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Abstract

This thesis describes a novel application of an artificial neural network and

links together the two diverse disciplines of electroanalytical chemistry and

information sciences.

The artificial neural network is used to process data obtained from a
Differential Pulse Anodic Stripping (DPAS) electroanalytical scan and produces as

an output, predictions of lead concentration in samples where the concentration is

less than 100 parts per billion.

A comparative study of several post analysis processing techniques is
presented, both traditional and neural. Through this it is demonstrated that by using
a neural network, both the accuracy and the precision of the concentration
predictions are increased by a factor of approximately two, over those obtained

using a traditional, peak height calibration curve method. Statistical justification for

these findings is provided

Furthermore it is shown that, by post processing with a neural network, good
quantitative predictions of heavy metal concentration may be made from instrument

responses so poor that, if using tradition methods of calibration, the analytical scan

would have had to be repeated.

As part of the research the author has designed and built a complete computer

controlled analytical instrument which provides output both to a graphical display

and to the neural network. This instrument, which is fully described in the text, is

operated via a mouse driven user interface written by the author.
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1. Introduction and Project Aims

1.1.1.0verview of the work

Environmental pollution, whether accidental or deliberate, has far reaching
consequences and the determination of trace quantities of heavy metals in such
places as foodstuffs, ground water and soils is an increasingly important issue.
Determination of such levels in a laboratory remote from the source is time

consuming and costly and so the trend 1s towards on site determination using

portable instrumentation.

Many analytical techniques can be used to assess concentration levels of such
substances as lead, cadmium and thallium. The electrochemical technique used in
this work, Differential Pulse Anodic Stripping at a Thin Film Mercury Electrode, is
one of a class of techniques collectively called Voltammetry. Using a special
rotating electrode, it is fast, requires equipment that can easily be made portable and

yet is capable of determining the concentration of electroactive species in solution

down to the parts per billion level.

Artificial neural networks (the word artificial being used to distinguish them
from biological neural networks) are computational devices, loosely based around
the operation of the brain, which have the capability to learn. They have existed in

the academic world of computing for some time but are only now receiving growing
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attention as tools in real world applications. They are usually written in software but

some hardware implementations do exist. Recent years have seen a steady increase

in the number of application areas where they may be usefully employed.

A neural network has many interesting properties. One of these is the ability
to form an arbitrarily complex mapping between some presented input data and
some corresponding desired output data. Others include the ability to process noisy
data and the ability to generalise, that is produce meaningful output when presented

with input data that does not fall into one of its learnt mappings.

The research reported here links together these two rather different disciplines
of analytical chemistry and artificial neural networks. The author, who cannot claim

to have a background in chemistry, has applied the pattern recognition and
generalisation power of artificial neural networks to the response obtained from a
particular method of trace metal analysis. The detailed aim of the work is given in
the next section but in general terms the work is an investigation into whether neural
networks can help to provide a more accurate and precise prediction of trace metal

concentration than is currently available using Differential Pulse Anodic Stripping

with existing post analysis data processing techniques.

There are two areas where 1t is claimed improvements might be made in the
existing technique. One is the use of neural networks to extract more information
from the analytical data so obtained than is currently done, by using a neural
network to post process the response obtained from the analytical instrument. A
second area is the optimisation of the analytical parameters, in advance of an
analysis, by using a neural network operating in a control loop. It will be shown that
improvement in this latter area is not as necessary as it first appears given the results

of investigations into post processing by neural network.
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The work follows a traditional approach. As it was desired to investigate the
control of the analysis itself it was necessary to be familiar with the operation of the
equipment which it was my intention to control. To this end it was decided that
rather than be bound by the constraints of a commercial instrument, all the
necessary equipment to perform the chemical analysis and obtain the required data
would be constructed by the author prior to any study of neural network

architectures and their particular application to this area.

Accordingly the following items specific to the task were designed, built and

tested by the author

1. The rotating Thin Film Mercury Electrode and analytical cell arrangement.

2. The electronic hardware providing potentiostatic control of the electrode and

the current measuring facilities.

3. The electronic hardware required to provide remote computer control of the

potentiostat and its numerous operational features.

4. A suite of computer software which can be used to set the operational
parameters, carry out the required analytical functions, store the results and
display and process the resulting voltammogram. This was written as both an
interactive, mouse driven user interface and as a file oriented, batch

processing interface which allowed automatic running.

A photograph showing the complete arrangement is reproduced in figure 1.

Further photographs showing details of various parts are given in chapter 4.
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Figure 1. Photograph of the equipment built by the author for
this study

Key: (a) analytical cell and working electrode holder, (b)Relay for electrode
motor and electrically operated valve for gas purge, (c) Interfacing, control
and potentiostat electronics, (d) 48 Opto 1solators used to 1solate (¢) from the
computer, (e¢) SO Way ribbon cable leading to the computer

Following the testing of the analytical system the focus of the work shifted to
a study of neural networks and their application to this area. Data drawn from
various sources were used: synthetic data, real data obtained from the analysis of
lead in curry powder and real data from prepared lead standards. Neural networks
and traditional techniques were used with data obtained using the computerised

instrument to predict lead concentrations in the parts per billion region.

Some of the neural networks used in this work to process the voltammograms

obtained from analytical runs were written by the author in Pascal. Others were
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written using Visual Basic© to build networks from a set of primitive tools available
in NeuroWindows™, a commercial package produced by Ward Systems Inc!. The
bulk of the work however was carried out using NeuroShell 2™ from the same

company, which simplifies the task of changing architectures and network

parameters. All the pre-processing software was written in Pascal by the author.

1.1.2.0verview of this thesis

As this thesis encompasses two different disciplines it was felt appropriate to
offer a number of areas of background study. Readers with an information science

background will find relevant background material on voltammetry and its

development in Chapter 2, section 2.1 whereas chemists requiring information on

neural networks are directed to section 2.2.

Chapter 3 brings these two areas together with a study of the existing
applications of artificial intelligence in general and neural networks in particular, to
the field of analytical chemistry. Sections 3.2 and 3.3 in this chapter follow this up

with a justification of the aims of this work in the light of the current research.

Chapter 4 begins by describing the construction of the special electrode

needed and the 'wet chemistry' analytical apparatus. The construction of the
electronics which controls this apparatus 1s described next in section 4.2 followed in

section 4.3 by a description of the interfacing software that enables a remote

computer to drive the instrument.

The work relating to the major part of this study, that of post processing the
instrument response by neural network begins in chapter five. This chapter details
the experimental methods and electrochemical parameters used, the neural network
architectures considered and the methods of data analysis employed. It first covers

the preliminary work with curry powder, presents the results of this and outlines the



21

reasons why this line of research was curtailed. The latter part of the chapter deals
with the important work on processing data from lead standards by neural network

and gives the quality metrics by which the comparative study is carried out.

The results of the lead standards study are presented in chapter six, providing
evidence in both graphical and tabular form. Each method studied is presented in

turn. The chapter concludes with a summary of all the results obtained from this

part of the work.

Chapter seven contains a discussion of the results obtained and the

observations that may be made from them. Arguments regarding error analysis are

given.

Finally, chapter eight presents the conclusions reached by the author and links
these to the original aims of this work. It 1s claimed that the application of a neural
network to this branch of electroanalytical chemistry would indeed improve the
technique and statistical justification for this claim is given. The concluding section

of this chapter discusses further research arising out of this study.

The appendices reproduce the author's published papers, contain details of the

testing of the electronics and outline other avenues of research that were investigated

during the course of this work.

This study cannot claim to make broad inroads into the leading edge of neural
network technology research nor has a new electroanalytical technique been
developed. Instead this thesis brings together the work of two very different
disciplines and presents a novel application of neural networks to an area that has so
far received little attention. Furthermore, it shows the application of neural networks

to trace metal analysis by differential pulse stripping voltammetry to have immediate

advantages and future promise.
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The central hypothesis of this work 1s that a neural network can be used to

advantage to process data obtained from an electrochemical analysis using
differential pulse anodic stripping and provide a prediction of the concentration of

electroactive material present. Several proposals may be made.

o It is proposed that a neural network could be trained to provide a prediction
of toxic metal concentration with an accuracy and precision exceeding that

available using traditional calibration curve techniques.

e It is further proposed that by encoding knowledge of the instrumental
parameters in force at the time, such predictions of concentration might be

made over a greater range than currently possible .

o Finally it is proposed that a neural network may also be used as a controller
in order to obtain optimum analytical conditions within a small range of

operational parameters.

The overall aim is therefore to develop the above hypothesis by building
hardware and software appropriate to the task, by qualitatively investigating the
feasibility of post analytical data processing by neural network and by quantitatively

comparing traditional and proposed methods.
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2. Background Studies

2.1.1.0verview of the theory

Table 1, Page 24. lists some of the more common methods that have been
used at one time or another, together or alone as a means of obtaining analytical
information. Voltammetry, the technique used in this work, 1s the name given to a
class of electroanalytical methods whereby a time varying potential is applied
between two electrodes placed in a solution and the resulting changing current is
measured to provide information about the chemical species present in the solution.
Although the technique was originally called Polarography, nowadays the term
Polarography is normally reserved for the special case of voltammetry where the

electrode in question is formed by a continuously renewable drop of mercury at the

end of a fine capillary tube.

The birth of voltammetry (actually using a polarographic method) is usually
attributed to Heyrovsky?:? in 1924, although he had been working on an associated
problem for four years before this. In 1924, together with his colleague Shikata, he
developed an automatic instrument to change continuously the potential applied to a
mercury drop electrode and plot the resulting current - potential curve. They called

this instrument a Polarograph?®. The early historical development of Polarography

may be found in several sources®-%: 78,10 and it is not the intention to elaborate

further in any great detail here.
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. Controlled Method
; E - .

Voltammetry / Polarography
(Linear scan)

(Cyclic voltammetry)

(Puise methods)

(Stripping voltammetry)

-
.

ivs. E

or

Aivs. E

Weight of deposit “ Electrogravimetry '

I/R (conductance) versus Conductometric titrations |
volume of reagernt f
i versus volume of reagent _ Amperometric titrations 7

Table 1. summary of electrochemical methods of analysis

The general principles behind the technique are as follows. When a pair of
electrodes are immersed in a solution three electrochemical processes may occur,
reduction, oxidation or non Faradic. Reduction results in the plating of a metal onto
the electrode from solution, Oxidation causes the stripping of metal from the
electrode back into solution. A general term for these processes is a redox reaction.
They both produce a flow of electrons across the electrode-solution interface, are
governed by Faradaf’s laws and are appropriately known as Faradic processes. The
third process, non-Faradic, does not result in a net flow of electrons across the

interface and is due to changes in the structure of the electrode-solution interface or

the electrical environment of the electrode.
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2.1.1.1, Linear Scan Voltammetry

If the potential of an electrode is changed, an electroactive species in solution
will begin a Faradic plating or stripping process once the applied potential exceeds
what is known as the decomposition potential. This is determined by the formal
potential of the species in question. If the potential applied to the electrode is
changed still further in the same direction once the reaction has begun, the current
due to the redox reaction will depend upon this potential as this determines how fast
the reaction can proceed. At sufficiently high potentials (up to about 2V) the rate of
reaction is so high that all of the electroactive material arriving at the electrode
undergoes a redox reaction. The Faradic current therefore reaches a limiting value

which depends upon how fast the species can reach the electrode.

If the electrode is rotated then a forced convection is set up with a net flow of
solution towards the electrode, thereby increasing the quantity of electroactive
material available for reaction. Details of the effects of this rotation are discussed in
Fried!!. When the electrode is stationary however, the rate of flow of electroactive
species depends upon its rate of diffusion which itself depends upon the
concentration of this species in the solution. This means that if a linear potential
sweep is applied to an electrode, a diffusion controlled reaction will cause a
maximum, limiting current that depends upon the species concentration. Hence this
limiting current is a candidate for an analytical method. Further descriptions of

special forms of voltammetry can be found in Anderson!? and Wightman!3

2.1.1.2. Pulse Voltammetry

The electrode-solution interface contains a small region of solution close to
the electrode, called the double layer, with a reduced number of free ions due to

adsorption in the electrode. Therefore there exists, at this interface, a capacitor with
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the electrode and the solution a short distance away acting as the plates and the
double layer, behaving as the dielectric. An important non Faradic process is the
charging current that flows into the electrode due to the charging of this 'capacitor
when the potential of the electrode 1s changed. With typical solid electrode the
capacitance is very small and the time for which the exponentially decreasing

charging current is appreciable is very short, of the order of micro seconds.

In pulse voltammetry, described in many papers by Osteryoung!4,15 and also
by Murphy!®, use is also made of the fact that when a pulse is applied to the

electrode, so charging the double layer, the capacitive current decays exponentially

with time according to

. E_ ~t/RC
=2 (1}
Where E is the potential applied between the working electrode and the

reference electrode, R is the resistance of the solution in the double layer and C is

the capacitance of the double layer. Immediately after the pulse however, the
Faradic current decays as the electroactive species immediately in the vicinity of the

electrode becomes exhausted. This Faradic current, however, decays more slowly

than the non Faradic, capacitive current.

Therefore if a current measurement is made at a short time after the
application of the pulse the majority of the current measured will be due to the

Faradic process and the detection limit, relative to a linear scan method, will be

lowered.

The waveform for normal pulse voltammetry where the pulses increase in

amplitude, is shown in fig 2.
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This waveform is little used these days as the current-potential response
obtained has a sigmoidal shape rather than the more easily processed peak shape

obtained with differential pulse techniques. Preference is therefore given to

differential pulse wave forms.

-0.6
V
W.E.
(Volt) B
A
-0.2
Time

Figure 2. Typical input waveform for normal puise voltammetry

2.1.1.3. Differential Pulse Voltammetry

In differential pulse voltammetry the pulses are superimposed either on a
rising potential ramp or on a stepped ramp, the latter being more suited to digital
computer control. Figure 3 shows both of these waveforms on the same potential
axis with the stepped ramp, as used for this work, shown in .the upper of the two
waveforms. The current is measured before and after the pulse and the two values
are subtracted. This results in a peak shaped response of Al against applied potential
(figure 4) as the electrode potential sweeps though the region of the Faradic process

for the species in question. In both fig 2 and fig 3, A and B are the two points



where the current is measured and subtracted for each pulse. The use of a
differential pulse waveform with computerised instrumentation is described in
Bond!7 using a polarographic technique. Bond thought his work unusual since he
used pulses with a width similar to the time interval between the pulses , unlike
previous workers who used pulse widths ten or more times smaller that the pulse
interval. In this work the author has also found that using a stmple pulse with a

mark space ratio of 1:1 provides perfectly good results.

-0.6
B

(Volt)

Figure 3. Typical input waveforms for differential pulse
voltammetry

2.1.1.4. Differential Pulse Stripping Voltamme

Differential pulse stripping voltammetry is described in Wang,!8 Kopanica'?
and Brainina??, The electrode used is mercury, either in the form of a drop or as a
thin film that is plated on to a solid substrate. In common with the work described

in this thesis, Graabak?! used a thin film of mercury on a glassy carbon substrate

28
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for his electrode. When using this type of electrode the substrate is first
electroplated with mercury, usually whilst rotating. Then it is placed in the solution
under test and the electroactive species is allowed to accumulate into the mercury by
the application of a constant potential that causes the species to plate the mercury
and so form an amalgam with it. During the final, analysis, phase the differential

pulse waveform is applied in such a direction that the species is stripped out of the

mercury, producing the Faradic reaction.

Difference in Current (delta i)

Increasing potential ~>

Figure 4. Ideal response from differential pulse voltammetry

The benefit of the stripping method is that since, due to the previous
accumulation, the concentration of the species in the mercury is very much higher

than in the analyte, this method provides considerably higher sensitivity than non

stripping methods.

It should be noted that as an alternative to pre plating the electrode with

mercury, it may be simultaneously plated with mercury and the species in question.
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This technique, used for the bulk of this current work, is more fully described on

page 146.

In addition Pomeroy?? contains useful information on the technique of using
thin film mercury electrodes. He includes a schematic diagram of a three electrode
potentiostat circuit and gives full details of the electrode preparation and analytical
procedure. The use of this electrode with differential pulse voltammetry is also
mentioned in DeAngelis23, who achieved a detection limit of 10 ng ml-! for lead in

organic materials, although his electrode plating times were of the order of several

minutes.

Additional material on voltammetry may be found in Copeland?4,25 and
Edwards?6, both of whom give an overview but with Copeland offering a more
detailed analysis. The related technique of staircase voltammetry is discussed by
Svensmark?? and Eisner?3, both of whom continued to rotate the electrode during the
analytical scan. Eisner confirms the theoretical relationships, published several times
elsewhere by his co-author Osteryoung, between the response and the analytical

parameters. He also reports that the sensitivity of staircase voltammetry was about

the same as the differential pulse method.

Square wave anodic stripping, which uses a slightly different waveform to that
used in differential pulse stripping has been reported by Anderson??, Mlakar3? and

Feldman3! with the latter employing a continuously rotating electrode, similar to

Eisner.

A more general discursive treatment of the instrumentation involved in the
above techniques may be found in Christie32, who investigated instrumental
artifacts, Beebe33, who looks at process analytical chemistry and Bersier34,35 who

compares several alternative methods. More detailed comparisons are found in
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Bond,36 Anderson37 and later Willard38, all of whom used polarography with a basic
form of computerised instrumentation. Very readable accounts of the effects of the
pulse shape on response may be found in Parry>® and Rifkin%® , the former dealing

with normal pulse at a mercury drop electrode and the latter with differential pulse

at a thin film electrode.

2.1.2.Computer control of equipment

A simple overview of the techniques involved in interfacing is given in Gates4!
and Okamura%2. Gates in particular gives 8086 assembly code for interfacing and
data collection and shows, in rather primitive BASIC, how Savitzky-Golay type
smoothing, discussed further on page 33, might be applied. Interestingly, given the

source of the article, an example is given of data collection from a polarographic

analysis of lead in gasoline.

More thorough background material may be found in He*3, Betteridge#4 and
Tacussel45, all of whom present a discussion of recent progress in microprocessor
instrumentation. Betteridge offers a very thorough overview of microcomputer
applications in chemistry, whilst Tacussel concentrates upon voltammetry and
polarography. Gunasingham*® and Osteryoung*’ give a good introduction to the

instruments used, including computers.

Keller and Osteryoung4? produced an early computerised instrument in 1971 to
perform pulse polarography and smooth the data by ensemble averaging and a year
later Landowne?® worked on a similar system for gas chromatograms. By 1980
Granéli’® was using a microcomputer system with a fixed waveform for stripping
analysis. Brown®! and Gustine>? investigated the possibility of a more versatile

instrument whilst Paul>3 looked at the use of a 6502 processor controlling twin
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working electrodes in order to reduce inter metallic compound formation by plating

the interfering metal on one electrode and the metal under test on the other.

The data processing techniques available were enhanced by Kalchers4 in 1986

who investigated synthetic baselines and by both Imaino’ and Lysaght’¢ in 1991who -

looked at the constraints imposed by laptop computers.

An interesting parallel development appeared in 1984 when Ziegler-7 studied
the possibility of producing a command language for data processing. This was
followed up in 1989 by Miller>® and Thomas>® who produced a language for

performing voltammetric analysis and by Gerth® who in 1992 extended the concept

into an object oriented system.

2.1.3.Smoothing and noise filtering

A general procedure for noise filtering is given in Carr®! who describes useful
electronic methods of noise filtering. The effect of smoothing on such parameters as
peak shape and peak height were investigated by Bromba®? in 1983 but not until

some years later were proposals put forward on optimum sampling techniques by

Deutscher63. DeNoyer® in 1990 used a maximum likelihood method of smoothing

data which appears to be very successful and a year later LeeS> used principal

components analysis to do the same thing.

Fourier transforms, an overview of which is given in Aubanel and which
were used in this work as a means of reducing the dimension of the data vectors,
were used by Horlick®” as a means of smoothing spectra. The same technique was
used by Hayes58 for polarographic data and the advantages and disadvantages of this
method over floating least squares discussed. Felinger® describes an advanced

windowing method with the fourier transform and claims a significant improvement

of the signal to noise ratio.
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The Savitzky-Golay™ filter is the method used in this work to smooth and
differentiate the data displayed by the graphics module of the analytical software.
The work of these authors elegantly calculates and tabulates the coefficients of the
polynomials that should be convoluted as a sliding window with serial data in order

to produce the desired amount of smoothing or differentiation. The smoothing can

then be done with the minimum of computational expense.

It must be noted however that Savitzky's original work, published in 1964
contains errors in some of the tabulated results and that one of the equations given is
incorrect. These errors were not corrected until eight years later when in 1972
Steiner’! recalculated the values using the correct equation. It is the values tabulated
by Steiner that are used in this work. Interestingly, a recent work by Bromba?2, who

gives hints on the application of Savitzky-Golay filters, makes no mention of the

original errors or the subsequent corrections.

2.1.4.Curve fitting and digital simulation of voltammetric curves

There have been many papers over the last thirty years which have addressed
the equations describing voltammetric responses to various analytical procedures.
The equations described in some of these have been used in this work to simulate
responses in order to create a database of model responses for neural network
training. This part of the research is described more fully in appendix two. A

general background of curve fitting in this area of chemistry may be found in

several references’3,74,73,76,

Two papers by De Vries’”»78 should, however, be seen as the starting point for

any further investigation. Following a paper in 1964 presenting an approximate
theory of anodic stripping voltammetry suitable for high rates of potential change

and thick mercury films (e.g. 2 Vmin-! and 100um), De Vries presented an exact
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treatment in 1965. These papers are very theoretical however and are not suitable
for direct translation into code for modern computers. This work was followed up
in 1967 by a third paper’® which concentrated more on linear sweep voltammetry
and a more refined approximate theory was developed. Osteryoung® investigated
modelling linear scan voltammetry by a series of single potential steps. He found
good agreement with the theory of De Vries. This was taken up by Rifkin3! in a
very comprehensive and significant paper in which he investigated the effects of
pulse duration and inter pulse time and by Dillard32,83 who looked at the effect of
modulation amplitude and who, three years later looked at the same problem from a
finite differences perspective®d. Ruzic3 presented an overview of the emerging
theory in 1978 and clearly stated the confusing nomenclature in use regarding the
term differential pulse (fig 3), used to describe the type of waveform used in this
work and derivative pulse (fig 2), used when the same current sampling technique is
used on normal pulse wave forms. Heijne® also derived the equation by a
theoretical method, was criticised for a discontinuity at zero pulse height by Kies87

and developed a new model in a paper published two years later8s,

Since that time a number of publications have looked at curve fitting applied
to this area of analytical chemistry many of which may hold potential for future
workers in neural network applications associated with this branch of chemistry.
Bond®® used a quadratic to fit the baseline and remove the unwanted background
current. This same technique was also used throughout the simulations performed in

this work, further discussed in appendix two. Mellado® developed a rather primitive

set of programs written in BASIC to approximate differential pulse polarograms.

Several researches have studied applications of the Kalman filter®! to analytical
chemistry. The principles of this algorithm are quite well covered in Rutan% and

also in Yongnian?3, the latter using the filter to improve curve resolution in
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differential pulse polarography. Seelig®% used the algorithm to optimise the signal
in noise corrupted returns from anodic stripping voltammetry and also made
comparisons between this and non recursive estimation methods. Poulisse% looked
at multicomponent analysis using spectrometric data whilst Wentzell7 compared the
use of the FFT in three different non electrochemical analytical fields. However,

little further work appears to have been done recently in this area.

2.1.5.Resolution enhancement and mathematical post processing

This has been the subject of many papers since Perone®® described using
second order derivative techniques as a means of enhancing the sensitivity of peak
position measurements when analysing polarograms. Later Grushka® took up this
topic and looked at the limits of the technique when applied to overlapping peaks
and presented useful results which showed the range of the method as a function of
signal to noise ratio, separation and peak height. A similar topic was investigated by
Oppenheimer!® who looked at ways of determining the lowest limit for reliable
measurement. Mitchell'®! published an interesting technique which involved fitting a
series of least squares regression equations and then using the equation displaying

the narrowest confidence limits as a means of measuring an unknown sample.

Various mathematical techniques have been investigated for the resolution of
overlapping curves. Gutknecht!9 fitted computer generated 'standard’ curves to the
polarogram, Bond!% also used standard curves which were successively subtracted
from the polarogram until only a single peak remained. Grotch!%4,105 ysed a form of
table lookup against a library of curves and Caruanal® resolved the spectra into a
series of gaussians using a least squares fit. Several authors197,108,109,110 haye used
principal components analysis to resolve separate influences on a complex

instrument response resulting in spectral information and novel modifications to the

algorithms have also recently been proposed!i!,112,113,
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Both Caruana and Glajch!!4 presented criteria for goodness of fit of a given
estimated mixture, the latter also offering a simple method to quantify peak
separation by measuring the valley depth from a line fitted at a tangent to two

adjacent peaks. Recently, Toft!1> has also published a novel resolution parameter but

one which may be calculated prior to curve resolution.

Not surprisingly, many workers have used the Fast Fourier Transform (FFT)
as an aid to resolution enhancement. A mathematical overview of the FFT is given
in Elliot!16, Grabaric!17 used it to sharpen polarographic peaks mathematically and
Skarjune!!® developed an enhanced version of the algorithm using less
multiplications. More recently, Jackson'!® compared the application of the fourier

transform and maximum likelihood theories to curve fitting with particular emphasis

to overlapped bands in spectroscopy.

Engblom!20,121 ysed the FFT to find peak parameters such as position and

width as well as to enhance the resolution. This was done using the assumption that

voltammetric peaks may be approximated by the function

a
X)=——=17 3\ 2
P(x) cosh? [b(x—c)] 2]
where a = height, b = a width parameter and ¢ = the peak position and x
represents the potential. This equation was also used in this current work to generate
synthetic curves for training neural networks and also for the calculation of an
objective function when investigating resolution enhancement using a genetic

algorithm ( see chapter 9). Genetic algorithms are very well described in Davis!?2

and Goldbergi?3 .
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2.2.1.Introduction

Neural networks are computational models which model the relationship

between a set of inputs and a set of outputs. In this work the inputs are values of
current taken from the voltammetric peak and the output is the concentration of a
chemical species. Once the internal model of the data has been formed novel inputs
can generate outputs, sometimes themselves novel, which fit the internal model.
Unlike algorithmic prediction processes however, the model used by the network
does not have to be determined a priori but can be derived, or learnt, by the neural
network through the computational process known as training. The model thus

created may be very complex and contain relationships that were hitherto unknown

in the input - output data.
2.2.2.General Neural Network Structure

A neural network could be considered, in some elementary sense, as
computationally equivalent to a neuron in the brain. Like the brain a neural network
consists of many simple units connected together by a large number of weighted
links, with each unit receiving input from many sources. Indeed the weights are
often called synaptic weights, to increase further the correspondence between the
real and artificial neuron. The input units obtain their input from external sources
whilst other units obtain their input from the single output that each unit produces.
The path of this output is split and terminates, via the weighted link, at the input of
the receiving unit. Note that although the output path is split, the output value is

transmitted unchanged to all receiving units. Some units, called the output units,
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send their output back to the real world to be converted into appropriate responses.
Figure 5 shows a typical connection schematic for the units in a multi layer neural
network having three inputs and two outputs organised into three layers of units.
Note that in this work, when the number of network layers is mentioned, this should

be taken to include the untrained input layer. Hence the three layer network shown

below has two trainable synaptic weight matrices.

Synaptic
weight

‘

""’

/’o

nput Hidden Output
Layer Layer Layer

Unlt

Figure 5. Schematic of a 3 layer neural network

Since each unit receives many inputs, and the entire network may contain
many output units, the input and output data are usually considered to be vectors of
real numbers which are mapped to the real world parameters corresponding to each
element of the vector. The processing carried out by each unit to convert the vector

of input values into an output, 1.e. the transfer function is quite simple and is

described below.

First the weighted inputs are combined to form a single value, often by simply

forming a weighted sum of the inputs using
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L=>m (3}

Here I; is the combined weighted input to unit i, w;; is the weight on the link
from unit j to unit 7 and Xj is the unweighted signal coming from unit j (this assumes

that the output of unit j is sent to the input of unit 7). The weights may be positive or

negative.

Once the combined weighted input has been calculated the unit calculates the
value of its output signal. In early work, such as Rosenblatt's Perceptroni?4,

described in more detail later, this was simply set to +1 or -1 depending upon the

value of I; relative to some threshold value. It is more common nowadays to use a

non linear activation function such as the logistic sigmoid function,

f(1)= 1—1 {4}

whose shape is shown in ﬁgure 6.
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Figure 6. Shape of logistic function



40

It has been shown!2> that using this function, which varies between 0 and 1 as /
varies between = oc a network can form much richer mappings between input and

output. It also has the advantage that its derivative is easy to compute, being given

by.

YA _ r0yx(1-12) )

This gives a speed advantage during training when the derivative must be
calculated many times. The threshold concept is still retained in some networks by
having a simulated additional input to each unit with an activity fixed at at +1 but,

like other inputs, having a weight that can modify this activity to increase or

decrease the overall input to the unit.

The processing in the unit can therefore be described graphically by figure 7.
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Figure 7. Simple processing unit
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Starting from an initial set of random weights, the algorithm used to train the
units changes the synaptic weights during the learning phase in order to produce the
desired output for each input pattern. Supervised networks are those which learn by
being repeatedly presented with a training set of data containing many examples of
input vectors and the corresponding output vector. From this the actual error in the
network's output can be determined and the weights adjusted accordingly.

Unsupervised networks are those which are not given any target output for the
training set and instead change the weights so as to classify the input vectors into

clusters, based upon features discovered in the training set, which in some way

preserve the natural topology present in the original data set.

2.2.3.Development

The first theorists to conceive of the fundamentals of neural computing as

opposed to analytical neural modelling or neural-physiological research were

McCulloch and Pitts126, In 1943 they devised a digital neuron with pre-set weights,
which was unable to learn, but which could classify its inputs into one of two

~ classes, so effectively performing a Boolean operation.

- 2.2.3.1 The perceptron

In 1949 Hebb!?7 proposed that learning in the brain was achieved by changes
in the connection strength between neurons, i.e. the weights, that were proportional
to the activation of the neuron undergoing a learning process. Rosenblatt124
employed this idea in the first trainable, two layer network which he called a
Perceptron. This was trained by presenting a set of input data to the network and
calculating the weighted sum as previously described. The output y was then

calculated from this weighted sum using the simple activation function
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+1if1>6
y=| 0if -0<7<8
~11f] <-6

{6}

@ = some threshold value

If the Perceptron produced an incorrect answer, the vector of weights on the input

were altered according to the following.

= Woud +IX {7}

WRCW

where

t = desired output, +1 or -1
W, = new vector of weights

w, 4y = original vector of weights
x  =vector of input values

Rosenblatt also proposed a three layer network with internal, hidden units

but was unable to devise a method of training it as he could not see a way of

obtaining the error in these hidden units.

Widrow and Hoff!?8 developed an improvement to the Perceptron training
algorithm in 1960 which 1s referred to as “minimum error”, “least mean squares™ or

“delta rule” learning. Using this rule the output of the unit is found as before, with

the threshold set at zero. The error E in the output is then found by simply

subtracting the actual output from the desired output for that input pattern. Finally

the weights are adjusted according to;

Woew =W,ud +ﬂEx {8}

~ where [ is a variable learning rate between zero and one. This process is repeatedly

applied until the unit no longer makes an error. This resulted in a unit that was able
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to generalise, that is produce a sensible output for an input that it had not previously

seen during training.

In 1969 however, Minsky and Papert!2° published their famous book
'Perceptrons...' which showed the limitation of the Perceptron to be tiiat it could
only make classifications for problems that were linearly separable, i.e. one where,
with n inputs, the decision boundary is a hyperplane in n dimensions. This meant
that it could not even learn the two input XOR function where, as shown in figure

8, the decision boundary separating the two classes of output in two dimensions is

not a line but a closed figure.

1 1 Decision boundary

A

Input 2
Input 1 XOR Input 2

0 1/

0 Input 1 1

Figure 8. Decision boundary for the two input XOR function

This proof and the lack of a suitable algorithm for updating weights in a multi

layer network so damped research enthusiasm that activity was very low for the next

five years.
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2.2.3.2, Higher Order Networks

Higher order networks appear to overcome the linear separability problem
however. This term implies a threshold logic unit similar to a Perceptron that uses
an input vector with an increased dimension, formed by including the raw data
elements and also higher order terms obtained by combinations of the raw data
elements or functions of them. This type of network was also used in this current
work where the input dimensionality was increased by taking not only the real

inputs, Xp...Xp, representing value of voltammetric current, but also the product of

each pair of input values. 1.e.

(x,), (%, x x,), (%, %2;),000 (%, %%, ),(%,), (%, X %3), (3, X %), (%, X %,),..(,).- {9}

A study of high order networks was made by in 1987 by Giles!3° who found

them superior to simple two layer networks for character recognition.

2.2.3.3. Multi Layer Networks and Back Propagation of Eiror

During the years following Minsky and Papert's work, other network models
were developed by workers such as Kohonen!3!, who built an "associative memory"’,
Anderson!32 with his 'brain state in a box', Grossberg!33, (who has 146 publications
listed in Klimasauskas!34) and Carpenter!35, who developed adaptive resonance
theory. However, it was not until the independent formulation of the
backpropagation algorithm, first by Werbos!3¢ in 1974 without much publicity and
subsequently by Parker?37 in 1982 that work on the multi layer Perceptron (MLP)
developed further. The algorithm they produced was refined and widely published in

1986 by McClelland and Rumelhart!38 in a book that has since become a standard

reference text.

The backpropagation algorithm is a variation of the minimum error algorithm

discussed above. For each pattern in the training set the input activity is processed
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as previously described, using a sigmoidal activation function, through to the output

units. The error in each output unitj is then found by subtraction.

E;utput — yjdcsircd _y;ctual {10}

This error 1s then propagatea backwards through the middle, or hidden, layers
of units to the input layer being weighted at each unit by the same weights used
during the forward activation pass. That is, the error in a hidden unit 7 is the
weighted sum of the errors in all the units j to which it sends its output. The
significance of the error is related to the current sensitivity of the unit, i.e. how
much a small change in J; influences the output y. In order to take this into account

the weighted sum of the errors 1s finally multiplied by the derivative of the

activation function giving

| d Ihiddcn "
Eihlddm — f((;j ) ZwﬁE;UtPut {11}
J=1

This is repeated for previous layers with the meaning of the suffix 'output’ being the

layer immediately following the hidden layer.

The training process, which may take some time and is not guaranteed to
succeed, consists of repeatedly presenting each input - output vector pair in the

training data set to the network until the error in the network output falls to an

acceptable level.

A multi layer Perceptron (MLP) trained using the back propagation algorithm

is capable of classifications in non linear problems and can, for example, learn to

model the two input XOR function.

Good introductions to neural computing may be found in Lippmann!3% and

Kohonen!4? with elementary practical advice on building neural networks in
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Koskol4! and Nelson!42, Haykin!4 provides a comprehensive coverage with
numerous references and Blum,!# Freeman!4> and Paol46 offer in depth practical
advice on building neural networks, including computer code. Miiller!47 and
Fausett!48 offer a mathematical description whilst McCord!4® describes a method of
building a neural network in Lotus 123°. Zupan!>9 gives a sound overview of the

fundamental techniques concentrating upon the chemical problems to which neural

networks are currently applied.

A study of learning speeds in back propagation was carried out by Fahlman?s!
in 1987 and a faster version of the back propagation algorithm called quickprop
described. Other workers have investigated various aspects of the back propagation
MLP. Hirose!*? investigated varying the number of hidden units, but was only able
to provide rough guidelines on the optimum number to use for a given problem.

(Consequently, in the current work the author used an empirical method to find the

optimum number, see page 178).

Weirl33 looked at automatically changing the learning rate during learning and
Rigler!54 scaled the errors that are back propagated. Gaussian activation functions
in the hidden layer were investigated by Weymaere!>> who also suggested training
the network first on a subset of the training data and then retraining using the

complete training set but starting with weights obtained on the subset.

2.2.3.4. The General Regression Neural Network

The general regression neural network, fully described in Specht!s5, also

belongs to the class of supervised networks but does not train using back

propagation. It has the advantage of being able to train quickly on sparse data sets.
There are as many neurons in the hidden layer as there are training patterns. It

works by measuring how far in N dimensional space a new input pattern is from the
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patterns in the training set, where N is the number of inputs in the pattern. When a
new pattern is presented to the network the output that is predicted by the network is
a proportional amount of all of the outputs in the training set. This proportion is

based upon how far the new pattern is from the known patterns in the training set.

In essence, the network's estimate for an output associated with a particular
test set input can be thought of as a weighted average of all observed training set
output values, where each observed value is weighted according to the distance
between its input vector and the unknown input vector whose output it is to
determine. Two ways of measuring the distance between two vectors can be used,

the Euclidean distance, a straight line in N dimensional space and City Block, the

distance measured along the N axes.

A smoothing parameter o is used which affects the network's ability to
‘generalise. A very large value tends to cause the estimated output to become the
sample mean of the training outputs. As o approaches zero the output for an
unknown vector assumes the output value of the training vector closest to the
ﬁuxﬂlknown vector. At intermediate values all values of training output are taken into
-account but those for training vectors closer to the test vector are given more

“weight. The search for the optimum value of o is described later.

ar
k]

2.2.3.5. Temporal Processin

Temporal processing was investigated by Lang!57 and Kimmerer!38, both of
\I}vhorn constructed training sets from time delayed windows of speech in the
frequency domain. Networks incorporating temporal processing internally however
were first formulated by Jordan!>? by feeding the output of the network for one
I input pattern presentation back to the input on the next pattern presentation, i.e. a

recurrent network. This work was enhanced by Elman!60,161,162 who also fed back
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outputs from the hidden layer to the input layer. Torreele!®3 used a genetic algorithm
to build a recurrent network for the difficult problem of a temporal multiplexor.
This system supplied bit strings one bit at a time and classified the strings by using
the first n bits as an unsigned address pointing to one of the remaining, temporarily
later, bits which was taken to be the target category. Torreele claimed the genetic

algorithm approach produced a smaller network than would have previously been

thought necessary.

Some interesting ways of describing and analysing a temporal waveform using
a string representation of the waveform are to be found in Ful® and Pavilidis16s,
both of whom describe a syntactic method of analysing such patterns and give
algorithms for peak detection and pattern matching. The relevant part of the work of
Pavilidis was applied to electrocardiograms and carotid pulse wave forms. The
shape of these wave forms is very similar to that found in a multicomponent
voltammogram. Recently Roberts and Tarassenko!¢6,167 used electrocardiograms in
conjunction with neural networks to determine, successfully, the various sleep states
in a human subject based upon the peaks in the waveform. Eberhart!6® used three
and four layer neural networks to successfully detect spikes in

electroencephalograms, another waveform that 1s similar to a complex polarogram.

2.2.3.6 Process Control

Process control by neural networks was the subject of the work by Levin!6?
who used a simulated plant and Jang!’® who looked at the inverted pendulum
problem. Lister,1”! as well as applying an MLP to the field of plasma control in
Tokamak research, looked at the problem of de convoluting synthetic overlapping
- gaussians by modelling the two gaussians using a three layer MLP. The work of
these authors seems to suggest that the non linear modelling capabilities of neural

networks made them strong candidates for real time control. Appendix two contains



details of work similar to that of Lister, that was carried out by the author of this

thesis using the sech2 curve to model overlapping voltammetric peaks.

The work reported in this thesis investigated the use of three types of neural

network. The two layer perceptron, the multi layer perceptron and the general

regression neural network.
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An early mention of using computerised pattern matching in analytical
chemistry is by Jurs!’2 et al. This team investigated the predictive ability of binary
classifiers modelled along the lines of the Adaline but cascaded in a tree formation.
This enabled them to make useful decisions about the presence or absence of a
particular atom in low resolution petroleum mass spectrometry data obtained from
the American Petroleum Institute Research Project 44 . Although this required 300
training patterns, with each one consisting of 155 peak positions, they achieved an

average of 90.6% in recognising the presence of an oxygen atom in a test set of

- spectra.

Using the same data Kowalski'? extended this work by modifying the

- algorithms in order to produce a continuous real valued output where different
‘values of output corresponded to different oxygen numbers. For example, an output
of 1 might represent 1 atom and output of 2 might represent 3 atoms so that an
intermediate value of 1.7 might represent 2 atoms. They found that the
interpolation of output values was not linear but nevertheless a simple form of multi

component classification could be performed, producing a classification of one out

of several possible categories. Both of the previous authors went on to apply similar
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techniques to infrared spectra'’# and a combination of infrared spectra, melting point

and boiling point!73

The previous work was carried out using pure spectra, that is spectra derived
from only one compound. Wangen!76 artificially combined seventeen 14 MeV
neutron induced gamma ray spectra in order to produce mixtures containing various
known percentages of each element. These were then subjected to pattern
classification using a binary classifier. The binary target was a value indicating
whether or not the pattern contained a given percentage, 0.1%, 1.0% or 10.0%, of
the element in question, The classifier thus performed semiquantitative
classification. Prediction percentages were as high as 99.7% but it must be noted

that, whilst this was not using pure spectra, it was achieved on different mixtures of

the same set of spectra in the absence of noise and statistical deviation.

An architecture resembling modern neural networks was later investigated by
Jurs!7?, again using the petroleum mass spectrometry data. In addition to applying
transformations to the input data of binary classifiers, Jurs adapted the architecture
to create a 'committee machine' using two layers of normal binary threshold logic
units. The first layer of units consisted of multiple sets of ordinary binary
- classifiers, each of which was presented with the input pattern and formed an output
corresponding to the most probable classification. Instead of using this output
“directly however, Jurs fed it into a second classifier which used as its input pattern,
the vector of outputs from the previous layer. This classifier then produced a final

classification based upon the one decided upon by the majority of the first level

units.

An interesting approach to the production of the training and test sets was used

by Jurs. A subset of the entire data set was used. Training patterns that participated

in training were retained and the rest removed from the training set. This was
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repeated for different subsets until only 172 training patterns were required to
produce 100% classification on all 600 original patterns. However, since at one time
or another all patterns had influenced the training, either by being selected to be in

the training set or just as importantly, by not being selected, there no longer existed

an independent set of patterns by which the efficacy of the classifier could be

measured.

Up to this point however, no serious consideration had been made of the
experimental deviations present in real analytical data, nor had the classification
results been evaluated on anything other than a statistical basis. In 1971 Sybrandt!78
chose stationary electrode polarography as the source of experimental data used to

investigate the qualitative analysis of mixtures involving overlapping instrumental

signals.

Sybrandt used a similar process to Wangen to produce the pattern vectors,
starting with data from a vector of polarographic current measurements at 2mV

intervals produced by the separate analysis of single component Cd(Il), In(IlI)and

Sb(III) samples each at 5x 107 M. In all 36 vectors were produced containing the

expected statistical variations in peak position, peak height and background noise.

Sets of three vectors, one for each species, were selected and each one

multiplied by a random number. The three vectors were then added to produce semi

synthetic three component mixtures at various relative concentrations. The
classifier’s task was to qualitatively identify one particular species in the presence of

peaks due to other species and, in the case of Cd(lI) and In(IIl) with peak potentials
separated by approximately 40 mV, in the presence of overlapping peaks.
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In spite of this overlap, Cd(II) was identified correctly up to a 1:10 Cd:In

concentration ratio, although the ability on previously unseen test set data as well as

for some of the training set data fell to a 1:4 ratio.

A later development of this work by Sybrandt!?® saw the first use of
parameterised input vectors being presented to a classifier, in this case using features
extracted from the zero, first and second derivatives of the polarograms.

Classification accuracy improved to 90% for 20:1 peak height ratios.

Synthetic mixtures of real, pure, components were also used by Tunnicliff180,
in an effort to train a learning machine to predict the properties of samples from
their mass spectrographs. Also included in the training set were synthetic NMR
spectra, refractive index and density. The machine was tested using real
experimental data. Whilst the work showed some degree of success, the synthetic
NMR data was generated without any additional noise. Thus too much weight was

given to this part of the input and the resulting performance was not as good as it

could have been if real NMR data had been used.

Over the next few years a growing number of attempts were made to use
pattern recognition procedures in analytical chemistry. Thomas!#! investigated
parameter optimisation in Anodic Stripping Voltammetrty (ASV), Byers!82 looked at
structural characterisation of herbicides using cyclic staircase voltammograms as the
source of his data, processing these using the Fourier transform and a k nearest

classifier and Kaplan!3? embedded the software into a complete, although rather

primitive, computer driven instrument.

The processing of analytical chemical data by Partial Least Squares Regression

“began to appear around 1983 although the technique grew out of work by Wold!84 in

the late sixties. Between 1981and 1983 Wold used this method on multivariate
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problems in econometrics and the social sciences!®%,186, This use of PLS
concentrated upon so called ‘'mode B' PLS i.e. a formative model of the systems.
The chemometric version of PLS, presented in 1983 by Wold et al'87 fell under the
so called 'mode A' or reflective PLS model. The difference between mode A and
mode B is primarily that in Mode B only one major contributing facior 1S extracted
from the multivariate data in order to explain the relationships between several
blocks of data. Mode A on the other hand is concerned with extracting as many
factors as are necessary in order to adequately model the relationship between just

two blocks of variables, the known X 'spectrum’ and the unknown Y giving rise to

the spectrum.

The technique was adopted by Lindberg!33 in 1983 who, in addition to
presenting an algorithm for the process, showed that even severely overlapped
spectra could be resolved by this method. However it was claimed in 1986 by
Geladi and Kowalskil3? , correctly in this author's opinion, that much of the
literature on PLS did not present the method in a complete and easily understandable
manner. Geladi and Kowalsk1 attempted to correct this in a tutorial on the method
which remains one of the few such papers to graphically describe the process. Since
then the technique has been extended by Wold!%9,191 first in 1989 and again in 1992
to incorporate non linear PLS modelling. In this latter paper he also lays down a

challenge of comparing non linear PLS with a neural network approach, drawing a

parallel between the data processing requirements of the two techniques.

Comparisons between PLS and other multivariate techniques when applied to

chemical analysis were made by Haarland and Thomas in 19881%2,193 who used both

simulated and real infrared data from glasses to quantify components of the glass

related to quality control. Whilst their work indicated that PLS compared favourably

with other techniques, for example principal components regression, they were



33

unable to fully justify their findings due to the restricted number of samples used.
De Weijer!® compared PLS with neural networks in the identification of yarns from

their physical properties and concluded that neural networks were superior.

The use of true neural networks in analytical chemistry made their first
appearance in 1990 when Long!® trained a back propagation network to estimate the
protein content of wheat from its near infrared spectrum and investigated the effect
of changing the network parameters. He concluded that the linear transfer function
performed better than the sigmoid in this application. His results using a neural
network were as good as, or very slightly better than using principal component
regression. Long went on to use back propagation to classify jet fuel using a 'one

out of n' output encoding system applied to chromatographic data!9s.

Since these papers the use of neural networks and associated techniques in
chemistry has increased significantly, Wythoff!97 used a simple back propagation
network to identify signal peaks in infrared spectra. The system was essentially
interactive and so heavily dependant on the users choice of input data but an
important conclusion in this work was that including in the input data points
corresponding to noise improved the network's ability to differentiate between a
noise peak and a true peak. Many other researchers!98,199,200,201,202 haye also used
or compared combinations of principal component analysis and neural networks,

although most applied the techniques to infrared spectra.

A three layer neural network was used by Gemperline293 who compared its use
with PCR when processing both simulated and real UV spectra. He concluded that
the network performed better in the presence of noise than did PCR. The question of

noise was taken up by Allanic?™ who used a neural network to identify fluorescence

spectra. He found that the neural network could cope well with an artificially added

70 % noise. Borggaard?® used an interesting combination involving using partial
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least squares (PLS) and neural networks applied to near infrared spectra of latex
spheres in water, where the percentage of latex was required and in those obtained

from meat when determining the fat content. He found that networks could perform

much better than PLS and PCA in this situation.

Fluorescence spectra were used by McAvoy2%¢ who found that the
backpropagation MLP out performed linear techniques in deconvoluting
fluorescence spectra obtained from mixtures of amino acids. They were also used by
Blank?207,208 who accepted the challenge of Wold and used both real and synthetic
data to investigate non-linear forms of PLS and PCR compared to a Back
Propagation neural network. He concluded that the neural networks only performed

better than the non connectionist methods when the sizes of the training sets used are

sufficiently large to constrain the model yet extensive enough to provide adequate

sampling of the mapping surface.

Data from Pyrolysis Mass Spectrometry has been used by Goodacre and
processed using neural networks when analysing amino acids in glycogen2%,
investigating bioprocesses?1? and for detecting the adulteration of olive oils by other
seed oils2!!, A sigmoidal transfer function in a back propagation network was used
for this work and the results, although impressive, do show marked non linearity at
the two extremities of the calibration range due to the compression afforded by the
sigmoid. The majority of the networks trained by the author in the development of

this thesis use linear transfer functions instead on the output layer and the resulting

networks do not suffer from the above problem.

The problem of deconvoluting overlapping peaks was investigated using a
neural network by Gallant?!2 who used a neural network architecture originally

designed as an adaptive controller for robots. Synthetic chromatograms were

- processed by feature extraction from the zero and second derivatives. The network
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was found to provide rapid de convolutions over a range of peak heights, widths and

resolutions.

Recent sources relating to current applications of neural networks in chemistry
. can be found in Gasteiger?!3, who discusses network architecture's and applications
in chemical reactivity, process control, elucidation of chemical structure from
spectra and secondary structure of proteins and De Weiger who discusses the use of
neural networks to perform peak fitting. In this paper he uses a Pearson VII function

to model the peaks. This method has also been used with good results by this author

(see appendix two).

Kateman?!4 on the other hand, challenges the acceptance of neural networks in

analytical chemistry and offers guidelines on validation techniques necessary for

general acceptance.
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Nearly all of the literature on the use of neural networks in processing
analytical chemistry data used infrared spectra as its starting point. As yet, apart
from the author's own work, nothing appears to have been published concerning
their use in qualitatively processing data from voltammetric analysis. This is
significant as the nature of IR spectra tends to lend itself to neural network
processing as each input may simply be devoted to a particular frequency. By
analogy it may appear that when processing data from differential pulse stripping
voltammetry each network input may be devoted to a particular potential. Whilst in
broad terms this is correct, and is the approach taken in this work, it must be
remembered that the position of the stripping peak along that potential axis will vary

with scan number (see chapter 5), so complicating the issue.

The works comparing PLS and neural nets also appears to have been targeted
on IR spectra, except where simulated data is used. In addition the general
consensus to this point is that there 1s little difference between the performance of
PLS and neural networks. One exception is the work by Nas2!5 who showed that
whilst the equations for the regressions formed by PLS and feed forward,
backpropagation type neural networks were essentially the same, the neural
networks performed better than the traditional methods which tended to over fit the
data. Nas concluded that if neural networks are used "in the right way" then they
could be a good method for prediction. However he felt that they were more

difficult to understand and that their results were more difficult to visualise.
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Few papers address the problem of automating the calibration process or

discuss the merits of sophisticated calibration over the method of standard addition.
A notable exception is Bond?!®, who compared linear calibration and standard
addition methods for the quantification of trace level of cadmium in sea water,
concluding that direct calibration methods may be used. Williams?!7 also discusses
this problem when he describes a hand held instrument for environmental
monitoring of cadmium, copper and lead using ASV and a linear peak height
calibration method. Palys?!® used a computer to design, run, collect and analyse data

from electrochemical experiments involving staircase voltammetry but the system

used in this case was an expert system not a neural network and the object was to

gain information regarding the reaction mechanisms. Finally Smits2!? briefly

mentions the use of instrumental parameters as an additional network input when

classifying algae using flow cytometer data operating at different laser power

settings.

This work, in addition to applying neural networks in a field that has so far

received little attention, will show that neural networks may be applied to

quantitative chemical analysis in a way that is easy both to understand and visualise.

It will also show that the error and confidence in the concentrations made are

superior to those obtained by other methods.



60

4. Construction of Experimental
Apparatus

o A e A i

1g electrode and analy

4.1.1.The working electrode

The working electrode itself, onto which the mercury film is plated, consists
of a small disc of glassy carbon that has been polished to a mirror finish. Figure 9
shows the general arrangement and a photograph of the actual electrode

manufactured by the author is shown in figure 10.

A sleeve was constructed from a 2.5 cm diameter rod of PTFE that was
drilled to accept a 2 mm diameter silver steel rod and then turned down to an
outside diameter of 6 mm. A short rod of glassy carbon was then inserted as a tight
push fit with a small phosphor bronze spring between it and the silver steel rod. The
other end of the silver steel rod was then arranged on small ball bearings in a

holder, also turned from PTFE, so that the steel rod, the 6 mm PTFE sleeve and

the glassy carbon electrode could rotate about their mutual axis.

A brass pulley and a silver slip ring arrangement were manufactured and fitted
to the top of the rod so that a drive belt could turn the electrode whilst an electrical

connection could be made via the slip ring to the silver steel rod and hence to the

spring and glassy carbon electrode. The drive motor for this was salvaged from a
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computer disc drive and, although not yet utilised in this work, has a tachogenerator

attached which could be used for accurate speed control.

slip ring (silver)
\—-
m/m

AN \/\\\\\
l-l/I'l

brass pulley
PTFE bearing holder

PTFE sheathing

silver steel rod

YY) &‘}}}&WW\\&\\\\\\\\\\\\\\&*1\\\\\\\\\\\\\\\\\\‘&\\\\\\\\\\\

bearing

spring

glassy carbon rod

\

Figure 9. Cross section of the working electrode manufactured for
this work

Once manufactured, the end of the electrode was polished until the glassy

carbon rod had a mirror finish and the surface of it lay in the same plane as the

surrounding, polished PTFE.
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Figure 10. Photograph of the working electrode manufactured for
this work

4.1.2.The analytical cell arrangement

The cup which contains the analyte to be studied 1s a disposable 20 ml
polystyrene beaker. The author constructed a holder arrangement out of perspex
which allowed the cup to be easily positioned and removed whilst ensuring that the
relative positions of the cup and the three electrodes remained the same every time it

was used. A photograph of the arrangement is shown in figure 11.

The working electrode could also be removed easily for cleaning and polishing
as the slip ring brushes were mounted on a swinging arm which could be moved out

of contact with the slip ring.
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The auxiliary electrode was manufactured from a short length of platinum wire
sealed into a glass capillary. Following the example of Svensmark?’, this electrode

was connected to ground to minimise capacitance effects.

Originally the author manufactured several silver-silver chloride reference
electrodes from glass tubes using standard methods. The porous plugs for these were
reclaimed from fibre tipped pens. Although these electrodes performed quite well in
earlier work, it was noticed that the peak positions obtained were not consistent

enough for quantitative work. The reference electrode finally used was a refillable

calomel electrode (3.5M KCl) from Kent Taylor (part Number 1431-210).

Figure 11. Photograph of the analytical cell arrangement built by
the author
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A mirror fitted below the electrode was used whilst the electrode was rotating
to confirm that the plating of the electrode with mercury was proceeding normally.
The relatively thick films formed during pre-plating could be seen as a dull finish

slowly appearing on the previously shiny electrode surface.

The films formed during in situ plating are too thin to dull the electrode
appreciably but an novel alternative way of viewing the progress was used. A
bright light was reflected from the mirror onto the rotating glassy carbon in such a
way that when the electrode was viewed in the mirror, the filament of the lamp
could be seen reflected again from the surface of the glassy carbon. As the mercury

plates the electrode, light being reflected from the mercury droplets travels a shorter

distance than that being reflected from the carbon surface. The thin film interference
pattern formed by this path difference could easily be detected as colours which

changed steadily as the mercury thickness increased. (This might also have been

used as a way of measuring the mercury thickness.)
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4 2. 1.Brief review of relevant literature

From Ohm's law, it can be stated that the potential difference V across a

resistor R carrying a current / is given by
V = IR {12}

All systems that supply a current possess internal resistance and this causes an
internal potential drop, which increases as the current increases. This manifests
itself as a reduction in the output potential available over the component being
supplied with current. In voltammetry the apparent resistance of the cell changes as
the redox reactions take place resulting in a changing current through the internal
resistance of the supply. Potentiostats are electronic circuits that, within a certain
range, overcome this effect and maintain an accurate and constant pre-defined

output potential regardless of the demand for current.

A reasonable source of potentiostatic applications can be found in von
Fraunhofer22®, which, although rather out of date, does give the theoretical

background and schematic circuit diagrams for potentiostats. Blanchet??! gives the

circuit for a potentiostat and the schematic for a computer controlled interface.
‘Stabilisation is a problem in potentiostats where high gain amplifiers are used with

very high input impedances. Cath??? gives a rather simplistic overview of current

measurement procedures whilst over several years Booman?23, Brown?24,
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Kanazawa??’ and Meyer226 independently investigated stabilisation methods with

potentiostats with a view to maximising the stability of the circuit.

More sophisticated applications are given in Tallman?2?, who discusses a
computerised potentiostat capable of measuring current to a full scale deflection of

100 pA, Harrington228,22% who considered multiple electrode potentiostats and

Candela?3? who reported on a digital pulse generator capable of producing 10 ns
resolution pulses with a duration of 330 ns to several hours. However, although

having a finer resolution, this pulse generator was less versatile than the function

generator produced by Bond?*! ten years earlier.

4.2.2.0verview of the hardware

The requirements of the control hardware were that it should be capable of;

« maintaining the potential of an electrode at a value dictated by the control

software

» measuring the small current passing through this electrode

e be able to store one measurement, take another and find the difference

between the two values

e be able to operate with a wide range of currents and current differences

e be able to offset the current measurements by a variable amount

The system should be capable of performing the above operations under the

control of the microcomputer as far as possible so that easily reproducible

parameters could be obtained. The control electronics were therefore built in such a

way that control signals on various lines (called Address lines, Al to An, in this
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work) could control the operation of analogue switches and multiplexors used to

alter the operational parameters of the hardware.

The microcomputer chosen to run the software and to interface with the
external control hardware was an IBM AT type machine. This machine is widely -
available in laptop and desktop versions and so the system would lend itself to
portability. The microprocessor in the development system was an Intel 80386

running at a speed of 40 MHz. A 40 MHz IIT-3C87 maths co-processor was
installed and the system had 8 Mb of memory.

4.2.4.The Programmable Input Output Card

The card used to interface the computer to the analytical electronics was a 48
line programmable I/0 card (PIO-48, from Blue Chip Technology). This card uses
two 8255 chips. These each appear to the software as four contiguous bytes, the first
three bytes are the data ports which perform the communication with the external

device and the last byte is a control register which controls the function and

operation of the other three ports.

Each chip refers to its data ports as A, B, C. Since this card uses two chips,
the ports are referred to in this work as A, B and C for the first three data ports
(lowest address in the memory map) and A', B' and C' for the last three ports. The
card was installed at a base address of 300hex. Thus the relative addresses of the

various ports and control registers can be found from table 3 on page 69.

The 8255 can be configured in various ways, setting each port individually to
eight bits input or eight bits output. The exception to this is port C (and port C' in
the case of this board). This port can be configured so that the four high and four
low bits can be independently set as outputs or inputs. Advantage was taken of this

to give twelve bits wide input and output by assigning Port A and the lower four bits
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of port C as outputs (data bits O to 7 through A and bits 8 to 11 through C) and port

B together with the upper four bits of port C as inputs (bits O to 7 through port B

and bits 8 to 11 through port C).

All the ports in the second chip (A', B' and C') were configured as outputs in
order to control various functions on the electrode control board. The various bits in

these ports are referred to in this work as ‘Address Lines' and given the designation

AQ to A23.
. Port | Bit | Function |  Assignment |
 PotA | Bit0O |  Output |  D/ADBO
 PotA | Bit1 |  Output |  D/ADB1 |
 PotA | Bit2 |  Output |  D/ADB2
~ PotA | Bit3 |  Output |  D/ADB3 |
 PotA | Bit4 |  Output |  D/ADB4
. PotA | Bit5 |  oOutput |  D/ADB5 |
 PotA | Bit6 |  Output |  D/ADB6
~ PotA | Bit7 | Output |  D/ADB7 |
~ PotB__ | BitO |  lnput |  ADDBO |
- pPotB |  Bit1 |  input |  ADDB1
"~ PotB |  Bit2 |  mput |  ADDB2 |
 PotB | Bit3 |  input |  ADDB3
 PotB___ | Bit4d |  Input |  ADDB4 |
 PotB | Bits |  Input |  ADDBS
 PotB |  Bit6 |  Input |  ADDB6 |
~ PotB___ | Bit7 |  opt |  ADDB7
 PotC [ BitO |  Output |  D/ADB8 |
 potC | Bit1 !  Output |  D/ADBY |
~ PortC_ | Bit2 |  Output |  D/ADB10
 PotC | Bit3 |  Output |  D/ADB11 |
"~ PotC | Bit4 |  lnput |  ADDB8 |
 PotC | Bit5 [  Input |  ADDBY9
 PotC | Bit6 |  lnput |  ADDB10
" PotC | Bit7 |  Input [  ADDB11

Table 2. Programmers model of PIO data ports

These assignments are summarised in table 2 on page 68 which shows the

programmer's model of the data lines and table 3 on page 69 which shows the



programmer's model of the control 'Address Lines’. The need for the control

functions shown will be explained shortly.

Table 3. Programmers model of PIO control ‘address lines’

4.2.5.The Electrode Control and Current Measuring Hardware

Ribbo | Centronics Address
n Pin No. Line No.
Pin

ii No.
~A |01 2 | 2 | VECumenOfsetRange | 0
COA [ 1] 4 2T ] et e e .
A | 2] 6 | 28 |  UESensitivty | 2
A [ 3] 8 1 29 | ettt 3
A [ 4] 10 ] 30 | et M. | 4
A [ 5 12 1 31 | eeetemeeee M. | 5
A [ 6] 14 | 32 ] et | 6
A [ 7 16 | 383 et 7]
I
B | 0| 18 | 34 |  DeltaAmpGain | 8 |
B 1] 20 ] 3 | et | 9

“ RLY4 D-Amp input pin 19 Gmd “
EHE
B | 3| 24 | 37 |RLYSGmdWE()/notGmd(0) | 11
B | 4| 26 | 3 [ sH1 | 12
B | 5] 28 | 3 |  sH2 | 13 |
B [ 6] 30 | 40 [ R/ICforAlDConverter | 14 |
B {7 32 [ 4 4 | 15 ]
- 1t
c [ 0| 3 [ 42 |  GasPurgeon(RLYE) | 16
~ c | 1| 36 | 43 | ElectrodeRotateOn(RLY7) | 17
¢ | 2| 38 | 4 | | 18
~c | 3| 40 | 4 | 1 19
~C | 4| 42 | 46 |  Weomset | 20
—C | 5 | 44 | a1 | a1
~C [ 6 | 46 | a8 | v |
¢ | 7] 48 | 49 | —"-—-"e"—— | 23

69
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An interface circuit between the PIO board and the electroanalytical cell was

constructed by the author. The entire circuit performed several discrete functions.

The individual functions were;

1. Conversion of the digital signal from the computer into an analogue

potential.

2. The application of this potential to the working electrode via a

potentiostat.

3. Filtering the resulting cell current through a suitable filter to remove

unwanted noise.

4. The measurement of the instantaneous cell current by converting it to

a potential using one of several sensitivity levels, with the facility to

offset any large dc component.

5. Storing a previous converted measurement whilst making another and

calculating the difference between them, with amplification if

necessary.

6. Converting the final potential to a digital signal for transmission to

the CPU.

These functions were designed and implemented in hardware as separate
modules. The relationships between the various modules is shown in figure 14 on

page 74. Their function, operation and construction is discussed separately below

with further details in appendix 6.

Photographs of the equipment are reproduced in figures 12 and 13.
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Figure 12. Photograph of the potentiostat and control electronics
built by the author

Figure 12 shows the internals of the potentiostat, interfacing and control
electronics. The front panel of this equipment is detailed in figure 13, where the

digital display and various manual controls may be seen.

The entire circuit was built on a prototyping expansion card originally
supplied as part of some Nascom 3 Z80 microcomputer development systems. When

building was complete this card was fitted into a metal box with plug and socket



connections for all external devices. A smoothed power supply providing + 15v, -

15v, +5v, -5v and 0 v was used.

Figure 13. Photograph showing the front panel of the control
electronics

The wiring system used was point to point using fine insulated wire. This
made subsequent modifications and corrections to the board easier and also allowed
the elimination of earth loop problems by taking each ground pin back individually
to a common ground point on the A/D converter chip. Power supplies for each

device were decoupled at the point of connection to the chip by grounding through a

100nF capacitor.

Switches have been provided on the front panel for switching the filter circuit
in or out, for switching in buffered offsets to the I/E converter and the differential

amplifier and for isolating all three electrodes from the rest of the circuit. After the
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prototyping stage the I/E offset switch and its associated potentiometer circuit were
disconnected and this function incorporated on the main board and controlled by the

computer. ( see fig 24 on page 88 for the circuit).

In order to facilitate testing, the interfaces between the modules were brought
out to a 16 way DIL socket on the board. A separate circuit was built and housed in
its own case and fitted with a 16 way DIL plug and a 50 way Centronics plug. This
‘test box' circuit, when plugged into the 16 way DIL and the Centronics plug
ordinarily used for the computer interface, allowed manual setting of any 12 bit
digital input signal, visual confirmation on LED's of any 12 bit output digital signal
and a number of other functions. After initial testing was complete the 16 way DIL
socket was used as a means of picking up signals which were taken, via a multipole
switch, to a digital meter on the front panel. This allows the user to observe either
the output potential of the DAC, the potential of the working electrode with respect
to the reference electrode, the current flowing in the working electrode, the output

potential of the I to E converter or the potential held in the first sample and hold

device.

4.92.6.The Digital to Analogue Converter and Potentiostat Module

4.2.6.1. Construction

The circuit for this module is shown in figure 15 on page 76. The D/A
converter was built using the AD 667 digital to analogue converter chip?32. For this
application it was configured to have a 12 bit unlatched input bus and an output
range of 2.5v by grounding all latch address decode pins (12,13,14,15),
connecting output range pins 2 to 9 and 1 to 3 together and connecting pins 7 and 4

to pin 6 via 100Q trimmers. The msb of thel2 bit input bus was passed through an



inverter. This enabled two’s complement encoding of the digital input to be used,

thus simplifying the driving software.

1/E Converter
1/E Offset

U AT

r 8 line PIC ﬁ
0/A Convertor Utfferential
& Potentiostat o ‘Filtar Amolifier o A/D Converter
O
Offset
Block Diagram

Figure 14. Block diagram showing module relationships

74
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The potentiostat is a simple two op amp design after von Fraunhofer220 and
Jayaweera?®3. A NES534N was chosen as the control amplifier as it has very low
noise characteristics combined with a high output drive capability. The feedback op
amp is a AD645JN precision, low noise, FET input device with an input bias

current of 3pA. The gain of this device was fixed at unity.

4.2.6.2. Operation

Ignoring capacitive effects, the equivalent circuit of a three electrode
electrochemical cell may be considered to be two resistors in series due to the
analyte resistance. These are Rg, the 'series’ resistor, between the Auxiliary
Electrode (A.E.) and the Reference Electrode (R.E.) and R, the 'control' resistor,
between R.E. and the Working Electrode (W.E.). The potentiostat attempts to keep

the potential difference between R.E. and W.E. constant and equal to the applied

potential

Assume that initially no current is flowing and that by changing the digital
signal on the DAC the potential on the inverting input of OA1 is made more positive
with respect to ground. This results in the output of OA1 becoming more negative.
The A.E., connected to this output, will now also become more negative with
respect to the W.E. which is connected to virtual ground. i.e. the W.E. will be
polarised anodically and stripping may take place from its surface. This will alter
the electrical characteristics of the analyte near the W.E. hence changing Rc. If this
change is to reduce Rc (as it would be if more ions were now present near the

W.E.) then the potential drop across it - and hence between R.E. and W.E. - would

decrease.
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Figure 15. D/A converter and potentiostat module



17

However, since the W.E. is connected to virtual ground the only way that this
can occur is for R.E. to become more positive. This increased positive potential is
buffered through the very high input impedance OA2 and applied to the inverting
input of OA1. The output of OA1 (and hence of the A.E.) will now become more
negative. This increases the current flowing through Rc, increasing the potential

drop across it and restoring the potential difference between R.E. and W.E.

In this way the potential of the W.E. with respect to the R.E. is kept constant

regardless of changes in the cell impedance due to chemical reactions.
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Figure 16. D/A converter calibration
4.2.6.3. Performance

The AD667 was calibrated using the test box described earlier. An input code

of 0000 0000_0000 was applied and RV1 adjusted until the output was -5.0V. Then
an input code of 1111_1111_1111 was applied and RV2 adjusted to give an output
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of +4.997V. Finally the output was measured using a digital voltmeter for various

input codes and the calibration chart shown in figure 16 on page 77 produced.

The operation of the potentiostat was tested using the dummy cell shown in
figure 17 on page 78. The computer software was used to apply a potential of 0.263
V (wrt R.E.) to the working electrode and this potential was measured with a digital
voltmeter while the resistance of the potentiometer between the W.E. and the R.E.
was slowly reduced. No change in this potential was observed until a critical value
of resistance was reached, after which the potential fell rapidly as the potentiostat

saturated and was no longer able to maintain the desired potential. Subsequent
calculations indicated that, until saturation, the current in the working electrode was

steadily increasing from about 3.0 nA whilst the potential was remaining constant.

Figure 17. Dummy cell used to test the potentiostat

The operation of the potentiostat was also tested under working conditions by

plating lead from a solution of 1ppm lead in 0.1M KNOj3 onto a rotating glassy
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carbon clectrode that had been plated with mercury (using 0.01g/dm3 lead nitrate in
0. 1M nitric acid) for 30s. The platc potential applicd by the software was changed
in 100 mV steps from zero to -900 mV whilst the actual potential of the W.E. was
measurcd wrt the R.E. using a digital voltmeter. During this time the cell
characteristics arc known to change, the cell current being higher around -500 mV
when the lead plates the clectrode. Figure 18 shows that the actual potential of the
W.E. did indced follow that applied by the software in spite of the changes in cell

characteristics, thus indicating the correct operation of the potentiostat within this

range of W.E. current.
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Figure 18. Plot confirming correct operation of the potentiostat.
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4.2.7.The Filter Module

This part of the circuit was built so that the filter could be excluded via a
switch on the front panel and the signal from the potentiostat passed directly to the
I/E converter. However it was found that adequate signals could be obtained without

filtering. Thercfore although provision for its inclusion was available, the filter

circuit was not completed and the switch left permanently in the 'filter bypass’

position. This part of the circuit is shown in fig 19 on page 81.

4.2.8.The Current To Voltage Converter Module

4.2.8,1. _ Construction

This classical design, shown in figurc 20 on page 83, uses a single op amp,
the 741 acting as a current follower. Svestka??* (1986) showed that an improved
current to vollage converter with better stability could be achieved by slightly
modifying the basic circuit. This involved isolating the input to the op amp via a

resistor. In the present circuit this is done using a 4.7k resistor.

The fcedback resistor employed can be set to one of six different values, i.e.
conversion sensitivitics, using onc of two AD7590 analogue switches 23, These
packages cach contain four, single pole switches, controlled by a separate input
lines. The value of each resistor, the sensitivity that it produces and the address line

pattern controlling it arc given in table 4 on page 82.
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Address Line pattern Feedback Nominal
Resistance | Sensitivity

Table 4. Current to voltage converter sensitivities

Davis?3¢ discussed the assumption that no current flows into the op amp of a
current to voltage converter, i.¢. it is at virtual ground. In fact this can never be the
case as the Op Amp needs some input current in order to work. In reality the input
appcars as an inductor whose impedance varies with frequency. With the step inputs
expected in the present work this would cause the cell current to overshoot and
'ring’. This would appear as a voltage over the double layer in excess of that applied

by the potentiostat. In this case the current to voltage converter output may saturate

momentarily,

A method of reducing this apparent inductive input is to shunt the feedback

resistor with a capacitor?24:223, Bezman?¥? shows how the value for this capacitor can

be deduced. The values used in figure 20 appear to be adequate.

82
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2.8.2 i

Once the appropriate signals arc sct on address lines A2 to A7, a particular

feedback resistor and impedance matching capacitor combination are selected. The

current Iy o flowing from the cell is summed with the offset current from the offset

modulc and is presented to the inverting tnput of the 741 Op Amp via the 4.7kQ

resistor. The 741 produces an output voltage over the feedback resistor which
attcmpts to balance that on the input. This produces a current equal to but in the

oppositc scnsc to that applicd, producing the virtual earth. Ignoring the inductive

cffect, the potential at the output is given by
Lot = Rﬂ; X Jin {13}
where Ry, Is the feedback resistor and [, is the cell current.

4.2.8.53,  Performance

The performance of the Current to Voltage converter was investigated by

using the dummy cell shown in figure 21.

Figure 21. bummy cell used to test current to voltage converter

Using the computer software to be described later, a linear scan was

performed from -100 mV (o -+100 mV at a rate of 330 mVs-1. The potential
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applied and the measured current though the W.E. was recorded. This was

performed at cach of six currcnt to voltage sensitivities and each of four differential

amplificr gains. No current offsct was used.

Linear Scan - Sens: 2000 nA/V, Olfset: O, Range: BuA, Gain x1 Scan Rate 0.33 V/s

0.72
7.08
5.04
3.0 4
1.L6
-0.48
2,52
4,60
-0.0
8,04

-10.08
0,7 <0506 042 -0.28 -0.14 0 0.14 028 042 056 0.7

Voltage Applied V

Coereet Colomed &

Figure 22. Results of a linear scan used during the testing of the l/E
converter

Since there was a 148.5 Q resistor between the W.E, and the R. E., the
resulting plot of current against applied W.E. potential showed the expected linear
relationship. With some sensitivities and gains however, saturation of the current to
voltage converter was obscrved, resulting in an indication that current was not

changing in spite of a change in PD. The results of a typical run indicating



saturation arc shown in figurc 22 on page 85. The proportional part of each graph
was uscd to calculate a valuc for the resistance between the R.E. and the W.E. If

the switching between different sensitivities and gains does not introduce an error

this should be always be cqual to 148.5 Q2

The results of this operation arc shown in figurc 23 on page 86 where the
percentage crror in calculating the resistance is plotted against the sensitivity for all
four gains, Here the value for | has been calculated from the resulting A/D output

assuming the scnsitivitics in table 4.

Figure 23. Graph of error in | to E converter with sensitivity at
different gains

These results show that within an acceptable degree of error, changing the
sensitivity and / or the gain during the lifetime of a single experimental run is

possible without introducing unduc distortion into the results obtained.
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The values of W.E. current causing saturation at each sensitivity and gain

setting were also recorded. These results are given in appendix 5.

4.2.9.The Current to Voltage Converter Offset Module

The current to voltage converter offsct module 1s shown in figure 24 on page
88. The purposc of this modulc was to allow the 'backing off” of any large current

component present in the response. It will offsct the current Iy, o by a positive or

negative amount, the valuc of which is determined by the scttings of offset range

87

and offsct number. Offset numbers from -7 to +8 arc available, each at two ranges.

It should be noted that offset number does not refer to an absolute offset current
value but is used to give an indication of the approximate value where settings -8
and -7 correspond to approximately -1.244 pA to +1.213 pA for the lower offset
range and from -12.500 A to +12.120 pA for the higher range. Details of each

offset value that may be obtained are given in appendix 5, table 44 on page 286 and

in figure 25 on page 91.
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4.29.1, Construction

The circuit consists of a potentiometer that can tap off any one of 16 points in
a nominal range of £5 V. A 6067BE Ipole, 16 way analogue switch, is used with a
resistor chain of 15 x 390 £ resistors to provide a digitally controlled potentiometer.
The ends of the resistor chain are taken to 415V and -15V respectively via 5kQ2
trimmers adjusted to give approximately 10V over the resistor chain in equal steps
with OV at the centre tap. The output of this potentiometer is buffered via a 741 and
fed via cither 1M or 100k€2 resistor to the input of the Current to Voltage
converter. The value of this resistor is switched by a AD7590 four pole analogue
switch and scts the range of offsct to give approximately £5pA or £50puA

respectively.

4.2.9.2, __Operation

The range and the offsct number can be controlled by the microcomputer by
setting bits on the appropriate address lines, These address lines are indicated in
table 46, Page 288 but further details of the switching codes and offset currents

obtained arc given in appendix 5 in table 42, page 284 and table 43 on page 285.

Once the settings have been determined, the potential at the appropriate tap
point will appear at the common pin, pin 1, of the 4067BE 16 way switch. This
potential is then buffered by the 741 and fed into pins 9 and 11 of the AD7590
analogue switch. Depending upon the signals on pins 5 and 6 this potential then
appears on pin 10 or 12. This causes a current to flow through either the 100k€2 or
the IMXQ resistor, the remote end of which is held at virtual earth at the current to
voltage converter. The offset current can be isolated from this Op Amp by the a

switch on the front panel which controls sub miniature relay RLY 3.



4.2,9.3, Perfonnance

The output from the appropriate pin of the AD7590 offset range analogue
switch (i.c. Pin 10 when using the 5 tA range and Pin 12 when using the 50 A
range) was mcasured with respect to ground using a high impedance digital
voltmeter. The potential of Pin 2 on the I/E converter Op Amp was also measured
with respect to ground. These two readings gave the potential across the appropriate
resistor (100kQ2 or IMQ). FFrom this the actual offset current flowing for each
setting could be calculated. This is shown in figurc 25 on page 91 (and tabulated in

appendix §, table 44, page 286). The sensitivity setting in force is 1000 nA/V.

The curves shown here indicate that the relationship of current to offset
number is not lincar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>