
THE TEACHING OF RELATIONAL ON-LINE ANALYTICAL

PROCESSING (ROLAP) IN ADVANCED DATABASE COURSES

Bernadette Marie Byrne
School of Computer Science

University of Hertfordshire
Hatfield

 UK
 b.m.byrne@herts.ac.uk

Iftikhar Ansari
School of Computer Science

University of Hertfordshire
Hatfield

 UK

Ifitkharansari2003@hotmail.com

ABSTRACT
One of the problems with teaching ROLAP and Data Warehousing in database systems courses is the
difficulty of providing practical exposure of the topics to the students. The approach taken in this work is
intended to help students apply the knowledge learnt through lectures into a practical environment. This will
provide the basis for analysis and evaluation at the level of critical analysis that would be expected on an
advanced level course and at the highest level of learning taxonomies. In our work we have a large dataset
reversed engineered from some Oracle based sample data. This dataset has a fact table with 918843 records
and dimension tables. We have also produced a smaller sample dataset for simplification and understanding of
complex queries involving Slicing, Dicing, Pivoting, Rollup and Cube operations. In our examples ROLAP
operations and their alternative SQL approaches are performed to provide a comparison of the multi-
dimensional results.

Keywords

Rollup, Cube, SQL, ROLAP, Data Warehousing.

1. INTRODUCTION
Data Warehousing and Relational On-Line Analytical Processing are now often taught in university database
courses and included in most textbooks on Database Systems, in references [1],[2],[3] for example. The Data
Warehousing Star Schema design is usually taught and this is followed with the differences between OLTP
systems and OLAP systems. The students can then have practical experience using the SQL extensions for
OLAP by using queries with Rollup, Cube etc. One of the problems with providing hands-on experience for the
students is providing a large enough data set in which to run queries, as obviously in a real Data Warehousing
environment we are dealing very large amounts of historical data. Also, if you want the students to consider
performance aspects and query optimisation aspects of the use of the ROLAP extensions you need to have
large datasets.

In our work we have reverse engineered a large Oracle sample dataset and adapted it for use in the teaching
of ROLAP. We have also produced our own smaller sample dataset for simplification and understanding of
complex queries involving Slicing, Dicing, Pivoting, Rollup and Cube operations. In our examples in this paper
we use the smaller dataset as it is easier to demonstrate results. ROLAP operations and their alternative SQL
approaches are performed to provide multi-dimensional results and thus a means of comparison between an
analytical query run with standard SQL and then again with OLAP extensions to SQL. Our sample dataset is
based on a Star Schema design.

2. PERFORMING ROLAP OPERATIONS
We have produced a small sales data table with 36 rows for illustration purposes. The table contains four
columns, Scale (size), Item, Colour and Quantity. The table overleaf is the result of query one:-

Select * from the sales_data table;

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

© 2012 Higher Education Academy

The table contains 36 rows with four attributes, or in dimensional modelling terminology, it has 3 dimension
attributes; Scale, Item and Colour and a numeric measure attribute, Quantity. The measure attribute which is
quantity, shows the quantities produced against each item of different sizes and colours.

SCALE ITEM COLOUR QUANTITY
SMALL PANTS BLACK 1

SMALL PANTS BLUE 0

SMALL PANTS WHITE 2

SMALL SHIRTS BLACK 3

SMALL SHIRTS BLUE 2

SMALL SHIRTS WHITE 8

SMALL DRESS BLACK 5

SMALL DRESS BLUE 3

SMALL DRESS WHITE 1

SMALL LEATHER-COATS BLACK 2

SMALL LEATHER-COATS BLUE 10

SMALL LEATHER-COATS WHITE 3

MEDIUM PANTS BLACK 12

MEDIUM PANTS BLUE 1

MEDIUM PANTS WHITE 2

MEDIUM SHIRTS BLACK 6

MEDIUM SHIRTS BLUE 3

MEDIUM SHIRTS WHITE 10

MEDIUM DRESS BLACK 7

MEDIUM DRESS BLUE 4

MEDIUM DRESS WHITE 2

MEDIUM LEATHER-COATS BLACK 4

MEDIUM LEATHER-COATS BLUE 12

MEDIUM LEATHER-COATS WHITE 5

LARGE PANTS BLACK 7

LARGE PANTS BLUE 1

LARGE PANTS WHITE 1

LARGE SHIRTS BLACK 5

LARGE SHIRTS BLUE 2

LARGE SHIRTS WHITE 10

LARGE DRESS BLACK 8

LARGE DRESS BLUE 3

LARGE DRESS WHITE 2

LARGE LEATHER-COATS BLACK 2

LARGE LEATHER-COATS BLUE 13

LARGE LEATHER-COATS WHITE 2

Table 1 36 rows selected.

We begin with the Group By clause provided in Standard SQL.

SQL Statement 2

SELECT scale, item, colour, sum(quantity)
 FROM sales_data
 GROUP BY scale, item, colour

This query will produce information similar to Table 1. (Obviously space does not allow us to produce all of the
results for the following queries.) We can also use the following Group By statements:

SQL Statement 3

SELECT scale, item, to_char(null),SUM(quantity)
FROM sales_data
GROUP BY (scale, item)

Query 3 would show the grouped data, based on the scale and item dimension attributes and answers the
query of how many items there are in small, medium and large scale. It shows the quantity of items present in
different sizes but does not show sub-totals, such as how many small items are there irrespective of their
colour or scale. Nor does it show how many shirts are there irrespective of sizes and colours. The next query
shows how many total items are there in small, medium and large sizes of any colour and of any item.

SQL Statement 4

SELECT scale, to_char(null), to_char(null), sum(quantity)
FROM sales_data
GROUP BY scale

SCALE T T SUM(QUANTITY)

LARGE

56

MEDIUM

68

SMALL

40

Table-4: Grouping on sample data.

SQL Statement 5

SELECT SUM(quantity)FROM sales_data
GROUP BY ()

This query shows summary information and shows the total number of items of any colour and any size
produced by the company.

3. THE PROBLEM WITH GROUP BY
The problem with the SQL standard GROUP BY clause is that neither of the above statements provides
multidimensional views to decision makers that display sub-totals and totals across various dimensions, nor
does it traverse different levels of hierarchies, nor does it perform cross-tabulation. In order to produce
multidimensional results to provide sub-totals and totals at various different dimensions, at various different
level of hierarchies, these statements can be are combined together through the use of the UNION clause of
standard SQL to generate the desired results.

A second problem relates to the roll-up operation using totals and sub-totals for drill-down reports. A Report
commonly aggregates data at a coarse level, and then at successively finer levels. Moving across the
dimensional hierarchies from finer level to coarser level hierarchies is called rolling-up the data whereas
drilling-down refers to moving from a higher level hierarchy to a lower level. A 3-dimensional roll-up,
aggregating over N dimensions, requires N unions of statements showing different results from different
dimensions when using standard SQL without OLAP extensions.

4. UNION OF MULTIPLE SELECTS
The results of Sql statements 2, 3, 4, 5 can be combined together to provide the same result as a Rollup.
(N+1) standard sql statements are required to generate the rollup results where n represents the number of
dimensions. Such that if a 3 dimensional result with sub-totals and a grand total is needed, 3+1 = 4 sql
statements and UNIONs are needed to generate the rollup or drill-down result sets. In the following case, 3D
rollup is carried out. Each statement’s returned result is UNION or summed-up towards the single output
resultant report. (i.e. all these statements are executed individually and their results are combined using
UNION returning a total of 36+12+3+1 = 52 rows). As this can be seen from the result of statement 6 it returns
the combined result of statements 2, 3, 4 and 5 ran separately and individually. Writing such multidimensional
queries is a tedious task and increases the complexity with the increase in the number of dimensions. It does

provide a better result to decision makers in decision support systems as it does provide a multidimensional
view however it still lacks information such as:

What is the total number of items of any colour and any size i.e. total number of shirts, pants etc?

How many black coloured items are there regardless of item and their sizes?

Such information of sub-totals at every level of granularity at different dimensions is lacking in the ROLLUP
operation of OLAP. The SQL statement 6 below will provide the same result as the ROLLUP function which is
shown in SQL statement 7.

SQL Statement 6

SELECT scale, item, colour, SUM(quantity) FROM sales_data
GROUP BY scale, item, colour
UNION
SELECT scale, item, to_char(null),SUM(quantity) FROM sales_data
GROUP BY (scale, item)
UNION
SELECT scale, to_char(null),to_char(null),SUM(quantity)
FROM sales_data
GROUP BY (scale)
UNION
SELECT to_char(null),to_char(null),to_char(null),SUM(quantity)
FROM sales_data
GROUP BY ()

SCALE ITEM COLOUR SUM(QUANTITY)

LARGE DRESS BLACK 8

LARGE DRESS BLUE 3

LARGE DRESS WHITE 2

LARGE DRESS 13

LARGE LEATHER-COATS BLACK 2

LARGE LEATHER-COATS BLUE 13

LARGE LEATHER-COATS WHITE 2

LARGE LEATHER-COATS 17

LARGE PANTS BLACK 7

LARGE PANTS BLUE 1

LARGE PANTS WHITE 1

LARGE PANTS 9

LARGE SHIRTS BLACK 5

LARGE SHIRTS BLUE 2

LARGE SHIRTS WHITE 10

LARGE SHIRTS 17

LARGE 56

MEDIUM DRESS BLACK 7

MEDIUM DRESS BLUE 4

MEDIUM DRESS WHITE 2

MEDIUM DRESS 13

MEDIUM LEATHER-COATS BLACK 4

MEDIUM LEATHER-COATS BLUE 12

MEDIUM LEATHER-COATS WHITE 5

MEDIUM LEATHER-COATS 21

MEDIUM PANTS BLACK 12

MEDIUM PANTS BLUE 1

MEDIUM PANTS WHITE 2

MEDIUM PANTS 15

MEDIUM SHIRTS BLACK 6

MEDIUM SHIRTS BLUE 3

MEDIUM SHIRTS WHITE 10

MEDIUM SHIRTS 19

MEDIUM 68

SMALL DRESS BLACK 5

SMALL DRESS BLUE 3

SCALE ITEM COLOUR SUM(QUANTITY)

SMALL DRESS WHITE 1

SMALL DRESS 9

SMALL LEATHER-COATS BLACK 2

SMALL LEATHER-COATS BLUE 10

SMALL LEATHER-COATS WHITE 3

SMALL LEATHER-COATS 15

SMALL PANTS BLACK 1

SMALL PANTS BLUE 0

SMALL PANTS WHITE 2

SMALL PANTS 3

SMALL SHIRTS BLACK 3

SMALL SHIRTS BLUE 2

SCALE ITEM COLOUR SUM(QUANTITY)

SMALL SHIRTS WHITE 8

SMALL SHIRTS 13

SMALL 40

 164

Table-6: Combination of multiple groupings for Rollup – 52 rows selected

SQL Statement 7:

SELECT scale, item, colour, sum(quantity)
 FROM sales_data
 GROUP BY rollup(scale, item, colour)
 ORDER BY 1

Statement 7 produces the same results as shown in table-6. However Rollup still does not provide the
complete set of information that could be helpful for decision makers as discussed earlier. The CUBE function
is used to provide more multidimensional results.

5. THE CUBE OPERATION
The following SQL statement will produce the same results as a CUBE operation.

SQL Statement 8:

SELECT scale, item, colour, SUM(quantity) FROM sales_data
GROUP BY (scale, item, colour)
UNION
SELECT scale, item, to_char(null), SUM(quantity)
FROM sales_data
GROUP BY (scale, item)
UNION
SELECT scale, to_char(null), colour, SUM(quantity)
FROM sales_data
GROUP BY (scale, colour)
UNION
SELECT to_char(null), item, colour, SUM(quantity)
FROM sales_data
GROUP BY (item, colour)
UNION
SELECT scale, to_char(null), to_char(null), SUM(quantity)
FROM sales_data
GROUP BY (scale)
UNION
SELECT to_char(null), item, to_char(null), SUM(quantity)
FROM sales_data
GROUP BY (item)
UNION
SELECT to_char(null), to_char(null), colour, SUM(quantity)
FROM sales_data
GROUP BY (colour)
UNION
SELECT to_char(null), to_char(null), to_char(null), SUM(quantity)
FROM sales_data
GROUP BY ()

Statement 8 will display information that the rollup operation in SQL statements 6 and 7 did in addition to
answering questions such as How many coloured items (White, Black, Blue) are there regardless of
Item type and their Scales? Plus the sub-total of quantities of each item.

Statement 8 can be replaced with the use of a single CUBE operator as shown below in statement 9 to
produce the same results as queries 2-8.

SELECT scale, item, colour, sum(quantity)
 FROM sales_data
 GROUP BY cube(scale, item, colour)
 ORDER BY 1

Space does not permit us to produce the full set of results in which there are now 80 rows. Below are the final
14 rows of this query. The null values which occur in the table are very obvious in this case.

 LEATHER-COATS WHITE 10

 LEATHER-COATS 53

 PANTS BLACK 20

 PANTS BLUE 2

 PANTS WHITE 5

 PANTS 27

 SHIRTS BLACK 14

 SHIRTS BLUE 7

 SHIRTS WHITE 28

 SHIRTS 49

 BLACK 62

 BLUE 54

 WHITE 48

 164

Table-7 (in part): Combining multiple groupings for a CUBE operation

We can also provide examples of ROLAP Sliding (Horizontal and Vertical) and vertical slicing of a CUBE
result. Slicing refers to using a filter (WHERE or HAVING Clause) to make a slice of a CUBE on a selected
dimension and Dicing is to view the slice in multidimensional manner.

6. PERFORMANCE
Below are examples of the types of activity which can be carried out and examined as regards query execution
and performance. The first diagram illustrates the query strategy for a union of multiple selects. The second
diagram shows the result of a cube operation.

Figure 1 – Union of multiple statements for CUBE

Figure 2 – Execution Steps for single CUBE operation

7. CONCLUSION
So far we have used the smaller dataset with students and queries in standard SQL and SQL with OLAP
extensions. The majority of the students were surprised at all the null values in the results and commented on
this or asked for clarification. They could not understand why the null values were there and also had difficulty
interpreting the results. In other words they were not expecting a relational database to produce something
which looked like a spreadsheet report but without the helpful headings. For such tabular results, C.J. Date [4]
says that “this result might perhaps be thought of as a table (an SQL Style table, at any rate), but it is hardly a
relation”.

At a higher level of critical analysis by using results of the practical exercises we can encourage the students
to reflect on C J Date’s criticisms of, firstly, the Star Schema Design and secondly the ROLAP operators.[4] In
this way we are also raising the learning to the higher levels of learning taxonomies for the more advanced
groups. We have also found that this can also lead on to some interesting Undergraduate and Post-Graduate
topics for project work.

In future sessions we intend to use the larger dataset to explore areas of physical database design, such as
query processing, performance of ROLAP operators, parallelising and fragmentation. For example, evaluating
the performance of ROLAP by identifying how to reduce full tables scans on the same table/relations and
viewing the results multi-dimensionally from different angles and different perspectives.

8. REFERENCES
[1] R Ramakrishnan, J Gehrke, Database Management Systems Third Edition, International Edition Chapter
25. McGraw Hill 2003

[2] R Ramakrishnan, J Gehrke, Fundamentals of Database Systems Fourth Edition, Chapter 28 Pearson,
2003.

[3] “T Connolly, C Begg, Database Systems – A Practical Approach to Design, Implementation, and
Management Fifth Edition, 2010.

[4] C. J. Date An Introduction to Database Systems Addison Wesley, Eighth Edition, Chapter 22 International
Edition 2004

