing a text box. 

Screen dumps of all the dialogues available are given in appendix 4. 

The Run Analysis option on the main menu starts the analytical run by 

applying the specified plate potential and then rotating the TFME for the specified 

time. Following this the electrode is rested without rotation and then the scan itself 

is commenced with data being recorded. Suitable messages are displayed to the user 

to confirm which phase of the analysis is currently in progress. 
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File 
Save Data 
Load Data 
Change Directory 
Quit 

Method 
Differential Pulse 
Linear Scan 
Square Wave 

Parameters 
Analyte Plate 

Plate Potential 
Plate Time 
Rotation Speed 
Post Plate Rest Time 

Method Specific Parameters 
Start Potential 
End Potential 
Pulse Height 
Pulse Time 
Inter-pulse Time 
Step Height 

Run Analysis 

Display 
Results 
Background 

TFME 

The values requested here 

will depend upon the method 

Parameters 
Plate Potential 
Plate Time 
Rotation Speed 
Co-deposit Strip Start 
Co-deposit Strip End Potental 
Co-deposit Strip Sweep Speed 

Create TFME 
Co-deposit Stip TFME 

Options 
Differential Amp Gain 
I/E Sensitivity 
I/E Offset Range 
I/E Offset 
Analyte Description 

Figure 31. Menu structure of the analytical software 
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File Method Parameters Run-Analysis Display TFME Options 

ox Can=, 11 

alt-x quit 

Figure 32. Typical 'radio button' dialogue box from the analytical 
software 

File Method Parameters Run-Analysis Display TFME Options 

[I] Differential Pulse Parameters 

Start Potential (U) -0.9 

Final Potential (U) +e. e 

Pulse Height (mU) 19 

Pulse Duration (as) 20 

Inter-Pulse Time (us) 28 

Step Height (mU) 5 

0=, Cancel 

iiir, i5ý41', l yy wi, r, rryr, rili, yrrr q, r w .0 wis p... 4r5, k, ý�ti 

-x Quit 

Figure 33. Typical 'text box' dialogue box from the analytical 
software 
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4.3.3. Logical Analysis Layer 

This layer implements the following functions related to the creation and 

conditioning of the TFME and the analysis of a sample using a variety of 

waveforms. 

1. Plate the electrode with mercury 

2. Perform a co-deposit strip of the mercury film 

3. Plate the mercury with the analyte 

4. Perform a linear scan analysis 

5. Perform a differential pulse analysis 

6. Perform a square wave analysis 

These functions are specified in appendix 6, table 45, page 287. They are 

called by the user interface layer and themselves call procedures in the hardware 

interface layer. 

All of these functions operate in a similar manner, the difference being mainly 

in the waveform that is applied to the W. E., the timing of the application and setting 

of switches such as electrode rotate and electrode grounding. Recorded data are 

saved to dynamically allocated arrays. 

The waveforms used are created by executing a loop that starts at the desired 

W. E. start potential and continues while the final W. E. potential has not been 

reached. By using an appropriate combination of changes in W. E. potential, delays, 

current recording times and sample and hold states the correct waveform can be 
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generated. As an example, a generalised form of the algorithm used for differential 

pulse analysis, omitting details, is given in Figure 34. 

Vw e := start pd 

While Vw. e. <= End pd do 

begin 

Set Sample/Hold No. 2 to Sample 

apply Vw. e. to W. E. 

delay 

Vw e := Vw. e. + Pulse Height; 

Store Vw. e. for bottom of pulse 

Set Sample/Hold No. 2 to Hold 

apply Vw. e to W. E. 

Set Sample/Hold No. 1 to Sample 

delay 

Set Sample/Hold No. 1 to Hold 

Read & store A/D output 

VW e := Vw e. - pulse drop 

end; 

{start to sample i before the pulse) 

{send ramp potential to W. E. } 

{for time between pulses) 

{calculate potential of pulse leading edge} 

(potential (x axis) data for voltammogram) 

{capture i before the pulse) 

{apply the pulse} 

(start to sample i at the end of pulse) 

(for duration of the pulse) 

(capture I at the end of the pulse) 

(representation of Ai (y axis) after pulse) 

(calculate height of pulse trailing edge) 

Figure 34. General algorithm for differential pulse analysis 

For all applications the loop is started five iterations before the desired starting 

potential, in practice a few millivolts, in order to settle the instrument before data 

recording is started. This was found to be necessary to avoid abrupt changes in the 

recorded current at the start of the scan. The loop is stopped at the point when the 

potential, peak pulse potential in the case of differential pulse and square wave, has 

reached the desired value. 
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A particular feature of this software is the method by which delays are 

created. These need to have a resolution 1 ms or less to generate accurately the 

analytical waveforms but will need to be much longer when creating the TFME. 

The built in Turbo Pascal procedure Delay(n), intended to pause -program 

execution for n ms was found to be too unreliable for this application. Experiments 

were performed using clock interrupts after first speeding up the basic clock 

interrupt rate. Whilst this performed as required and permitted the coding of quite 

accurate delays from 10-3 to 10-5 s, the subsequent impact on the system's record 

of the real time and date was undesirable. 

The method finally used relied upon a calibrated software loop written in 

assembly language. Software timing loops are generally to be avoided because of the 

unpredictability of interrupts. In this work however a calibration phase is run as 

soon as an analysis procedure is required. This waits for the low order byte of the 

system clock to change and then enters a loop that counts how many iterations can 

be performed before the byte changes again due to a real time clock interrupt 55 ms 

later. The number of loops performed in lms is calculated. Delays can then be 

achieved by performing the appropriate number of iterations of a second loop. The 

two loops are coded so that in all other respects they are identical to each other, 

including the use of dummy register increments simulating the counting of loops 

during the timing loop. 
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This approach was tested by; 

1. Using the software to generate a square wave at various frequencies in the KHz 

region and examining the potential of the Working Electrode using an 

oscilloscope. 

2. Creating long delays of 30 minutes to 1 hour and timing them with a stopwatch. 

In both cases the outcome was satisfactory in spite of the interrupts that must have 

been occurring during the delays. The only concession made during these tests was 

that the disc cache was disabled during the test to prevent timings being altered by 

whether or not a cache flush and disc write occurred during the timing interval. In 

practice this is quite acceptable as there is no need for a disc cache during the 

analysis. Data can be stored in memory during the analytical run and dumped to disc 

afterwards. All subsequent work was done with the disc cache disabled. 

4.3.4. Hardware Interface Layer 

This layer of software was mainly written in assembly language because of the 

need to perform manipulation of data at the bit level. 

The operation of this layer falls into two parts. Firstly, that concerned with the 

functional control of the potentiostat and secondly that concerned with the output of 

digitised W. E. potentials and the input of digitised W. E. currents. 

A common feature of software in this layer is that there are three byte sized 

'state variables' which define the current state of each one of the three I/O ports, 

A', B' or C on the 48 way PIO card. The bit patterns in these state variables is 

reflected in the current state of operation of the potentiostat and current measuring 

hardware. 
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All requests to change the state of the hardware are first translated into setting 

the appropriate bit(s) in a data byte which has the initial value of 00(hex). This data 

byte is then ORed with the appropriate state variable to switch on that particular 

function, or NOTed and then ANDed with the state variable to switch off that 

function. The appropriate state variable is then stored in its allocated port and hence 

sent to the hardware. 

In the case of multiple bit settings, for example setting the I/E offset which 

uses four bit binary encoding, the state variable is first ANDed with a mask to reset 

all the appropriate bits so that all bits in the state variable take on the correct value 

when the OR function is applied 

The hardware control functions themselves fall into four groups; PIO set up, 

operational parameters set up, relay switching and measurement functions. These 

are listed in tables 7 and 8 and further defined in appendix 6, tables 46 to 49 on 

pages 288 to 291. All operate in the manner described above. 
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PIO Board configuration Procedure 

Set up I/O Ports Sets up the operation mode of the ports and configures ports for input or 
output 

Potentiostat Configuration Procedures 

Set Ito E Offset Range Sets the Ito E converter offset range to either 5NA or 50pA 

Set Ito E Offset Sets the Ito E converter offset to one of sixteen values spanning zero 

Set Differential Amplifier Gain Sets the differential amplifier gain to one of four gains 

Set Ito E Sensitivity Sets the Ito E converter sensitivity to one of six sensitivities 

Ancillary switches 

Turn On Motor Turns on the working electrode rotating motor 

Turn Off Motor Turns on the working electrode rotating motor 

Turn On Gas Purge Opens the Nitrogen gas purge valve 

Turn Off Gas Purge Closes the Nitrogen gas purge valve 

Connect Differential Amplifier Input 2 Connects the inverting input of the differential 
amplifier to the working electrode via Sample/Hold 2 

Ground Differential Amplifier Input 2 Grounds the inverting input of the differential 
amplifier (for use in linear scan) 

Connect Working Electrode Connects the working electrode to the Ito E converter 

Ground Working Electrode Grounds the working electrode (normally done whilst analyte 
plating) 

Table 7. General purpose functions available in the hardware 
interface software layer 



112 

Working Electrode Potential and Current Reading procedures 

Set Sample and Hold Sets sample/hold on either input one or two of the differential 
amplifier to either sample or hold 

Send Voltage Converts a bipolar PD in the range ±2.5 V to the corresponding 12 bit DIA 
code and sends it out to the potentiostat 

Voltage In Reads a 12 bit code from the AID in the potentiostat and returns the value 
converted into a bipolar PD in the range ±2.5 V 

Table 8. Measurement functions available in the hardware 
interface software layer 

Six bits are used to encode the I to E sensitivity using a1 out of n encoding. 

This apparently inefficient encoding system was used in order to simplify the 

hardware design by using six CMOS switches, in two packages, with each switch 

switching in one range. Again for simplicity, two bits are used to encode the offset 

range using 1 out of n. However four bits were used to binary encode the 16 values 

of offset, this being implemented using a single chip 1 pole, 16 way CMOS switch. 

The differential amplifier gain also uses binary encoding using two bits to program a 

two pole, four way CMOS switch which switches in pairs of resistors controlling the 

amplifier gain. 

In order to apply a particular potential to the working electrode the procedure 

Send Voltage is called passing the value of the required potential in mV. A lookup 

table is then used to convert this potential into a 16 bit word which, when applied to 

the input of the D/A will cause it to output the correct potential. 

Reading of an input value, which represented a current, is done by the Voltage 

In function which first sends a convert signal to the A/D converter and then enters a 

short software delay loop to ensure that 35ns elapses whist the conversion is carried 

out. After this time the A/D is put back into read mode and the 12 bit output built 

up in the BX register and returned by the function into a Pascal variable. 
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4.3.5. Logical Graphics Layer 

This layer of software provides an intermediate layer between the user 

interface layer and the low level graphics layer. The functions available are listed in 

table 9 and specified in appendix 6, table 50, page 292 

Display Data Plots the analytical response data in as an XV graph on automatically scaled 
axes. 

Set Title One Creates a single string suitable for the first title line of an XY plot and 
initialises conversion factors used by DisplayData 

Set Title Two Initialises the second line of the XY plot title. 

Set Title Three Initialises the third line of the XY plot title. 

Table 9. List of functions available in the logical graphics layer 

After carrying out an analysis the logical analysis layer presents the user 

interface layer with three pieces of data. These are the number of data points taken 

and two pointers to dynamically allocated arrays of integer containing the potentials, 

in mV, applied to the W. E. at each step and the corresponding potential received 

from the A/D converter and representing the (possibly differential) measured current 

in µA. 

These data need preprocessing before they can be plotted in order to convert 

the potential from millivolt to volt and also to convert the received potential into a 

current using the I/E converter sensitivity and differential gain settings in force at 

the time of the analysis. The procedure Set Title One in this layer converts the 

enumerated types of I/E sensitivity, differential amplifier gain, I/E offset range, I/E 

offset and analytical method into suitable strings for the first title line of the graph. 
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It also uses the first two of these to calculate conversion factors which are 

subsequently used by Display Data to convert the received potential into a current. 

The Display Data procedure accepts the two variables pointing to the 

analytical data together with the number of data points. It saves the three title 

strings, two generated from the operational parameters and the third, if any, from 

the analytical description that the user entered. Then, using the conversion factors 

calculated by Set Title One it converts the potential and received current data into 

units of volt and pA respectively and appends this processed data to the file. Finally 

it calls the low level graphics layer to plot the data in that file on auto scaled axes. 

4.3.6. Low Level Graphics Level 

The Low Level graph plotting module has been written in such a way that it 

can readily be used by other programs in this work. For example it has been used to 

display the sum squared prediction error of a neural network plotted against the 

number of training epochs in real time, whilst a neural network trains. This module 

provides access to several procedures and functions, listed in table 10 and specified 

in appendix 6, table 51, page 294. 

Once the graph has been plotted several manipulative functions are available 

using one key press, see Table 11, Page 116. As a reminder to the user a list of 

these can be obtained by pressing '? ' for help at any time a plot is displayed. This 

will show the available commands in a box overlaying the plot. The user may enter 

a command letter directly from this screen at which point the help screen is removed 

and the command executed. 

The action of these commands will be obvious from the description but by 

way of illustration the operation of the zoom command will be detailed here. 
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Graphics Functions 

Init Graphics Starts the graphics system in the best available mode 

Shut Down Graphics Shuts down the graphics system and returns to the text screen. 

Graphics Intiialised Determines if the graphics system is already started 

Plot Data Plots the data held in the file created by Display Data 

Draw Axis Plots the axis and legends and prints a three line graph title 

Do Tick Marks On Y Axis Draws tick marks and prints the scale. Also calculates the plot 
to real world Y scaling value 

Do Tick Marks On X Axis Draws tick marks and prints the scale. Also calculates the plot 
to real world X scaling value 

Draw Curve Value Plots a coloured line to real world co-ordinates X, V from last real world 
co-ordinates plotted or plots a point at X, Y if this is the first call to this procedure. 

PlotValue Plots a pixel at real world co-ordinates X, Y. 

Convert Plot XY To Value XY Converts a point given by the screen pixel co-ordinates to 
real world co-ordinates. 

Convert Value XY To Plot XY Converts a point given by real world co-ordinates to screen 
pixel co-ordinates. 

Find Max File Values Finds the maximum and minimum values off and Yin the plot file. 

Screen Dump Prints the screen on the printer 

Make Display Colour Restores default graph colouring 

Make Display Black And White Changes display to black on white to facilitate the 
transfer of the graph into another application via Windows Clipboard® 

Table 10. List of the low level graphic functions provided 
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Key Operation 

z Zoom into a rectangular area of the plot defined by crosshairs using the mouse 

o Re-plot original curve 

p Dump plot to printer 

s Smooth the plot using a BSpline algorithm 

a Smooth the plot using a5 point moving average 

f Smooth the plot using Fourier smoothing 

S Smooth the plot using a 13 point Savitzky-Golay polynomial 

D Plot the 2nd differential using a 13 point Savitzky-Golay polynomial 

d Plot a 1st differential using adjacent points 

b Fit a quadratic baseline using two portions of the curve defined using the mouse 

h Fit quadratics to the baseline and to the peak, plot and display the peak height 

x Display cross hairs and the corresponding potential - current coordinates 

n Normalise plot to span a height of 1.0 

m Make display black on white for copy to Windows® Clipboard 

c Make display colour 

Q Exit graphical display 

? Display command help screen 

Table 11. Commands available when graphical display of 
voltammetric plot is displayed 

Pressing the 'z' key produces cross hairs on the screen which can be 

manipulated using the mouse. The potential of the W. E. and resultant current at the 

position of the cross hairs is displayed in real time, expressed in the same units as 

the axes. Pressing the left mouse button defines the start of a rectangular portion of 
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the display. The area so defined is outlined by a red rectangle, the bottom right hand 

corner of which moves in response to mouse movements, thus changing the area 

enclosed by the rectangle. A second press of the left mouse button produces a new 

display containing the area previously defined by the rectangle, enlarged to fill the 

available screen area. The graph axis are re-scaled as appropriate. This operation 

may be repeated indefinitely to any depth of zoom. 

A useful feature of the program is that all commands operate on the data used 

to produce the plot currently being displayed. This data may be a transformed 

version of the original data due to previous user manipulations, for example via a 

smoothing or zoom operation. 

Because of this it is possible to perform compound operations such as; plotting 

the n'th order differential of the plot by pressing the 'd' key 'n' times or smoothing 

the curve by a five point moving average to an arbitrary level of smoothing by 

pressing the key 'a' as many times as required. 

The command to calculate the peak height is central to this thesis and is 

described in detail in the section of data pre processing on page154. 
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5. Methods of Investigation 
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It was initially proposed to investigate the application of neural networks to 

analytical chemistry by stripping voltammetry in two areas; (a) Calibration Mode, 

the application of neural networks after a chemical analysis as a predictive model 

from which the concentration of analytes can be predicted and (b) Control Mode, 

the use of a neural network in a control configuration to set optimum analytical 

parameters for the control software prior to the analysis of the sample. These were 

each intended to be studied separately. 

A preliminary study of the behaviour of neural networks in this field was 

made using both computer simulated and real voltammetric data in order to ascertain 

the extent to which neural networks could map voltammograms to peak height. The 

synthetic data was generated by combining many of the features seen in a typical 

voltammogram. Details of this preliminary work, which included synthetic 

voltammograms of multiple species, may be found in Chapter 9 on page 210 and 

appendix 3 on page 253. The work showed clearly that the backpropagation network 

could be applied with some success to synthetic data. 

Following this, a more detailed study using data obtained by analysing locally 

.-. obtained curry powder for the presence of lead at trace levels was used in order to 

investigate the robustness of neural networks in the presence of real analytical 

variations. This work, described here in sec 5.2, page 121, extended the initial 
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study and showed that a neural network could indeed be used to model the 

relationship between voltammetric data and a corresponding analyte concentration. 

However, inherent problems in the analyte preparation and storage methods used by 

technical staff were detected. Statistically valid conclusions could not therefore be 

made from this curry powder data. 

Finally, voltammetric data from a series of standards containing lead in the 

parts per billion range were produced by this author. Using this data, from which 

main conclusions of this thesis are drawn, calibrations of the instrument and 

predictions of unknown concentrations were performed using a variety of 

techniques, both traditional and using neural networks. The precision and accuracy 

of the predictions obtained in each case were compared. A description of the 

methodology used with this data begins on page 145. 

In this latter set of experiments, three classes of data were investigated. The 

first of these contained good voltammograms with peaks whose height could easily 

be measured. The second group contained also those voltammograms that, due to 

the high lead concentration and the particular instrumental parameters used, 

saturated the instrument and produced flat topped peaks. The third group contained 

just the saturating voltammograms. The results of processing within these classes are 

given in the sections starting pages 163,185 and 191 respectively. 

Using the data in the first class it can be shown that using a neural network to 

post process voltammograms is superior to the traditional methods tested. The 

results obtained using the second and third classes are particularly significant as the 

data from which they originate cannot be processed using conventional, peak height 

means. Processing such data by neural network thus represents a novel method of 

producing quantitative analytical data from a voltammetric scan that might otherwise 

have to be repeated using more appropriate parameters. 
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This renders the control mode of operation, which was intended to adjust the 

parameters to obtain good peaks, less important than had been first thought. Work 

on the control mode is therefore postponed to a further period of research and not 

reported here. 

For each of the investigations reported here, sections are included on the 

analyte preparation method, the production of the thin film mercury electrode, the 

data preparation method and the calibration / prediction results 
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5.2.1 . Analyte preparation method for curry powder data 

Four different commercially available curry powders were obtained. This is a 

product that contains organic compounds and also lead which has been picked up 

from ground water. 0.150 mg of each curry powder was digested in 5.0 ml of 

concentrated nitric acid (Aristar, BDH Laboratories) at high temperature and 

pressure inside a PTFE microwave bomb for 2 minutes. The resulting solution was 

placed in a 25.0 ml volumetric flask and made up to volume with deionised water. 

At this point the solution was expected to contain between 5 and 20 ppb lead. Four 

replicate samples of each of the four curry powders were prepared. 

These sixteen solutions were then each diluted to 25 % of their original 

concentration with deionised water and divided into four parts. One part was left 

uncontaminated. To the remaining three parts (sixteen samples in each part) 

technical staff added a standard solution of Lead Nitrate (BDH product No. 14036) 

in appropriate amounts so that the concentration of lead in these three parts was 

increased to cover a range of up to 200 ppb. 

Each sample was then analysed for lead using a graphite furnace Atomic 

Absorption Spectrometer (AAS) operating at emission line 283.3 nm, in order to 

provide a known value for lead concentration. 

The solutions were then re-analysed by differential pulse anodic stripping at a 

thin film mercury electrode using the author's own apparatus to provide 
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corresponding voltammetric data. Only the first 28 concentrations, which ranged in 

lead concentration, as given by AAS, from 1 ppb to 100 ppb were used for the 

neural network study. 

- 5.2.2. Voltammogram production method for curry powder data 

The working electrode used was pre plated with mercury. This was done by 

first polishing the working electrode for 30s using a slurry of aluminia in deionised 

water after which it was washed in deionised water, dried on a tissue and rinsed 

again in deionised water. The electrode was then rotated at 300 rpm in a 100 ppm 

mercury solution (Hg(N03)2 in nitric acid) for 10 minutes. During this time the 

electrode was maintained at a potential of -0.70 V with reference to a saturated 

calomel electrode. An anodic linear scan was then performed from -0.70 V to 0.00 

V at a scan rate of 0.33 Vs-1 in order to strip off any material co-deposited with the 

mercury. Finally the electrode was rinsed using de ionised water. 

Each of the 28 samples was analysed by first placing 15.0 ml of the solution in 

the cup and applying a potential of -0.60V vs. the Saturated Calomel Electrode 

(SCE) to the working electrode for 60s whilst the electrode was rotated at 300 rpm. 

This plated the mercury electrode with the material from the analyte. After this time 

rotation was stopped and the potential maintained at -0.60V for a further 15s. 

Before the analysis proper was carried out a number of qualitative 

investigations were done to ascertain suitable values for the pulse width (td) and 

time between pulses (tr). Rifkin240 showed that for reversible reactions the peak 

current was independent of these values if 
ý' 

>2 but that it increased substantially 
d 

as 
t= became less than 1. However he also showed that peak current oc to 3 and 
td 

suggested that td should not be less than about 10 ms as the Faradic current needs 
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time to decay. A good heuristic suggested by Rifkin was to use values of td of 

between 20 to 50 ms and to make td = tr. 

The dependence of peak current on pulse height (Ea) was shown by Rifkin to 

be almost proportional for values of Ea less than 
150 

where n= number of 
n 

electrons transferred in the reaction. Large values < Ea gave high sensitivity and 

low resolution whilst lower values gave low sensitivity but a higher resolution. A 

good heuristic suggested by Rifkin is to use a value of Ea = 
100 

or 50 mV in the 
n 

case of lead. 

Accordingly, for the analysis of the curry powder analyte, the differential 

pulse scan was from -0.6 to -0.2V vs. SCE at a pulse height 50 mV. The pulse 

width used was 20 ms with a rest time of 20 ms between pulses. The step height was 

1 mV. The current recording hardware was set to have a sensitivity of 0.125 VµA- 

1, zero offset at an offset range of 5 pA and a gain of xl. 

The 28 samples were analysed in a random order to prevent residual effects 

from one scan interfering with the next. Ten analytical runs were made on each 

sample with a new mercury film being created for each run. 

5.2.3. Data set extraction and preprocessing for curry powder data 

The particular selection of scan parameters resulted in 400 iSi data points for 

each scan. This constitutes one data vector. The entire data set therefore consisted of 

280 data vectors, each containing 400 data points, representing ten replicate scans of 

28 values of concentration as determined by AAS. 

The target used for calibration and prediction was a single number in the range 

1 to 100 representing the lead concentration in ppb as measured by AAS. 
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Each value of etW, C, was normalised to a value between 0 and 1 across the 

entire pattern set by first calculating the maximum and minimum value for each data 

point and then adjusting the value of that point according to the equation; 
((oId) 

- Xi(mm) 
) 

(Xl(m) 
-X1(m; fl)) 

The AAS concentration value was similarly normalised. 

After processing by neural network the output of the network was converted 

back to a concentration in ppb by using the equation 

Cl =I vx (C.. 
-Cmin), i"Cmin {15} 

where N is the normalised output from the network, C is the network's prediction 

of the concentration and CC,, 
a, 

C.,. are the maximum and minimum values of 

concentration in the data set as given by AAS. 

The entire set of vectors was then reorganised to create two data sets, each 

containing a training set and a test set. 

The first data set used for the networks, called here the Classification Data 

Set, was obtained by sorting the entire set of data vectors in order of stated AAS 

concentration and then extracting every fifth vector and placing it in the test set. The 

remaining vectors constituted the training set. In this way the training set contained 

vectors from eight replicates of each of 28 concentrations and the test set contained 

two replicates (i. e. the 5th & 10th) from the same set of 28 concentrations. 

This selection method caused the network to act in a classification mode where 

the test vector was a noisy representation of one of the (equally noisy) training 
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vectors. There were 224 training vectors and 56 test vectors with 28 possible 

outcomes (concentrations). 

The second data set, called the Interpolation Data Set, was obtained by sorting 

the original vectors in order of concentration as before but extracting to the test set 

all ten replicate vectors for every third concentration value. This was intended to 

force the network to interpolate between the vectors of the training set and produce 

a concentration prediction that did not map directly onto one of its learnt 

concentrations. 

This extraction method gave a training set of 200 vectors and a test set of 80 

vectors with 8 possible outcomes. 

The number of elements in the raw data vector was considered to be rather 

high. Input dimension reduction was therefore investigated using several methods of 

parameterisation, as shown in table 12. 

Parameters Extracted Number of Network Inputs 

Left hand valley minimum value, Right hand valley 7 
minimum value, Peak maximum value, Fitted left 
hand slope, Fitted right hand slope, Fitted background 
slope on left, Fitted background slope on right 

Coefficients of a quadratic fitted to the peak 3 

Coefficients of a quadratic fitted to the background, 6 
Coefficients of a quadratic fitted to the peak 

As above plus the height calculated from fitted peak 7 
to fitted background 

Coefficients of a 5th order polynomial fitted to the 5 
entire curve 

Table 12. Different methods employed in an attempt to reduce 
input dimensionality 
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These experiments showed that calibrations and predictions from 

parameterised input vectors appeared to be possible where the original lead peak was 

well defined. For many of the curves however, using extracted features was too 

unreliable due to poor peak definition and so, for the work reported here, the 

dimension of the normalised input vector was reduced to 15 data points simply by 

starting at data point 115 and taking every tenth data point up to data point 255. 

This corresponds to the values of Ai,.,. for scan potentials -0.485V to -0.345V in 

steps of 10 mV. 

5.2.4. Calibration models investigated for curry powder data 

The data obtained from the analysis of the curry powder was processed by two 

different neural network architectures, the general regression neural network and the 

multi layer perceptron network trained by back propagation. Each architecture was 

used with both types of training / test sets. The investigation of the multi layer 

perceptron network was further subdivided by using two different numbers of 

neurons in the hidden layer. A neural network written by the author and a 

commercial shell was used for the calibrations. To be consistent with the results 

presented for the lead standards however, all the results presented here were 

obtained using the commercial shell, NeuroShell 21. The preprocessing software 

was written by the author in Pascal. 

The multi layer perceptron consisted of one input layer, one hidden layer and 

one output layer, fully connected between layers. The transfer function used for the 

hidden layer neurons was the sigmoid, 

(-x)) 
{16} f(x) --l 

+ exp1 
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whilst the output layer used the linear function 

f(x)=x. {17} 

There were 15 inputs and 1 output. For the first architecture investigated 20 

hidden layer neurons were used and for the second only 3 hidden neurons. No 

attempt was made to further optimise the number of hidden neurons. 

The connection weights were initially set to random values in the range ±0.3. 

Throughout all the tests a value of 0.1 was used for the learning rate ß, a value of 

0.9 was used for the momentum a and weight updates were performed after each 

pattern presentation. 

After every 200 presentations of a training pattern the entire test set was 

presented and the mean squared error in the output calculated. No weight updates 

were performed at this time. Each time the test set produced a new minimum value 

for the mean squared error the weights were saved to disc. Training was stopped 

when a considerable time had elapsed since the last minimum value and the last 

saved set of weights was used as the trained network. 

The general regression neural network used throughout this work also used a 

sigmoid transfer for the hidden layer and a linear one for the output. The connection 

weights were again initially set to random values in the range ±0.3. For each data 

set used there were as many hidden units as there were patterns in the training set. 

Calibrations were made using both the Euclidean and the City Block distance 

metrics. 

Once the network had been trained, a search procedure was employed in order 

to find the optimum value for the smoothing parameter o. This was done by 

repeatedly presenting the test set to the network using different values of a and 
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measuring the error in the network's output. This process was halted when the value 

for the mean squared error could be improved no further. A typical plot showing 

this process for the interpolation data set is shown in Figure 35. 
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Figure 35. The progress of a search for an optimum smoothing 
factor in a GRNN network 

5.2.5. Calibration quality metrics used for curry powder data 

The following statistics were gathered for both the training and test sets. 

a. The correlation coefficient between the predicted and target concentration values 

b. R2, the coefficient of multiple correlation between the predicted and target 

values. 

c. Mean squared error in predicted values 
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d. Mean absolute error in predicted values 

e. Min absolute error in predicted values 

f. Max absolute error in predicted values 

In addition a scatter graph was made of the predicted lead concentration 

plotted against the target concentration for the training set and test sets. 

The premise made was that networks producing an R2 closer to 1 and a 

smaller value for mean absolute error were better predictors of actual lead 

concentration than those with an R2 not close to 1 and a larger value for the mean 

absolute error 
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The results of processing the curry powder data have been previously 

published by the author (Manwaring241) and the reader is referred to this paper for 

the further details. A copy of the paper is given in appendix 1. 

The voltammetric curves obtained from the curry powder using the pre plated 

electrode showed a considerable amount of noise. One constituent of this noise 

appeared to be regular and occurring at a frequency of about 0.3 Hz. This can 

clearly be seen in Figures 36 to 38. The author can give no satisfactory explanation 

for this but a similar phenomenon was noticed by De Vries242 in 1967. Initial 

investigations indicated that earthing the metal box in which the potentiostatic 

electronics was housed slightly reduced the amplitude of the spikes as did 

disconnecting the external hold capacitors connected to pin 7 of the AD585 sample 

and hold chips. The problem was absent when the lead standards were used in the 

final part of this work (page 145). 
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Figure 36. Noise spikes in a voltammogram of digested curry 
powder containing 4 ppb lead 
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Figure 37. Noise spikes in a voltammogram of digested curry 
powder containing 45 ppb lead 

Differential Pulse - Sens: 0.125 U/uA, Offset: 0, Range 5 uA, Oain: xi 
Pulse Amp: 50 nU, Pulse Tine: 2Ons, Rest Tine: 2Ons, Step Amp: 1nU 

(L0604501) Sauale 2b, digested curry tape A. 45 Ppb Pb, 16/0/93 
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Differential Pulse - Sens: 0.125 U/uA, offset: O, Range 5 uA. Gain: xl 
Pulse Amp: 50 nU, Pulse Tine: 20ns, Rest Tine: 20ns, step Anp: jnU 
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Figure 38. Noise spikes in a voltammogram of digested curry 
powder containing 100 ppb lead 

The numerical results of these tests are shown in table 13 on page 134. Only 

the results for the test data are reproduced here as these are the ones with the greater 

significance, the training data results exhibited similar relationships but, as might be 

expected, they had a higher correlation between predicted and target values. 

It would appear, therefore, that both network architectures were suitable for 

predicting lead concentration using data from eint against VW,,, curves obtained 

from Differential Pulse Anodic Stripping, particularly when the number of data 

points in the curve is severely reduced. 

-0.55 -0.51 -0.40 -0.45 -0.41 -0.38 -0.34 -0.31 -0.2? -0.24 -0.21 
Ualtago Applied U 
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R2 MSE Mean Absolute Min Absolute Max Absolute Correlation 
Error Error Error Coefficient 
(ppb) (ppb)r (ppb) 

BP15: 20: 1 0.89 107.0 7.5 0.2 39.4 0.95 
classification 

BP 15: 3: 1 0.87 126.6 8.5 0.0 36.2 0.93 
classification 

GRNN city 0.90 92.9 5.8 0.0 29.0 0.95 
classification 

GRNN Euclid 0.97 30.8 1.8 0.0 26.5 0.98 
classification 

BP15: 3: 1 0.75 204.6 11.4 0.0 33.7 0.89 
Interpolation 

GRNN Euclid 0.76 119.1 12.4 1.1 25.7 0.87 
Interpolation 

Table 13. Tabulated results of processing the curry data with 
various network architectures 

Both of the network architectures appeared to be able to model adequately the 

relationship between voltammogram curve shape and lead concentration. In general 

the predictive quality is better for classification than for interpolation. 

The results of processing using the Back Propagation networks will be 

described first, concentrating upon predictions made from the test set rather than the 

training data set. Following this the results of the GRNN network will be given, 

also for the test set. 

5.3.1. Back propagation 

The results show considerable scatter on the test set predictions with the 

15: 20: 1 network being marginally better than the 15: 3: 1 Both networks incorrectly 

allocated a large number of patterns to the same concentration, particularly at low 

values (< 20 ppb), see figures 40 and 41. 
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When required to interpolate between the learnt concentrations the networks 

appeared over sensitive to variations in the replicate Ai vs. Vw. e. curve shapes and 

produced a different prediction for each one. 

The time taken to train these networks for classification varied between 3 Hr 

40 min for the 15: 20: 1 network and 42 min for the 15: 3: 1 network. 5366 and 2548 

epochs respectively were required for training. Training for interpolation was faster, 

partly due to the reduction in the number of vectors in the training set. The 15: 3: 1 

architecture, for example, reached its minimum error in only 8 minutes. 
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Figure 39. Predicted ppb against actual ppb for BP 15: 3: 1 using the 
curry data test set for interpolation 
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The predictive ability of the networks investigated can be seen from the plots 

which show the actual concentration plotted against the network's prediction of the 

concentration, both axes in parts per billion. 
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Figure 40. Predicted ppb against actual ppb for BP 15: 3: 1 using the 
curry data test set for classification 
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Figure 41. Predicted ppb against actual ppb for BP 15: 20: 1 using 
the curry data test set for classification 

5.3.2. GRNN 

When required to interpolate the GRNN showed less scatter than the Back 

Propagation network and appeared less sensitive to variations in curve shape 

between replicates. 

The Euclidean distance metric was found to be superior to the City Block, 

producing an almost perfect match between predicted and target values for 

classification, see figure 44. Very few patterns were incorrectly classified and the 

maximum absolute error of those that were was only 26.5 ppb. 

Training times for the GRNN were particularly fast. The classification task 

using the City Block metric requiring only 2 min including a search of 25 candidate 

values for the smoothing parameter and the Euclidean metric needing only 1 min 
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50s including a search of 22 smoothing parameter values. Times for the 

interpolation task were similar. 

120 --- -------- ----- ----------- ----- --- ----- ; 1 ; ; I II I I 
1 II I 1 
I II I I 
I II I I 

100 ------------ ----------------------1--------1 1 ///ýýý 1 1 
1 11 

"1 
1 

1 11 1 ' 
1 

1 11 
1 11 1 1 

80 -- -------- 
h--- ----.. --------- , -------- --- -----I 

ß 
p, 

1 
1 

11 
I 

1 
I 

1 
1 

Q. I II 1 1 

a 1 
1 

11 
11 

1 
1 

1 
1 

60 
-------- 

CJ 1 1I 1 1 
'1; 7 
L 

1 11 
/ý 1ý1 

1 1 

IL Jý 
, 

40 --------i---- -----I --^ ---e- --------T--- ----- 
1 1XAI I 1 
1 1gp 1 1 1 
1 B 11 1 I 

-- -----ý . 
, 
, 

, 

0 

0 20 40 60 80 100 

Target ppb 

Figure 42. Predicted ppb against actual ppb for GRNN (Euclidean 
metric) using the curry data test set for interpolation 
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Figure 43. Predicted ppb against actual ppb for GRNN (city block 
metric) using the curry data test set for classification 
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Figure 44. Predicted ppb against actual ppb for GRNN (Euclidean 
metric) using the curry data test set for classification 
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5.3.3. Observations on Results from Curry Powder Data 

The previous results show that a neural network can be used to predict the 

concentration of lead in a real sample with a reasonable degree of precision when 

presented with a reduced form of stripping voltammogram. Classification appears to 

produce better predictions than interpolation, as might be expected. In this mode the 

GRNN performs better than the Back Propagation network. 

However there are two disruptive factors that were observed through closer 

examination of the data used in this case that influenced the result obtained by the 

neural networks. These factors contributed to the outcome of the instrument 

calibration by neural network and resulted in the decision not to use this data for 

further work. The implications of these factors will now be discussed. 

5.3.4. Reproducibility of electrode surface 

Through investigating the results it was found that the mis-classified lead 

concentrations had large variations in the shape of the voltammogram within the ten 

replicate scans. The reason for this is probably due to the extent to which the 

mercury film could be reproduced when pre plating the electrode with mercury prior 

to the analyte deposition. 

Wong243 and Hume244 both noted this reproducibility effect which was 

explained in detail by ýtulikov6245 as being due to the geometric electrode surface 

being not uniform in its properties but consisting of sites of varying electrical 

activity. Only about one quarter to one half of the electrode surface consists of 

active sites with the rest being of low or very low activity. 

Hence when deposited at a low potential, such as the -0.4v used when 

producing the electrode for the curry powder analysis , mercury first forms as 
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microscopic droplets only at the sites of highest activity. Subsequently, as it is easier 

to form mercury on mercury than on carbon, continued deposition is more likely on 

these droplets than elsewhere on the electrode. The result is that with this potential 

only a few, microscopically large droplets are formed. Depositing at a higher 

potential, such as the -0.9 V used later in this work with the in situ plated Florence 

electrode and the lead standards, causes mercury to be initially deposited at the less 

active as well as the active sites. This leads to the deposition of more initial droplets 

and hence to the production of a large number of fine droplets, giving a more 

uniform and hence more reproducible plating. 

This effect is quite pronounced: ýtulikovä's work indicates that the droplets 

formed at -0.9 V are on average half the size of those formed at -0.4 V. 

The implication of this in explaining the large variations in curve shape found 

within the ten replicates is that each time the electrode was re-polished, different 

numbers and positions of active sites were formed. Subsequent deposition at a low 

potential amplified these surface changes through the formation of a few, large 

mercury droplets. It is believed that this caused poor reproducibly of electrode 

surface which was reflected in the poor reproducibility of the stripping curves. 

5.3.5. Reliability of target concentrations 

A second factor that became apparent when investigating the data was the 

reliability of the target concentrations used in training. 

As previously described, the samples used for this work were first analysed by 

technical staff using atomic absorption spectroscopy and then supplied to the author 

for repeat analysis. The samples were supplied in a number of different plastic 

bottles. Performing a check on the linearity of peak height with concentration 

revealed an underlying pattern shown graphically below in Figure 45. This shows 
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the average peak height over the 10 replicates plotted against the stated 

concentration for all the data. Adjacent data points have been joined for clarity, this 

is not meant to imply that there is necessarily a linear relationship when 

interpolating between points. A linear least squares fit of all the data is included on 

the plot. 
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Figure 45. Voltammetric peak heights for the curry data plotted 
against AAS stated concentration 

It was found that not only was the stated concentration sometimes much higher 

than expected (e. g. 77 ppb in unadulterated digestion that should have been about 2 

ppb) but, as can be seen from the plot, the peak heights for some samples indicated 

that the actual lead concentration was much higher than that given by AAS. 

This situation was investigated further and the type of bottle in which the 

sample was supplied was considered. 

Four different types of plastic bottle were used by the technical staff to supply 

the samples. Some bottles were new ones but others had been used previously for 
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Cone. ntndon(DDb) 
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lead solutions and thoroughly washed. When the plot in figure 45 is reproduced 

including an indication of the type of bottle used for each sample, figure 46, it 

clearly shows that contamination of the samples by some of the bottles has taken 

place. Contamination by bottle type 3 appears to have taken place before analysis by 

AAS, producing a much higher than expected concentration for that sample. 
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Figure 46. Plot of ASV peak heights showing contamination by 
certain bottle types 

Bottles of type 1 however appear to have continued to contaminate the 

samples after AAS, generally producing a peak height that is higher than could be 

expected from the stated AAS concentration when the repeat analysis by ASV was 

carried out a few days later. This situation means that the targets given to the 

networks for similar voltammograms could differ over a wide range, by 45 and 70 

ppb in one case for a 51A peak height. 

Given this condition it is surprising that the GRNN managed to perform so 

well on the test data. The explanation for this could be that the test set exhibited the 
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same anomalies relating to voltammogram shape and concentration as did the 

training set. However the lowest mean absolute error obtained reflects the poor 

quality of the original data. 

The curry powder data produced some interesting and encouraging results as 

far as neural network prediction from voltammetric curves is concerned. However, 

because of the unreliability identified in this data it was decided not to use it in 

further research towards instrument calibration and to produce new lead standards 

instead. 
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This section describes the work leading to the major conclusions of this thesis. 

Lead standards having a range of concentrations were prepared and analysed. The 

data from some of the analytical scans was then processed by a variety of methods 

in order to obtain predictions of the metal concentration in the remaining scans. The 

precision and accuracy of these methods were then compared using the hypothesis 

that a neural network model would perform better than the traditional method of 

using just the stripping peak heights. 

5.4.1. Analyte preparation method 

All the glassware used in the preparation of these standards had been 

previously washed and soaked in 10 % nitric acid for two weeks. Immediately 

before making up the standards it was rinsed first in deionised water and then in 

10% nitric acid. After it had been used for making up a standard it was washed, 

rinsed and again stored in 10% nitric acid. 

The lead standards were prepared from atomic spectroscopy grade lead nitrate, 

(Spectrosol, BDH Chemicals Ltd, product 14036) at a lead concentration of 1000 

ppm (4.83 mmol 1'1). lml of this was first made up to 100 ml with 1% nitric acid. 

This provided sub-standard A at a lead concentration of 10 ppm. 1ml of sub- 

standard A was then made up to 100 ml, again using 1% nitric acid, to produce 

substandard B at a concentration of 100 ppb. 
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A 2000 ppm solution of mercury was prepared by dissolving 1.3554g of 

analar mercuric nitrate (Hg(N03)2.2 H2O) in 500 ml of 1% nitric acid. 5 ml of this 

was then made up to 100 ml with 1% nitric acid in order to produce a5x 10-4M 

solution of mercury. 

Immediately before the analytical run, quantities of sub-standard B ranging in 

0.5 ml steps from 0.5 ml to 10.0 ml were put into a 25.0 ml volumetric flask 

together with 2.0 ml of the 5x 10'M mercury solution and made up to volume 

using 1% nitric acid. The reason for adding the mercury to the lead solution is 

explained in the section on page 146. 

This procedure produced solutions containing lead at concentrations from 10.0 

to 200.0 ppb in steps of 10.0 ppb with each one also containing mercury at a 

concentration of 4x 10-5M . 

Each standard was made up using the same pipettes in order to reduce random 

errors. These were rinsed in de ionised water, 10% nitric acid and 1% nitric acid 

between making up each solution. 15 ml of the final solution was placed in the 

analytical cup. The temperature of the solutions was 21°C 

5.3.2. Working electrode preparation method for lead standards data 

The electrode used for the processing of the lead standards was of the in situ 

plated electrode type developed by Florence246, where the mercury and the species 

under examination are simultaneously plated onto the electrode substrate from the 

solution. Because of the shorter overall plating times and low concentration of 

mercury this results in a mercury film that is between 0.001 and 0.010 µm thick, 

orders of magnitude thinner than those used by previous workers who pre-plated the 

electrode with mercury. 
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De Vries247 had showed previously that the resolution between neighbouring 

peaks improves as the mercury film thickness decreases and both he and Lund248 

confirmed that the peak current is independent of the thickness. The above technique 

is therefore to be preferred as it gives sharper and more reproducible peaks than 

electrodes formed by pre plating. This observation was confirmed by Goto249 who 

also used the Florence electrode to investigate the mathematical transformations of 

the voltammetric signal. 

There is some disagreement regarding the optimum concentration of mercury 

to be used. Lund248 found that the most reproducible results were produced when a 

mercury concentration of 4x 10'5M was used whereas most of the work of 

Florence was carried out with 2x 10'5M solution. In this work the electrode was 

prepared using a solution containing the substance under test and mercury at a 

concentration of 4x 10'5M as previously described. 

In general, because of the very thin layer of mercury accumulating at each 

deposition, the electrode is not cleaned between voltammetric scans but allowed to 

accumulate mercury while pre concentrating the test species during each of the 

plating phases. Florence showed that if this is done, the peak potential, Ep, changes 

very slightly on each scan due to the increased mercury film thickness. The peak 

height however was shown by Lund to be independent of scan number once one or 

two scans had been made . This property allowed the replicate scans performed in 

this work to be done without cleaning the electrode each time. 
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Figure 47. Variation of peak potential and height with scan 
number 

As a confirmation of these observations, figure 47 shows the variation in peak 

height and peak potential obtained by the author for 11 replicate scans of a 100 ppb 

lead solution. The slight drift of the peak potential and the generally constant value 

of peak height can be seen. The rate of drift is in good agreement with that obtained 

by Florence. 

Both Florence and Lund noted the need for what they termed a 'conditioning' 

stripping scan that was made before the actual measurements were taken on the 

second and subsequent scans. In their work the first scan appeared to consistently 

produce a lower stripping peak than subsequent scans. Neither author satisfactorily 

explained the reason for this, however, and inspection of the table and graph above 

indicates that the author did not experience this problem. 

123456789 10 11 

Scan Number 
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However, in accordance with the practice of Florence and Lund a conditioning 

step was implemented in the following manner using the co-deposit strip operation 

available in the author's software. After polishing the electrode it was first rotated 

in the test solution at 300 rpm and maintained at -0.70 V vs. SCE for 9 minutes. 

Throughout this phase the plating current was approximately 40 µA and both the 

mercury and the species under test were plated onto the electrode. A linear scan was 

then performed from -0.70 V to -0.10 V at a rate of 0.33 Vs-1 without recording 

the Ai data. The 9 minute plate and the linear scan were made in order to provide 

the 'conditioning' step. Data from subsequent scans, using the differential pulse 

mode, were recorded. 

An interesting observation deserves mention at this point. Florence246, in his 

original paper of 1970, claimed that merely wiping the electrode with first a wet and 

then a dry tissue was sufficient for complete removal of the mercury film and 

rendered the electrode ready for another plating. He even reported that he had not 

polished his electrode for five yearsl250. 

The author's experience with various tissues appears not to support this claim. 

Indeed, after wiping the electrode with a wide range of tissues it was found that 

subsequent plating was very poor, resulting in very low or non existent peaks. The 

reason for this is assumed to be that commercial tissues today have a lubricant or 

softener such as lanolin added, which leaves a film on the electrode preventing 

sufficient mercury formation. After experimenting with various polishing powders, 

the best, and most reproducible results in this work were achieved when, prior to 

forming the mercury film, the electrode was re-polished for 30s using water 

lubrication on a polishing stick obtained from Body Shop® and intended for 

polishing fingernails. 
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5.3.3. Differential pulse analysis method for lead standards data 

The standards were prepared and analysed in a random order to prevent 

residual effects from one scan interfering with the next. Each standard was placed in 

turn in a new analytical cell and the electrode prepared and conditioned as 

previously described. 

A single analytical scan consisted of rotating the electrode at 300 rpm for a 

plate time of 1 minute whilst holding it at a potential of -0.70 V vs. SCE. Unlike 

the technique of Florence however, rotation was stopped at the end of this period 

and a rest period of 30 s entered with the plate potential being maintained at -0.70 

V. Finally the differential pulse scan from -0.70 V to -0.10 V using a step height of 

2.0 mV was performed, also without rotation. 

Four such scans were made of each solution using differential pulse mode at 

pulse heights of 5,10,20 and 50 mV. This was repeated to provide two 

voltammograms for each pulse height / concentration combination. The entire 

process was then repeated using newly made up solutions and with a deposition time 

of 3 minutes instead of 1 minute. 

This provided 320 voltammograms i. e. 16 analytical runs on each of 20 

concentrations. In addition two replicate scans of 0 ppb lead concentration was made 

at each of the four pulse heights using a3 minute plate time. The resulting database 

therefore consisted of 328 voltammograms each containing 300 Ai data points. 

The parameters of the system were: Offset value 0, Offset range 5µA, 

Sensitivity 125 VtA-1 (i. e. the lowest sensitivity), pulse duration 20 ms, time 

between pulses 20 ms, gain x1. 
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sn nv 

Pulse height & deposition time combination 

Figure 48. Contour plot of peak heights for all the scan parameter 
and lead concentration combinations 

In order to gain some appreciation of the problem space in which these 

calibration models are operating, figure 48 shows a contour plot of peak height for 

each of the eight pulse height and deposition time combinations plotted against the 

lead concentration. It can be seen that a given peak height could correspond to 

several values of concentration depending upon the values of the other parameters. 

Peaks corresponding to high concentrations and high pulse heights that are saturating 

the I/E converter at 42.8 µA can be seen more clearly in figure 49. This illustrates 

the same data as figure 48 but plotted instead as a 3D graph. 
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Figure 49.3D plot of peak heights for various parameter and lead 
concentration combinations 

5.3.4. Data set extraction for lead standards data 

The data set of 328 voltammograms was split into three groups. The first 

group contained the 258 non saturating curves that had a peak current less than 

42.74 µA and the second was obtained by using all of the original data vectors 

regardless of whether they saturated or not. The third group contained just the 70 

curves that exhibited saturation typical of the type shown in figure 50. 

These groups were then each split into a training (calibration) set and a test set 

by extracting approximately 25 % of the vectors at random and placing them into the 

test set, with the remainder going into the training set. 
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Differential Pulse - Sens: 0.125 U/uA, Offset: O, Range 5 uA, Gain: xl 
Pulse Anp: 50 nU, Pulse Tine: 20ns, Rest Tine: 20ns, Step Anp: 2nV 

(Pb180502) Lead Standard 180 ppb (3O/3/1994)rep2 
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Figure 50. Flat topped peak produced by saturating the I/E 
converter 

The breakdown of the vectors in each set is shown in table 14. 

Group Vectors in training set Vectors in test set 

Complete 
229 

(inc. 54 saturating ones) 
99 

(inc. 16 saturated ones) 

Non Saturating 194 64 

Saturating 52 18 

Table 14. Breakdown of vectors in the training and test sets 

-0.70 -0.64 -0.59 -0.54 -0.48 -0.43 -0.38 -0.32 -0.27 -0.22 -0.16 
Uoltage Applied U 
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5.3.5. Pre processing performed 

Two kinds of preprocessing were performed, one to provide peak height data 

for the 'traditional' calibration method and one to provide a reduced dimensional 

data vector for use with the neural network models. 

Using the raw data from the non saturating curves only, the peak height above 

a quadratic fitted to the baseline was calculated. This was done using the graphical 

tool developed as part of the analytical software and used a modified form of the 

technique used by Bond and Babaricul. 

To find a peak height, two rectangular areas judged to be on on the baseline 

before and after the peak are indicated using the mouse. The system then plots a 

quadratic fit to all the points indicated in the two areas in a similar manner to that 

previously carried out by Bond. However, in this current system, a third rectangular 

area may now defined, again using the mouse, which includes the likely position of 

the peak in question. Once this has been defined a second quadratic is fitted to the 

points in this area and the vertical distance, as measured on the Y axis, between the 

point of inflection of the peak quadratic and the fitted baseline quadratic is 

calculated. A vertical line is drawn indicating the position of the height 

measurement and both the potential of the W. E. and the peak height are displayed 

on the screen. The units used are the same as those on the axes (µA and Volt). 

Figure 51 shows a screen dump of a plot for which peak height calculation has been 

performed. The peak quadratic may not be very visible due to the quality of fit but 

it fits the points lying above approximately 22µA. 

Two independent measurements of peak height were performed for each plot 

and the average of the two peak heights recorded. 
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Figure 51. Screen dump of fitted quadratics and peak height 
display 

The peak heights were then normalised to a1 minute plate time at a5 µA 

pulse height using the following equation which assumes a linear relationship 

between peak height and both deposit time and pulse height. This relationship is 

independently confirmed by Rifkin8' and DillardM. 

,ý 
Height( 5 Height(nonn) _- Deposit Timex Pulse Height {is} 

For the neural network models the raw Ai data, with each data vector consisting 

of 300 data points was first processed in a similar manner as for the curry powder data 

by extracting the measured Di at PD's ranging from -0.60 V to -0.26V in steps of 20.0 

mV. This gave 17 current measurements for each analysis. In addition, the 

-0.55 -0.51 -0.413 -0.45 -0.41 -0.39 -0.34 -0.31 -0.27 -0.24 -0.21 
Uoltago Applied U 
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corresponding plate time, pulse height, maximum and minimum values of ti in the 

original vector and the standard deviation of the Di points in the original vector were 

recorded. This was done for all voltammograms, whether saturating or not. 

The 17 values of Ai were then scaled to values approximately in the range 0 to 

1 using the formula 

Ai(original) 
Ol(scalsd) = 

42.8 {i9} 

Here 42.8 is the maximum possible value of Di (in µA) that can be recorded 

with the sensitivity setting in force rounded up to the nearest 0.1 µA. The other 

components of the vector were normalised to the range 0-1 individually using the same 

formula as for the curry powder data, namely 

Xi(original) - Xi(min) 
r20ý 

Xi(scaled) = 
Xi(mý) -Xj(mý) 

i 

The target concentration in ppb, which ranged from 0 to 200 ppb, was 

similarly scaled to lie in the range 0 to 1. 

Finally, two different sets of input vectors were created for training and testing 

the networks; 

a) A 19 dimensional vector comprising the 17 scaled current measurements plus 

the scaled values of the deposit time and pulse height. 

b) A 22 dimensional vector comprising the 17 scaled current measurements plus 

the scaled values of the deposit time, pulse height, maximum Ai, minimum Ai and 

standard deviation of the Ai. 

The final data sets used are summarised in table 15, page 157. It must be 

stressed that these data sets form the starting point for the comparative research that 
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follows. Any errors in making up the solutions or performing the scans will be 

present in all data sets and, providing these errors are not too large, will not detract 

from the validity of the comparative study. 

Voltammograms Inputs used Vectors in Vectors in 
used training set test set 

All 17 Ai+Td+Ea 229 99 
(total 19) 

All 170! +Td+Ea +max +min + 229 99 
SD (total 22) 

Non Saturating Normalised average peak height 194 64 
(total 1) 

Non Saturating 17 Ai + Td + Ea 194 64 
(total 19) 

Non Saturating 17 Ai + Td + Ea + max + min + 194 64 
SD (total 22) 

Saturating 17 Ai + Td + Ea 52 18 
(total 19) 

Saturating 17 Ai + Td + Ea + max + min + 52 18 
SD (total 22) 

Table 15. Summary of data sets used for calibration of lead 
standards data 

5.3.6. Calibration models investigated for lead standards data 

For all the models used, one or more of the training sets was used to create, or 

calibrate, the model and the corresponding test set was used to obtain predictions of 

the 'unknown' lead concentrations. 

The first calibration, which is similar to that performed routinely in many 

laboratories, acted as the base with which all other techniques could be compared. 
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Using the training set only, the normalised average peak height was plotted 

against the known lead concentration and a linear least squares regression performed 

in order to produce a calibration curve. This calibration curve was then used to 

obtain a prediction of the lead concentration for each of the averaged and normalised 

test set heights. 

The second technique used was a partial least squares regression (PLSR), 

carried out in order to perform a multivariate calibration in a similar way to that 

used by Blank and Brown208. The calculations were performed by software written 

in Pascal by the author following an algorithm given in Martens252. The PLSR 

calibration was performed on the same non saturating data as that used for the peak 

height regression except that it used for its input the 22 dimensional data vector 

described previously, see page 156. 

The calibration was repeated for various numbers of retained factors from 1 to 

22 and a prediction made from the test set for each one. By plotting the error in test 

set prediction against the number of factors retained, an indication of the optimum 

number of factors to retain was ascertained. This process is detailed in the results on 

page 170. The PLSR possessing the optimum number of retained factors then 

provided the second method of calibration 

Finally neural networks of a number of different designs were applied to the 

same, unsaturated data using both the 19 and 22 dimensional input vectors. 

The neural network architectures for which results are reported here are: 

a. A 19 input, 1 output (19: 1) and a 22 input, 1 output (22: 1), two 

layer, linear perceptron having one weight matrix. This was included 

to investigate whether the problem was linearly separable since, as it 

had no hidden layer, this model is only able to model linearly 
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separable problems. The single output unit had a linear transfer 

function. 

b. A 138 input 1 output (138: 1), two layer High Order Perceptron 

having one weight matrix and with the single output unit having a 

linear transfer function. The inputs comprised all possible multiples 

of pairs of elements from the 22 dimensional normalised vector 

described earlier. i. e. 

(XI), (XI X X2), 
(XI X X3),... 

(XI 
X X. 

), (X2), (XZ 
X x3), 

(X2 
X X4),... (XZ 

X Xn),... (Xn) 

{21} 

c. A 19: 30: 1 and a 22: 30: 1 Back propagation, three layer MLP having 

either 19 or 22 input units, 30 hidden units and 1 output unit. The 

hidden units for both used the sigmoid transfer function and the 

output unit used the linear function. 

d. A 19: 194: 1 and a 22: 194: 1General Regression Neural Network using 

a sigmoidal transfer function for the hidden layer units and a linear 

transfer function for the output unit. Only the Euclidean distance 

metric was used. 

All the back propagation neural network models used batch update of weights. 

The learning rate and momentum were both set to 0.1 and the initial weights were 

random in the range ± 0.3. The GRNN also had its initial weights in the range ± 0.3 

and was tested using an optimum smoothing factor that was found by the search 

procedure mentioned earlier. The commercial neural network tool, NeuroShell 2 was 

also used for this part of the study. 
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Except for the peak height calibration, this entire procedure was then repeated 

using first the data set containing all the vectors, saturating and non saturating and then 

the data set containing just the saturating curves. 

5.3.7. Calibration quality metrics used for the comparative study of the 

techniques 

For most of the models the predicted concentration of the test set could be 

obtained directly from the output of the model when presented with the test data as 

input. For the peak height regression however, the slope and intercept of the least 

squares fit on the training set heights and their corresponding lead concentrations 

was first calculated. These values were then used to calculate the predicted 

concentrations in the test set given the peak heights in that set. For each of the 

calibration models investigated, a plot was then made of predicted lead 

concentration against actual lead concentration for the test set. 

The quality of the calibration made by each method was obtained by the 

following methods corresponding to those commonly found in the literature. 

The first metric used was the average value of the 95 % confidence interval for 

each data point over the range of actual concentrations used for the test. Jepson253 , 

from whom the calculations for the confidence interval are taken, suggests that using 

confidence intervals is particularly suited to neural network models. Assuming no 

systematic error, this provides a measure of meaningful minimum reportable 

concentrations as well as giving the prediction precision in the same units as the 

prediction, namely ppb. 

The average 95 % prediction confidence in predicting a lead concentration 

from the data used as input to the model was obtained using the equation 
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n 
E Cr 

Average Confidence {22} 
n 

where n is the number of test data points and Cl is the 95 % confidence interval for 

test data point i. 

The confidence interval Cl is given by Jepson as 

z 

C -t x 
n-1s ý1-r2) 1+1+(x-x) {23} a` n-2 

-. 2 
n (n-1)sx 

Here n is the number of pairs of actual and predicted values, ta is the 

Student's t statistic with n-2 degrees of freedom and 95 % confidence, x and sx are 

the mean and variance respectively of the actual values, sy is the variance of the 

predicted values and r is Pearson's correlation coefficient given by 

n 
E(xryr) 

-n xy 

_ r=t r-n sX sy {24} 

The second metric reported for comparison of the different calibration 

methods is the percent standard error (%SEP). This metric is used by Blank208 when 

reporting on the predictive ability of the partial least squares regression and enables 

the prediction precision to be expressed in percentage terms. This measure therefore 

reflects prediction errors calculated over all analyte concentrations using the 

concentration mean of the entire data set. 

The %SEP is given by Blank as 

xZ 

loo 
E(e` -ci)Z 

%SEP = r-ý 
p 

{25} 
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where p is the number of test concentrations, c, and q are the predicted and 

actual concentration of the component in sample i and c is the concentration mean 

of that component in the test set. The %SEP is included so that comparisons may be 

made with other researchers who commonly use this measure 

R2, the coefficient of multiple determination, was calculated as a means of 

obtaining an easily understandable measure of the prediction quality and linearity. 

Unlike the correlation coefficient, R2 reveals any systematic error that may be 

present and includes a measure of the scatter present in the data points. The closer 

R2 is to 1.0 the better the fit of the data points to the regression line. The value for 

R2 was calculated by NeuroShell 2. 

Finally the mean, minimum, maximum and standard deviation of the absolute 

errors for each calibration method are reported. 

To summarise, eight metrics were used to assess the precision of prediction. 

1. A graphical plot of predicted against actual concentration 

2. The average 95 % confidence interval 

3. The %SEP 

4. The value of R2 

5. Mean absolute error 

6. Minimum absolute error 

7. Maximum absolute error 

8. Standard deviation of the absolute error 
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6. Lead Standards Results 
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6.1.1. Introduction 

The results obtained by processing the lead standards have also been 

previously published (Manwaring254). A copy of this paper is given in appendix 1. 

The voltammograms from the lead standards produced using the in situ plated 

Florence electrode were considerably better than those produced for the curry 

powder using the pre plated electrode. They had a flatter baseline, probably due to 

less dissolved oxygen and organics, and exhibited much less noise. In addition there 

was less variation between voltammograms produced from the same concentration of 

lead. Figure 52 shows a typical voltammogram produced for a 10 ppb lead standard 

using a3 minute plate time. The other analytical parameters are the same as for the 

curry powder scans. For comparison, figure 53 shows the voltammogram produced 

for the same concentration but with only 1 minute plate time. The quality of the 

voltammograms is clearly better than those produced earlier even though these are 

showing the raw data received and are not yet smoothed in any way. Note also that 

as expected, the peak height for 3 minutes plate time is approximately three times 

that for one minute. 
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Differential Pulse - Sens: 0.125 U/uA, Off-set: 0, Range 5 uA, Gain: xl 
Pulse Anp: 50 nU, Pulse Tine: 2Ons, Rest Tine: 20ns, Step Anp: gnu 
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Figure 52. Voltammogram produced from a 10 ppb lead standard 
using the Florence electrode with a3 minute plate time 
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Differential Pulse - Sens: 0.125 U/uA, Offset: 0. Range 5 uA, Gain: xl 
Pulse Anp: 50 IV, Pulse Tine: 20ns, Rest Tine: 2Ons, Step Amp: 2nV 
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Figure 53. Voltammogram produced from a 10 ppb lead standard 
using the Florence electrode with a1 minute plate time 

Even at these low concentrations there is no evidence of the regular noise 

spikes apparent in the earlier data. The voltammogram for 100 ppb, a concentration 

for which these spikes were still clearly visible in the curry data, shows an 

extremely good signal to noise ratio even in the raw data. This voltammogram is 

reproduced in figure 54. Note also that the height is approximately ten times that for 

10 ppb. 
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Differential Pulse - Sens: 0.125 U/uA, offset: O, Range 5 uA, Gain: xl Pulse Amp: 3O nV, Pulse Tine: 20ns, nest Tine: 20ns, Step Anp: 2iU 
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Figure 54. Voltammogram produced from a 100 ppb lead standard 
using the Florence electrode with a1 minute plate time 

These high quality voltammograms made calculating an accurate peak height a 

relatively simple matter, given the software already developed. Calibrations from 

these heights could therefore be made with equal ease. The reduced dimensionality 

data vector used for the other models however does not contain so much 

redundancy. 

Figure 55 shows a plot of the first 17 elements from two such reduced 

dimensionality vectors. These elements correspond to the normalised values of Ai. 

They are shown plotted against Vw. e. for voltammograms from 40 and 50 ppb lead 

scanned using a5 mV pulse height and a1 minute plate time. The anomalous data 

-0.70 -0.64 -0.59 -0.54 -0.48 -0.43 -0.30 -0.32 -0.27 -0.22 -0.16 
Uoltago Applied U 
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point for 50 ppb between -0.5 and -0.45 is due to a point in a region of high noise 

being selected from the original voltammogram 

-"- 40 ppb -*- 50 ppb 
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Figure 55. Part of two reduced dimesionality data vectors 
corresponding to delta i 

A succinct tabulation of all the results obtained from the lead standards data is 

given in the summary in tables 32 to 34, pages 193 and 194. What follows here is a 

breakdown of the results under the three classes of non saturating voltammograms, 

all voltammograms and saturating voltammograms only, as previously described. 

The results of processing the voltammograms by performing a least squares 

regression on the training set peak heights will be described first. Following this 

will be the results of using partial least squares regression, elaborating on the 

method used to optimise the number of factors extracted from the regression. 

Finally, the results of performing a similar exercise to optimise the number of 

hidden units in the MLP will be described, prior to giving the results of calibrations 

using neural networks. 
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6.1.2. Prediction from Least Squares Regression on peak heights 

A plot of the normalised peak heights for all the non saturating 

voltammograms in both the training and test sets is shown below in figure 56. Each 

triangle represents the normalised peak height of one voltammogram. It can been 

seen that there is a reasonably linear correlation between the normalised heights and 

the concentration. 
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Figure 56. Normalised calibration curve for peak heights against 
concentration for all non saturating voltammograms 

Using this regression line, the predicted concentrations of the test set samples 

were found from their normalised peak heights. The known concentration of each 

sample was then plotted against the predicted concentration for each sample. 
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The result of performing this operation is shown in figure 57. Here the 95% 

prediction confidence limits have been plotted (dotted lines) either side of a least 

squares regression line to indicated the quality of the calibration performed in this 

manner. This will be the format of all subsequent calibration plots. The indicative 

values that may be extracted for this plot are given below in table 16. 

Avg 
Conf % SEP RA2 Mean Max Min S. D. 

. Abs Err Abs Err Abs Err Abs Err 
ppb) (± (ppb) (ppb) (ppb) (ppb) 

30.0 16.8 0.89 13.8 37.9 0.1 10.4 

Table 16. Tabulated results for peak height calibration 
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Figure 57. Calibration of lead standards from regression on 
training set peak heights 

This plot, and the values in the above table, are used as a base with which to 

compare other calibration methods. Of these the reader's attention is particularly 
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drawn to the results for the 22: 30: 1 three layer neural network trained by back 

propagation, the calibration curve for which appears on page 184. 

6.1.3. Prediction from partial least squares 

6.1.3.1. Oatimisation of number of Factors in PLS 

The data used for this calibration was only that which did not saturate the 

hardware and therefore comprised 194 calibration vectors and 64 test vectors. All 

the 22 elements described on page 156, including pulse height, plate time, Ai(,. ), 
di(min) and the standard deviation of Di were used as the independent variables input 

to the PLS regression. The lead concentration was the single dependent variable. All 

the data was mean centred and each vector scaled to a length of 1 before calculating 

the regression. The training set was used to build the regression model and then the 

test set used to obtain predictions of the lead concentration which were finally 

plotted as before. 

The quality of a PLS regression depends upon the number of 'factors' 

extracted from the data. In this work the regression and prediction was repeated 22 

times, with each regression extracting a number of factors from 1 to 22. The 

percent standard error on the test set predictions calculated for each one. The results 

of this exercise are shown graphically in Figure 58 which is a plot of the percent 

standard error of prediction in the test set plotted against the number of factors 

retained. 

This graph indicates that the optimum number of factors to retain was 9, this 

number producing the lowest percent standard error. Using fewer factors than this 

appeared to create a model with an inadequate fit and hence a high %SEP. If 

slightly more than 9 factors are used the model again becomes worse due to the over 
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fitting of the training data. Once about 15 factors have been extracted there is little 

further information in the training data set and there is no change in the %SEP. 
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Figure 58. % SEP for non saturating test set against number of PLS 
factors retained 

6.1.3.2. Prediction confidence Limits Obtained using PLS 

The initial results of predicting the test set concentration using a nine factor 

linear PLS model of the calibration set were not very encouraging. Figure 59 shows 

the predictions of the test set plotted in the same format as that used for the peak 

heights. The numerical indicators are given below in table 17. It can be seen that 

these values indicate a worse fit using this model than peak heights regression. 
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Avg % SEP RA2 Mean Max Min S. D. Conf. Abs Err Abs Err Abs Err Abs Err 
(t ppb) (ppb) (ppb) (ppb) (ppb) 

64.8 37.2 0.50 30.3 84.3 2.7 22.9 

Table 17. Tabulated results for PLS regression 
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Figure 59. Actual vs. predicted concentration for non saturated 
standard curves using linear PLS 

6.1.4. Prediction from 19 input, two layer perceptron 

The results of these investigations indicated that the problem did not lend itself 

to easy modelling by such a linear system. Figure 60 and table 18 show the results 
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CoAvg nf. 
% SEP RA2 Mean Max Min S. D. 

(t ppb) 
Abs Err Abs Err Abs Err Abs Err 
(ppb) (ppb) (ppb) (ppb) 

60.5 36.2 0.56 27.6 80.8 0.0 24.5 

Table 18. Tabulated results for 19: 0: 1 neural network 

The average 95 % prediction confidence here is very close to that for PLS. 

Indeed closer examination indicates that similar test vectors in each calibration have 

been allocated similar concentration predictions. 
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Figure 60. Test set calibration using a 19 input perceptron trained 
on non saturating data 
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6.1.5. Prediction from 22 input, two layer perceptron 

Increasing the number of inputs to include the maximum, minimum and 

standard deviation of the points in the original voltammogram produced the plot 

shown in figure 61 and table 19. 

Avg. 
Conf. % SEP RA2 Mean Max Min S. D. 

(± ppb) 
Err Abs Err Abs Err Abs Err 

(ppb) (ppb) (ppb) (ppb) 

59.0 35.1 0.58 25.8 90.0 0.0 24.8 

Table 19. Tabulated results of 22: 0: 1 neural network 

The average 95% prediction confidence is slightly better than both the 19 

input, two layer network and the PLS regression but still not as good as using the 

peak height regression. 
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Figure 61. Test set calibration using a 22 input perceptron trained 
on non saturating data 
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6.1.6. Prediction from 138: 0: 1 two layer high order perceptron 

An attempt to provide more information to the network by providing it with 

combinations of inputs instead of the raw inputs produced the 138: 0: 1 network for 

which the calibration plot is shown in figure 62. Unfortunately the average 95 

prediction confidence achieved by this network is the worst of all the calibration 

methods attempted. Only 68.8 % could be achieved with this architecture, see figure 

62 and table 20. 

Avg 
nf 

% SEP RA2 Mean Max Min S. D. 
. . Abs Err Abs Err Abs Err Abs Err (± ppb) (ppb) (ppb) (ppb) (ppb) 

68.8 50.1 0.43 42.0 150.1 0.0 28.9 

Table 20. Tabulated results of 138: 0: 1 high order neural network 
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Figure 62. Test set calibration using a 138 input, two layer, high 
order perceptron trained on non saturating data 
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The following sections deal with three layer networks that exhibited 

considerably better performance than the models reported above. 

6.1.7. Prediction using the 19: 194: 1 GRNN 

After the success of the GRNN used to process the data from digested curry 

powder the first multilayer neural architecture studied, a 19 input GRNN trained 

using Euclidean distance metric proved somewhat disappointing. The calibration 

curve for this model is shown in figure 63 and table 21. 

o 
n 

C nf 
% SEP RA2 Mean Max Min S. D. 

. . 
(± ppb) 

Abs Err Abs Err Abs Err Abs Err 
(ppb) (ppb) (ppb) (ppb) 

31.4 18.6 0.88 12.7 85.3 0.0 14.1 

Table 21. Tabulated results of 19: 194: 1 GRNN 

The average 95% prediction confidence obtained using this data was 

approximately half that obtained by either PLS or either of the two layer neural 

networks, indicating the superior modelling ability of multi layer networks. 

However the results of this network are still only of the same order as predictions 

made using the base method of peak height regression. 

Some encouragement must be drawn from this result however, as it indicates 

that the problem is not linearly separable in the original input space and that a multi 

layer network might therefore be able to extract more information from the curve 

than using models based upon peak height alone. It should be remembered at this 

point that the data vector being processed is a vastly reduced version of the vector 

from which the peak height was calculated (See Figure 55, page167) 
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Figure 63. Test set calibration using a 19 input GRNN trained on 
non saturating data using the Euclidean distance metric 

6.1.8. Prediction using the 22: 194: 1 GRNN 

Increasing the number of inputs to the GRNN to 22 by including the additional 

information described earlier produced a calibration curve that was slightly better 

than that obtained by the peak heights. Figure 64 and table 22 illustrate the 

calibration. 

Conf 
n 

f % SEP RA2 Mean Max Min S. D. 
. . . Abs Err Abs Err Abs Err Abs Err 

ppb) (ppb) (ppb) (ppb) (ppb) 

27.5 16.2 0.91 12.5 50.0 0.0 10.8 

Table 22. Tabulated results for 22: 194: 1 GRNN 



178 

It is interesting to note however that whilst this model appears to perform 

slightly better than using peak heights, inspection shows that the points representing 

predicted concentration are more scattered at the extremes of the concentration range 

than they are for the latter method. 
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Figure 64. Test set calibration using a 22 input GRNN trained on 
non saturating data using the Euclidean distance metric 

6.1.9. Prediction from Multi Layer Perceptrons 

6.1-9-1. Optimisation of Number of Hidden Units 

The same 22 input non saturating data used to find the optimum number of 

factors for PLS was used here to investigate the effect of varying the number of 

hidden units in a three layer MLP in an attempt to optimise that model. Using 22 

inputs and the usual single output, 10 different MLPs having hidden layers 

containing from 1 to 45 sigmoidal processing units were trained on the non 
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saturating standard lead curves. The output unit had a linear transfer function. After 

each training epoch the test set was presented (without weight updates) and the mean 

squared error recorded. Training continued until the mean squared error on the test 

set showed an obvious rising trend from its minimum value. The minimum test set 

MSE reached for that architecture was recorded. The entire process was then 

repeated twice using a different set of random starting weights each time and the 

results for each architecture averaged. 

Number of Hidden Units Average Minimum 
MSE for the test set 

1 0.032 

5 0.028 

10 0.014 

15 0.011 

20 0.012 

25 0.011 

30 0.008 

35 0.012 

40 0.012 

45 0.015 

Table 23. MSE reached by a back propagation MLP with different 
numbers of hidden units 

The results, shown in table 23 and figure 65, indicate that 30 hidden units are 

optimal for this problem as that number produces the lowest MSE on the test set. 
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Figure 65. Plot of MSE reached against number of hidden units for 
a back propagation MLP 

It can be concluded that a network with fewer than 10 hidden units is not able 

to model adequately the training set data and those networks with many more than 

35 are over fitting the same data. The optimum number of hidden units, here taken 

as 30, does not appear to be quite so critical as the optimum number of factors to 

retain when using PLS. Adequate performance was obtained with any number 

between 15 and 40. For the remainder of this work however MLP networks having 

30 hidden units were used. 

6.1 9.2. Effect of inidal starting weigh 

At this point the effect on the final mean squared error of changes in the initial 

network weights was investigated. The network used for this test was the 22: 30: 1 

network training on the non saturating curves. Eight different networks were 

trained, each with a different starting seed for the random number generator used to 

initialise the weights. Each was trained until the MSE had reached its minimum. 

Sigmoidal hidden units were used with a linear output unit. 
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Scud MSE (cached 

1 0.010 

2 0.011 

3 0.010 

4 0.011 

5 0.010 

6 0.010 

7 0,013 

8 0.014 

Table 24. MSE reached by a 22 Input MLP for different starting 
weights 

The results, shown in Table 24 have a mean of 0.0112 and a standard 
deviation of 0.0016. ThIs scans to indicate that the global minimum had been 

reached by thcsc nctworks and that the particular sct of starting weights used was 

not acting as a barricr to cffcctivc training. 

6.1.10. Prediction using the 19: 30: 1 mulct layer perceptron 

The hill's traincd using back propagation pcrformcd much bcttcr than any of 

the other models, producing avcragc 95% prediction confidence limits 

approximately half as wide as tose of the next but model, the 22: 194: 1 GRNN. 

The calibration plot for the 19: 30: 1 mode) is shown in figurc 66 and the 

results in table 25. Note that in order to provide an easy basis for comparison, the 

abscissa in figure 66 has been retained at an upper limit of 200 ppb. The 
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prcdictions for the two actual concentrations of 200 ppb in the test set were in fact 

very slightly above this figurc and hcncc do not appear on the plot. Thcsc 

predictions were 202 and 204 ppb respcctlvcly (with predictions rounded to the 

=rest ppb). 

Cong. % SEP RA2 Mean Max Min S. D. 
fi ) Abs Err Abs Err Abs Err Abs Err 

(>t>5) (ppb) (ppb) (ppb) 

16.7 10.0 0.97 a. 4 2ß. 9 0.4 5.7 

Table 25. Tabulated results for 19: 30: 1 neural network 
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Figure 66. Test set calibration using a 19 Input back propagation 
MLP trained on non saturating data 

The 19: 30: 1 network Save nculy the best performance of all the models and is 

much bcttcr than using peak bcights alonc. 
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6.1.11. Prediction using the 22: 30: 1 multi layer perceptron 

The best predictions of any model studied were achieved by the 22: 30: 1 

multilayer perceptron. This network achieved ±16.1 ppb prediction confidence 

limits with a %SEP of 9.4 %, a considerable improvement over using peak heights, 

even when only 22 Ai data points are taken into consideration. 

The results for the network are shown in table 26 and figure 67, where the 

abscissa has again been retained at an upper limit of 200. The two predictions for 

200 ppb were 202 and 203 ppb. 

Avg 
Conf. % SEP R112 Mean Max Min S. D. 

(± ppb) 
Abs Err Abs Err Abs Err Abs Err 
(ppb) (ppb) (ppb) (ppb) 

16.1 9.4 0.97 7.9 20.6 0.0 5.5 

Table 26. Tabulated results for 22: 30: 1 neural network 

If figure 67 is compared to figure 57, duplicated here, which showed the 

'base' predictions obtained from a peak height calibration, the narrowness of the 

95% confidence limits obtained by the neural network and the consequent 
improvement in concentration predictions are obvious. 

The predictive data from the non saturating voltammograms represent the first 

important result of this work. It shows that neural networks can offer a considerable 

advantage over traditional methods of producing calibration curves from 

voltammograms. 
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Figure 67. Test set calibration using a 22 input back propagation 
MLP trained on non saturating data 
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Saturating voltammograms were produced for a range of different 

concentrations as a low concentration could be made to produce a saturated 

voltammogram if the pulse height and deposition time were large whereas a high 

concentration sample would start to produce saturated voltammograms at low pulse 

heights and deposit times. 

The 16 saturating vectors in the test set comprising all the data had target 

concentrations of between 50 and 200 ppb and were roughly evenly spread over this 

range, see table 27. The 54 saturating vectors in the training set showed a similar 

spread from 40 ppb to 200 ppb. 

target ppb 50 60 70 90 100 110 120 130 150 160 160 160 170 180 190 200 

pulse height 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 

deposition 
time 

50 50 50 50 50 50 50 20 20 20 50 50 20 50 50 50 

Table 27. Parameters of saturating voltammograms in the 
combined test set 

Networks with no hidden layer were not used with this data, nor was it 

applicable to attempt a peak height calibration as the peak heights could not be 

ascertained for all the data. The only networks used therefore were the GRNN and 

the MLP, each with either 19 or 22 inputs. 
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6.2.0.1. Prediction using the 19: 229: 1 and 22: 229: 1 GRNNs 

It was expected that all network models would perform poorly on this data 

due to wide variation in the vectors from saturating and non saturating 

voltammograms with the same target concentration. 

However, both of the GRNN networks, with 19 or 22 inputs, performed 

almost as well with this data as they had with data containing no saturating vectors. 

The 19 input network produced an average 95 % prediction confidence of ± 24.9 

ppb and the 22 input produced ± 26.4 ppb. Both still out performed the peak height 

regression even when this was using only non saturating data. 

The results are grouped here in table 28 as the values were very similar. 

Avg % SEP RA2 Mean Max Min S. D. Conf. Abs Err Abs Err Abs Err Abs Err 
(± ppb) (ppb) (ppb) (ppb) (ppb) 

24.9 14.2 0.93 11.3 52.9 0.0 10.0 19 input 
GRNN 

26.4 15.0 0.92 12.0 61.8 0.0 10.5 22 input 
GRNN 

Table 28. Tabulated results for 19 and 22 input GRNN on all 
saturating and non saturating data 
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Figure 69. Test set calibration using a 19 input GRNN trained on 
both saturating and non saturating data 
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Figure 70. Test set calibration using a 22 input GRNN trained on 
both saturating and non saturating data 
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6.2.0.2. Prediction using the 22: 30: 1 MLP 

The 22 input MLP network performed slightly worse on this data than it did on non 

saturating data. However with a mean 95 % confidence of ± 23.9 ppb it is still better 

than that produced by the both the GRNN and the peak height models. 

n. 
C onf. 

% SEP RA2 Mean Max Min S. D. 

(t ppb) 
Abs Err Abs Err Abs Err Abs Err 
(ppb) (ppb) (ppb) (ppb) 

23.9 13.3 0.93 10.8 45.8 0.0 9.2 

Table 29. Tabulated results of 22: 30: 1 neural network on saturating 
and non saturating data 
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Figure 71. Test set calibration using a 22 input back propagation 
MLP trained on both saturating and non saturating data 
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6.2.0.3. Prediction using the 19: 30: 1 MLP 

Although it was presented with less total information on its inputs, the best 

network model for this data was the 19 input MLP. This network performed almost 

as well as it had done with the non saturating data, producing an average 95 

prediction confidence of ± 18.4 ppb, roughly half as wide as using peak heights on 

non saturated data.. Mean and standard deviation of the absolute errors also 

compare well with that model. 

Avg % SEP RA2 Mean Max Min S. D. 
Conf. Abs Err Abs Err Abs Err Abs Err 

(± ppb) (ppb) (ppb) (ppb) (ppb) 

18.4 10.3 0.96 8.3 29.8 0.0 7.2 

Table 30. Tabulated results of 19: 30: 1 neural network on saturating 
and non saturating data 

The calibration plot for this model is shown in figure 72. It can be seen that it 

is not possible to distinguish those points which were predicted by processing 

saturating voltammograms from those arising out of voltammograms in which the 

stripping peak was well defined. 

A possible explanation for the 19 input MLP performing better than the 22 

input MLP with this data is that one of the inputs in the 22 input model is a 

normalised version of the maximum value in the original voltammogram. The value 

of this maximum in saturating voltammograms remains constant at 42.8 µA 

regardless of the concentration in the original sample. Hence, by providing the 
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network with an input that remains as the same value for different target 

concentrations, this input is sometimes providing conflicting data. 
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Figure 72. Test set calibration using a 19 input back propagation 
MLP trained and tested on both saturating and non saturating 

data 

The input that provided a normalised standard deviation of the original data 

points would still be providing a range of different values for the different vectors. 

These values would however be distorted in saturating vectors, tending to be lower 

than they would be if the true maximum of the peak were available. 

The fact that neural network models are able to make predictions from data 

that includes saturating voltammograms represents the second important result of 

this work. Providing a prediction for lead concentration from voltammograms that 

may or may not saturate the equipment releases the analyst from having to be too 

careful about the choice of operational parameters used during the scan. 
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To complete this work on the lead standards an attempt was made to predict 

the lead concentration by training and testing networks on data that was entirely 

produced from saturating voltammograms. This has little practical application since 

one would not deliberately saturate the equipment but the results are included here 

as they represent a third significant aspect of this work. 

The test set included a representative sample of all the saturating vectors. The 

parameters of the ones selected are given in table 31. 

Pulse Height 

(mV) 

Deposit 
time 

(minute) 

Concen- 
tration 

(ppb) 

20 3 70 

50 3 70 

20 3 120 

50 3 120 

20 3 140 

20 3 150 

50 3 150 

20 
L20 

3 

3 

170 

170 

Pulse Height 

(mv) 

Deposit 
time 

(minute) 

Concen- 
tration 

(ppb) 

50 3 170 

50 1 170 

20 3 180 

50 3 180 

50 1 180 

20 3 190 

20 3 190 

50 3 190 

50 1 200 

Table 31. Parameters of test set used for calibration with just 
saturating voltammograms 

As with the combined test set, only the GRNN and three layer, back 

propagation neural network models were used with this data. The average 95% 
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prediction confidence limits in predicting a lead concentration from calibration 

curves produced in this way showed little difference between the different network 

models used. When placed in order of predictive ability they did nevertheless show 

the same pattern as that displayed when used on data containing all the vectors. The 

worst performer was the 19 input GRNN and the best was the 19 input back 

propagation MLP. The prediction confidence limits were also similar to those 

obtained using the combined data, ranging from ± 20.4 ppb for the 19 input GRNN 

to ± 16.5 ppb for the 19 input MLP. 

The calibration plots are visually rather similar. Consequently for reasons of 

space only the plot for the 19 input MLP is reproduced here in figure 73. The 

tabulated results of all four network models are given in the summary in table 34. 
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Figure 73. Test set calibration using a 19 input back propagation 
MLP trained and tested on just saturating data 
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All the results from work on the lead standards are summarised in tables 32 to 

34. In these tables the rows are sorted in order of descending average 95 % 

prediction confidence. It can be seen that every three layer neural network is a better 

predictor of the actual lead concentration than obtained using peak heights alone. 

Network / Calibration Coif % SEP R"2 Mean Max Min S. D. 
model (± ppb) 

Abs Err Abs Err Abs Err Abs Err 
(ppb) (ppb) (ppb) (ppb) 

BP 138 input, two layer, 68.8 50.1 0.43 42.0 150.1 0.0 28.9 
high order neural network 

22 input, 9 factor PLS 64.8 37.2 0.50 30.3 84.3 2.7 22.9 

19 input, two layer neural 60.5 36.2 0.56 27.6 80.8 0.0 24.5 
network 

22 input, two layer neural 59.0 35.1 0.58 25.8 90.0 0.0 24.8 
network 

19 input GRNN 31.4 18.6 0.88 12.7 85.3 0.0 14.1 

Regression on training set 30.0 16.8 0.89 13.8 37.9 0.1 10.4 
heights 

22 input GRNN 27.5 16.2 0.91 12.5 50.0 0.00 10.8 

19 input, three layer neural 16.7 10.0 0.97 8.4 26.9 0.4 5.7 
network (Back Prop) 

22 input, three layer neural 16.1 9.4 0.97 7.9 20.6 0.0 5.5 
network (Back Prop) 

Table 32. Results summary - Non saturated data sets 
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Network A 
Conf. 

vg % RA2 Mean Max Abs Min S. D. 

ppb) 
SEP Abs Err Err (ppb) Abs Err Abs 

(Peak height regression (ppb) (ppb) Err 
shown for comparison) (ppb) 

Regression on training set 
heights (for non saturating) 

30.0 16.8 0.89 13.8 37.9 0.1 10.4 

19 input GRNN 24.9 14.2 0.93 11.3 52.9 0.0 10.0 

22 input GRNN 26.4 15.0 0.92 12.0 61.8 0.0 10.5 

22 input, three layer neural 
network (Back Prop) 

23.9 13.3 0.93 10.8 45.8 0.0 9.2 

19 input, three layer neural 
network (Back Prop) 

18.4 10.3 0.96 8.3 29.8 0.0 7.2 

Table 33. Results summary - saturated and non saturated data sets 

Network Avg % RA2 Mean Max Abs Min Abs S. D. Conf. SEP Abs Err Err (ppb) Err Abs 
(Peak height regression ppb (ppb) (ppb) Err 
shown for comparison) (ppb) 

ssion on training set 30.0 16.8 0.89 13.8 37.9 0.1 10.4 
is (for non saturating) 

19 input GRNN 20.4 7.7 0.92 9.3 26.2 0.0 7.4 

22 input GRNN 21.3 7.7 0.91 9.6 24.5 0.0 7.5 

22 input, three layer neural 18.3 6.5 0.93 8.7 19.6 0.2 5.1 
network (Back Prop) 

19 input, three layer neural 16.6 5.53 0.95 7.2 20.0 0.2 4.9 
network (Back Prop) 

Table 34. Results summary - Only saturated data sets 
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7. Discussion of Results 
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There are a number of areas in this work where errors were introduced. An 

indicative list is given below followed by a discussion on the effect that these errors 

may have had on the results previously given. 

a. The target values for all the models in this work were the assumed 

concentrations of lead in the standard solutions made up. These values are 

subject to error arising from a number of factors to do with the weighing out 

of the chemicals, the use of the volumetric glassware and the experience (or 

lack thereof) of the operator. 

b. The potentiostat and associated electronics that scanned the analytes and 

produced the raw data also introduced error into the resulting 

voltammograms. 

c. The method of peak height estimation used on the voltammograms as the 

basis of the comparative calibration was susceptible to the points at which the 

quadratics were fitted. 

d. All the calibration models, peak height and neural network, contained errors 

due to the need to generalise from the training set rather than to fit it exactly. 
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Errors in area (c), the measuring of the peak height via software, were 

investigated by performing ten replicate measurements of the peak height for a 

single voltammogram produced from a 100 ppb lead standard. This was produced 

using a plate time of 1 minute and a pulse height of 50 mV. From these ten 

measurements the mean peak height found was 27.83 µA and the standard deviation 

of the measurements was 0.05 µA. 

Errors in area (b), the instrumental errors, are difficult to isolate from those in 

inherent the measurement of the peak height. The method used here is to investigate 

the variation in peak height recorded for 10 replicate scans on the same sample of 

digested curry powder containing a nominal 45 ppb lead, scanned using a deposit 

time of 1 minute and a pulse height of 50 mV. This process assumes that the peak 

height measurement process is considerably more precise than the process producing 

the peak. The measured mean peak height obtained over the ten replicate scans with 

this data was 13.17 pA with a standard deviation of 0.64 pA . 

Experiments confirmed that whilst a blank solution produces a background 

signal above 0 µA, a quadratic fitted to two intervals either side of where the lead 

peak would normally appear and a second one fitted to the remaining central 

interval, will coincide and record a measured peak height of 0.0 µA. 

Thus, assuming a linear relationship between peak height and concentration, a 

height of 13.17 µA for 45 ppb indicates that with these instrumental parameters, 

neighbouring samples differing by 10 ppb would be separated by a difference in 

peak height of 2.9 µA . Since the measured peak height corresponding to any one 

concentration has a standard deviation of 0.64 µA, peaks from neighbouring 

concentrations would be separated by 4.5 standard deviations. This indicates that the 

instrument should be capable of producing peaks that are resolved into reasonably 

separated bands corresponding to each 10 ppb division. 
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The standard deviation of the peak height measurement process (0.05 µA), is 

small compared to the 0.64 µA above and has been ignored in this work. 

Errors in area (a), the making up of the solutions, can be estimated by making 

up replicate samples of lead solution and measuring the lead concentration in the 

final analyte using a standard technique such as carbon furnace atomic absorption 

spectrometry. Alternatively, given the data above, an estimation of the error may be 

made from the variation in peak height about the least squares fit when the peak 

heights are plotted against the nominal lead concentration. A possible metric would 

be the % standard error calculated using the equation 

error = 
er 

yx 
100 {26} 

where the error, el, is the difference between the desired concentration and the 

concentration calculated from the regression line using the measured peak height and 

y is the average of the desired concentrations used in the regression. 

Calculating this for the voltammograms produced by a1 minute plate and 

5mV pulse height showed that solutions were being made up to within a standard 

error of 10.9% of the desired value. 

The above discussion however concerns itself with the mechanisms producing 

the voltammograms and the measurement of the peak height necessary for the 

calibration based on heights. However, the initial set of data supplied to each of the 

calibration models, whether based upon peak height or a neural network, is the 

same. This data being the voltammograms themselves. On this basis the only error 

introduced from this point on is that in area (d), the error inherent in the modelling 

method itself. Thus the comparison of different modelling methods may be carried 



198 

out from the starting point of the voltammograms themselves, however they are 

produced. 

It is from the observation of this modelling error, measured using R2, %SEP, 

95 % confidence limits and statistics drawn from the absolute errors, that the 

conclusions of this thesis are drawn. 
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The following summarises the main observations made when performing , 

differential pulse, anodic stripping voltammetry of trace level lead solutions using 

computerised instrumentation and applying neural network and traditional processing 

to the data obtained. 

1. Several neural network paradigms are able to predict the lead concentration 

from either a complete anodic stripping voltammogram or one that has had 

the number of data point severely reduced. 

2. From good, non saturating curves a backpropagation neural network is able 

to predict species concentration with a lower error and a higher confidence 

than the equivalent prediction obtained by peak height calibration or partial 

least squares. This applies even when the number of inputs to the network is 

very much less than the number of data points in the original voltammogram. 

3. The backpropagation neural network is able to estimate species concentration 

with an acceptable error even from curves exhibiting saturation. These 

curves may be obtained as a result of using analytical parameters which, in 

hindsight, prove to have been inappropriate for the actual, high, 

concentration level in the solution. 

4. Including the analytical parameters used during analysis as inputs to the 

neural network enables it to model a much wider range of instrument 

response / analyte concentration than is possible using a peak height 
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calibration at a single instrument setting. Even if different instrument settings 

are allowed for in the calibration by scaling of the peak height, the neural 

network model still shows superior performance. 

5. The GRNN network outperformed the backpropagation network on 

voltammetric curves containing considerable non linearity due to artifacts in 

the data but both networks successfully modelled the data. 

6. A fully computerised instrument is feasible, has been shown to work and can 

contain elements that render it able to be controlled by an external, 

optimising system, possibly driven by a neural network 

7. Gray code, binary and decimal outputs may all be used with advantage. The 

Gray performs marginally better than binary. When a linear transfer function 

is used on the output with aa single decimal value encoding the target, 

predictions can be made with sufficient resolution to predict a concentration 

level to within 20 ppb for lead. 

8. Neural networks can be used to estimate the concentration of several species 

simultaneously from a single simulated voltammogram. (Details of this 

auxiliary work are given in appendix 2) 
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8. Conclusions and 
Recommendations for Further 
Work 
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It has already been said that this work does not claim to push back the 

boundaries of fundamental research into neural networks, nor does it propose a 

similar claim for analytical chemistry. Nevertheless, this work represents novel 

research and an advancement of knowledge as it brings together two unrelated fields 

and describes a new application of neural networks, previously unreported in the 

literature. 

One of the original aims of this work was to ascertain whether neural networks 

could be used to good effect in producing quantitative predictions of trace metal 

concentrations from data obtained by differential pulse stripping analysis. The data 

was originally intended to be extracted from good quality voltammetric scans that 

produced a clearly defined stripping peak. 

This has been achieved. The major conclusions of this work are that even 

relatively uncomplicated neural networks are able to produce the required 

quantitative predictions. 
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Indeed, the neural network model is shown to be superior to a traditional 

method and able to process scans performed at a range of pulse heights and 

deposition times without the need to re calibrate the instrument. 

A second aim of this work was to investigate a control mechanism whereby a 

neural network could identify a poor quality peak, for example one that exhibits 

saturation caused by inappropriate stripping parameters, and initiate a repeat of the 

scan using different values. The reason for doing so being to obtain a non saturating 

peak from which a prediction of analyte concentration could be made. 

The results of this work show that, at least within a limited range, such a 

mechanism is unnecessary. It is shown that good predictions can be made by neural 

networks from scans that would have been of no use if processed by traditional 

methods. If the instrumental parameters used in the analytical scan are included in 

the neural network's input, good calibrations may be made from saturating and non 

saturating scans alike and valid quantitative predictions of concentration obtain from 

unseen test data obtained from scans that are similarly variable in quality. 

Nevertheless, although postponed to a further period of investigation, the 

goal of controlling the analysis by neural network remains one worthy of research. 

The groundwork for achieving this goal is in place. The software developed in the 

earlier part of the research, and used to operate the computerised instrument, has 

been written in a way that facilitates further levels of control, directly or indirectly 

by other pieces of software. The results so far obtained seem to suggest that it would 

not be a difficult matter to train a neural network to detect inappropriate instrument 

settings and to have this control provided by the neural network outputting the 

optimum settings. 
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The main conclusions of this work rest upon the evidence that neural network 

processing, in particular by the 22: 30: 1 backpropagation network, provides more 

precise calibrations than a calibration curve produced from peak heights alone. 

Accordingly a one tailed Student's t test was devised to ascertain the significance of 

the apparently lower 95 % prediction interval obtained by MLP over peak height 

calibration and also the perceived lower mean absolute error in prediction. The cross 

validation procedure adopted was as follows. 

The file containing data from unsaturated peaks was first randomised by 

making a single pass through the file. As each row of the data matrix was reached 

during the pass it was swapped with a row chosen at random from the entire file. 

After randomising the data, four cross validation training and testing data sets in the 

ratio 75 % training 25 % testing were extracted. 

This was done by taking the vectors 1 to 64 to be the test data for set 0 with 

the remaining vectors going into the training set for set 0. Then the next 64 vectors 

numbers 65 to 129, were extracted to go into the test set for set 1 with vectors 1 to 

64 and 130 onwards going into the training set for set 1. This process was repeated 

until four sets were obtained and each vector had been in both the test set and the 

training set once. 

Each of these four sets was then processed to obtain a prediction of test set 

lead concentration using (a) a least squares regression on the peak heights found in 

the original voltammograms and (b) a 22 input MLP trained using the same methods 

and training parameters as previously described. 
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Each of these eight sets of 64 lead predictions was then processed to obtain the 

95 % prediction limits in predicting the lead concentration, the average 95 % 

prediction limit for each set and each method and the mean absolute error for each 

set and each method. These figures, along with other indicative values are given 

below in tables 35 and 36. 

Calibration from heights of training set 

Set slope intercept 

(ppb) 

Avg 96% 
Conf 
(ppb) 

min Abs 
error 
(ppb) 

max Abs 
error 
(ppb) 

mean Abs 
- error 

(ppb) 

0 0.98 2.06 31.5 0.9 37.4 15.3 

1 1.02 -2.21 31.5 0.2 44.0 13.9 

2 1.03 -3.49 29.4 0.2 53.5 12.9 

3 0.97 3.64 31.8 0.3 41.1 15.2 

Table 35. Results of cross validation using peak height calibration 

Calibration by neural network 

Set slope intercept 

(ppb) 

Avg 96% 
Conf 
(ppb) 

min Abs 
error 
(ppb) 

max Abs 
error 
(ppb) 

mean Abs 
error 
(ppb) 

0 1.01 -1.42 14.7 0.0 28.2 6.1 

1 0.95 4.17 22.2 0.2 32.7 10.0 

2 1.00 1.21 18.1 0.0 31.3 7.8 

3 0.99 1.12 19.7 0.5 33.9 8.9 

Table 36. Results of cross validation using a neural network 
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A one tailed paired Student's t test was then performed on the average 95 % 

confidence limits and the mean absolute error values for both calibration models in 

order to ascertain if the apparent improvement in performance offered by the neural 

network was significant at the 95 % level 

8.2.1. Significance of mean absolute error figure 

Microsoft Excel© was used to perform a one tailed paired Student's t test on 

the mean absolute error of the network (xi) and the peak heights calibration (x2). 

The null hypothesis, Hp, was that the means of the two sets of errors, Ill and [L2, 

from each calibration method, were equal. The alternative hypothesis, H1, was that 

they were not equal. This gave the following results. 

Null hypothesis H0: µl = µ2 or µl - 92 = 0. 

Critical region with 3 degrees of freedom and a=0.05 is t>2.353 

t (xi , x2 ), calculated by Excel, = 5.387, with a one-tail probability of 

P(T< =t) of 0.006. 

The decision is therefore to reject the null hypothesis that the means of the two 

sets of mean absolute error are equal. 

Since the t value obtained falls in the right tail of the critical region it can be 

concluded that processing by neural network does indeed produce a lower mean 

absolute error in prediction than does using calibration curves obtained from peak 

heights. 
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8.2.2. Significance of mean 95% confidence error figure 

Microsoft Excel© was again used to perform a one tailed paired students t test 

on the 95% confidence interval of the network (yi) and the heights calibration (Y2) 

gave the following results. 

The null hypothesis, Hp, was that the means of the two sets of errors, µl and 

92, from each calibration method, were equal. The alternative hypothesis, H1, was 

that they were not equal. This gave the following results. 

Null hypothesis H0: L1 = 112 or µ1 - 92 = 0. 

Critical region with 3 degrees of freedom and a=0.05 =t>2.353 

t (yl , Y2 ), calculated by Excel, = 7.776 with a one-tail probability of 

P(T< =t) of 0.002. 

The decision is therefore to reject the hypothesis that the means of the two 

95% confidence intervals are equal. 

Since the t value obtained for this data also falls in the right tail of the critical 

region it can be concluded that processing by neural network produces a more 

precise prediction. That is, the 95% confidence limits in predicting a concentration 

are smaller than those obtained using calibration curves obtained from peak heights 
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A period of research should lead to as many questions as it does answers and 

this work is no exception. The conclusions here indicate that neural networks are 

better at obtaining predictions of lead concentration from voltammetric scans than 

using a calibration curve based upon peak heights. Calibrations using the technique 

of standard additions, where a known quantity of the metal under investigation is 

introduced into the test sample and the scan repeated, were deliberately not 

investigated in this study. This technique has the advantage that the chemical matrix 

used for the calibration is the same as that containing the original concentration of 

test metal. It has the disadvantage that several scans must be made on the same 

sample in order to obtain a reliable prediction. In addition, the method used to 

measure the response is still the peak height, which this work suggests could be 

improved upon. 

One area that should be investigated therefore, is a comparison of the neural 

network calibration technique detailed in this work with the method of standard 

additions using real analytical samples. Although not particularly suited to a field 

instrument, it would be interesting to know if the network approach could still 

produce better results. 

A second area of research is to investigate the question of why the neural 

network appeared to produce superior performance. Theory suggests a relatively 

simple linear relationship between peak height and concentration, hence the 

additional information in the voltammogram ought to have been redundant. At this 

stage no attempt has been made to explain the results reported here but it would be 

useful to understand what features of the data the neural network is utilising. 
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Preliminary investigations into the determination of more than one element at 

a time has been investigated by the author for simulated curves (see chapter 9) and 

this shows very promising results. Neural networks appear to be able to model very 

well the convoluted curves produced by simulated overlapping voltammograms and 

there is a wealth of literature on the subject, some of which is reported here in the 

background study. A further study needs to be made to ascertain whether, how, and 

to what extent, neural networks can be used to predict concentrations of all metals 

of interest in a single differential pulse scan. - 

In order to expand the range of the instrument it must operate over a wider 

range of sensitivities, pulse heights, current offsets and pulse mark space ratios. 

This work indicates that the network can use information relating to pulse height 

with advantage. Further work needs to be done to provide a control loop to extend 

the range of the instrument to cover all the concentrations that it is able to measure. 

Furthermore the operational parameter settings could possibly be set automatically, 

following a single initial scan. The use of a neural network as a control mechanism 

is facilitated by the 'hooks' built into the current software enabling instrumental 

parameters to be read from a file Further work could be done to recognise poor 

quality scans caused by a number of factors and to map these to a set of parameters 

which converge to an optimum scan which could be used for concentration 

estimation. 

A worthy piece of future work would be the development of this work into a 

completely portable field instrument. The electronic hardware could be reduced in 

size and the neural network could be contained on a single chip. The chemical cell 

used for the analysis is less easily miniaturised but some advances in micro cells 

have been reported. There would remain serious chemical problems involving 

complexing of heavy metals with other agents but it is possible that a robust field 
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instrument capable of detecting toxic metals in the parts per billion range in a matrix 

such as sea water could could be developed. 

Finally, the work of this thesis has used peak shaped curves from 

voltammetric analysis. An obvious question therefore is whether the technique 

employed here can be advantageously applied to other, unrelated, instrumental 

responses that have a similar peak shaped response. 

The topic of further research would appear to be not so much a question of 

what to do but which, out of the numerous options, to pursue first. 
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9. Epilogue - Simultaneous 
Prediction of Multiple Species 

As part of the preliminary work, synthetic mixtures of lead and thallium were 

generated using a computer program written by the author. This program generated 

many of the features seen in a typical voltammogram and then combined them all 

into one curve. A neural network was then trained to predict concentrations of both 

metals simultaneously. This work was originally carried out as an initial 

investigation into the feasibility of using neural networks to process 

voltammograms. Although not investigated further than detailed here, a summary of 

the work is included in this thesis as it represents an area warranting further 

research. 

The synthetic voltammogram was constructed by combining the following 

features: 

1. The two peak shaped responses themselves, generated using the 

equation given in Engblom120"2l, (repeated here on page 36). 

2. A quadratic background (after Bond and Babaric251) 

3. A small random noise function on each of the data points 

4. A small random noise function on each of the peak positions 

5. A skew on each of the peaks 
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By inspecting and manually fitting real voltammetric curves generated using a 

Ag/AgCI electrode and a preplated electrode, the following parameters were used in 

the generation of the synthetic mixtures. 

Peak Position for Lead 

Peak Position for Thallium 

Number of electrons transferred for lead 

Number of electrons transferred for thallium 

Half width for 1 electron transfer 
Noise on data points 

Noise on peak position 

Base line equation (ax2+bx+c) where 

Skew = 

_ -0.396 V wrt SCE 

_ -0.460 V wrt SCE 

=2 

=1 

= 0.0754 V 

=±a random value between 0 and 0.2 µA 

=±a random value between 0 and 2 mV 

a= 30 ta random value between 0 and 3 

b= 20 ta random value between 0 and 3 

c= 5.8 ta random value between 0 and 1 

1 
where V= scan potential 

A number of synthetic mixtures of lead and thallium were generated, each one 

containing a different combination of concentrations. Concentrations were generated 

from 0 to 100 ppb in steps of 10 ppb for both lead and thallium and 3 simulated 

repetitions were made. There were 60 data points in each curve. 

All 60 data points were used as an input to the neural network, the target 

being two real numbers representing the concentration of lead and thallium 

respectively. Both a three layer backpropagation network with 42 hidden nodes and 

a GRNN network were trained with the same training set created by extracting 80% 

of the patterns with the remaining 20% going into the test set. 

The results of training such networks are shown graphically below. 
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There were 181 training patterns and 61 test patterns. The input for 

backpropagation was scaled to ±1, the learning rate was 0.1, momentum 0.1 and 

initial weights set to ±0.3. 

Training time was lhr 20 min on a 40MHz 80386 with maths co-processor 

and took 375 epochs, a epoch being defined as one complete presentation of the 

training set. 

At intervals of 200 pattern presentations the test set was presented without 

updating the weights. A graph of the error in the test set as the training proceeded is 

shown in figure 74. 

A IG 

Error 

al 

Intervals Elapsed 

Figure 74. Graph of test set error against training epochs 
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Once the network had trained the training set and test set were both 

independently presented and the predicted concentrations of lead and thallium 

obtained. For the training set the curve of predicted concentration against target 

concentration showed a good correlation. Figures 75. and 76. below illustrate this. 

Scatter Graph of Predicted against actual Pb Scatter Graph of Predicted against actual TI 
content content 
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Figure 75. Errors in lead Figure 76. Errors in thallium 
prediction for training set (BP) prediction for training set (BP) 

A scatter graph of the errors in lead and thallium prediction for the training set 

is shown in figure 77. 
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Figure 77. Errors in training set for back propagation 
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Equivalent graphs for the test sets are shown below 

Scatter Graph of predicted against actual Pb Scatter Graph of Predicted against actual TI 
concentration content 
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Figure 78. Errors in lead Figure 79. Errors in thallium 
prediction for test set (BP) prediction for test set (BP) 

The corresponding scatter graph of errors for the test set is shown here. It can 

be seen that the errors in thallium are spread over a larger range than those for lead, 

but that both metals are predicted to within a simulated ±15 ppb. 

Scatter Graph of Errors in Predicted Pb and Tl 
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Figure 80. Errors in test set for backpropagation 

Error in Predicted TI Content (ppb) 1 



215 

This network had 60 inputs, 181 hidden units and 2 outputs. The smoothing 

factor was found as previously described, with the best value for the test set being 

0.276. Training time was 3.5 minutes including the search for the best smoothing 

factor. The graphs for lead and thallium prediction for the training set are shown 

below. 

Scatter Graph of Predicted against actual lead 
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Figure 81. Errors in lead 
prediction for training set 
(GRNN) 

Figure 82. Errors in thallium 
prediction for training set 
(GRNN) 

On the training set the GRNN appears to perform better than the back 

propagation and seems particularly good at predicting the lead content. A scatter 

graph of errors of given below which indicates a cluster of small errors in lead 

prediction combined with a few lead predictions having much larger errors. 

A" Pb Co. g (ppb) 
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Scatter Graph of error in Ti prediction against 
error in Pb prediction 
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Figure 83. Errors in training set for GRNN 

When the GRNN was used to process the test set the errors for both lead and 

thallium were larger than for the training set, showing a uniform scatter. These 

results are shown below. The scatter graph of errors for lead and thallium show the 

same pattern as that obtained with the training set with the thallium errors greater 

than those for lead and being greater when under predicting. (See figure 86). 
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Figure 84. Errors in lead 
prediction for test set (GRNN) 
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Scatter graph of error in predicted TI content 
against error in predicted Pb content 
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Figure 86. Errors in test set for GRNN 

The results show that concentration estimations may be made from this data 

for two species simultaneously even when the peaks overlap, as they did for large 

simulated concentrations of the metals. In this simulated experiment typical absolute 

errors in estimation were of the order of 10 to 15 ppb for the both the training set 

and the test set. Further experiments were also briefly carried out with simulated 

three element mixtures containing lead, thallium and indium. First results are 

encouraging but are not reported here. 

This work indicated that it may be possible to predict simultaneously the 

concentration of mixtures of metals if the individual voltammograms are purely 

additive. This simulation assumes no interaction between the two metals. However, 

as previously stated, this work formed part of the preliminary investigations into the 

feasibility of the process and was not carried out as rigorously as the latter parts of 

this work. Nevertheless it does have scope for further work. 
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A comparison is made between backpropagation and 
general regression neural networks for the prediction 
of parts per billion lead concentration when used to 

process data obtained from digested curry powder 
by the electrochemical analysis method of differential 

pulse, anodic stripping at a thin film mercury 
electrode (TFME). Two data sets are used, one 
requiring the net to classify an unknown analytical 
data vector into one of a number of previously learnt 

concentrations, and one requiring the net to predict 
the probable concentration of an unknown sample 
by interpolation of the already learnt concentrations. 
For both of these data sets the general regression 
neural network is shown to train faster and to provide 
results superior to those obtained by backpropag- 

ation. 

Keywords: Neural network; General regression; 
Backpropagation; Anodic stripping voltammetry; 
Trace metal chemical analysis; Automated instru- 

ment 

1. Background and Motivation 

This work grew out of research into the development 

of a cybernetic instrument employing neural net- 
works to automate the determination of trace levels 
(a few parts per billion) of heavy metals in solution 
by peak quantisation using anodic stripping. A 

computer controlled analytical instrument has been 
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built and software written providing a user interface 
with access to a range of analytical procedures and 
user defined parameters. Current research is aimed 
at processing the resulting analytical data by a 
neural network to deliver direct concentration 
predictions for the various heavy metals detected. 
The network comparison given here forms part of 
that work. Some attempts have already been made 
at applying learning algorithms and neural networks 
to this and related fields. Wythoff [1] used a 
supervised network to recognise spectral peaks when 
they occurred against a noisy background. Sybrant 
[2] detected overlapping peaks in stationary elec- 
trode polarography using a pattern recognition 
method, and much work [3-6] has been done on 
the use of neural networks in interpreting IR and 
absorption spectra. 

1.1. Electrochemical Analysis 

The determination of trace quantities of heavy 
metals in such places as foodstuffs, ground water 
and soils is an increasingly important issue. Environ- 
mental pollution has far reaching consequences, 
and the trend is towards on-site determination using 
portable instrumentation. Many techniques are used 
to assess concentration levels of such substances as 
lead, cadmium and lithium. Differential pulse anodic 
stripping has the advantages of requiring minimal 
equipment and yet is capable of determining the 
concentration of various electroactive species in 
solution, even when the concentration of these 
species is very low, typically 1 part in 108. 

Anodic stripping has been well documented 
elsewhere. A very readable account is given by 
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Graabek [7], and a more thorough overview of the 
technique is given by Copeland [8]. Pomeroy [9] 
extends this by describing the construction of the 
necessary electronics and hardware, and giving 
examples of typical results. An important paper 
by Rifkin [10] describes how a computer-based 
instrument was designed to provide flexibility in the 
analytical method, and shows the effects of changes 
in the various analytical parameters. Copeland [11] 
describes typical analyte preparation methods, and 
investigates optimum experimental conditions. 

However, for the purposes of this paper a brief 
overview of the technique will be given here. 

Every electroactive species undergoing an oxi- 
dation or reduction reaction, such as that occurring 
when a metal is plated or stripped off electrically, 
has a standard potential E° at which this occurs. 
For lead this is around -0.12 V with respect to the 
normal hydrogen electrode. If the potential between 
two electrodes in a solution containing the species 
is slowly changed from a value less than E° to a 
value greater than E°, or vice versa in some cases, 
an increase in current will be observed at E° when 
the species oxidises into solution or reduces, i. e. 
plates, onto the electrode. The potential at which 
this increase occurs is characteristic of the metal 
being oxidised or reduced and the size of the 
increase, relative to the underlying background 
current, is indicative of the concentration of the 
metallic ions in the solution. For trace metal 
analysis these currents are typically in the region 
of 5x 10-9 A and change by a few nanoAmp 
during the analytical run. 

In anodic stripping, the solution under test is 
placed in a specially constructed cell containing three 
electrodes. Two of these, the working electrode and 
the auxiliary electrode, act as cathode and anode 
as in a simple electroplating arrangement. The 
third is a specially constructed reference electrode 
providing a reference potential V«(, with respect to 
which the potential of the working electrode can 
be measured. Feedback circuitry enables the poten- 
tial of the working electrode to be accurately set 
and maintained at any value regardless of the 
current flowing through the solution. The potential 
of the working electrode, Vw. e., and the current 
flowing into or out of it is measured during the 
analysis. 

When using a TFME the working electrode is 
formed by electroplating a few microns of mercury 
onto a polished, vitreous carbon disc mounted in 
the end of a PTFE rod while it is rotating at about 
2000 rpm. Figure 1 shows the arrangement of a 
TFME electrode built by the author for this 
work. Before the analytical run itself, the working 
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Fig. 1. Construction of a rotatable, glassy carbon, thin film 
mercury electrode built as part of the instrument developed by 
the author. The diameter of the carbon disk in the end of the 
PTFE rod is 2 mm and the overall length of the arrangement is 
15 cm. 

electrode is held at a potential several tenths of a 
volt below E° for the metal being investigated. 
During this time the metal is plated onto the 
mercury, where it forms an amalgam. In the analysis 
phase the potential of the working electrode is 
gradually changed in an anodic direction using a 
variety of waveforms, until it is several tens of mV 
above E°. Around E° the trace metal is stripped 
out of the mercury back into solution and the 
current increase occurs. 

If differential pulse analysis is being performed, 
the waveform is a pulse of relatively large 
(50-100 mV) amplitude and short (10-20 ms) dur- 
ation superimposed on a shallow potential ramp 
(-5 mV s-1). The current flowing through the 
working electrode is measured just before the pulse 
is applied, and again just before the pulse ends. 
The difference in these two currents, is 
recorded along with the corresponding ramp poten- 
tial appearing at the working electrode, V,,, e., at 
the time that the pulse was applied (see Fig. 2). 
The resulting curve of against Vv,,,,, is a 
stripping current peak superimposed on a roughly 
parabolic baseline due to the background current. 
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Fig. 2. Typical waveform applied to the working electrode during 
differential pulse anodic stripping. For each pulse the current is 

measured at points A and B, the difference between these values 
is recorded along with the potential at point A. Note that the 
scale of this waveform has been exaggerated for clarity. 

1.2. The Problem 

It can be shown [12] that the height of the Aiw,, e 
peak is given by the equation 

nFADö Co 
x 

I1 - vl (1) (ýiw. 
e. 

)max - 
, rr 1/2(r - Tß)12 l1 + Q) 

where 
) rnFtE 

(2) v= explj T 

Here n is the number of electrons transferred, F is 

the Faraday constant, A is the area of the mercury 
film, Do is the diffusion coefficient, CO* is the bulk 

concentration of the species, (T - T') is the pulse 
width, R is the gas constant and DE is the pulse 
height. 

The measured peak height above background 

ought, therefore, to be proportional to the bulk 

concentration for a given pulse height and width. 
Unfortunately, dissolved oxygen can give rise to 

a considerable and variable background current, 
organic compounds can produce a spurious signal, 
changes in sample pH can shift the peaks anodically 
or cathodically, and the signal to noise ratio is often 
very small. For low concentrations the height, or 
even existence, of any peak may be difficult to 
determine without several repetitions, each of which 
will be subject to the variations mentioned above. 

Figures 3 and 4 are screen dumps from the 
instrument developed by the author. Figure 3 shows 
the result of analysing a blank solution of KCl and, 
for comparison, Fig. 4 shows the same solution with 
10 parts per billion lead added. Smoother and 
flatter baselines can be obtained by careful sample 
preparation and deoxygenation. 

The usual method of determining the concen- 
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Fig. 3. Typical results obtained from performing differential 
pulse anodic stripping on a blank solution of KCI without 
deoxygenation. 
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Fig. 4. Typical results obtained from performing differential 
pulse anodic stripping on the same oxygenated solution as in 
Fig. 2 but with 10 parts per billion lead added. The stripping 
peak caused by this lead is indicated by the dark square. 

tration of a suspected species is by standard addition 
with repeated analytical runs. However, the purpose 
of this work was to determine if data from the raw 
solution could be used directly as input to a neural 
network and an estimate of the lead concentration 
made regardless of the above interferences and 
without time consuming sample preparation. 

2. The Data 

The system was used to determine the lead content of 
four different commercially obtained curry powders. 
This is a product that would naturally contain many 
organic compounds, but for which the maximum 
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-0.60 -0.60 -0.40 -0.30 -0.20 -0.10 
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allowed lead concentration is 20 ppm. The raw data 
from the instrument, consisting of up to 4000 pairs 
of pulse potential and resulting differential current 
measurements, is stored on disk by the analytical 
software. 

2.1. Production 

The analytical solutions used were obtained by 
digesting the curry powder in concentrated nitric 
acid at high temperature and pressure inside a 
PTFE container subjected to high energy microwave 
radiation. The resulting solutions were expected to 
have lead concentrations of about 5 parts per billion. 
The solutions were divided, and some had lead 

added in known amounts in order to give a range 
of nominal concentrations up to 500 ppb. Each 

sample was then analysed by atomic absorption 
spectroscopy (AAS) to provide a known concen- 
tration value. They were then re-analysed by 
differential pulse anodic stripping at a TFME using 
the system described above without deoxygenation 

or any other preparation. The particular selection 
of parameters used resulted in 400 values of AiW 
for each sample, corresponding to pulse potentials 
of between -0.6 V and -0.2 V in steps of 1 mV. 
Ten replicate runs were made for each sample, with 
a new mercury film being created for each run. 
Only the first 28 concentrations, ranging in lead 

concentration from 1-100 ppb were used in this 
study. 

2.2. Preprocessing 

The data set consisted of 280 data vectors each 
containing 400 data points and representing 
28 values of concentration, as determined by AAS. 
The target was a single number in the range 1-100 

representing the concentration in ppb as measured 
by AAS. All these values were normalised across 
the entire pattern set by first calculating the 
maximum and minimum value for each data point 
and then adjusting the value of that point according 
to the equation 

Xj(", w) = [xi(ofý1) x (Xg(m«) - Xt(mia))] + xi(min) 
(3) 

The AAS concentration value was similarly normal- 
ised. 

2.3. Post Processing 

The output of the network was converted to a 
concentration in ppb using the equation 

171 

C= [N x (Cmu - Cmin)] + Cmin ý4ý 

where N is the normalised output from the network, 
C is the network's prediction of the concentration, 
and C.. x, Cm,,, are the maximum and minimum 
values of concentration in the data set as given by 
AAS. 

2.4. The Two Data Sets Used 

The entire data set was split into a training set and 
a test set. A third, validation set, was not employed 
at this stage as the intention was to produce a 
qualitative comparison of network architectures and 
not a finalised, working network. The methods 
employed in the extraction of the test set gave rise 
to the two data sets. 

The first data set used for the networks, here 
called the classification data set, was obtained by 
sorting the entire set of data vectors in order of 
AAS stated concentration, and then extracting every 
fifth vector and placing it in the test set. The 
remaining vectors constituted the training set. In 
this way, the training set contained vectors from 
eight replicates of each of 28 concentrations and 
the test set contained two replicates (i. e. the 5th & 
10th) from the same set of 28 concentrations. This 
selection method caused the network to act in a 
classification mode, where the test vector was a 
noisy representation of one of the (equally noisy) 
training vectors. This gave 224 training vectors and 
56 test vectors with 28 possible outcomes. 

The second data set used, called the interpolation 
data set, was obtained by sorting the data set 
in order of concentration as before, but instead 
extracting all ten replicate vectors for every third 
concentration value up to 100 ppb. This forced the 
network to act in a prediction mode and to 
interpolate between the input vectors for the learnt 
concentrations and produce a concentration predic- 
tion that did not map on to one of its learnt 
concentrations. This gave a training set of 200 
vectors and a test set of 80 vectors with eight 
possible outcomes. It is recognised that these 
training set to test set ratios are rather high. 

Input dimension reduction was investigated using 
several methods. Experiments in reducing inputs by 
extracting features, as shown in Table 1, showed 
some promise where the peak was well defined. In 
particular, considerable information appeared to be 
held in the left-hand slope of the peak and for higher 
concentrations reasonable network predictions could 
be made when just this one value was used as 
input. 

For many of the curves, however, using extracted 
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Table 1. Examples of parameterisation methods used to reduce the dimension of the input 
vector. 

Parameters extracted No. of network inputs 

Left-hand valley minimum value, Right-hand valley minimum 7 
value, Peak maximum value, Fitted left-hand slope, Fitted 
right-hand slope, Fitted background slope on left, Fitted 
background slope on right 

Coefficients of a quadratic fitted to the peak 3 
Coefficients of a quadratic fitted to the background, Coefficients 6 

of a quadratic fitted to the peak 
As above plus the height calculated from fitted peak to fitted 7 

background 
Coefficients of a 5th order polynomial fitted to the entire curve 5 

features was too unreliable due to poor peak 
definition, and so as it was expected that the 
lead peak would occur at about -0.380 mV, the 
dimension of the input vector was reduced to 15 
data points by simply starting at data point 115 and 
taking every tenth data point up to data point 255. 
This corresponds to the values of DiW for ramp 
potentials -0.485 to -0.345 in steps of 10 mV. The 
target remained as one continuously valued number. 

investigated was 20, this being calculated from the 
heuristic 

(7) h=0.5(i + o) + Vp- 

where h is the number of hidden neurons, i and o 
the number of inputs and outputs, respectively, and 
p is the number of training patterns. This heuristic 
has been found to be better than the often used 
alternative one of 

3. Neural Network Architectures 
Investigated 

Two network architectures were investigated: stan- 
dard backpropagation and the general regression 
neural network. Investigation of the backpropag- 

ation network was subdivided by using two different 

numbers of neurons in the hidden layer. Each 

architecture was used with both training data sets. 

3.1. Standard Backpropagation Network 

This network is the familiar network formalised by 
Werbos [13] and elaborated first by Parker [14] and 
then McClelland [15]. It consisted of one input 
layer, one hidden layer and one output layer, fully 

connected between layers. The transfer function 

used for the hidden layer neurons was the sigmoid 

1 5AX) = (1 + exp(-x)) 
() 

whilst the output layer used the linear function 

f(x) =x (6) 

There were 15 inputs and 1 output. The number of 
hidden layer neurons for the first architecture 

h=2x i+o (g) 

For the second architecture investigated, only three 
hidden neurons were used. No attempt was made 
to further optimise the number of hidden neurons. 

The connection weights were initially set to 
random values in the range ±0.3. Throughout all 
the tests, a value of 0.1 was used for the learning 
rate ß, a value of 0.9 was used for the momentum 
a and weight updates were performed after each 
pattern presentation. After every 200 presentations 
of a training pattern the entire test set was presented, 
and the mean squared error calculated. No weight 
updates were performed at this time. Each time 
the test set produced a new minimum value for the 
mean squared error the weights were saved to disk. 
Training was stopped when a considerable time had 
elapsed since the last minimum value, and the last 
saved set of weights was used as the trained network. 

3.2. General Regression Neural Network 

The general regression neural network belongs to 
the class of supervised networks, but has the 
advantage of being able to train quickly on sparse 
data sets and produce continuous valued outputs. 
It works by measuring how far in N dimensional 
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space a given unknown input pattern is from the 
patterns in the training set, where N is the number 
of inputs in the pattern. There are as many neurons 
in the hidden layer as there are training patterns. 
When a new pattern is presented to the network, 
the output that is predicted by the network is a 
proportional amount of all of the outputs in the 
training set. This proportion is based upon how far 
the new pattern is from the known patterns in the 
training set. 

The regression of a dependent variable Y, on an 
independent variable X, is formed by computing 
the most likely value of Y for each value of X. 
This computation is based upon a finite number 
of possible noisy measurements of X and the 
corresponding value of Y. 

Usually, it is necessary to know the underlying 
function, for example the linear function 

Y= mX +c (9) 

and then estimate the coefficients m and c, from 
which an estimate of Y for a given X can be 
calculated. 

Specht [16] describes a method that expresses the 
functional form as a probability density function 
determined empirically from the observed data 
set, thus requiring no a priori knowledge of the 
underlying function. In essence, the network's 
estimate for f(X) can be thought of as a weighted 
average of all observed values Y,, where each 
observed value is weighted according to its distance 
from X. 

Two ways of measuring the distance between two 
vectors can be used in the GRNN, the Euclidean 
distance and the City Block measure. These result 
in the following equations for V(X): 

Euclidean; 

nz 
Yj ex 

Dý 

AX) 
n D! 

(10) 

eXP\ 2oz/ 

where the scalar distance quantity Di is defined as 

D; =(X-X')T(X-X') (11) 

City Block; 

2 Y' expI -I 

expl 
a r-i \J 

where the distance Ci is defined as 
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C1 =I JXj - XI (13ý 
-1 

In both cases, n is the number of sample observations 
and p is the dimension of the vector variable X. 

The parameter or is a smoothing parameter which 
affects the network's ability to generalise. A very 
large value tends to cause f(X) to become the 
sample mean of the observed Y', as o approaches 
zero f(X) assumes the value of 1" associated with 
the observation closest to X. At intermediate values, 
all values of Y' are taken into account but those 
corresponding to points closer to X are given more 
weight. 

Although the City Block distance can be computed 
faster than the Euclidean distance, it will be shown 
that this metric produces predictions that are not 
as accurate as using the Euclidean metric. 

Throughout this work, the hidden layer neurons 
used the sigmoid transfer function given in Eq. (5) 
and the output neuron used a linear function (6). 
The connection weights were initially set to random 
values in the range ±0.3. 

A search procedure was employed to find the 
optimum value for the smoothing parameter a. This 
was done by repeatedly presenting the test set to 
the network using different values of v and measur- 
ing the error in the network's output. This process 
was halted when the value for the mean squared 
error could be improved no further. A typical plot 
showing this process for the interpolation data set 
is shown in Fig. 5. 

4. Results and Discussion 

The computer used for this work was a 40 MHz 
80386-based machine fitted with 7 MBytes of RAM 
and a 80387 maths coprocessor. Both hand crafted 
and commercial neural network software was used, 
the commercial software being run under Windows 
v. 3.1 in enhanced mode. 

After each network architecture had been trained 
on each data set the following statistics were 
gathered for both the training and test sets: 

" the correlation coefficient between the predicted 
and target values, 

" R2, the coefficient of multiple determination 
between the predicted and target values. This is 
assumed to be a better measure of the closeness 
of actual and predicted values than the correlation 
coefficient, 

" mean squared error in predicted values, 
" mean absolute error in predicted values, 
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Fig. S. Plot showing the progress of a search for an optimum 
GRNN smoothing parameter. This was using a Euclidean distance 
metric on the interpolation test data set. 

" min absolute error in predicted values, 
" max absolute error in predicted values. 

In addition, a scatter graph was obtained of the 
predicted lead concentration plotted against the 
target concentration for the training set and test 
sets. Only the test set plots are reproduced here; 
the training sets exhibiting similar relationships but, 

as might be expected, having a higher correlation 
between predicted and target values. The numeric 
results are presented in Tables 2-7, where the 
absolute errors are measured in parts per billion. 

4.1. The First Data Set - Classification 

Backpropagation. The first architecture with 20 
hidden layer neurons reached a minimum mean 
squared error value for the test set of 0.0437. This 

was achieved after 5366 epochs and took 3 hrs 
40 min (an epoch being one presentation of the 
entire training set). 

The second architecture with three hidden neurons 
reached a minimum mean squared error for the 

H. S. Manwaring 

test set of 0.0516 after 42 mins and needed 2548 
epochs. 

Both exhibit considerable scatter on the test set 
predictions with the 15: 20: 1 network (Fig. 6), being 
marginally better than the 15: 3: 1 (Fig. 7), although 
it had a larger maximum absolute error of 39.4 ppb 
as opposed to 36.1 ppb for the 15: 3: 1. Both networks 
incorrectly allocate a large number of patterns to 
the same concentration, particularly at low values 
(<20 ppb). 

GRNN. Using the City Block metric (Fig. 8), the 
correlation between predicted and target values is 
much better than either of the backpropagation 
architectures, and shows less scatter. The maximum 
absolute error is lower (29.0 ppb), and the low end 
of the concentration range is better separated. This 
network took a total of 2 min to train including a 
search of 25 candidate values for the smoothing 
parameter. 

Using Euclidean distances (Fig. 9), there is an 
almost perfect match between predicted and target 
values. Very few patterns are incorrectly classified, 
and the maximum absolute error of those that were 
is only 26.5 ppb. The time taken was 1 min 50 s, 
including a search of 22 smoothing parameter values. 

Note: The curve of Aiw. c against Vw. e correspond- 
ing to the misclassified concentrations were sub- 
sequently found to have large variations in curve 
shape within the ten replicates. 

4.2. The Second Data Set - Interpolation 

Backpropagation. After 8 min of training the mini- 
mum error in the test set was reached. The 15: 3: 1 
architecture once again shows considerable scatter 
(see Fig. 10), even producing a prediction of a 
negative lead concentration. The maximum absolute 
error, at 33.7 ppb, is better than for the classification 
data set, but still poor. The network appears over- 
sensitive to variations in the replicate Div., vs. Vw. e. 
curve shapes, and produces a different prediction for 
each one. 

Table 2. Results using backpropagation (15: 20: 1), with test set and classification data. 

File processed R squared Mean avg Mean Min Max Correlation 
squared absolute absolute absolute coefficient 
error error error error 

Entire data 0.9016 95.378 6.833 0.063 40.556 0.950 
Training 0.9046 92.451 6.657 0.063 40.556 0.951 
Test 0.8895 107.008 7.540 0.150 39.381 0.945 

0 0.5 1 1.5 



Comparison of Backpropagation and General Regression NNs 

Table 3. Results using backpropagation (15: 3: 1), with test set and classification data. 

File processed R squared Mean avg Mean Min Max Correlation 
squared absolute absolute absolute coefficient 
error error error error 

Entire data 0.8832 113.131 7.873 0.002 43.994 0.941 
Training 0.8867 109.760 7.724 0.040 43.994 0.943 
Test 0.8693 126.615 8.470 0.002 36.175 0.932 

Table 4. Results using GRNN (City Block metric), with test set and classification data. 

File processed R squared Mean avg Mean Min Max Correlation 
squared absolute absolute absolute coefficient 
error error error error 

Entire data 0.9830 16.514 1.398 0.000 41.506 0.992 

Training 0.930 67.838 4.696 0.000 30.662 0.965 

Test 0.9041 92.894 5.782 0.000 29.016 0.953 

Table S. Results using GRNN (Euclidean), with test set and classification data. 

File processed R squared Mean avg Mean Min Max Correlation 
squared absolute absolute absolute coefficient 
error error error error 

Entire data 0.9901 9.593 0.711 0.000 26.522 0.995 

Training 0.9956 4.295 0.438 0.000 23.136 0.998 

Test 0.9682 30.784 1.802 0.000 26.522 0.984 

Table 6. Results using backpropagation (15: 3: 1), with test set and interpolation data. 

File processed R squared Mean avg Mean Min Max Correlation 
squared absolute absolute absolute coefficient 
error error error error 

Entire data 0.7813 211.859 11.147 0.017 37.778 0.900 

Training 0.7865 214.773 11.042 0.017 37.778 0.921 

Test 0.7535 204.575 11.409 0.026 33.747 0.889 

GRNN. This again trained in 2 min after a search 
of 25 smoothing parameter values. As with classifi- 

cation, the GRNN shows much less scatter than 
the backpropagation network, and is less sensitive 
to variations in curve shape within replicates (see 

Fig. 11). The maximum absolute error (26.6 ppb) 
is lower than for backpropagation performing the 

same task. 

5. Conclusions 
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It can be seen that the general regression neural 
network is superior in its performance to the 
backpropagation network when applied to the task 
of predicting lead concentration using data from 
Aiw., against VW, c, curves obtained from differential 
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Table 7. Results using GRNN (Euclidean), with test set and interpolatio n data. 

File processed R squared Mean avg Mean Min Max Correlation 
squared absolute absolute absolute coefficient 
error error error error 

Entire data 0.6627 326.820 14.814 0.000 47.156 0.820 
Training 0.6244 377.904 15.765 0.000 47.156 0.812 
Test 0.7601 119.109 12.435 1.051 25.687 0.874 
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Fig. 6. Scatter plot for 15: 20: 1 backpropagation network, test 
set, classification data. 
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Fig. 8. Scatter plot for GRNN using City Block metric, test set, 
classification data. 
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Fig. 10. Scatter plot for 15: 3: 1 backpropagation network, test 
set, interpolation data. 
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Fig. 11. Scatter plot for GRNN using Euclidean metric, test set, 
interpolation data. 

pulse anodic stripping, even when the number of 
data points in the curve is severely reduced. 

The GRNN is faster to train, exhibits less scatter, 
produces a lower maximum absolute error and is 

more tolerant of noise or random fluctuations on 
the input data. 

The statistical t-test performed on the analytical 
data indicated that ±20 parts per billion is the 
minimum resolution that could reasonably be 

expected from this analytical data. The maximum 
absolute error value of 26.6 parts per billion, 

obtained by the GRNN, compares well with this 
figure. 
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6. Further Work 

More work clearly needs to be done using larger 
data sets before a trained network can be expected 
to perform reliably in the field. Once this is done, 
the trained network will be incorporated into the 
analytical software already produced so that the 
entire process from analysis to concentration predic- 
tion is automated. The research will also to expand 
to consider the quantitative prediction of multiple 
species simultaneously using this same analytical 
technique. 

Acknowledgements. I would like to thank West 
Herts College for the support they have given me 
by providing me with the resources and time to 
carry out this work. 

The commercial neural network software used 
for this work was NeuroShell 2®, produced by 
Ward Systems Group inc. of Frederick, MD, USA. 

Windows® is a registered trademark of the 
Microsoft Corporation. 

References 

1. Wythoff BJ, Levine SP, Tomellini SA. Spectral peak 
verification and recognition using a multilayer neural 
network. Anal Chem 1990; 62: 2702-2709. 

2. Sybrandt LB, Perone SP. Computerized pattern 
classification of strongly overlapped peaks in station- 
ary electrode polagraphy. Anal Chem 1972; 44: 
2331-2339. 

3. Munk ME, Madison MS, Robb EW. Neural network 
models for infrared spectrum interpretation. Mikro- 
chim Acta 1991; 11: 505-514 

4. Borggaard C, Thodberg HH. Optimal minimal neural 
interpretation of spectra. Anal Chem 1992; 64: 
545-551 

5. Gemperline PJ, Long JR, Gregoriou VG. Nonlinear 
multivariate calibration using principal components 
regression and artificial neural networks. Anal Chem 
1991; 63: 2313-2323 

6. Blank TB, Brown SD. Nonlinear multivariate map- 
ping of chemical data using feed-forward neural 
networks. Anal Chem 1993; 65: 3081-3089 

7. Graaba: k AM, Jeberg B. Trace element analysis by 
computerised stripping potentiometry. Int Lab 1992; 
33-38 

8. Copeland TR, Skogerboe RK. Anodic stripping 
voltammetry. Anal Chem 1974; 46: 1257A-1268A 

9. Pomeroy RS, Denton MB, Armstrong NR. Voltam- 
metry at the thin-film mercury electrode. J Chem 
Educ 1989; 66: 877-880 

10. Rifkin SV, Evans DH. Analytical evaluation of 
differential pulse voltammetry at stationary electrodes 
using computer based instrumentation. Anal Chem 
1976; 48: 2174-2179 

11. Copeland TR, Christie JH, Osteryoung RA, Skog- 
erboe RK. Analytical applications of pulsed stripping 



178 

12. 

13. 

14. 

and thin film mercury electrodes. Anal Chem 1973; 
45: 2171-2174 
Bard AJ. Controlled potential microelectrode tech- 
niques - potential step methods. In: Bard AJ. 
Electrochemical Methods. Wiley, 1980, pp. 136-212 
Werbos P. Beyond regression: New tools for predic- 
tion and analysis in the behavioral sciences. PhD 
thesis, Harvard, Cambridge, MA, August 1974 
Parker DB, Learning Logic. Technical Report TR- 

H. S. Manwaring 

47, Centre for Computational Research in Econics 
and Management Science, MIT, Cambridge, MA, 
April 1985 

15. McClelland J, Rumelhart D. Explorations in Parallel 
Distributed Processing; Vols 1 and 2. MIT Press, 
1986 

16. Specht DF. A general regression neural network. 
IEEE Trans Neural Net 1991; 2: 568-578 



375 

THE USE OF AN ARTIFICIAL NEURAL NETWORK TO IMPROVE PRECISION IN TRACE LEVEL, 
QUANTITATIVE ANALYSIS OF HEAVY METAL POLLUTANTS 

H. S. Manwaring 

West Herts College (Associate College of the University of Hertfordshire), England 

ABSTRACT height obtained must be scaled in some way to take into 
account the different parameters used. 

The author has used various neural networks to process 
the response obtained from an electroanalytical 
technique used for the analysis of trace metal pollutants 
in liquids. A previous paper, Manwaring (1), compared 
the capabilities of the GRNN and MLP in this respect. 
In this paper it is shown that using the neural network 
to make predictions of unknown sample concentrations 
shows an improvement, by a factor of about two, on the 
mean absolute error and the prediction confidence 
when compared with a traditional, calibration curve 
technique. In addition the neural network method is 

shown to produce reliable predictions even with 
instrumental responses that are completely unsuitable 
for traditional processing. 

INTRODUCTION 

The analysis of river water for environmental heavy 

metal pollutants such as lead may be carried out by an 
electrochemical method known as Differential Pulse 
Anodic Stripping Voltammetry (DPASV), to be 
described later. The response of an instrument 

performing this type of analysis, known as a 
voltammogram, may be viewed as an asymmetric peak 
of a few pA amplitude superimposed upon a roughly 
quadratic background. Figure 1 is a screen dump from 

an instrument built by the author and shows the 
response obtained when used to analyse a solution 
containing lead at a concentration of 10 parts per 
billion. 

A common way of calibrating such an instrument is by 
the construction of a calibration curve based upon the 
relationship between the height of the stripping peak 
above the interpolated background and the known 

metal concentration in a set of standard samples. 
Unfortunately, the height of the peak, and to a lesser 

extent its position, is dependent not only on the 
concentration of pollutant by also upon several 
instrumental parameters which also affect the 
sensitivity and resolution of the instrument. In order to 
obtain meaningful results therefore, the scans used to 
construct the calibration curves must either be made 
using only one set of operational parameters or the peak 

our. r. nt 1.1 P . I.. - 2-1 a. J35 W. A. orr.. %: a. Il. n.. 5 W. a. fo: to P. d.. IYMI Sa MI. h1Y TIMT i6ý. 1N. f Ti_i ]0.. ' &*. tiPl a.., 

scan 

If the optimum DPASV operational parameters for a 
given analyte sample are unknown, as is usually the 
case, it is possible inadvertently to saturate the 
instrument. In this case a flat topped peak is produced, 
figure 2, for which the true peak height cannot be 
found. These responses cannot be used in a calibration 
curve technique. Scans must be repeated several times 
using different parameters until a good peak is 
obtained. 

The author has built a computer controlled instrument 
which performs an analysis by DPASV at the parts per 
billion level. A neural network is trained on responses 
obtained from calibration samples which have been 
analysed using a number of different operational 
parameters. The inputs used to the neural network are 
computed from both the instrumental response and the 
various parameters in effect at the time of the analysis. 
The single output is a direct quantitative measure, in 
ppb, of the concentration of metal in the original 
sample. 

The neural network approach is able accurately to 
model the response / concentration relationship and 
also eliminates the need for repeat scans as it suffers 
only a very slight loss of precision and accuracy when 
estimating from a saturated, flat topped response. 
Indeed, the performance achieved with such responses 
is better than the calibration curve method achieves 
using good peaks. 

'Artificial Neural Networks',, 26th-28th June 1995, Conference Publication No. 409, OIEE 1995 
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Figure 1: A voltammogram from a typical DPASV 
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Figure 2: A saturating DPASV voltammogram 

ANODIC STRIPPING VOLTAMMETRY 

Differential Pulse Stripping Voltammetry is very well 
described in Wang (2), Kopanica (3) and Braining (4). 

The use of true neural networks in analytical chemistry 

appeared in 1990 when Long (5) trained a back 

propagation network to estimate the protein content of 
(ý) wheat from its near infrared spectrograph. Wythoff 

used a simple back propagation network to identify 

signal peaks in infrared spectra whilst McAvoy (') 

found that the backpropagation MLP out performed 
linear techniques in de convoluting fluorescence 

spectra. Blank (8,9) used both real and synthetic IR 

data to compared non-linear forms of Partial Least 

Squares to a Back Propagation neural network. To date 

however little seems to have been written regarding the 

use of neural networks with DPASV. 

In DPASV the solution under test is placed in a 

specially constructed cell containing three electrodes. 
Two of these, the Working Electrode, which is formed 

by electroplating a few microns of mercury onto a 

polished, vitreous carbon disc, and the Auxiliary 

Electrode, a fine platinum wire, act as cathode and 

anode as in a simple electroplating arrangement. The 

third is a specially constructed reference electrode 

providing a reference potential with respect to which 
the potential of the Working Electrode can be 

measured. Feedback circuitry enables the potential of 
the Working Electrode to be accurately set and 

maintained at any value regardless of the current 
flowing through the solution. 

Before the analytical run the Working Electrode is 

rotated and held at a potential of about -0.6V for a short 
time tp llunng ttus Urne any metaiuc pouutants are 

platerI onto the mercury where they form an amalgam. 
In the analysis phase the potential of the Working 
Electrode is gradually changed in an anodic direction, 

using a ramped, pulse shaped wave form of pulse 

height Ep and variable mark - space ratio, until it is at 
about -0.2V. Around the standard potential for the trace 
metal in question, the metal is stripped out of the 
mercury, i. e. oxidised, back into solution and a current 
increase occurs due to the Faradic reaction. The 
potential of the Working Electrode (E e) at the time 
of each pulse and the difference in current flowing (Ai) 
just before the pulse and at the end of the pulse 
provides the instrumental response. 

DATA SET PRODUCTION 

The longer tp is the more metal is plated and the higher 
the response peak obtained. Also, within certain limits, 
the higher the pulse height the greater the sensitivity 
i. e. the higher the peak, but the lower the resolution. 
For this study standard solutions containing lead at 
concentrations of 0 to 200 ppb in steps of 10 ppb were 
made up by dissolving lead nitrate in nitric acid. Four 
scans were made of each solution using DPASV at 
pulse heights (Ep) of 5,10,20 and 50 mV and a 
deposit time (tp) of 60s. Two replicate scans were 
carried out. This entire process was then repeated using 
new solutions and with a deposition time of 180s. This 
provided 320 voltammograms i. e. 16 analytical runs on 
each of 20 concentrations. In addition two replicate 
scans of 0 ppb lead concentration was made at each of 
the four pulse heights using a 180s deposit time. The 
resulting database therefore consisted of 328 
voltammograms each of which contained 300 Ai data 
points. Figure 2 shows a 3D plot of the data set 
showing the peak height for all concentrations and 
parameter combinations. Saturating peaks are in the 
top left and top centre of the diagram. 

ppb 

Figure 2: 3D plot showing the surface being modelled. 

The data set was split into three groups. The first group 
(set A) contained curves that did not exhibit saturation, 
the second group (set B) contained the saturating 
curves with flat topped responses and the third group 
(set C) was obtained by using all of the original data 
vectors regardless of whether they saturated or not. 
These three groups were then each split into a training 

`Artificial Neural Networks', 26th-28th June 1995, Conference Publication No. 409, ©IEE 1995 
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set and a test set by extracting approximately 25% of 
the vectors at random and placing them into the test set 
with the remainder going into the training set. 

CALIBRATION METHODS IMPLEMENTED 

All the three layer MLPs used a sigmoidal transfer 
function for the hidden layer and all models used a 
linear transfer function for the single output unit. The 
optimum number of hidden units for the three layer 
architectures was found empirically to be 30. 

Using the raw data from the non saturating curves (set 
A), a 'base' calibration curve was constructed by fitting 

quadratics to the peak and baseline. From these the 
peak height above the interpolated baseline was found 
for each concentration and parameter setting. Heights 
from replicate curves were averaged. These heights 

were then normalised to a1 minute plate time (tp) at a 
5 mA pulse height(Ep). Using the training set only, the 
normalised mean peak height was plotted against the 
known lead concentration and a linear least squares 
regression performed in order to produce a calibration 
curve. This calibration curve was then used to obtain an 
estimate of the lead concentration for each of the 
averaged and normalised test set heights in the non 
saturating data set. 

For the neural network models the raw Ai data, with 
each response consisting of 300 data points, was 
reduced to a 17 element input vector by extracting the 
Ai values corresponding to working electrode potentials 
of -0.6V to -0.26V in steps of 20 mV. The vector was 
then extended to either 19 components by appending 
the two operational parameters of plate time (tp) and 
pulse height (E p) or to 22 components by also 
appending the three calculated values of maximum Ai, 

minimum Ai and the standard deviation of the Ai points 
in the original instrument response. The 17 values of Ai 

were then scaled to values approximately in the range 0 
to 1 using the formula 

x' =x (1) 
42.8 

where 42.8 is the maximum possible Ai value, in µA, 
that can be recorded. The remaining components of the 
vector were each normalised to the range 0-1 
individually using their particular maximum and 
minimum. The single target was the concentration in 

ppb, similarly scaled to lie in the range 0 to 1. 

NEURAL NETWORK ARCHITECTURES USED 

Various neural network architectures having 22 or 19 
inputs were investigated including GRNN, two layer 
MLPs, three layer MPLs and a two layer high order 
MLP using 138 inputs constructed from all possible 
multiples of input pairs. In addition a model was 
constructed using Partial Least Squares as this has been 
shown, Wold (10,11), to be of some benefit with this type 
of chemical response. 

For each of the models investigated, including the peak 
height calibration curve, a plot was made of the actual 
lead concentration against the predicted lead 
concentration for the unseen test set. 

The quality of prediction for each model was then 
obtained by calculating various metrics of which two, 
the mean absolute error in prediction and the mean 
value of the 95% prediction confidence interval for 
each data point, are reported here. 

The mean 95% prediction confidence in predicting a 
lead concentration from the data used as input to the 
model was obtained using the equation 

n 
Eq 

ýn (2) 

where n is the number of test data points and Ct is the 
95% confidence interval for test data point I. The use of 
this confidence interval when assessing neural network 
predictions is discussed in Jepson (12) where the 
equation 

x (x- 

-2 

ýx)2 
(3) q =tax 

n-1 
s2 (l-r2) 1+-+ 

n (n-l)s n 

is used to calculate the 95% confidence limit. Here n is 
the number of pairs of actual and predicted values, tQ is 
the student's t statistic with n-1 degrees of freedom and 
95% confidence, x and S2 are the mean and variance 

respectively of the actual values, sy is the variance of 
the predicted values and r2 is the coefficient of 
determination. 

RESULTS 

The full results obtained are shown in table 1. Using 
the peak height calibration curve obtained from the set 
A training set, concentration estimates for each of the 
test set vectors were obtained. A plot of the actual 
concentration vs the predicted concentration for the test 
set is shown in figure 3 together with a linear 
regression and the 95% limits in prediction. The mean 
absolute error of the predictions shown here is 14.2 ppb 
and the mean value of the 95% confidence limits over 
the range shown for this plot is ± 30 ppb. 

`Artificial Neural Networks 'l 26th-28th June 1995, Conference Publication No. 409, (WEE MS 
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TABLE 1- Summary of results 

Absolute Error ( ppb) Average 95% Confidence (± ppb) 
Net Type Non 

saturating 
(set A) 

Only 
Saturating 

(Set B) 

All peaks 

(Set C) 

Non 
saturating 

(set A) 

Only 
Saturating 

(Set B 

All peaks 

(Set C) 
138 : 0: 1 high order net 42.0 68.8 

22 input, 9 factor PLSR 30.3 64.7 

19: 0: 1 MLP (BP) 27.6 60.4 

22: 0: 1 MLP (BP) 25.8 58.9 

Peak Height Calibration 14.2 30.0 

19 input GRNN 12.5 9.3 11.3 31.4 20.4 24.9 

22 input GRNN 12.5 8.7 12.0 27.5 21.3 26.4 

19: 30: 1 MLP (BP) 8.4 8.7 8.3 16.7 18.3 18.4 

22: 30: 1 MLP (BP) 6.1 9.6 10.3 16.1 18.3 ' 23.9 

The best neural network performance on this data set 
was obtained by a 22 input, three layer MLP having 30 
hidden units and trained using a batch update 
backpropagation algorithm (figure 4). On the same 
unseen, non saturating curves as those used above this 

achieved a mean absolute error of 6.1 ppb, and a mean 
95% confidence of ±16.1 ppb. 
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Figure 3: Test set concentration predictions for peak 
height calibration (set A) 
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Figure 4: 'lest set concenuauon prewcuons for 
22: 30: 1 neural network calibration (set A) 

19: 30: 1 backpropagation MLP was successfully trained 
using just the saturating curves and when tested on the 
saturating test set achieved a mean absolute error of 8.7 
ppb with a mean 95% confidence of ±18.3 ppb. 

The second data set that could not be used with a peak 
height calibration is set C which contained a mixture of 
saturating and unsaturating curves, as might be 
obtained in practice. With this set the mean absolute 
error and mean 95% confidence at 8.3 ppb and ±18.4 
ppb respectively, are still better, than the values 
obtained for the peak height method. 

Calibration by right hand peak slope 

As part of the investigation into these results attempts 
were made to parameterise the original curve's data 
points. One such attempt was to use ten data points 
taken from the right hand slope of the peak as a vector, 
the operational parameters were appended and the 
vector normalised as described previously. When this 
right hand slope was used with set C to train and test a 
12: 20: 1 backpropagation MLP it was found that a mean 
absolute error of 19.5 ppb and a mean 95% confidence 
of ±38.5 ppb could be obtained. The calibration graph 
for the test set is shown in figure 5. 

These particular figures are similar to those obtained by 
a simple peak height method and do not represent the 
significant advantage of the neural network technique 
outlines above. However they do give an insight into 
alternative sources for information related to the 
concentration. 

The voltammograms exhibiting saturation cannot be 

used in the peak height calibration since it is not 
possible to estimate the height of the peak. However a 

'f1 rtificial Neural Networks', 26th-28th June 1995, Conference Publication No. 409, ©IEE 1995 
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Figure 4: Test set concentration predictions for 12: 20: 1 
neural network using RHS slope of the peak 
as input (set C) 

CROSS VALIDATION EXERCISE 

The main conclusion of this work rest upon the 
hypothesis that neural network processing, in particular 
by backpropagation MLP, provides more precise 
calibrations than a calibration curve produced from 

peak heights alone. Accordingly a one tailed student's t 
test was devised to ascertain the significance of the 
apparently lower 95% prediction interval obtained by 
MLP over peak height calibration and also the 
perceived lower mean absolute error in prediction. The 

procedure was as follows. 

The file containing data from unsaturated peaks was 
first randomised by making a single pass through the 
file. As each row of the data matrix was reached during 
the pass it was swapped with a row chosen at random 
from the entire file. After randomising the data, four 

cross validation training and testing data sets in the 
ratio 75% training 25% testing were extracted. 

This was done by taking the vectors 1 to 64 to be the 
test data for set 0 with the remaining vectors going into 
the training set for set 0. Then the next 64 vectors, 
numbers 65 to 129, were extracted to go into the test set 
for set 1 with vectors 1 to 64 and 130 onwards going 
into the training set for set 1. This process was repeated 
until four sets were obtained and each vector had been 
in both the test set and the training set once. 

Each of these four sets was then processed to obtain a 
prediction of test set lead concentration using (a) a least 

squares regression on the peak heights found in the 
original voltammograms and (b) a 22 input MLP 
trained using the same methods and training 
parameters as previously described. 

Each of these eight sets of 64 lead predictions was then 
processed to obtain the 95% prediction limits in 
predicting the lead concentration, the average 95% 
prediction limit for each set and each method and the 

mean absolute error for each set and each method. This 
gave sets of paired data related to the two methods. 
The values obtained, along with other indicative values 
are given below in tables 3 and 4. 

Set Avg 96% 
Conf 
(b 

min abs 
error 
(ppb) 

max abs 
error 
( b) 

mean abs 
error 
( b) 

0 31.46 0.89 37.40 15.31 
1 31.50 0.17 43.90 13.88 
2 29.36 0.20 53.55 12.87 
3 31.81 0.31 41.08 15.17 

TABLE 3- Results of cross validation using peak 
height calibration 

Set Avg 96% 
Conf 
(b 

min abs 
error 
(b 

max abs 
error 
(b 

mean abs 
error 
(Mb) 

0 14.67 0.02 28.22 6.11 
1 22.23 0.19 32.67 9.99 
2 18.07 0.04 31.28 7.76 
3 19.68 0.46 33.85 8.91 

TABLE 4- Results of cross validation using a neural 
network 

Significance of cross validation results 

Microsoft Excel® was used to perform a one tailed 
paired student's t test on the mean absolute error of the 
network and the peak heights calibration (x1 & x2) and 
the mean 95% confidence in the estimates (y1 & y2). 
The null hypothesis in both cases was that the means of 
the two sets of errors (or the two sets of confidence 
values) from each calibration method were equal. The 
alternative hypothesis was that they were not equal. 
This gave the following results where the critical 
region with 3 degrees of freedom and a=0.05 is was 
taken to be t>2.353. 

For the mean absolute error, t (x1, x2), calculated by 
Excel, = 5.387, with a one-tail probability of P(T<=t) of 
0.006. 

For the average 95% confidence limits, t (y1, y2), 
calculated by Excel, = 7.776 with a one-tail probability 
of P(T<=t) of 0.002. 

The decision in both cases therefore to reject the null 
hypothesis that the means are equal. Since the t values 
obtained fall in the right tail of the critical region it can 
be concluded that processing by neural network does 
indeed produce both a lower mean absolute error in 
prediction than does using calibration curves obtained 

-Artificial Neural Nehvorks, 26th-28th June 1995, Conference Publication No. 409,0 IEE 1995 
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from peak heights. Similarly it may be concludes that 
the 95% confidence limits in predicting a concentration 6 Wythoff B. J. et al. 1990, "A. Spectral peak 
are smaller than those obtained using calibration curves verification and recognition using a multilayered 
obtained from peak heights. neural network. Anal Chem, 62,2702-2709. 

CONCLUSION 
7. McAvoy T. J. et at. 1989, "Interpreting biosenor 

data via backpropagation", Prop. Int. Joint Conf. on 
Neural-Networks 

.1 227-233. 

The results of this work have shown that even relatively 
uncomplicated neural networks are able to produce the 
required quantitative predictions from ASV instrument 

responses. The data processed may be obtained from 

scans performed at a range of pulse heights and deposit 
times without re calibrating the instrument. 

The neural network model appears to be superior to the 
peak height method in both accuracy and precision, 
even when using relatively crude pre-processing of the 
data. The operator is not limited to using only one set 
of operational parameters as the parameters in force at 
the time of the scan are taken into account by the 
neural network model. 

Furthermore it is shown that good predictions can be 
made by neural networks from scans that would have 
been of no use if processed using traditional methods 
due to saturation. Calibrations may be made from 

saturating and non saturating scans alike and valid 
quantitative predictions of concentration obtain from 
test data that is similarly variable in quality. 
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Appendix 2. Ancillary work carried 
out as part of this investigation 
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As part of an attempt to reduce the number of inputs to a neural network it 

was investigated whether an equation could be fitted to voltammetric curves and the 

coefficients of that equation used as inputs rather than representations of the actual 

data points. 

De Weijer' , in Curve fitting using natural computation, describes a method 

of using a Pearson VII line to fit peak shaped chromatographic instrument 

responses. During the work on this current thesis the author investigated the 

feasibility of doing the same for voltammograms of a sample of water taken from a 

local river. The river water was scanned by the apparatus previously described using 

differential pulse and the instrument response read into the Excel spreadsheet. 

The equation given by De Weijer is; 

n 

A(v) = 
Ar. o 

r-ý 
[1+4z(2* 

-1)J 

where; 
A, 0= 

height in the centre of peak i 

v- vr. o Z 
H' 

v,. 0 = peak position of peak i 

H, = the half width of peak i 

raj = the trailing factor of peak i 

n= the number of peaks 

{27} 

Using Excel, two such curves were generated. These were convoluted together 

and a small linear offset added to each point. A graph was then plotted containing 
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both the real voltammetric data and the combined synthetic curve. By manually 

adjusting the various parameters of the curves a reasonable fit was obtained on the 

real curve. 

Below are shown the two individual peaks, generated by the above equation 

before they were convoluted. 

6 

4 

2 

U0 
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Potential (V) 

Curve 2 (thallium ?) 

The combined curve is plotted on the following graph along with the real 

curve. The real curve may be readily identified as the one have noise spikes. 
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The final parameters used were 

peak I peak 2 

peak 
position 

-0.385 peak 
position 

-0.51 

peak height 7.8 peak height 0.3 

half width 0.044444 half width 0.08 

trailing 
edge 

curvature 

7 trailing 
edge 

curvature 

7 

The constant base offset added to each data point was 0.43. 
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Combined curve and real curve plotted on the same axis 

It seems that the half width value used in the equation is actually the reciprocal 

of the actual peak width as when the reciprocal of this value is taken the real half 



249 

widths of peak 1 and 2 are 45 mV and 25 mV respectively, close to the values seen 

in the real curve. 

Judging by the peak positions, the metals in the river water seem to be lead 

and thallium. Indeed, a second test of the water using ASS indicated that the water 

contained lead at a concentration of 800 ppb. 

This exercise indicated that it may be possible to use this equation to fit a 

Pearson VII curve or curves to a voltammogram and raises the additional possibility 

of using the parameters of these fitted curves obtained as inputs to a neural network 

trained to predict the concentration. 
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Some time was spent during this work investigating techniques that could be 

utilised to optimise the operational parameters of the instrument so that the best 

voltammogram was produced. The intention was that after this had been done the 

neural network would be able more precisely to predict the concentration of the test 

substance. 

As a first attempt at performing a similar operation, the author u ed the same 

program as that discussed in appendix 2 to generate synthetic mixtures containing 

two peaks. 

The investigation was to optimise the parameters used by the curve generation 

program so that a form of resolution enhancement of overlapping peaks was 

performed. To this end, since the curves could be produced anywhere on the axis, 

an optimum combined curve was defined. This was one that had the two peaks as 

tall as possible, with the positions of the peaks as similar as possible and as far to 

the right as possible. However the valley between them was to be as deep as 

possible. 

In this simulation the parameters being controlled were those generating the 

synthetic curves. In the real example it was intended that they would be the 

operational parameters of the analytical instrument which, indirectly, generate the 

real curve. 
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A genetic algorithm was written in Pascal to perform this optimisation. The 

general operation of the genetic algorithm followed traditional lines and was 

modelled after the work of Davis'22 and Goldberg123. 

The chromosome was coded as a string of 18 bits encoding the six curve 

parameters (3 for each curve, i. e. position, height and width). Both Gray and binary 

encoding were tried for this encoding. Initially a population of 50 such 

chromosomes were created at random. Each chromosome was passed in turn to the 

program that used them to generate the two sech2 curves and convolute the result. 

Following this the 'resolution parameter' was found for each convoluted curve 

by; 

a(height, x height. )+b(depth,,,, 
y x position, x position2) 

resolution = 
c 

where a, b, and c are constants 

Following the principles of genetic algorithms, pairs of mates were selected 

from this population with a probability proportional to their resolution. Crossover 

between these pairs was performed at a random position with a probability of 0.7 

followed by the mutation of each bit with a probability of 0.001. 

The best 50 of these 100 curves were then saved as the 'new' population and 

the process repeated. Optionally, the best curve was plotted by passing it to the 

graph plotting module described earlier in Chapter 4. 

This process ended when no further improvement in the resolution parameter 

could be made. 

The results of this excursion into another area of machine learning showed that 

it was possible, even using the rather crude metrics described here, to optimise the 

parameters for curve generation. 
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However, a drawback using this approach in a real voltammetric experiment 

would be the time that it would take to optimise. Generating 30 or so generations, 

each one containing two sets of 50 curve parameters only took a few minutes using a 

40 MHz computer. Generating the same curves where the resolution parameters are 

found by performing real voltammetric scans, with each one taking around 90s 

would take over three days! 

For this reason, although the work was interesting and thought provoking, it 

was abandoned at this time. Elements of this work could, however, be employed. If 

a neural network was trained in a control mode, mapping existing operational 

parameters and existing voltammograms to an output of better operational 

parameters, the task of optimisation may only take a few cycles and hence be 

complete in a short time. 
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Appendix 3. Initial investigations 
using Gray & Binary output 
encoding 

In this initial study the aim was to investigate qualitatively if neural networks 

could perform at all well using voltammetric data. Hence the values and materials 

used during the preparation of the samples were not critical and were chosen from 

those used during the initial development of the instrument. 

S;? " 

h+r{ 
N}ý 

. 
ý. 

ý 
(r ý9{. 

The analytes for the initial study were prepared by taking 100 units of a 

0.05M Potassium Nitrate buffer as a blank and performing 20 runs by differential 

pulse voltammetry on this alone. Then 1 part of 1 ppm Lead was added to give a 

nominal concentration of 10 ppb Lead. Again 20 runs were performed. Another 1 

part of 1 ppm Lead was added and 20 runs performed. This was repeated until a 

nominal concentration of 50 ppb had been analysed giving 20 sets of data for each 

of 6 concentrations of lead from 0 to 50 ppb in nominal steps of 10 ppb. 

A3.1.1. Working electrode preparation method 

The working electrode used was pre plated with mercury . This was achieved 

by first polishing the working electrode for 30s using a slurry of alumina in 

deionised water after which it was washed in de ionised water, dried on a tissue and 

rinsed again in deionised water. The electrode was then rotated at 300 rpm in a 

mercury solution (Hg(N03)2 in 0. iM nitric acid) at a concentration of 2000 ppm for 
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60 s. During this time the electrode was maintained at a potential of -0.4v with 

reference to a home made silver - silver chloride electrode. 

An anodic linear scan was then performed from -0.4 V to 0.0 V at a scan rate 

of 0.33 Vs-1 in order to strip off any co-deposited materials. Finally the electrode 

was rinsed using de ionised water. 

A3.1.2. Differential pulse analysis method 

Plating the electrode with the material from the analyte was done by applying 

a potential of -0.7V vs. Ag/AgCl to the working electrode and maintaining that 

potential for 20s whilst the electrode was rotated at 300 rpm. After this time rotation 

was stopped and the potential maintained at -0.7V for a further 20ms. This rest 

period allowed the analyte to become quiescent so that further electrochemical 

activity took place in a diffusion controlled environment. 

Following this period a differential pulse scan was made from -0.7V to -0.1V 

using a pulse height of 20 mV, a pulse width of 20 ms and a rest period between 

pulses of 40 ms. The potential ramp was created by stepping the potential by 5 mV 

after each pulse. The sensitivity of the instrument was maintained at 250 nAV-1, the 

gain set to xl and zero offset was applied. 
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A3.1.3. Data set extraction and processing 

Each analytical run produced 94 digital values corresponding to the sampled 

differential current for each pulse. These values were recorded directly from the 

potentiostat's A/D output with no pre-processing (for example to convert them into 

actual values of current). The first and last 2 points of each data set were discarded 

to eliminated spurious end effects. The remaining 90 raw data points were taken as 

the value of the input vector for the network. The values could possibly have been 

chosen so that the effect of 50 Hz mains interference was partly eliminated. 

However this was deliberately not done. 

The target network output values represented the quantised concentration of 

lead in steps of 10 parts per billion. These were assigned in one of two ways. Either 

using three real numbers representing the values 0 to 5 in binary or, again using 

three numbers, as the values 0 to 5 using the Gray encoding system. The target 

vector allocated for each concentration is given in the table below. In order to 

improve network performance and prevent saturation of the sigmoid transfer 

function, target values of 0 were actually encoded as 0.1 and those of 1 encoded as 

0.9. The network was required to learn the mapping between the input vector, i. e. 

the analytical curve, and the output value given below in table 37. 

The training and test data sets were prepared in the following way. First each 

90 value data set was normalised to the range 0 to 1 and stored in a file with the 

corresponding three value target output vector appended. 
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Concentration Binary Encoding Gray Encoding 

Output 
3 

Output 
2 

Output 
1 

Output 
3 

Output 
2 

Output 
1 

0 .1 .1 .1 .1 .1 .1 

10ppb .1 .1 .9 .1 .1 .9 

20ppb .1 .9 .1 .1 .9 .9 

30ppb .1 .9 .9 .1 .9 .1 

40ppb .9 .1 .1 .9 .9 .1 

50ppb .9 .1 .9 .9 .9 .9 

Table 37. Target encoding system used for binary and Gray 

The even numbered patterns from each of the 20 runs at each concentration 

were then concatenated into one file containing 60 input vectors and their 

corresponding target output vector. This was used as the training set. The odd 

numbered patterns were similarly concatenated and used as the test set. This gave 60 

patterns in each set, each containing 93 values (90 input +3 output). These two sets 

were replicated with one train / test set using binary and one using Gray encoding 

for the target vector. 

The network used was a standard MLP trained using backpropagation and was 

written in Visual Basic using primitive neural network tools available in a DLL 

called NeuroWindows (Ward Systems). It had 90 inputs, 3 outputs and a variable 

number of hidden nodes. The learning rate for the hidden slab was 0.3 and that for 

the output slab was 0.2. The momentum for all nodes was 0.9. 



257 

A3.1.4. Network training method 

The network training and testing was divided into two sessions, one for each 

output encoding. Each training session consisted of training the network on 300 

different combinations of threshold mean squared error (mse) i. e. the lowest error 

value accepted before the network is considered to be trained, and the number of 

hidden nodes in the network. 

The number of hidden nodes was changed in integral steps from 2 to 15 and 

for each of these 14 network architectures the network was trained to one of 20 

threshold mse ranging from 0.1 to 0.005 on steps of 0.005. The network was 

completely retrained for each architecture and threshold combination using random 

starting weights of between +2 and -2 for the hidden slab and between +3 and -3 

for the output slab. 

After the network had reached its threshold mse for each combination it was 

tested using both the training set and the previously unseen test set. The number of 

correct classifications for each combination was recorded. Correct in this context is 

defined as each output node being > 0.45 for a target of 0.9 and <=0.45 for a 

target of 0.1. 

This data was then sorted using the percentage correct on the test set as the 

first key and the percentage correct on the training set as the second key. In this way 

it was possible to find the combination that produced the best generalisation for each 

of the two target encoding systems. 
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ON 
--- ------------------- .............. 

Typical curves produced by the instrument using the initial parameters, analyte 

production and electrode preparation are shown in Appendix 3. Note the large peak 

caused by a copper impurity at the right hand end of the curve. It is interesting to 

compare these with the much better quality curves obtained using the in situ plated, 

Florence electrode used for the later part of this work (see for example Figure 53 on 

page 165). 

The data obtained from training using different combinations of number of 

hidden units and final mean squared error was first sorted using the percentage 

correct on the test set as the first key and the percentage correct on the training set 

as the second key. In this way it was possible to find the combination that produced 

the best generalisation for each of the two target encoding systems. 

The graph below, figure 87, shows the training curve for best Binary encoded 

combination, a 90-15-3 network training to a threshold of 0.035 mean squared 

error. The training took about 4 minutes. For comparison, figure 88 shows the 

training curve for best Gray encoding combination, a 90-4-3 network training to a 

threshold of 0.02 mean squared error. The training time for this arrangement was 

about 2 minutes. 
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Figure 87. Training curve for binary encoding of targets 

Figure 88. Training curve for Gray target encoding 

The resulting hidden node / mse combination for the highest % correct on the 

test set in each case is tabulated below in table 38. The entire training and test 

procedure was repeated using different starting weights and almost identical results 

were obtained. 
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Binary Gray 

Number of Hidden Units 15 4 

MSE Training Set 0.0218 0.0297 

MSE Test Set 0.1248 0.0318 

Highest % correct on Training Set 100.0 98.3 

Highest % correct on Test Set 85.0 95.0 

Table 38. Initial results obtained using binary and Gray target 
encoding 

The incorrect classifications for the Binary and Gray target encoding are 

tabulated below in table 39. Here Out3 - Outl is the network output vector and Tar3 

- Tarl is the target vector. The mean squared error (mse) is the mean of the squares 

of the errors for each output node. 

It is clear that the network is having difficulty distinguishing between the 

pattern corresponding to 000 and that corresponding to 001 when coded in Binary. 

These are the patterns for 10ppb and 20ppb Lead respectfully. An alternative 

explanation could be that the network has difficulty in classifying those outputs with 

a1 in the final position. However, this would have caused it to mis-classify every 

odd output value, which it did not do. 
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Testing using Binary Coded outputs on the test data set 

Network size 90-15-3, trained to 0.035 mse 

Pat No. Out 3 Out 2 Out 1 Tar 3 Tar 2 Tar 1 mse correct 

37 . 0954 . 0484 . 4611 .1 .1 .1 . 133 N 

38 . 0799 . 7316 . 1205 .1 .1 .9 1.007 N 

44 . 0808 . 6237 . 1679 .1 .1 .9 . 811 N 

50 . 0787 . 7936 . 0668 .1 .1 .9 1.176 N 

51 . 0697 . 9337 . 5143 .1 .9 .1 . 174 N 

56 . 0889 . 6375 . 195 .1 .1 .9 . 786 N 

58 . 3455 . 6746 . 4294 .1 .9 .9 . 333 N 

Table 39. Incorrectly classified targets using binary encoding 

Testing using Gray Coded outputs on the training data set 

Network size 90-4-3 trained to 0.02 mse 

Pat No. Out 3 Out 2 Out 1 Tar 3 Tar 2 Tar 1 mse correct 

58 . 3455 . 6746 . 4294 .1 .9 .9 . 333 N 

58 . 5527 . 9014 . 0329 .1 .9 .1 . 209 N 

59 . 9433 . 8751 . 6244 .9 .9 .1 . 278 N 

Table 40. Incorrect classifications using Gray encoding 

Using Gray output encoding, see table 40, there does not appear to be an 

obvious pattern to the type of target that the network found difficulty in predicting. 

In addition there are fewer erroneously classified patterns than when using binary 

encoding. 
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The standard Back Propagation neural network can be an effective tool in the 

classification of voltammetric curves in the determination of lead concentration. It 

appears able to generalise well in the presence of noise. Using an encoding scheme 

that changes in only one dimension for each valid code i. e. a Gray code produces a 

network that generalises better than one using pure binary encoding. 

yy ;. v.. >,,. n;... t},. a r. yt..,. t..;. "ý, ":. ̂, <"^+»aytý} }, }"tz�4 ,.; t.. }ýmx^`t"'^J`ý"r . »'}^^ý}'S. "^ý}x. ýEF}q x >}vYt}; e, }. v };,.;, }}. w. }ý,;; ýaý; >;; }}}x:: >. y*! ? "t} :: yy y,, VjTf ýyfiY ý Xf }ý} 4x". a.. ý. t}. r:, < ; .{ , 
'. ý. 

, tý`..:. ý.; k . 
ý'`.: ýFý: r. ýv, 

.. t? 
4 

ýi ". }\ .; .. }:. : 'c . x"ýo*/>p rift Fý t 
ai, :; ^ 

ýytYf 
ýý ", "ýi 

tý a`ýt Qw ::. ýSýFýý :n., ? 

Xn'LYnS G"Yhýri"'ivYý''r+'iv't: ": v w:. F""::::. ý: :. 'ý: " *`''K"r""ývv"'i+Gyn'': 
"" ". :: r{}{ýrn"ýý 

+ 

ýý 

"" "' 
ý 

ý\ýý. 

tt{ýSii3"wnS: iitlý: ýt<t<'G$: iGi. \kýhýC ti\\ti'wnýw<Hb 

There follows typical voltammograms obtained when using a pre-plated 

electrode during the study of Gray and Binary neural network output encoding 

Differential Pulse - Ste: 2.0 U/uA, Offset: 0. Range 5 uA, Gain: xi 
Pulse Anp: 20 W. Pulse Ti.,.: 20ers, Rast Ti.,.: 4ons. Step Anp: 3�U 

1. 

U. 

o. 

o. 

1 o. C 

r g O. 
C o. I. 
L 
7 
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0. 
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a. 

Figure 89. Typical curve for blank NaCI solution 

-0.57 -0.53 -0.40 -0.44 -0.39 -0.35 -0.30 -0.26 -0.21 -0.17 -0.12 

Uolta9. Applied U 



263 

1 

I 

1 

SO 

C 
A 
4 
OO 
O 

rC 
tl O 
L 
L 
7 

V 
O 

0 

0 

0.41 
-0.37 -0.53 -0.40 -0.44 -0.39 -0.33 -0.30 -0.26 -0.21 -0.17 -0.12 

Voltage Applied U 

Figure 90. Typical curve for 10 ppb lead 

Differential Pulse - Sans: 2.0 U/uA, Offset: O, Ransa 5 uA. Gain: xi 
Pulse Amp: 20 �lJ. Pulse Tine: 2Ons, Rest Tine: 40ns, Step Anp: 3nU 
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Figure 91 Typical curve for 20 ppb Pb 

Differential Pulse - Sens: 2.0 U/uA, Offset: O. Range 5 uA, Gain: x1 
Pulse Anp: 20 MU. Pulse Tine: 2Ons, Rest Tine: 40ns. Step Amp: 5nU 

1.29 -ý w 



264 

Differential Pulse - Sens: 2.0 U/uA, Offset: 0, Range 5 uA, Gain: xl 
Pulse Amp: 20 nU. Pulse Tine: 20ns, Rest Tine: 4Ons, Step Amp: 3nU 
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Figure 92 Typical curve for 30 ppb lead 
Differential Pulse - Sons: 2.0 U/up, Offset: O, Rang. 5 uA, Gain: xi 

Pulse Anp: 20 nV, Pulse Tine: 20ns, float Ti,,.: 40ns, Stop Anp: SnV 
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Figure 93. Typical curve for 40 ppb lead 
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Figure 94. Typical curve for 50 ppb lead 

Differential Pulse - Sens: 2.0 U/uA. Offset: U. Rangs 5 uA. Gain: x1 
Pulse Amp: 20 "U, Pulse Tine: 20ns. nest Tine: 4Ons, Step Amp: SnU 
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Now, 

Testing using Binary Coded outputs on the training data set 

Network size 90-15-3, trained to 0.035 mse 

Pat No. Out 3 Out 2 Out 1 Tar 3 Tar 2 Tar 1 mse correct 
1 . 1084 . 0475 . 0615 .1 .1 .1 . 004 Y 
2 . 0907 . 0677 . 7024 .1 .1 .9 . 04 Y 
3 . 0901 . 8397 . 0284 .1 .9 .1 . 009 Y 
4 . 0718 . 9342 . 6419 .1 .9 .9 . 069 Y 
5 . 5885 . 4463 . 1721 .9 .1 .1 . 222 Y 
6 . 9121 . 0761 . 7312 .9 .1 .9 . 029 Y 
7 . 1108 . 0484 . 0624 .1 .1 .1 . 004 Y 
8 . 0815 . 0841 . 726 .1 .1 .9 . 031 Y 
9 . 0814 . 8929 . 0531 .1 .9 .1 . 003 Y 
10 . 0697 . 9342 . 6948 .1 .9 .9 . 044 Y 
11 . 7366 . 2849 . 0627 .9 .1 .1 . 062 Y 
12 . 9225 . 0723 . 5924 .9 .1 .9 . 096 Y 

13 . 123 . 0443 . 0645 .1 .1 .1 . 005 Y 

14 . 1057 . 0783 . 8178 .1 .1 .9 . 007 Y 
15 . 0765 . 8988 . 0358 .1 .9 .1 . 005 Y 
16 . 0742 . 9285 . 6845 .1 .9 .9 . 048 Y 
17 . 6978 . 3119 . 23 .9 .1 .1 . 103 Y 
18 . 9235 . 0665 . 7749 .9 .1 .9 . 017 Y 
19 . 113 . 0557 . 0178 .1 .1 .1 . 009 Y 

20 . 1031 . 0492 . 7593 .1 .1 .9 . 022 Y 
21 . 0769 . 9211 . 0591 .1 .9 .1 . 003 Y 
22 . 0723 . 9313 . 7678 .1 .9 .9 . 019 Y 
23 . 7312 . 2828 . 1783 .9 .1 .1 . 068 Y 
24 . 9357 . 0564 . 8055 .9 .1 .9 . 012 Y 
25 . 1026 . 0722 . 0327 .1 .1 .1 . 005 Y 
26 . 1066 . 0506 . 8262 .1 .1 .9 . 008 Y 
27 . 0736 . 9245 . 0737 .1 .9 .1 . 002 Y 
28 . 0896 . 9099 . 6999 .1 .9 .9 . 040 Y 
29 . 8046 . 2057 . 1561 .9 .1 .1 . 023 Y 
30 . 9431 . 0491 . 8875 .9 .1 .9 . 005 Y 
31 . 0844 . 0917 . 0571 .1 .1 .1 . 002 Y 
32 . 1082 . 0594 . 7797 .1 .1 .9 . 016 Y 
33 . 0718 . 9289 . 1028 .1 .9 .1 . 002 Y 
34 . 0764 . 9232 . 8486 .1 .9 .9 . 004 Y 
35 . 8771 . 1329 . 0746 .9 .1 .1 . 002 Y 
36 . 9422 . 0483 . 9167 .9 .1 .9 . 005 Y 
37 . 0769 . 082 . 0455 .1 .1 .1 . 004 Y 
38 . 1081 . 0631 . 7592 .1 .1 .9 . 021 Y 
39 . 0821 . 9143 . 0479 .1 .9 .1 . 003 Y 
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40 
. 0727 . 923 . 

8914 
.1 .9 .9 . 

001 y 
41 . 7724 . 2293 . 2744 .9 .1 .1 . 063 y 
42 . 953 . 0413 . 905 .9 .1 .9 . 006 y 
43 . 0759 . 0812 . 0739 .1 .1 .1 . 002 y 
44 . 0959 . 0712 . 7872 .1 .1 .9 . 014 y 
45 . 0754 . 9262 . 0733 .1 .9 .1 . 002 y 
46 . 0763 . 9214 . 8829 .1 .9 .9 . 001 y 
47 . 8554 . 1485 . 1831 .9 .1 .1 . 011 y 
48 . 9438 . 0479 . 9076 .9 .1 .9 . 005 y 
49 . 0823 . 064 . 0642 .1 .1 .1 . 003 y 
50 . 0882 . 1519 . 7966 .1 .1 .9 . 014 Y 
51 . 0718 . 9317 . 1438 .1 .9 .1 . 004 y 
52 . 1131 . 8779 . 752 .1 .9 .9 . 023 y 
53 . 8736 . 1311 . 1746 .9 .1 .1 . 007 Y 
54 . 9442 . 047 . 9246 .9 .1 .9 . 005 y 
55 . 0835 . 0607 . 0978 .1 .1 .1 . 002 y 
56 . 098 . 1217 . 772 .1 .1 .9 . 017 y 
57 . 0759 . 9271 . 0852 .1 .9 .1 . 002 Y 
58 . 0754 . 9253 . 8023 .1 .9 .9 . 011 y 
59 . 8751 . 1317 . 1578 .9 .1 .1 . 005 Y 
60 . 9431 . 0492 . 8565 .9 .1 .9 . 006 Y 

mean error squared = 2.128272E-02 

percent correct =100.0% 

Testing using Binary Coded outputs on the test data set 

Network size 90-15-3 trained to 0.035 mse 

Pat No. Out 3 Out 2 Out 1 Tar 3 Tar 2 Tar 1 mse correct 
1 . 0866 . 0523 . 1097 .1 .1 .1 . 003 Y 
2 . 0929 . 1253 . 8039 .1 .1 .9 . 010 Y 
3 . 0729 . 9325 . 1405 .1 .9 .1 . 003 Y 
4 . 0755 . 921 . 8996 .1 .9 .9 . 001 Y 
5 . 8588 . 145 . 2064 .9 .1 .1 . 015 Y 
6 . 9482 . 0448 . 9164 .9 .1 .9 . 006 Y 
7 . 0738 . 1021 . 1168 .1 .1 .1 . 001 Y 
8 . 1048 . 1283 . 6995 .1 .1 .9 . 041 Y 
9 . 0766 . 9263 . 1341 .1 .9 .1 . 002 Y 
10 . 0983 . 8965 . 895 .1 .9 .9 . 000 Y 
11 . 8582 . 1378 . 3368 .9 .1 .1 . 059 Y 
12 . 9456 . 0441 . 953 .9 .1 .9 . 008 Y 
13 . 0901 . 0564 . 3929 .1 .1 .1 . 088 Y 
14 . 0819 . 3716 . 5466 .1 .1 .9 . 199 Y 
15 . 074 . 9332 . 1397 .1 .9 .1 . 003 Y 
16 . 1072 . 8867 . 8744 .1 .9 .9 . 001 Y 
17 . 8834 . 1213 . 1689 .9 .1 .1 . 005 Y 
18 . 9513 . 0413 . 9454 .9 .1 .9 . 008 Y 
19 . 0843 . 0588 . 2649 .1 .1 .1 . 029 Y 
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20 . 0954 . 2785 . 6071 .1 .1 .9 . 118 y 
21 . 0694 . 9341 . 2985 .1 .9 .1 . 042 y 
22 . 1436 . 8373 . 7425 .1 .9 .9 . 031 y 
23 . 8949 . 1081 . 2015 .9 .1 .1 . 01 y 
24 . 9539 . 0411 . 898 .9 .1 .9 . 006 Y 
25 . 0858 . 054 . 1462 .1 .1 .1 . 004 y 
26 . 0819 . 4142 . 5233 .1 .1 .9 . 241 y 
27 . 0722 . 93 . 2525 .1 .9 .1 . 025 y 
28 . 0983 . 8995 . 8813 .1 .9 .9 . 000 y 
29 . 8799 . 1147 . 3761 .9 .1 .1 . 077 Y 
30 . 9505 . 0423 . 9313 .9 .1 .9 . 007 Y 
31 . 099 . 0382 . 741 .1 .1 .1 . 415 N 
32 . 0949 . 5232 . 1343 .1 .1 .9 . 765 N 
33 . 0715 . 9333 . 3199 .1 .9 .1 . 050 Y 
34 . 1462 . 8477 . 8259 .1 .9 .9 . 010 y 
35 . 9084 . 0872 . 3857 .9 .1 .1 . 082 y 
36 . 9535 . 0389 . 9591 .9 .1 .9 . 010 y 
37 . 0954 . 0484 . 4611 .1 .1 .1 . 133 N 
38 . 0799 . 7316 . 1205 .1 .1 .9 1.007 N 
39 . 0699 . 9317 . 4486 .1 .9 .1 . 123 y 
40 . 2449 . 7327 . 5346 .1 .9 .9 . 182 y 
41 . 9018 . 0997 . 2644 .9 .1 .1 . 027 Y 
42 . 9503 . 0422 . 9411 .9 .1 .9 . 008 y 
43 . 0846 . 0679 . 2219 .1 .1 .1 . 016 y 
44 . 0808 . 6237 . 1679 .1 .1 .9 . 811 N 
45 . 0707 . 9328 . 3898 .1 .9 .1 . 086 Y 
46 . 0958 . 8961 . 9201 .1 .9 .9 . 000 Y 
47 . 9094 . 0896 . 3126 .9 .1 .1 . 045 Y 
48 . 9535 . 0395 . 9477 .9 .1 .9 . 009 Y 
49 . 0917 . 0498 . 3779 .1 .1 .1 . 080 Y 
50 . 0787 . 7936 . 0668 .1 .1 .9 1.176 N 

51 . 0697 . 9337 . 5143 .1 .9 .1 . 174 N 
52 . 152 . 8512 . 7619 .1 .9 .9 . 024 Y 
53 . 861 . 1402 . 1817 .9 .1 .1 . 010 Y 
54 . 9523 . 0388 . 9642 .9 .1 .9 . 011 Y 
55 . 0886 . 0611 . 2813 .1 .1 .1 . 035 y 
56 . 0889 . 6375 . 195 .1 .1 .9 . 786 N 
57 . 0742 . 9286 . 2008 .1 .9 .1 . 012 y 
58 . 3455 . 6746 . 4294 .1 .9 .9 . 333 N 
59 . 9306 . 0727 . 2228 .9 .1 .1 . 017 Y 
60 . 9514 . 0374 . 9795 .9 .1 .9 . 013 Y 

mean error squared = 0.1248855 

percent correct = 85.0% 
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Testing using Gray Coded outputs on the training data set 

Network size 90-4-3 trained to 0.02 mse 

Pat No. Out 3 Out 2 Out 1 Tar 3 Tar 2 Tar 1 mse correct 
1 . 1104 . 0698 . 0913 .1 .1 .1 . 001 Y 
2 . 111 . 0848 . 702 .1 .1 .9 . 040 Y 
3 . 0513 . 5534 . 9554 .1 .9 .9 . 126 Y 
4 . 035 . 965 . 3914 .1 .9 .1 . 093 Y 
5 . 6434 . 8899 . 0273 

.9 .9 .1 . 071 Y 
6 . 9517 . 8765 . 7084 

.9 .9 .9 . 040 Y 
7 . 1104 . 0698 . 0913 .1 .1 .1 . 001 Y 
8 . 1113 . 0849 . 7272 .1 .1 .9 . 030 Y 
9 . 0519 . 5568 . 96 

.1 .9 .9 . 124 Y 
10 . 0364 . 9654 . 3766 .1 .9 .1 . 085 Y 
11 . 6672 . 8866 . 0345 .9 .9 .1 . 059 Y 
12 . 9525 . 8763 . 714 .9 .9 .9 . 038 Y 
13 . 1112 . 0697 . 0914 .1 .1 .1 . 001 Y 
14 . 1058 . 1153 . 9653 .1 .1 .9 . 005 Y 
15 . 075 . 3099 . 9816 .1 .9 .9 . 356 N 
16 . 0508 . 9589 . 3271 .1 .9 .1 . 057 Y 
17 . 7079 . 8851 . 0358 

.9 .9 .1 . 041 Y 
18 . 9596 . 8766 . 7913 .9 .9 .9 . 016 Y 
19 . 1104 . 0698 . 0913 .1 .1 .1 . 001 Y 
20 . 1101 . 0923 . 8521 .1 .1 .9 . 002 Y 
21 . 0424 . 7087 . 9282 

.1 .9 .9 . 041 Y 
22 . 0618 . 9604 . 2637 .1 .9 .1 . 032 Y 
23 . 7177 . 8831 . 0341 

.9 .9 .1 . 038 Y 
24 . 9647 . 877 . 8475 .9 .9 .9 . 007 Y 
25 . 1104 . 0698 . 0913 

.1 .1 .1 . 001 Y 
26 . 1072 . 108 . 9513 

.1 .1 .9 . 003 Y 
27 . 043 . 7032 . 9286 

.1 .9 .9 . 043 Y 
28 . 1086 . 9492 . 1892 

.1 .9 .1 . 010 Y 
29 . 7696 . 8781 . 0411 

.9 .9 .1 . 021 Y 
30 . 9699 . 8764 . 8854 

.9 .9 .9 . 006 Y 
31 . 1104 . 0699 . 092 .1 .1 .1 . 001 Y 
32 . 1054 . 1111 . 9334 

.1 .1 .9 . 001 Y 
33 . 0511 . 6123 . 9524 

.1 .9 .9 . 088 Y 
34 . 1078 . 9526 . 1759 .1 .9 .1 . 009 Y 
35 . 8114 . 8754 . 0638 .9 .9 .1 . 010 Y 
36 . 9703 . 8766 . 8897 .9 .9 .9 . 006 Y 
37 . 1104 . 0699 . 0917 .1 .1 .1 . 001 Y 
38 . 1059 . 1132 . 9568 .1 .1 .9 . 003 Y 
39 . 0453 . 6694 . 9445 .1 .9 .9 . 058 Y 
40 . 1111 . 9523 . 1745 .1 .9 .1 . 008 Y 
41 . 7746 . 8803 . 0517 .9 .9 .1 . 018 Y 
42 . 9718 . 8768 . 9055 .9 .9 .9 . 006 Y 
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43 . 1104 . 0699 . 0929 .1 .1 .1 . 001 y 
44 . 1088 . 0978 . 8866 .1 .1 .9 . 000 y 
45 . 0478 . 6424 . 9405 

.1 .9 .9 . 071 y 
46 . 1282 . 9501 . 1545 .1 .9 .1 . 006 y 
47 . 8331 . 876 . 0856 .9 .9 .1 . 005 y 
48 . 9703 . 8765 . 8895 .9 .9 .9 . 006 y 
49 . 1104 . 07 . 0943 

.1 .1 .1 . 001 y 
50 . 1096 . 109 . 9804 

.1 .1 .9 . 007 y 
51 . 0427 . 7495 . 9098 

.1 .9 .9 . 026 y 
52 . 196 . 9372 . 1233 .1 .9 .1 . 011 y 
53 . 8469 . 8738 . 09 .9 .9 .1 . 004 y 
54 . 9711 . 8762 . 893 .9 .9 .9 . 006 Y 
55 . 1104 . 0702 . 0986 .1 .1 .1 . 001 y 
56 . 1033 . 1264 . 9748 .1 .1 .9 . 006 y 
57 . 0329 . 838 . 8542 .1 .9 .9 . 010 y 
58 . 0884 . 9546 . 209 .1 .9 .1 . 015 y 
59 . 8443 . 8727 . 079 .9 .9 .1 . 004 y 
60 . 9674 . 8774 . 876 .9 .9 .9 . 006 Y 

mean error squared = 2.972622E-02 

percent correct = 98.33% 

Testing using Gray coded outputs on the test data set 

Network size90-4-3 trained to 0.02 mse 

Pat No. Out 3 Out 2 Out 1 Tar 3 Tar 2 Tar 1 mse correct 
1 . 1104 . 0704 . 1015 .1 .1 .1 . 001 Y 
2 . 108 . 113 . 98 .1 .1 .9 . 007 Y 
3 . 0303 . 8898 . 7908 .1 .9 .9 . 017 Y 
4 . 1481 . 9475 . 1339 .1 .9 .1 . 006 Y 
5 . 8373 . 874 . 0768 .9 .9 .1 . 005 Y 
6 . 9717 . 8761 . 8975 .9 .9 .9 . 006 Y 
7 . 1104 . 0704 . 1027 .1 .1 .1 . 001 Y 
8 . 0993 . 1404 . 9739 .1 .1 .9 . 007 Y 
9 . 0274 . 9027 . 7704 .1 .9 .9 . 022 y 
10 . 269 . 9336 . 0816 .1 .9 .1 . 030 Y 
11 . 8656 . 875 . 1323 

.9 .9 .1 . 003 Y 
12 . 9721 . 8764 . 9024 .9 .9 .9 . 006 Y 
13 . 1103 . 073 . 1572 .1 .1 .1 . 004 Y 
14 . 109 . 1162 . 9885 .1 .1 .9 . 008 Y 
15 . 0264 . 9184 . 7242 .1 .9 .9 . 037 Y 
16 . 293 . 9308 . 0758 .1 .9 .1 . 039 Y 
17 . 861 . 8727 . 1053 .9 .9 .1 . 002 Y 
18 . 973 . 8761 . 9067 .9 .9 .9 . 006 y 
19 . 1105 . 072 . 1423 .1 .1 .1 . 003 Y 
20 . 1019 . 1394 . 9895 .1 .1 .9 . 010 Y 
21 . 0331 . 8716 . 827 .1 .9 .9 . 011 y 
22 . 2444 . 9331 . 1177 .1 .9 .1 . 022 y 
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23 . 8887 . 873 . 1798 .9 .9 .1 . 007 y 
24 . 9718 . 8766 . 9045 .9 .9 .9 . 006 y 
25 . 1104 . 0705 . 1034 .1 .1 .1 . 001 y 
26 . 1077 . 1207 . 9893 .1 .1 .9 . 008 y 
27 . 0262 . 9161 . 7529 .1 .9 .9 . 027 y 
28 . 2783 . 9327 . 0762 .1 .9 .1 . 033 y 
29 . 892 . 8742 . 2042 .9 .9 .1 . 012 y 
30 . 9724 . 8762 . 9037 .9 .9 .9 . 006 y 
31 . 1104 . 079 . 3937 .1 .1 .1 . 087 y 
32 . 0812 . 2422 . 9827 .1 .1 .9 . 027 y 
33 . 0227 . 9438 . 6717 .1 .9 .9 . 060 y 
34 . 3816 . 9216 . 0591 .1 .9 .1 . 081 y 
35 . 9278 . 876 . 4669 .9 .9 .1 . 136 N 
36 . 9736 . 8761 . 9112 .9 .9 .9 . 006 y 
37 . 1106 . 0763 . 2908 .1 .1 .1 . 037 y 
38 . 0949 . 1708 . 9898 .1 .1 .9 . 013 y 
39 . 0334 . 9047 . 7537 .1 .9 .9 . 026 y 
40 . 3655 . 9219 . 0918 .1 .9 .1 . 071 y 
41 . 9074 . 8727 . 2562 .9 .9 .1 . 025 Y 
42 . 9728 . 876 . 905 .9 .9 .9 . 006 y 
43 . 1105 . 072 . 14 .1 .1 .1 . 002 y 
44 . 0998 . 1492 . 9895 .1 .1 .9 . 010 y 
45 . 0312 . 9216 . 7102 .1 .9 .9 . 041 y 
46 . 2915 . 9316 . 0756 .1 .9 .1 . 038 y 
47 . 924 . 8738 . 3857 .9 .9 .1 . 083 y 
48 . 9732 . 8762 . 9099 .9 .9 .9 . 006 y 
49 . 1105 . 0744 . 2124 .1 .1 .1 . 013 y 
50 . 1008 . 152 . 9914 .1 .1 .9 . 011 y 
51 . 0245 . 9592 . 5586 .1 .9 .9 . 126 y 
52 . 3979 . 9194 . 0517 .1 .9 .1 . 091 y 
53 . 843 . 879 . 129 .9 .9 .1 . 005 Y 
54 . 9735 . 8763 . 9121 .9 .9 .9 . 006 y 
55 . 1104 . 0734 . 1764 .1 .1 .1 . 007 y 
56 . 0798 . 2562 . 9847 .1 .1 .9 . 032 Y 
57 . 0365 . 8632 . 8019 .1 .9 .9 . 015 y 
58 . 5527 . 9014 . 0329 .1 .9 .1 . 209 N 
59 . 9433 . 8751 . 6244 .9 .9 .1 . 278 N 
60 . 973 9 . 8764 . 9154 .9 .9 .9 . 006 Y 

mean error squared = 3.180071E-02 

percent correct = 95.0% 
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Appendix 4 User interface screens 
from analytical software 
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File Method Parameters is D TFME Options 

I] Method of Analysis 

() Differential Pulse 
(U) Linear Scan 
() Square Wave 

0- Can= 

lt-X .,, Qu It 

File Method Parameters Run-Analysis Display TFME Options 
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File Method Parameters Run-Analysis D 
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File Method Parameters Run-Analysis Display TFME Options 
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File Method Parameters Run-Analysis Display TFME Options 

R-[. ] I to E Sensitivity -ý '' 
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File Method Parameters Run_Analysis Display TFME Options 
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File Method Parameters Run Analysis Display TFME Options 

(@l- Mercury Film Plating Parameters 

Plate Potential (U) -0.4 

Plating Time (s) 60 

Rotation Speed (rpm) 5088 

-------- Co-deposit Strip ----- 

Start Potential (U) -8.9 

Final Potential (U) 8.8 

Sweep Speed (U/s) 8.833 
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File Method Parameters Run Analysis Display TFME Options 
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Appendix 5 Data obtained during 
the testing of the electronic 
equipment 

Testing of the Ito E converter. 

The following table shows the saturation currents for the I to E converter for 

all combinations of sensitivity and differential amplifier gain. 

Gain Sens 

nAN 

Imax 

µA 

'min 

µA 

1 250 1.075 -1.076 

1 500 2.273 -2.275 

1 1000 4.950 -4.955 

1 2000 9.709 -9.718 

1 4000 20.181 -20.076 

1 8000 42.958 -42.777 

4 250 0.269 -0.269 

4 500 0.568 -0.569 

4 1000 1.244 -1.239 

4 2000 2.427 -2.430 

4 4000 5.040 -5.072 

4 8000 10.684 -10.694 

Gain Sens 

nAN 

'max 

µA 

'min 

to 

16 250 0.067 -0.067 

16 500 0.144 -0.142 

16 1000 0.309 -0.310 

16 2000 0.607 -0.607 

16 4000 1.267 -1.261 

16 8000 2.671 -2.674 

64 250 0.017 -0.017 

64 500 0.036 -0.036 

64 1000 0.077 -0.077 

64 2000 0.152 -0.152 

64 4000 0.317 -0.315 

64 8000 0.668 -0.668 

Table 41. Saturation current values for various gains and 
sensitivities 

The positive values in table 41 are shown below, plotted on a log-log scale. 
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Saturation Current vs sensitivity, Gain xl 
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Figure 95. Saturation current - Gain xi 

Saturation Current vs sensitivity, Gain x4 
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Figure 96. Saturation current - Gain x4 



284 

Saturation Current vs sensitivity, Gain x16 
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Figure 97. Saturation current - Gain x16 

Saturation Current vs sensitivity, Gain x64 

Ir 
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Figure 98. Saturation current - Gain x64 

Address Line Offset Range 

1 0 

0 1 ±5µA 

1 0 ±50A 

Table 42.1 to E converter offset range settings 

500 1000 2000 4000 8000 

Nominal Sensitivity nAIV 

500 1000 2000 4000 8000 

Nominal Sensitivity nAN 
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Address Line Offset Number 

20 21 22 23 

0 0 0 0 -8 

0 0 0 1 -7 

0 0 1 0 -6 

0 0 1 1 -5 

0 1 0 0 -4 

0 1 0 1 -3 

0 1 1 0 -2 

0 1 1 1 -1 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 2 

1 0 1 1 3 

1 1 0 0 4 

1 1 0 1 5 

1 1 1 0 6 

1 1 1 1 7 

Table 43.1 to E converter offset settings 
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5 µA Range 
(R =1 MQ) 

50µA Range 
(R = 100 kf2) 

Calculated Offset 
Current 

Offset 
Number 

i/e offset 
sw pin 

10 

V 

l/e Amp 
Pin 2 

V 

lie offset 
sw pin 

12 

V 

i/e Amp 
Pin 2 

V 

5 gA 
Range 

gA 

50µA 
Range 

pA 

-8 -2.51 -1.266 -2.51 -1.26 -1.244 -12.5 

-7 -2.26 -1.029 -2.26 -1.028 -1.231 -12.32 

-6 -1.95 -0.757 -1.95 -0.756 -1.193 -11.94 

-5 -1.69 -0.516 -1.69 -0.514 -1.174 -11.76 

-4 -1.29 -0.157 -1.29 -0.156 -1.133 -11.34 

-3 -0.99 -0.016 -0.99 -0.016 -0.974 -9.74 

-2 -0.67 -0.017 -0.67 -0.017 -0.653 -6.53 

-1 -0.35 -0.017 -0.35 -0.017 -0.333 -3.33 

0 -0.002 -0.017 -0.002 -0.017 0.015 0.15 

1 0.33 -0.017 0.33 -0.018 0.347 3.48 

2 0.67 -0.018 0.67 -0.018 0.688 6.88 

3 1.06 0.003 1.06 0.043 1.057 10.17 

4 1.35 0.259 1.35 0.26 1.091 10.9 

5 1.73 0.607 1.73 0.608 1.123 11.22 

6 2.11 0.947 2.11 0.949 1.163 11.61 

7 2.58 1.367 2.58 1.368 1.213 12.12 

Table 44. Calibration of I/E current offset 
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Appendix 6 Functions provided by 
the Analytical Software 

Analytical Procedures 

procedure DoLinearScan(Vstart. Vend, ScanRate: real): 

Performs a linear scan from Vstart (mV) to VEnd (mV) at a scan rate of ScanRate (Vs-1) 

The output PD (mV) and the input current (µA) are recorded at 1 mV intervals. 

procedure DoS4uareWave(VStart, VEnd, Scanrate: real; f, Ep : integer); 

Performs a square wave scan from Vstart (mV) to VEnd (mV) at a scan rate of ScanRate 
(Vs-1). The square wave frequency Is f Hz and the pulse amplitude is Ep (mV). 

The output PD (mV) and the Input current (µA) are recorded for each pulse. 

procedure DoDiffPulse(VStart, VEnd : 
-real: 

PulseHeight, StepHeight : integer; 
PulseDuration, InterPulseTime : word ): 

Performs a differential pulse scan from Vstart (mV) to VEnd (mV) rising by Stepheight 
(mV) each pulse. The pulse height is PulseHeight (mV). The duration of each pulse is 
PulseDuration (ms) and the rest time is InterPulserime (ms). 

The output PD (mV) and the difference between the input current before and at the end of 
the pulse (pA) are recorded for each pulse. 

Procedure DoHpPlate(PD: real: time : word: Speed : integer): 

Applies a potential of PD (mV) to the electrode and rotates it at Speed (rpm) for time (ms) 

Procedure StripHg(Vstart. Vend. ScanRate: real): 

Performs a linear scan from Vstart (mV) to VEnd (mV) at a scan rate of ScanRate (Vs-1) 

No data is recorded 

Procedure DoAna lytePlate(PD: real: time : word: Speed : integer; PostDelay : 
word: measuring : boolean); 

Applies a potential of PD (mV) to the electrode and rotates it at Speed (rpm) for time (ms). 
Then turns off rotation and maintains the potential for a further PostDelay (ms). 

If measuring is true, PD and current data are recorded every ms and may be displayed as 
a plot through the display menu. 

Table 45. The analytical procedures available in the logical analysis 
layer of the electrochemical analysis software 
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Table 46, Page 288 specifies the function required to initialise the PIO. This 

sends the byte 8A(hex) to the control port of port 1 in order to set all 8 bits of port 

A plus the lower 4 bits of port C to outputs and all 8 bits of port B plus the upper 4 

bits of port B to inputs. These two sets of 12 bits are used to output the digitised 

desired working electrode potential and to input the digitised potential representation 

of the working electrode current (differential or direct) respectfully. 

PIO Board configuration Procedure 

procedure SetUplOPorts 

Sets up the mode of operation of the ports and configures ports for input or output 
Sets bits; 
Control mask to set B&C Hi In and A&C to Out = $8A 

Control mask to set up ports A'B'C' all to output = $80 

Table 46. LOW level control functions (PlO board) 

Table 47, Page 289 lists the various functions that control the operating 

parameters of the potentiostat. These are; 

" The Current to Voltage Converter Sensitivity 

" The Current To Voltage Offset Range 

" The Current To Voltage Offset Value 

" The Differential Amplifier Gain 

The current to voltage converter can be set to one of six conversion 

sensitivities from 8000 nAV-1 to 250 nAV-1 in order to allow for high analyte 
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concentrations to produce large currents without the converter clipping the converted 

PD yet still allow for small currents to be converted to measurable PD's 

Potentiostat Configuration Procedures 

procedure SetltoEOffsetRange(OffsetRange: ItoEOffsetRangeTvpe) 

Sets the Ito E converter offset range to either 5µA or 50µA 

mask used to clear offset range bits $FC 

Sets bits; 5 liAmp = $01,50µA = $02 

procedure SetltoEOffset(Offset: ltoEOffsetTvpe) 

Sets the Ito E converter offset to one of sixteen values spanning zero 
mask used to clear I/E offset bits $OF 

Sets bits; 
I/E Offsets (-8 to +7) -8 = $00, -7= $10, -6= $20, -5= $30 

... +7 = $FO 

procedure SetAmpGaln(Qain: AmpGainType) 

Sets the differential amplifier gain to one of four gains 
mask used to clear differential amplifier gain bits $FC 

Sets bits; 
Delta Amp Gain x1 = $00, x4 = $01, x16 = $02, x64=$03 

procedure SetltoESens(NanoAmnPerVolt: ltoESensTvpe) 

Sets the Ito E converter sensitivity to one of six sensitivities 
mask used to clear I/E sensitivity bits $03 

Sets bits; 
I/E conversion range (nA/v) 8000 = $04,4000 = $08,2000 = $10,1000 = $20,500 
_ $40,250 = $80 

Table 47. LOW level control functions (potentiostat control) 
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Ancillary switches 

procedure TumOnMotor (Speed: integer) 

Turns on the working electrode rotating motor 

Sets bit $02 

procedure TumOffMotor 

Turns off the working electrode rotating motor 
Resets bit $02 

procedure TumOnGasPurge 

Opens the Nitrogen gas purge valve 
Sets bit $01 

procedure TumOffGasPurge 

Closes the Nitrogen gas purge valve 
Resets bit $01 

procedure ConnectDeltaAmplnput2 

Connects the inverting input (pin 19) of the differential amplifier to the working 
electrode via Sample/Hold 2 

Resets bit $04 

procedure GroundDeltaAmplnput2 

Grounds the Inverting input (pin 19) of the differential amplifier (for use in linear 
scan) 
Sets bit $04 

procedure Conn ectWorkinq Electrode 

Connects the working electrode to the Ito E converter (normally done before a 
scan) 
Sets bit $08 

procedure GroundWo rking Electrode 

Grounds the working electrode (normally done before analyte plating) 
Resets bit $08 

Table 48. LOW level control functions (ancillary) 

Table 49, Page 291 lists the functions that control the application of a 

particular potential to the working electrode, the subsequent reading of the 
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converted differential cell current and the control of the two sample and holds on the 

inputs of the differential amplifier. 

Working Electrode Potential and Current Reading procedures 

procedure SetSampleHold(number: Integer, mode : SamoleHoldTvpe) 

Sets sample/hold on either Input one or two of the differential amplifier to either 
sample or hold 

Affects bits; 
Sample/Hold 1 $10 set = sample, reset = hold 

Sample/Hold 2 $20 set = sample, reset = hold 

procedure SendVoltane (Vout : Integer) 

Converts a bipolar PD In the range ±2.5 V to the corresponding 12 bit D/Acode 
and sends it out to the potentiostat 

function Voltageln: integer 

Reads a 12 bit code from the A/D in the potentiostat and returns the value 
converted Into a bipolar PD in the range ±2.5 V 

Table 49. LOW level control functions (W. E. ) 
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Procedure DisplayData(var XDataArray. YDataArray : AnalvsisArrayType; 
NumDataPoints : integer; StayOnScreen : boolean): 

Plots the NumDataPoints of data in XdataArray and YdataArray as an XY graph on auto 
scaled axes. If StayOnScreen is true the user may manipulate the plot with various 
commands and must exit the graphical display by entering 'x' to exit graphics. If false this 
facility is disabled and graphics is terminated by a call to ShutDownGraphics 

Procedure SetTitleOne(Sensitivity : ltoESensType; OffsetRanae : ItoEOffsetRangeTvpe" 
Offset : ItoEOffsetTvpe; CurrentGain : AmpGainTvpe; 
method : string); 

Converts the enumerated types of Sensitivity, OffsetRange, Offset, Current Gain and 
Method into a single string suitable for the first title line of an XY plot. Also initialises 
conversion factors used by DisplayData 

Procedure SetTitleTwo(TitleTwo : string); 

Initialises the second line of the XY plot title to the string Title Two. 

Procedure SetTitleThree(TitleThree : string); 

Initialises the third line of the XY plot title to the string TitleThree. 

Table 50. Functions available in the logical graphics software layer 

Graphics Functions 

Procedure InitGraphics( var ok : integer): 

Starts the graphics system in the best available mode, returns zero or an error code 

Procedure ShutDownGraphics; 

Shuts down the graphics system and returns to the text screen. 

Function Graahicslntiialised : boolean; 

Returns true if the graphics system is already started, false otherwise 

Procedure PlotData(FileToUse: string: DisplavMethod: DispMethodT: ColourToUse: word; 
StayOnScreen : boolean); 

Plots the data on file FileToUse, in colour ColourToUse using the DispMethodT of display 
(see text). If StayOnScreen is true the user may manipulate the plot with various 
commands and must exit the graphical display by entering 'x' to exit graphics. If false this 
facility is disabled and graphics is terminated by a call to ShutDownGraphics 
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Procedure DrawAxis(Xtitle, Ytitle. GraphTitlel, GraphTitle2, GraphTitle3 : string): 

Plots the X and Y axis and gives them legends, also prints a three line graph title 

Procedure DoTickMarksOnYAxis(YMin. Ymax: real: numticks. interval : integer); 

Draws numticks tick marks spaced interval apart and prints the scale going from Ymin to 
Ymax. Also calculates and Initialises the plot to real world Y scaling value 

Procedure DoTickMarksOnXAxis(Xmin. Xmax : real: numticks, interval : integer); 

Draws numticks tick marks spaced interval apart and prints the scale going from Xmin to 
Xmax. Also calculates and initialises the plot to real world X scaling value 

Procedure DrawCurveValue(X, Y: real: ColourToUse : word): 

Plots a ColourToUse coloured line to real world co-ordinates X, Yfrom last real world co- 
ordinates plotted or plots a point at X, Y if this is the first call to this procedure. 

Procedure PlotValue(X, Y: real: colourtouse : word): 

Plots a ColourToUse pixel at real world co-ordinates X, Y 

Procedure ConvertPlotXYToValueXY(var VaIX. VaIY : real: PlotX. PlotY " integer): 

Converts a point given by the screen pixel co-ordinates Plot)(, PlotYto real world co- 
ordinates VaIX, ValY. 

Procedure ConvertValueXYToPlot(VaIX, VaIY : real: var PlotX, PlotY : integer"var 
OffScale: boolean): 

Converts a point given by real world co-ordinates VaIX, ValYto screen pixel co-ordinates 
plotX, PlotY. Offscale is true if PlotX or PlotY is out of range 

Procedure Find MaxFileValues(iinfile : string: var MinXValue. MaxXvalue. MinYValue 
MaxYValue : real): 

Finds the maximum and minimum values of X and Y In the plot file infile 

Procedure ScreenDump: 

Prints screen on the printer 

Procedure MakeDisplayColour, 

Restores default graph colouring 

procedure MakeDisplayBlackAndWhite: 

Changes display to black on white to facilitate the transfer of the graph into another 
application via Windows® Clipboard 

Procedure MovingAverage: 

Replaces graph with a five point moving average 
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Procedure ShowFinalPlotVals(ThisEpoch : integer: TotaISumSguares. CriticalError : real); 

Displays values of ThisEpoch, TotalSumSquares and CriticalError and time if cessation of 
training (for use with a Neural Net learning curve plot) 

Procedure ShowCurrentError(i'SS: real): 

Prints current value of TSS (total sum squared error) in the bottom right hand comer of the 
screen (for use with a Neural Net learning curve plot) 

Table 51. Table of available functions in the low level graphics 
module 


