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Abstract.
Although it is clear that the circumnuclear regions of galaxies are intimately

related to their host galaxies, most directly through their bars, it remains unclear
what exactly initiates and fuels nuclear stellar (starburst) and non-stellar (AGN)
activity. Deviations from axisymmetry in the gravitational potential of a galaxy,
set up by a bar or an interaction, are known to cause gas inflow, and must at some
scale and level be related to the fueling of AGN and starbursts. We review the
observed relations between bars and interactions on the one, and nuclear activity
of the Seyfert and starburst variety on the other hand, and conclude that none of
these relations is particularly significant in a statistical sense, except in extreme
and rare cases, such as ultra-luminous infrared galaxies. Nuclear rings of star
formation, however, are not only related directly to non-axisymmetries in the
potential, but also, it seems, to the occurrence of nuclear activity. Their role as
potential tracers of the fueling process must be further explored.

1. Introduction

Nuclear activity in galaxies, either of the stellar (a nuclear or circumnuclear star-
burst) or non-stellar (“active galactic nucleus”; AGN) variety, is rather common
in present-day galaxies (e.g., Ho, Filippenko, & Sargent 1997a). The most tan-
gible link between the nuclear regions and the host galaxy is provided by the
fact that the mass of the central supermassive black hole in a galaxy is di-
rectly related to the velocity dispersion (hence the mass) of the bulge (Ferrarese
& Merritt 2000; Gebhardt et al. 2000). Since such black holes appear to be
ubiquitous in the nuclei of both active and non-active galaxies (Kormendy &
Richstone 1995), whether or not a galaxy is active must largely be determined
by the ability of that galaxy to channel digestible fuel (i.e., gas) to the smallest
scales. Large stellar bars, as well as tidal interactions and mergers, can drive gas
efficiently from the outer disk into the inner kpc (Shlosman, Frank, & Begelman
1989; Shlosman, Begelman & Frank 1990), but it is non-trivial to drive gas to
smaller scales. Nuclear (secondary) bars nested within the large-scale (primary)
stellar bar (e.g., Shlosman et al. 1989; Laine et al. 2002) have been suggested
as vehicles which drive gas efficiently to scales of 10–100 pc.

We will concentrate here on observational evidence, mostly statistical in na-
ture, of the effects of bars and interactions on starburst and Seyfert activity,
which are conceivably linked to these facilitators of inflow. After reviewing
observations which can support the theoretical expectation that bars will con-
centrate mass in the center of a galaxy (Sect. 2), we will review separately the
observational evidence, or lack thereof, for relationships between the forms of
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non-axisymmetry and activity identified above (Sect. 3-6). We will then discuss
nuclear rings of star formation and their relations with bars and nuclear activity
(Sect. 7, 8). Concluding remarks are given in Sect. 9.

2. Bars and central mass concentration

There are several pieces of observational evidence which indicate that bars do
indeed concentrate gas in the central regions of spiral galaxies, as expected the-
oretically and numerically. We will briefly review the evidence here, but also
emphasize that it does not necessarily imply that the mass concentration stimu-
lated by bars is connected directly to the occurrence or fueling of nuclear activity
because the scales involved are different. Such a connection between mass con-
centration and activity would have to be separately studied in a statistically
meaningful way, which has to our knowledge not been done to date.

The most comprehensive evidence so far for mass concentration by bars stems
from surveys of molecular gas concentration in barred as compared to non-barred
galaxies, traced through emission in the millimeter domain by CO molecules.
Sakamoto et al. (1999) used data from the Owens Valley and Nobeyama inter-
ferometers for 10 barred and 10 non-barred galaxies, and found that the barred
galaxies, statistically, have more concentrated CO emission, and thus, presum-
ably, molecular hydrogen. More recently, Sheth et al. (2004) used the data from
the BIMA-SONG survey (Regan et al. 2001; Helfer et al. 2003) to confirm
this conclusion. Their sample contains 29 barred and 15 non-barred galaxies of
types Sab-Sd, which have comparable molecular gas masses and surface densities
across their disks. In the central kiloparsec, however, both the average surface
density and the central concentration of molecular gas are about three times
higher in the barred than in the non-barred galaxies, effects which are some-
what more pronounced in the early than in the late type galaxies in the sample.
Although the galaxies with the most centrally concentrated CO emission and
the highest surface densities in the central kiloparsec are barred, the scatter is
large. One of the caveats in this kind of work is the value of the conversion fac-
tor between CO intensity and molecular hydrogen column density, the X-factor,
which is usually assumed constant. Findings such as the one by Hüttemeister
et al. (2000) of significant changes in the conversion factor within the barred
galaxy NGC 7479 as determined from 12CO/13CO line intensity ratios, possibly
related to the gas being more diffuse, or unbound, in the bar, may not invalidate
this general assumption, but do highlight the need for more detailed scrutiny.

Maiolino, Risaliti, & Salvati (1999) studied the atomic gas column density in
front of Seyfert nuclei using X-ray measurements, and found significantly higher
columns in those Seyferts which are in barred hosts than in those in non-barred
galaxies. Alonso-Herrero & Knapen (2001) studied H ii region populations in
the central regions of spiral galaxies, and found that both the luminosity of the
most luminous H ii regions and the massive star formation efficiency are higher
in the barred than in the non-barred galaxies, which again was interpreted as a
consequence of enhanced gas concentration by bars. There is thus indeed some
observational evidence that bars drive gas towards the nuclear zones of galaxies.
Below, we will explore whether this can be related to the occurrence of nuclear
starburst or Seyfert activity.
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3. Bars and starburst activity

Clear indications that nuclear starbursts preferentially occur in barred hosts
have been reported since the early eighties, from radio continuum (e.g., Hum-
mel 1981; Puxley, Hawarden, & Mountain 1988; Huang et al. 1996) or infrared
(e.g., Hawarden et al. 1986; Devereux 1987; Dressel 1988) emission and its distri-
bution, or from the morphology of spectroscopically selected starburst galaxies
(Arsenault 1989). Even though the results are not unambiguous (see, e.g., dis-
cussions in Huang et al. 1996), there is a clear trend. For example, Hummel
(1981) found that the central radio continuum component is typically twice as
strong in barred than in non-barred galaxies; Hawarden et al. (1986) found that
basically all galaxies with a high 25/12µm flux ratio are barred; and Arsenault
(1989) found an enhanced bar+ring fraction among starburst hosts. Huang et
al. (1996) refined the methodology used in earlier papers and used IRAS data to
confirm that starburst hosts are preferentially barred. They do point out, how-
ever, that this result only holds for strong bars (SB class in the RC3 catalog, de
Vaucouleurs et al. 1991) and in early-type galaxies. All results mentioned above
are based on morphological classifications taken from catalogs such as the RC3.

A study of the molecular gas properties in the inner kpc of starbursts and non-
starbursts (Jogee 2001; Jogee et al. 2001) shows that the starbursts generally
host larger central gas densities (assuming a standard X-factor). The fact that
both starbursts and non-starbursts in Jogee’s sample can host a large-scale bar
suggests that the lifetime of the starburst is short with respect to the timescale
over which bars evolve or dissolve. The data also suggest that in a given barred
galaxy the dominant star formation mode can change from an inefficient pre-
burst phase in the early stages into a powerful circumnuclear starburst once a
high enough central gas density builds up. These findings are consistent with
the reports referred to above that starbursts are more common in barred than
in unbarred galaxies, but they also imply that the presence of a bar is not a
sufficient condition for a concurrent starburst.

We conclude that statistical studies show that bars and starbursts are con-
nected, but that the results are subject to important caveats and exclusions.
Further study is needed, using carefully defined samples, and exploring more di-
rect starburst indicators, such as nuclear spectra, Hα imaging, or possibly careful
SED fitting, all combined with a bar analysis based upon, ideally, near-infrared
(NIR) imaging. What also needs more scrutiny is the nature of the starburst
associated with a bar. Hawarden et al. (1986) already suggested that these
starbursts might be circumnuclear, and we now know that such circumnuclear
star formation can be very compact (e.g., González Delgado et al. 1998). Given
the theoretically and observationally established strong connections between cir-
cumnuclear star formation and non-axisymmetry in the gravitational potential
of their host galaxy (Sect. 7), and given the importance of such features for
our understanding of galaxy dynamics and evolution, HST imaging ought to be
employed to investigate whether bar-related starburst activity is circumnuclear
rather than nuclear in general.
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4. Bars and Seyfert activity

Seyfert galaxies have a number of characteristics which make them particularly
suitable for a study of their host galaxies: they are relatively local AGN and
occur predominantly in disk galaxies. Over the years, and starting with the
work of Adams (1977), a fair number of authors have studied the fraction of
bars in Seyfert galaxies, often comparing the results for the AGN with those
for a control sample (e.g., Adams 1977; Simkin, Su, & Schwarz 1980; Balick
& Heckman 1982; MacKenty 1990). Unfortunately, these early surveys, and
many of the later ones (e.g., Moles, Márquez, & Pérez 1995; Ho, Filippenko &
Sargent 1997b; Crenshaw, Kraemer, & Gabel 2003) suffer from one or more of the
following imperfections: they are based on optical imaging, where stellar bars are
much more difficult to detect than in the NIR; they use the RC3 classification or,
worse, ad-hoc and non-reproducible classification criteria to determine whether
a galaxy is barred; or they suffer from the absence of properly matched control
samples.

There have also been a small number of studies using new, high-quality, NIR
imaging of well-matched samples of Seyfert and quiescent galaxies. Mulchaey &
Regan (1997), from one such study, report identical bar fractions, but Knapen,
Shlosman, & Peletier (2000), using imaging at higher spatial resolution and a
rigorously applied set of bar criteria, find a marginally significant difference,
with a higher bar fraction in a sample of CfA Seyferts than in a control sample
of non-Seyferts (approximately 80% vs. 60%).

This difference was later confirmed at a 2.5 σ level by Laine et al. (2002),
who improved upon the work by Knapen et al. (2000) by increasing the sample
size (112 instead of 58 galaxies in total) and by using high resolution HST
NICMOS NIR images of the central regions of all galaxies. Laine et al. (2002)
find that 41 of their 56 Seyfert galaxies have at least one bar (73%±6%, where
the uncertainty is the Poisson error due primarily to the sample size), against 28
of the 56 non-Seyfert control galaxies (50%±7%). Another result is that almost
one of every five sample galaxies, and almost one of every three barred galaxies,
have more than one bar, although the fraction of small, or nuclear, bars is not
enhanced in Seyfert galaxies (see also Erwin & Sparke 2002, who reach much the
same conclusions on nuclear bars, even though the classification of especially the
smallest bars remains a matter of debate for some individual galaxies, see, e.g.,
Laine et al. 2002; Erwin 2004). Laine et al. also find that there is no correlation
between the presence of companion galaxies, even relatively bright ones, and a
bar, thus refuting a claim by Márquez et al. (2000) that the results by Knapen
et al. (2000) were unreliable because not all the sample galaxies were isolated.

We can thus conclude that carefully performed studies show that there is a
slight, though only just about significant, excess of bars among Seyfert galaxies
as compared to non-Seyfert control samples. A significant fraction of Seyfert
galaxies appear to be non-barred, although future analysis could potentially
reveal a weak or very small bar, or another form of non-axisymmetry in their
gravitational potential which could have similar dynamical effects (Shlosman
et al. 1989). What even the most detailed of these studies have not shown,
however, is a one-to-one correlation between bars and Seyfert activity. Given
that any fueling process must be accompanied by angular momentum loss, which
in turn is most likely induced by non-axisymmetries, either the timescales of bars
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(or interactions, see below) are different from those of the activity, or the non-
axisymmetries are not as easy to measure as we think, for instance because they
occur at smaller scales, or are masqueraded to a significant extent by, e.g., dust
or star formation (Laine et al. 2002).

5. Interactions and starburst activity

There is ample anecdotal evidence for the connection between galaxy interac-
tions and starburst activity. Practically all extreme infrared sources, specifically
the Ultra-Luminous InfraRed Galaxies (ULIRGs), which are thought to be pow-
ered mainly by extreme starbursts (Genzel et al. 1998), occur in galaxies with
disturbed morphologies, presumably interacting (e.g., Joseph & Wright 1985;
Armus, Heckman, & Miley 1987; Sanders et al. 1988; Clements et al. 1996;
Murphy et al. 1996; Sanders & Mirabel 1996; see also Sanders, these pro-
ceedings, p. 000). Partly as a result of this finding, and considering the much
increased interaction rates at large lookback times expected from cosmological
models, a significant occurrence of massive starbursts, mostly dust-obscured and
thus hidden from direct view, is sometimes inferred from the observation of so-
called SCUBA-sources (e.g., Smail, Ivison, & Blain 1997). Given the evidence
from, for instance, observations of ULIRGs, it is perhaps not unreasonable to
state that such massive starbursts are powered in galaxies which are undergoing
a major upheaval, i.e., are merging or interacting.

More in general though, the picture is far less clear, as nicely illustrated
in a recent paper by Bergvall, Laurikainen, & Aalto (2003). These authors
considered two matched samples of nearby interacting (pairs and clear cases
of mergers) and non-interacting galaxies, and measured star formation indices
based on UBV colors. Contrary to previous reports in the literature (notably by
Larson & Tinsley 1978), Bergvall et al. do not find significantly enhanced star-
forming activity among the interacting/merging galaxies. Bergvall et al. (2003)
estimate from their sample that only about 0.1% of a magnitude limited sample
of galaxies will be massive starbursts generated by interactions and mergers. The
authors then argue that since virtually all ULIRG morphologies show evidence
for recent mergers, other mechanisms cannot reasonably be expected to trigger
massive starbursts. Although Bergvall et al.’s fraction of 0.1% is based upon
one true massive starburst (ESO 286-IG19) found in a sample of 59 and thus
carries substantial error bars, it is also clear that such massive starbursts are a
very rare occurrence indeed, at least, but possibly not exclusively (Bergvall et
al.), in the local universe.

So although mergers can undoubtedly lead to massive starbursts, and most
extreme starbursts show evidence for a merging/interacting history, they appear
to do so only in exceptionally rare cases. Most interactions between galaxies
may not lead to any increase in the starburst activity, and those that do may
be selected cases where a set of parameters, both internal to the galaxies and
regarding the orbital geometry of the merger, is conducive to the occurrence of
starburst activity (e.g., Mihos & Hernquist 1996). Laine et al. (2003) find very
little evidence for trends in starburst activity from detailed HST imaging of the
Toomre sequence of merging galaxies, further illustrating this point.
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Figure 1. Relative size (ring diameter divided by host galaxy diameter) for
a sample of 15 nuclear rings as a function of the gravitational torque Qb, or
strength, of the bar of its host galaxy. Data from Knapen, Pérez-Ramı́rez, &
Laine (2002) and Knapen (2004).

6. Interactions and Seyfert activity

Galaxy interactions can easily lead to non-axisymmetries in the gravitational
potential of one or more of the galaxies involved, and as such can be implicated
in angular momentum loss of inflowing material, and thus conceivably in AGN
fueling (Shlosman et al. 1989). Although indeed Seyfert activity occurs in in-
teracting and merging galaxies (NGC 2992 is a rather spectacular example),
no unambiguous evidence has been reported for an excess of the numbers of
companions to Seyfert galaxies as compared to non-active control galaxies (e.g.,
Fuentes-Williams & Stocke 1988; de Robertis, Yee, & Hayhoe 1998), nor for a
different incidence of Seyfert or AGN activity among more or less crowded en-
vironments (e.g., Kelm, Focardi, & Palumbo 1998; Miller et al. 2003). Much of
the earlier work, some of which claimed a statistical connection between inter-
actions and Seyfert activity, was unfortunately plagued by poor control sample
selection (see Laurikainen & Salo 1995 for a detailed review), while most stud-
ies, including some of the most recent ones, are not based on complete sets of
redshift information for the possible companion galaxies. In addition, Laine et
al. (2002) have shown that the bar fraction among both their Seyfert and non-
Seyfert sample galaxies is completely independent of the presence of faint, or
bright, companions (interacting galaxies were not considered by Laine et al.).
We thus conclude that interactions and Seyfert activity may well be linked in
individual cases, but that as yet the case that they are statistically connected
has not been made convincingly.

7. Bars and nuclear rings

As discussed earlier in this paper, bars concentrate gas in the central regions of
galaxies. Bars, however, also set up resonances which can act as focal points
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for the gas flow, and where gas concentrates in limited radial ranges (see, e.g.,
review by Shlosman 1999). Rings in disk galaxies are intimately linked to the
internal dynamics and the evolution of their hosts, are relatively common, and
are most often outlined by massive star formation (see Buta & Combes 1996 for
a comprehensive review on galactic rings).

Nuclear rings, on scales of less than one to roughly two kiloparsec in radius,
occur in one of every five spiral galaxies (Knapen 2004). They are found al-
most exclusively in barred galaxies (e.g., Buta & Combes 1996; Knapen 2004;
see below), and can be directly linked to inner Lindblad resonances (Knapen
et al. 1995; Heller & Shlosman 1996; Shlosman 1999). Individual gas clouds
within such a ring can become gravitationally unstable, either spontaneously
(Elmegreen 1994), or under the influence of density waves set up by the bar
(Knapen et al. 1995; Ryder, Knapen, & Takamiya 2001), and rings are well
known for the significant massive star formation occurring within them (al-
though rings without star formation occur as well, see, e.g., Shlosman 1999;
Erwin & Sparke 2002). Because of the much enhanced massive star formation
occurring in nuclear rings, they are prime tracers of star formation processes in
starburst regions, as well as of the dynamics of galaxies on scales of a kiloparsec
from the nucleus. As an example of the latter, Fig. 1 shows the relation between
the relative nuclear ring size and the gravitational bar torque (a measure of the
strength of the bar) for 15 nuclear rings. It is clear that large rings can only
occur in weak bars, a result which confirms expectations from theory and mod-
eling, in which, simply put, the extent of the perpendicular x2 orbits needed to
sustain the nuclear ring is limited as the bar gets stronger, i.e., as the x1 or-
bits become more elongated (see Knapen et al. 1995; Heller & Shlosman 1996;
Knapen, Pérez-Ramı́rez, & Laine 2002; Knapen 2004).

Some rings apparently occur in non-barred galaxies. In some cases, the host
may be classified as non-barred in the major catalogs, but a small bar shows
up clearly in NIR imaging (for instance, NGC 1068, Scoville et al. 1988, and
NGC 4725, Shaw et al. 1993; Möllenhoff, Matthias, & Gerhard 1995; see the
more elaborate discussion in Knapen 2004). Other apparently non-barred nu-
clear ring hosts may either have a weak oval distortion, or be undergoing the
effects of an interaction with a companion galaxy. In either case, a departure
from axisymmetry would be set up in the gravitational potential of the galaxy
which could lead to ring formation in a very similar way to when a bar is present
(Shlosman et al. 1989). We give two examples from the recent literature.

The first example is that of NGC 278, a small, nearby and isolated spiral
galaxy (vsys = 640 km s−1; MB = −18.8) recently observed in optical and H i by
Knapen et al. (2004a). Although classified as SAB(rs)b in the RC3, there is no
evidence for the presence of a bar in this galaxy from either HST WFPC2 or
ground-based NIR imaging.

As seen in Fig. 2 (left), a B − R color index image of NGC 278, its optical
disk shows two distinct regions, the inner one with copious star formation and
clear spiral arm structure, and the outer one (r > 27 arcsec or 1.5 kpc) which
is almost completely featureless, of low surface brightness, and rather red. The
H i disk (shown at a low resolution of 120 arcsec in Fig 2, right) is much more
extended than the optical disk (indicated by the white circle in the H i figure)
and shows both morphological (Fig. 2) and kinematic (Knapen et al. 2004a)
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Figure 2. B − R (left) and H i (right) views of the galaxy NGC 278. The
scales covered in the two panels are very different: the total extent of the
optical disk of the galaxy, more or less twice the area shown on the left, is
indicated by the small white circle in the middle of the right panel. The
B −R color index image shows bluer colors as lighter shades. The H i image
shows the integrated H i surface density distribution at 120 arcsec resolution,
with contour levels at (1, 2, 3, ..., 9)× 1019, (1, 1.5, 2, ..., 6.5) × 1020 cm−2. The
vertical spike in the B − R image is an artifact. Data from Knapen et al.
(2004a).

disturbances which suggest a recent minor merger with a small gas-rich galaxy,
perhaps similar to a Magellanic cloud.

The scale and morphology of the region of star formation in NGC 278 indicate
that this is in fact a nuclear ring, albeit one with a much larger relative size with
respect to its host galaxy than practically all other known nuclear rings (the
absolute radius of the nuclear ring is about a kiloparsec, normal for nuclear
rings). Knapen et al. (2004a) postulate that it is in fact the past interaction
which has set up a non-axisymmetry in the gravitational potential, which in
turn, in a way very similar to the action of a classic bar, leads to the formation
of the nuclear ring. The case of NGC 278 illustrates how in apparently non-
barred galaxies rings can be caused by departures from axisymmetry induced
by interactions, but also shows how difficult it can be to uncover this: in the
case of NGC 278 only through detailed H i observations.

Another example of the same class may be the case of the blue compact
dwarf galaxy Mrk 409, which has recently been shown to possess two star-
forming rings, a nuclear one at 0.5 kpc radius, and a further one at a radius
of some 2 kpc (Gil de Paz et al. 2003). These authors interpret the inner of
the two rings as resulting from a starburst-driven shock interacting with the
interstellar medium. In such a scenario, the nuclear starburst would sweep up
gas in the galactic plane, which would eventually reach densities high enough
for it to become molecular, followed by a phase of massive star formation. Such
a scenario seems unattractive, by the way, as a general one, because it would
depend on a very strong starburst-bar correlation to reproduce the observed very
strong nuclear ring-bar correlation (the former has not been established nearly
as conclusively as the latter, see Sect. 3). Gil de Paz et al. (2003) do not offer a
preferred explanation for the outermost of the two observed rings in this galaxy.
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In light of the appearance and scales of the two rings in Mrk 409, it is tempting
to consider them as resonance rings. In that case, as in host galaxies of other
nuclear rings, we would expect to see some evidence for the presence of a non-
axisymmetry in the gravitational potential. Also known as NGC 3011, Mrk 409
has been classified as ‘.L.....’ in the RC3. No HST images are available from the
archive, and a 2MASS (Jarrett et al. 2003) image shows no evidence for a bar.
We checked the Hyperleda database (Paturel et al. 2003), and found a number
of companion galaxies which, although probably not directly interacting, are
certainly close enough to be, or to have been, in some kind of gravitational
partnership with Mrk 409. These include PGC 028169 with vsys = 1557 km s−1

and at a distance of less than 250 kpc, UGC 5287 (vsys = 1470 km s−1; 250 <
d < 300 kpc), and UGC 5282 (vsys = 1470 km s−1; 300 < d < 350 kpc). All these
galaxies have similar magnitudes to Mrk 409, which has a vsys of 1527 km s−1.
So there are clearly companion galaxies around which may have caused non-
axisymmetry in the potential, possibly as in NGC 278. Unfortunately, H i data
are not available in this case, but we speculate that these might well show
disturbed kinematics and morphology in the outer regions.

8. Nuclear rings and nuclear activity

Although nuclear rings and especially nuclear activity have as separate topics
received considerable attention in the literature, their possible interrelation has
not been much studied. Many nuclear rings, of course, are anecdotally known to
occur in galaxies which also host a nuclear starburst or a prominent AGN (often
of Seyfert or LINER type, given the typical parameters of the host galaxies
involved), and some famous examples include NGC 1068 and NGC 4303.

In a recent paper, we explored the correlations between nuclear activity (both
of the non-stellar and starburst variety) and the occurrence of nuclear rings
in a sample of 57 nearby spiral galaxies (Knapen 2004). Using information
on the activity from the NASA/IPAC Extragalactic Database (NED) and ring
parameters from our own Hα imaging survey (Knapen et al. 2004b), we found
not only that nuclear rings significantly more often than not occur in galaxies
which also host nuclear activity (only two of the 12 nuclear rings occur in a galaxy
which is neither a starburst nor an AGN host; 30 of the 57 sample galaxies would
fall into this category), but also that the circumnuclear Hα emission morphology
of the AGN and starbursts is significantly more often in the form of a ring than
in non-AGN, non-starburst galaxies (38% of AGN, 33% of starbursts, 11% of
non-AGN, and 7% of non-AGN non-starburst galaxies have circumnuclear rings
in our sample of galaxies).

Although the number of galaxies in this initial study is rather small for de-
tailed statistical analyses, we did find this most interesting correlation between
the occurrence of nuclear rings and that of nuclear activity. Our initial inter-
pretation of this effect is that both nuclear rings, as traced by the massive star
formation within them, and starbursts and AGN (of the Seyfert or LINER va-
riety) trace very recent gas inflow. Although it is not clear a priori why the
kpc-scale fueling of nuclear rings and the pc-scale fueling of activity might be so
closely related, nuclear rings do seem to show a potential for being very inter-
esting and direct tracers of AGN fueling. These findings may also be related to
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the reported higher incidence of rings (inner and outer, as based on RC3 clas-
sifications) among Seyfert and LINER hosts than among normal or starburst
galaxies (Hunt & Malkan 1999). All these aspects of rings and nuclear activity
need further scrutiny.

9. Concluding remarks

There is significant evidence that bars can drive gaseous material to the central
regions of a galaxy (Sect. 2), but it is hard to pin down the evidence that this
gas leads directly to AGN or even starburst activity. There are indications
that starbursts are provoked by bars or interactions, though most probably not
in general, but only in special cases (Sect. 3, 5). For Seyfert galaxies, there
is very little evidence indeed that this kind of AGN preferentially occurs in
host galaxies which are either barred (Sect. 4) or interacting (Sect. 6). These
rather disappointing observational results, however, do not imply that bars and
interactions can be declared altogether innocent of being involved with nuclear
activity.

The kind of deviations from axisymmetry in the gravitational potential of the
host galaxy set up by bars and interactions has, theoretically and numerically,
long since been linked to nuclear activity (e.g., Shlosman et al. 1989, 1990; see
also review by Shlosman 2003). Shlosman et al. postulated that the presence
of such non-axisymmetry would be a necessary, but not sufficient condition for
the onset of nuclear activity, and that an additional factor or factors, such as
the availability of gas at the relevant (small) scales, would likely play a role.

Observationally, we now know that bars can lead to central gas concentration,
thus assuring that a viable gas reservoir is present within the central kiloparsec.
Either many (or most, or possibly even all) galaxies then become a starburst or
Seyfert-type AGN at some stage, but for a short time (and possibly eradicating
any links we may wish to find with the host’s properties; Beckman 2001), or some
mechanism, as yet unidentified observationally, turns on the activity in specific
galaxies. This mechanism may well include gravitational torques due to a non-
axisymmetric matter distribution, for instance due to nuclear bars (e.g., Laine
et al. 2002), which can dump fuel very close to the nucleus indeed (Shlosman et
al. 1989). The timescales of such nuclear inflow are unknown, but may be very
short.

Nuclear bars are, unfortunately, rather hard to study observationally. Mor-
phological studies based upon, e.g., HST NIR imaging are hampered by the
effects of dust extinction and star formation (Laine et al. 2002). The morphol-
ogy of dust lanes in the central kpc has been connected to attempts to identify
nuclear bars (Regan & Mulchaey 1999; Martini et al. 2001), but nuclear bars,
unlike large bars, cannot be expected to lead to a well-defined morphology of
offset dust lanes (Shlosman & Heller 2002; Maciejewski et al. 2002). A pos-
sible way forward here is the use of integral field spectroscopy (e.g., Bacon et
al. 2001), which, if used in conjunction with adaptive optics techniques, gives
simultaneous high-resolution mapping of the distributions of stellar populations
and dust, as well as of the gas and stellar kinematics. In combination with
detailed numerical modeling, this could lead to the detection of the dynamical
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effects of a nuclear bar on gas flows which may be directly related to the fueling
process of starbursts and/or AGN.

As indicated by the many, often contradictory, studies referenced in this pa-
per, there is, however, also still a dire need for continued study of the detailed
properties of large and well-defined samples of AGN and starburst host galaxies,
as well as of carefully matched control samples of non-active galaxies. Tanta-
lising new results, briefly described in Sect. 7 and 8, indicate that nuclear rings
ought to be included in such investigations. The current or future availability
of datasets of unprecedented scope and size (e.g., the 2MASS or Sloan surveys)
must be exploited to identify and analyse any relationships between nuclear ac-
tivity and the properties of their host galaxies, which are no doubt more subtle
than often suggested in the past.
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