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Process simulation for waste management
PTUCKER, BA, PhD, MlnstP, CPhys and KA LEWIS, BSc
Warren Spring Laboratory, Stevenage, UK

SYNOPSIS Acritical assessment of available options for waste separation, recycling and energy recovery is an
essential strategic step in formulating an economic and technically viable waste management policy TTie
underpinning data for each assessment includes the provision ofcharacterisations ofthe waste and quantification
of its response to separation (either centrally or at source). These data are however difficult and expensive to
obtain (at least conventionally through survey and practical work). They can alternatively be derived to the
necessary resolution but very much more cost-effectively, using predictive modelling methods, (i) Specific waste
characterisation data can be predicted from alternative data sets, once these are formulated as functions of
measurable objective criteria, (ii) Generic separation models based on measured performance data can be
developed to provide the required catalogue of separation responses, for the whole spectrum of separation
regimes. This paper describes the integrated role of 'characterisation models' and 'process* models This is
presented through astepwise approach outlining the technology that has been developed and the technology that
still needs to be developed to complete the overall system.
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process feed mass flow rate *
index variables for size classes, i*<:i
index variable for physical
property classes l,2...n
index variable for process output
stream

process product mass flow rate
breakage function
identity matrix
constant in breakage function
device operating variables
set of model parameters
selection functions

transfer coefficient

size class intervals

1 INTRODUCTION

The development of processes for the recovery of
materials and energy from waste involves significant
amounts of practical testwork to establish feasibilities,
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to provide assurances that performance targets will be
met and to optimise performance. Such testwork has
often been neglected due to thehigh cost involved and
has led to cases where full scale plant failed to meet
expectations orspecification. Further, the full environ
mental impact of the developed process has often
proved difficult to predict.

A robust simulation model for waste treatment can
aid the planning, design and operation of waste
processing operations by providing a substantial part
of the underpinning and necessary information,
significantly reducing testwork requirements. The
model can allow the conceptual design of plant, high
light uncertainties and sensitivities in the process
flowline or flowsheet, provide comparison of process
options and help trace pollutant pathways. It can also
enable plant sizing, quantification of the effects of
operational factors such as source separation, feed
variability and equipment set-up and can further
allow optimisation ofthe process against any objective
criterion (such as maximising energy recovery). More
generally, the modelling approach will help to reduce
development risk.

Simulation models are now well proven in the
chemical, paper and minerals industries but have, as
yet, had little impact inthewaste processing, although
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some pioneering work has been carried out, mainly in
the United States.

An important precursor to process simulation isthe
establishment of the composition ofthe process feed,
or proposed feeds to the process, at the required level
of detail. This can become expensive in terms of the
analyses needed. It may also be impossible to achieve
Iogistically orwith adequate representivity or in time.
A means of estimating the necessary data
independently, perhaps by utilising other data sources,
then becomes essential. This estimation facility is
currently being developed under the National
Domestic Waste Analysis Programme. The
complementarity of the national waste statistics and
the process simulation method will provide an
integrated tool which has many applications in waste
and energy management. This integrated concept is
shown schematically in figure 1. The concept is
developed in this paper by stepping progressively
through the technology involved.

The categories have been selected based on the
experience and practicalities of sorting to provide
generation rates for all the major recyclable
components within the waste. The analysis itself is
undertaken by hand-sorting a sample of thewaste and
screening each component by size. Practical
considerations and problems ofsample representivity
constrain the size ofsample that must be analysed. In
normal circumstances, a full refuse disposal vehicle
load of approximately 5 tonnes is treated. A 5%
relative error on the analyses of most of the major
components can usually be achieved, with this size of
sample.

Chemical analysis of the whole sample, or of the
sub-fractions, provides further information and detail
on the composition of the waste. Determinations of
the moisture content, calorific value, the contained
volatile matter and fixed carbon ash levels provide the
essential information on the 'energy value of the
waste'. Analyses for heavy metals and for other key
elemental components provide information on the
potential toxicity of the waste. Further analyses for
other toxins such as PCBs and dioxins are added if
required.

Characterisation of waste to this level of detail is
the minimum requirement for process simulation. It
also defines the requirement for collecting the UK
national statistics on the waste composition arising
from households.

2 WASTE CHARACTERISATION

A basis for domestic (dustbin) waste characterisation
is provided by analysis of the waste by material
component and size distribution. In the UK, six size
fractions are generally used for this categorisation:
+ 160 mm., -160+80 mm., -80+40 mm., -40+20
mm., -20+10 mm. and -10 mm. Eleven main
material categories (table 1)are usedbut when a more
detailed analysis is required, these fractions are
further divided into thirty three sub-categories.

Table 1 Material categories of domestic
refuse i

Categories

1 Paper & card
2 Plastic film

3 Dense plastic
4 Textiles

5 Miscellaneous combustibles
6 Miscellaneous non-combustibles
7 Glass

8 Putrescibles
9 Ferrous Metal

10 Non-ferrous Metal
11 -10 mm. fines
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3 THE NATIONAL WASTE ANALYSIS
DATABASE

The National Domestic Waste Analysis Programme
(1) was set up by the UK Department of the
Environment as a means of improving the UK's waste
arising statistics, validating these data and developing
a method of monitoring trends in waste arisings on a
continuous basis. In the programme, a rationale was
developed which will allow the correlation ofdomestic
waste generation rates and waste composition (as
defined above) with source details. These source
details are currently based primarily on socio
economic information. The basis of this rationale will
be expanded below. The Programme seeks tobuild up
the base UK waste generation statistics through full
characterisation of some20 keyselected wastestreams
each year over the Programme's duration. The data
will provide a centralised, national reference facility,
developed and held as a computer database at Warren
Spring Laboratory.

ii

V

c

a

ft

1c

d(

3.

a

ar

re,

pu

w<

pu

Fo

20
th<

A(

pn



3.1 Source characterisation

The National Waste Analysis Database uses the
ACORN classification system to provide the primary
basis for source categorisation. Developed byCACI,
ACORN (A Classification of Residential
Neighbourhoods) is a geodemographic classification
system which allows census data to be classified into
varying socio-economic types, according to thesortof
residential area people live in.

An underlying assumption, of the Programme, is
that people who live in similar neighbourhoods have
similar purchasing and lifestyle habits and
consequently will generate similar wastes. For
example, low income households are low waste
generators mainly because they purchase less and so
mere is little packaging etc. to dispose of. High
income households are better placed to purchase
luxury goods such as pre-packaged food stuffs, wine
and magazines, which generate large quantities of
waste high in paper and glass content. Although
household socio-economic profile is not the only
determining factor in wastegeneration, it hasprovided
a credibleand defendable startingpoint for the study.
Other contributory factors affectingwastecomposition
will be more fully detailed as the study progresses.
These factors will include seasonal and regional
differences, collection methods and the use of coal
fires etc.

The waste arising and composition data, collected
in the study, has been organised within the National
Waste Analysis Database according to ACORN
category(table 2), with each data set relatingsolelyto
a single ACORN source group. Each data set is
further tagged with its date of collection, collection
locality and collection method to allow for future
developments.

3.2 Statistical models of waste composition

On the above rationale, the waste composition and
arisings for any area (eg. enumeration district, cityor
region) can be estimated, to a first approximation,
purely from the ACORN profile of that area. The
waste composition will be compounded from the basic
pure ACORN building blocks, stored in the database.
For example, given an ACORN profile of 30% B,
20% D, 40% F and 10% J, the waste composition for
that area is estimated by combining data from pure
ACORN groups B, D, F, J in the same percentage
proportions.

As more data is accumulated on measured waste

Table 2 The ACORN classification system

ACORN Housing Type

A Agricultural villages and farms
B Modern family housing, young families
C Older housing, intermediate status
D Older terraced housing
E Quality council estates, higher incomes
F Council estates, older people
G Council estates, inner cities, low income
H Mixed inner metropolitan areas
I High status non-family housing
J Affluent suburban housing
K Better-off retirement areas

compositions from a wider range of UK sources, the
relative influences of all the contributory factors
affecting waste generation will become better
quantified. This will enable the creation of new
statistical models and corrections to account, for
example, for seasonal variations in weight arisings
(eg. at holiday resorts), seasonal variations in waste
compositions (eg. garden refuse content), regional
differences (if any) between towns having similar
ACORN profiles, and changes in consumer habit if
the collection method is changed.

Although at an early stage of the overall
programme, the base statistics and their manipulation
through the simple models described above have
already started to give assistance to Local Authorities:
to more closely define waste arisings, to develop
waste disposal and recycling plans and to improve
contractual arrangements for waste management
services. The evaluations of these options are still
carried out off-line. The next, and important, step is
to use the power of computer models and process
simulation techniques to assist in the evaluation of,
and in the optimisation of waste management
strategies to meet set objectives.

4 PROCESS SIMULATION: MASS BALANCE
PROCESS MODELS

Once the feedstock to any waste management process
has been characterised (by direct measurement or
through estimations according to the schema presented
above) simulation techniques can then be applied to
predict how this feedstock will actually respond to the
process. Process, in this context, is defined in its
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broadest sense and may be anything from a simple
selective collection (source segregation scheme) to a
fully mechanised central waste sorting plant. The
methodology for the simulation remains the same
throughout.

The technical operation of each unit process,
within the overall treatment, can be described
mathematically in terms of a (mass balance) process
model. Two main classes of model can be defined:
(i) a separation model, where waste is separated into
two or more discrete streams according to physical
characteristics (eg. by particle size, density or
magnetic susceptibility) and (ii) a transformation
model where the waste undergoes physical or
chemical change (eg. size reduction, pelletising,
incineration etc).

Mass balance models for common mechanised

sortingdevices have been reported in the literature for
more than a decade. These published models, which
often have their origins in mineral processing
technology, range from being purely theoretical to
being purely empirical in nature. There is, however,
little published data on just how well these models
actually fit experimental observations. Some
evaluation of the quality of the models has recently
been undertaken by Warren Spring Laboratory, using
both pilot scale data and data collected from
commercial operations for reference. Although the
results from the study can not be published for
commercial reasons, the main conclusion can be
disclosed: 'most models, as they stand, do not
provide an adequate description of the process but
they can be made to do so simply through empirical
tuning.' This finding closely parallels the experiences
of the mineral processing industry, where, arguably,
the application of the simulation method has reached
a more advanced stage and has several documented
commercial applications (eg. 2,3). The
'phenomenological' modelling method that has been
successfully applied to mineral processing plant, is
outlined below. Reference is made to waste treatment

applications.

4.1 Separation models

In sorting operations (eg. trammelling, magnetic
separation, air classification etc.), the particle size
and/or other physical characteristics of the particle
will be important in determining that particle's
response to sorting. The additional physical
characteristics will, to a first approximation be
implicit properties of the material type itself and can
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be regarded as constant within any material type.
Paper and card, for example, have relatively low
specific gravities whereas ferrous metal has a high
specific gravity, the settling rates of plastic film are
slow due to particleshape effects, ferrous metals have
high magnetic susceptibilities etc. The relative
importance of each of these physical characteristics to
the separation is a function of the separating device
used. For each separating device, separation
performance can be described in terms of the
fractionation of each size/ material class, from the
process feed <j) to each device output (p).
Mathematically this can be expressed as:

Ajk ~~ft) • ^ijk (1)

where the transfer coefficient, T, is a function of the
material category, the particle size and of how the
separating device is operated. For each device, the
following set of relationships can be formulated to
describe the function T.

T9t=fa.(!JJ3...,OV'lt9P) (2)

P = fh.(0VV) (3)

The main model relationship (equation 2) comprises
one or more equations formulated in terms of
continuous functions of each size, i, and of each
physical propertyjB. Each material class is assigned a
discrete value for each property variable, j. The main
model relationship also takes into account any
operatingdependencies (OV) which can be quantified
analytically. The effect of many operating variables,
however, are very difficult to delineate and can
depend, for example, on the exact fine-scale make-up
of the waste. It would prove impossible to quantify
these dependencies to high precision, although the
underlying trends can usually be identified with
reasonable clarity. These trend equations can be
expressed as an auxiliary model relationship (equation
3). The link between the main and auxiliary model
equations is a set of adjustable model parameters, P.

The parameter set P provides the essential means
for empirically tuning the model to match observation.
Establishing the parameter set P provides the device
model calibration. Calibration can be effected

mathematically by regressing the model equations onto
measured data sets, where available, to provide the
closest (least squares) fit. Reference parameter sets
can then be stored in a reference library to be drawn
on when measured data is not available.



Once the calibration is established, equations 2 and
3 can be applied in a predictive sense, to estimate
separation performance under different operating
regimes. This is important, when it comes to
optimising the process in order to meet specific
processing objectives. This aspect will be developed
further in section 6.

4.2 Size reduction models

Size reduction models (eg. for knife mills, hammer
mills etc.), are based, in the first instance, on the
breakage of homogeneous material. The models treat
the size reduction process either as a single event or
as a series ofbreakage events. In each breakage event,
a fraction ofthe material is regarded as being selected
for breakage and then broken into a distribution of
smaller particles; the rest of the material remaining
unbroken. The mathematical formulation of this
process is usually expressed in a matrix form:

p = B.S/+ (I-S)./ (4)

Many functions have been proposed to fix the
individual values in the selection for breakage matrix
S and in the breakage matrix B. An example of the
type of function which is now being successfully
applied to refuse size reduction is illustrated below.
The quoted example refers to a function originally
proposed some forty five years ago by Epstein (4).

&.=
, \ Aj.Aj.+1 /

a/2 (5)

The adjustable parameters in the equation are St (the
value of the selection function for the top size class)
and the index, a. These parameters will take different
values for each material category and, like the
separation model parameters, must be empirically
determined.

Comminution of composite materials often leads to
total or partial liberation of individual material
components. Liberation modelling, which has received
much attention in mineral processing, has proved very
difficult to model accurately. A simple approach,
which appears to work reasonably, was developed at
Warren Spring Laboratory (5) tor gravity
concentration circuits. It seems reasonable that similar
models could be developed for operations in waste
processing, although these models would probably
need to be material specific (eg. targeted to a battery
breaking plant, or to scrap wire recovery and so on).

4.3 Waste collection models

Mass balance models of waste collection schemes will

provide a link, where necessary, between the waste
arisings data and the waste processing models. The
waste collection models will take exactly the same
format as the mechanised sorting models and, as such
can be fully integrated with them in the process
simulator. The model functions are still adequately
described by equations 1 to 3 above, with T now
representing the diversion rate of a particular waste
component to the collection scheme. Contamination of
the collectibles by other material (eg. tin-plate in an
aluminium can bank) is represented by non-zero T
values for the contaminants. The operating variables,
rather than being machine settings, will relate more to
the geodemographic factors associated with the
catchment area.

Prototype (probability) models can be built from
analysis of the monitored performance data of the
various collection schemes already in operation.

It must be borne in mind, when applying collection
models, that the input (waste generation) data might
itself be a function of the collection scheme.
Corrections for this must be applied to the raw data
rather than to the model. The modelling of these
corrections has already been discussed in section 2
above.

5 PROCESS SIMULATION: OTHER MODELS

Chemical analysis data can be overlaid onto the mass
balance models to enable predictions of the chemical
composition, or energyvalue, of each separated waste
component. Much of the chemical information that is
needed will be available from the National Waste
Analysis Database, though not always at the level of
detail required for the simulation (ie. as separate
analyses for each individual size/ material category).
Full analyses, where available, will however provide
base data relating to the typical chemical partitions
within the waste. It may then be possible to apply
these data more generally and to upgrade partial
analyses through the establishment of suitable scaling
factors.

In the simulation of sorting processes, a good first
approximation towards solving the chemical balance
is the assumption that the chemical composition of
each size/ material fraction ofthe sorted product is the
same as that of the equivalent fraction in the process
feed. This implies that each sub-fraction is fairly
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homogeneous in content and that separation is not
biased significantly by material variations within that
fraction. The accuracy of the chemical simulation will
thus improve when a finer division of material
categories is used (ie. the categories become more
homogeneous). In this respect a 33 category
representation should furnish more accurate
composition predictions than would be achieved by
using a coarser resolution of 11 categories. This
method of prediction would, however, be totally
inappropriate for some specialised sorting processes
(eg. cadmium partitioning in the selective collection of
Ni-Cad batteries), and an alternative approach would
need to be found in these instances.

There are also many difficulties in predicting
chemical partitioning in size reduction processes. As
with the mass balance models, the inherent problems
are linked to the possible heterogeneity of the
comminuted fragments. This is .clearly an area for
further focused fundamental research.

Energy models can also be built for each of the
unit processes. In the simulator these energies are
cumulated to provide the total power consumption
data. Energy models and raw consumption data are
available from the published literature and from
equipment manufacturers. It must be borne in mind
here, that in assessing total energy consumption,
material transport requirements should also be
included within the overall process. This may
necessitate the construction of additional sub-models,
eg. for conveyor belts.

Economic models may also be applied. These
models essentially cumulate capital, installation,
finance, labour and maintenance costs of process
operations or refer to the revenue and disposal costs
of the processed products.

6 PROCESS SIMULATION

Process simulation is the computer representation of
what happens, or might happen, in a real process. In
the current context, process simulation provides a
description of waste treatment operations involving
one or more coupled unit treatment processes (or
process flowsheet). The flowsheet comprises a
network, or line, of nodes with connecting flow
streams. Each node denotes a unit process,
represented within the simulator by a mass-balance
process model. The mathematical solution of the
flowsheet adopts techniques originally developed in
the chemical engineering industry. A review of these
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techniques is given by Westerberg et al. (6). Solution
of the flowsheet involves partitioning the circuit into
its constituent loops and iteratively solving each loop
and each of the models contained therein. As the
waste management models are generally non-linear in
format, and cannot easily be linearised, a serial
solution method is preferred.

The Warren Spring Laboratory simulator GSIM
(5), developed originally for mineral processing
applications, contains two important additional
features: (i) flow constraints can be set and (ii) the
circuit operation can be tuned to optimise overall
process performance against a given objective
criterion.

A large number of variables can affect circuit
performance. To establish the optimum combination
of these variables requires the application of a
numerical search algorithm. In GSIM, a pattern search
method has been chosen (4), although a derivative-
based method could equally suffice. The objective
criterion against which the process performance is
judged will vary according to application. In waste
processing, this objective function might be to
maximise energy recovery, to maximise recovery of
a recyclable component or of the total recyclables and
so on. Constraints might also be set, for example a
cost ceiling, or an emission limit or a 25% recycling
target. Care must be exercised when setting these
objectives depending on the quality of the models
themselves. Optimising on technical objectives should
generally produce more robust results than would
optimising against economic objectives.

7 STATE OF THE ART

The concept presented in this paper is ambitious. A
prototype (validated) integrated system is, however,
not that far from realisation. Much of the modelling
and database technology has already been developed,
some of it as much as forty five years ago. Also,
enough data now exists, both with regard to waste
characterisation and with regard to process or
collection performances, to make application
industrially viable. The innovation lies in assembling
the technologies into, an integrated whole and
validating the methods against documented
measurement.

There are still, of course, many gaps in the data
and in our overall understanding. As knowledge
grows, these gaps can be progressively filled. For
example, civic amenity waste and commercial and
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industrial wastes are not categorised to the same
extent as domestic wastes. A General Industrial Waste
AnalysisProgramme, sponsored by DTI, is, however,
now under way and should furnish some of this
information. Further fundamental work needs to be
carried out on model development, to introduce a
wider range of models and to refine the current
models. Particular attention needs to be given to
broadening the validity of chemical partition models.
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Fig 1 Schematic representation of waste management model
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