
Achieving Corresponding Effects on Multiple Robotic
Platforms: Imitating in Context Using Different Effect

Metrics

Aris Alissandrakis, Chrystopher L. Nehaniv, Kerstin Dautenhahn, and Joe Saunders?

?Adaptive Systems Research Group
School of Computer Science, University of Hertfordshire

College Lane, Hatfield, Hertfordshire, AL10 9AB, UK
a.alissandrakis@herts.ac.uk

Abstract

One of the fundamental problems in imitation is the correspondence problem, how to map between
the actions, states and effects of the model and imitator agents, when the embodiment of the agents
is dissimilar. In our approach, the matching is according to different metrics and granularity. This
paper presents JABBERWOCKY, a system that uses captured data from a human demonstrator to gen-
erate appropriate action commands, addressing the correspondence problem in imitation. Towards a
characterization of the space of effect metrics, we are exploring absolute/relative angle and displace-
ment aspects and focus on the overall arrangement and trajectory of manipulated objects. Using as
an example a captured demonstration from a human, the system produces a correspondence solution
given a selection of effect metrics and starting from dissimilar initial object positions, producing ac-
tion commands that are then executed by two imitator target platforms (in simulation) to successfully
imitate.

1 Introduction

Imitation is a powerful learning tool that can be used
by robotic agents to socially learn new skills and
tasks. One of the fundamental problems in imitation
is the correspondence problem, how to map between
the actions, states and effects of the model and imi-
tator agents, matching according to different metrics
and granularity, when the embodiment of the agents
is dissimilar (Nehaniv and Dautenhahn (1998)). The
following statement of the correspondence problem
(Nehaniv and Dautenhahn (2000, 2001, 2002)) draws
attention to the fact that the model and imitator agents
may not necessary share the same morphology or
may not have the same affordances:

Given an observed behaviour of the model,
which from a given starting state leads the
model through a sequence (or hierarchy
[or program]) of sub-goals in states, action
and/or effects, one must find and execute a
sequence of actions using one’s own (possi-
bly dissimilar) embodiment, which from a
corresponding starting state, leads through
corresponding sub-goals - in corresponding

states, actions, and/or effects, while possi-
bly responding to corresponding events.

In this approach, a solution to the correspondence
problem can be used to generate a recipe (a loose
plan) through which an imitator can map sequences
of observed actions of the model agent to its own
repertoire of actions as constrained by its own em-
bodiment and by context (Nehaniv and Dautenhahn
(2000, 2001, 2002)). Qualitatively different kinds of
social learning result from matching different com-
binations of matching actions, states and effects at
different levels of granularity (Nehaniv (2003)). The
sub-goals define the granularity to match and vice
versa.

Artificial agents that have the ability to imitate may
use (perhaps more than one) metric to compare the
imitator agent’s own actions, states and effects with
the model’s actions, states and effects, in order to
evaluate the imitation attempts and discover corre-
sponding actions that they can perform to achieve
a similar behaviour. The choice of metrics used is
therefore very important as it will have an impact on
the quality and character of the imitation. Many inter-
esting and important aspects of the model behaviour
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Figure 1: The JABBERWOCKY system architecture. Using data captured from a human and given appropriate
metrics and sub-goal granularity, the multi-target system can produce action command sequences that when exe-
cuted by a software or hardware agent can achieve corresponding actions, states and/or effects. The corresponding
actions, states and effects as demonstrated by the imitator can also be captured and used as a demonstration for
another imitating agent. Differently embodied and constrained target systems in various contexts need to be sup-
ported.

need to be considered, as the metrics capture the no-
tion of the salient differences between performed and
desired actions and also the difference between at-
tained and desired states and effects (Nehaniv and
Dautenhahn (2001, 2002)). The choice of metric de-
termines, in part, what will be imitated, whereas solv-
ing the correspondence problem concerns how to im-
itate (Dautenhahn and Nehaniv (2002)). In general,
aspects of action, state and effect as well as the level
of granularity (what to imitate) do all play roles in
the choice of metric for solving the problem of how
to imitate (Nehaniv and Dautenhahn (2001); Alissan-
drakis et al. (2002); Billard et al. (2004)). On-going
research is thus addressing the complementary prob-
lem of how to extract sub-goals and derive suitable
metrics automatically from observation (Nehaniv and
Dautenhahn (2001); Nehaniv (2003); Billard et al.
(2004); Calinon and Billard (2004)).

In our setting, it will be desirable to have differ-
ent kinds of agents in the learning process, i.e. hu-
mans and robots interacting socially. Focusing on
object manipulation and arrangement demonstrated
by a human, this paper presents a system that uses
different metrics and granularity to produce action
command sequences that when executed by an imi-
tating agent can achieve corresponding effects (ma-
nipulandum absolute/relative position, displacement,
rotation and orientation). Depending on the partic-
ular metrics and granularity used, the corresponding
effects will differ (shown in an example), making the
appropriate choice of metrics and granularity depend
on the task and context.

The work presented in this paper is motivated by
the EU Integrated project COGNIRON (“The Cogni-
tive Robot Companion”) and addresses the problem

of how to teach a robot new complex tasks through
human demonstration. The learning algorithms to be
developed should be general and address fundamen-
tal questions of imitation learning, applied to manip-
ulation tasks. For example a robotic companion at
home could acquire knowledge of e.g. laying out a
table or drawing on a canvas from observing its hu-
man owner. Acquiring such skills socially requires
matching different aspects of the effects that the hu-
man actions have on objects in the environment. Also
the context within which a skill is replicated might re-
quire its generalization to various settings and to other
types and shapes of objects.

2 The JABBERWOCKY System

This section presents the JABBERWOCKY system de-
veloped for the COGNIRON project, that uses cap-
tured data from a human demonstrator to generate ap-
propriate action commands (see Figure 1), addressing
the correspondence problem in imitation. The action
commands can be targeted for various software and
hardware platforms. These actions will allow the im-
itating agent to achieve corresponding actions, states
and effects, depending on the given (relevant to the
demonstrated task and context) metrics and granular-
ity (provided by a what to imitate and sub-goal ex-
traction module), embodiment restrictions and con-
straints (imposed by the targeted imitator platform),
and possibly different initial state of the objects in the
environment.

The design of the JABBERWOCKY system is in-
formed by the ALICE (Action Learning via Imitating
Corresponding Embodiments), a generic framework
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Figure 2: Captured demonstration (left), and the
extracted critical points (right). The colors (red,
green and blue) indicate the three different objects.
The dotted outlines indicate the initial position and
orientation of the objects, while the solid thick outline
the final position. For the demonstration data, the in-
termediate object’s position and orientation is shown
with solid thin outlines, linearly scaled (at intervals
equal to one tenth of the overall trajectory only, for
clarity) to indicate the direction of the movement. For
the critical points, each object’s position and orienta-
tion is shown at every critical point, again linearly
scaled.

for solving the correspondence problem (see Alissan-
drakis et al. (2002, 2004)). The ALICE framework
builds up a library of actions from the repertoire of
an imitator agent that can be executed to achieve cor-
responding actions, states and effects to those of a
model agent (according to given metrics and granu-
larity). The ALICE framework provides a functional
architecture that informs the design of robotic sys-
tems that can learn socially from a human demon-
strator.

The system bears some similarity to the one pre-
sented in (Kuniyoshi et al. (1994)), but with the main
differences that it can use any given metric and gran-
ularity and that it is designed to be able to generate
action commands targeted for a variety of platforms,
both in software and hardware to match different be-
haviour aspects and achieve various types of social
learning.

2.1 Demonstrator (Model Agent)

The system uses captured data from a human demon-
strator. The demonstrated behaviour is captured using
motion sensors (Polhemus LIBERTYTM motion cap-
ture system). By attaching the motion sensors on the
arms, hands and torso of the human, as well as on the
objects that the demonstrator is manipulating, we can
obtain the actions (e.g. hand movements, gestures),
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Figure 3: An example of dissimilar initial object
positions. The dotted outlines indicate the initial po-
sition and orientation of the objects in the demon-
strator’s workspace (from the demonstration shown
in Figure 2, left) and the solid outlines the (dissim-
ilar) initial configuration of the objects in the imita-
tor’s workspace. The blue object has the same initial
position.

states (e.g. arm and body postures) and effects (e.g.
positioning, displacement, rotation of objects in the
workspace) of the demonstrator.

In example shown in Figure 2, the demonstrated
task consists of three block objects (colored red,
green and blue) arranged in a 2D workspace sur-
face by a human who acts as the demonstrator. The
workspace is a square grid 50 cm by 50 cm, and the
sizes of the objects are: 10 cm by 8 cm (red) and 8
cm by 5 cm (green and blue). As the manipulations
occur only in a 2D plane, only the XZ dimensions are
given here (and shown in the figures) omitting the Y
dimension (height).

The current work focuses on the effects aspect of
the demonstrated behaviour, so only the position and
orientation of the objects as they are manipulated by
the demonstrator are captured, omitting the demon-
strator’s actions (arm movements) and states (body
posture). The choice of initially concentrating on ef-
fects for this work is guided by the assumption that
the manipulation of objects will be the most impor-
tant aspect of the demonstrated behaviours that users
would like a robotic companion to imitate in a home
environment (e.g. fetching objects or arranging them
in particular ways).

In ongoing work, three (or more) additional sen-
sors will be used, one attached to the human torso and
one at each hand/arm, providing additional informa-
tion about the demonstrator’s states and actions. Tak-
ing into account the states aspect would help the JAB-
BERWOCKY system solve possible ambiguities when
producing the corresponding actions for imitation.
For example, a humanoid robot imitator, consider-
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ing the states of the demonstrator would obtain pos-
sibly useful information e.g. which hand to use (left
or right) to reach an object from its current configura-
tion, based on the choice of hand used by the demon-
strator.

2.2 What to Imitate Module

The character of the imitation will depend on the
metrics and granularity (Alissandrakis et al. (2002,
2004); Alissandrakis (2003)). The what to imitate
module will use the captured demonstration data to
extract appropriate sub-goals (granularity) and also
discover what metrics must be used to capture the ap-
propriate aspects of the particular demonstration.

In the current implementation of the JABBER-
WOCKY system the metrics and the sub-goal granu-
larity are given, instead of being discovered by the
imitator agents based on the observed demonstrated
task. The what to imitate module provides a choice
of metrics and granularity based on the task and con-
text of the demonstration, although there might not
always be a unique, “correct”, choice. Here, the var-
ious possible metrics and granularity have been se-
lected in advance. It can be shown that the character
of the resulting matched effects can be very different,
depending on the choice of metrics and granularity
used.

The sub-goal granularity is given by finding the
critical points in the trajectories of the manipulated
objects. A critical point occurs when the direction
of the captured trajectory and/or the orientation of an
object changes by more than a certain threshold.

Several different effect metrics have been defined
(see section 2.3) that are used in the experiment pre-
sented in this paper. In the future the work will be
extended to consider also the state and action aspects
of a demonstration.

2.3 Metrics

Towards a characterization of the space of effect met-
rics, we are exploring absolute/relative angle and dis-
placement aspects and focus on the overall arrange-
ment and trajectory of manipulated objects. Look-
ing at how objects can be manipulated (in a non-
destructive and combining way), there are two differ-
ent perspectives: how the object was displaced and
how it was rotated. The displacement can be either
relative or absolute related to the final position in the
workspace, or relative to the other objects within the
workspace. The rotation can be also be relative or ab-
solute related to the final orientation of the object. To

fully describe the manipulation of an object, both dis-
placement and angular effect aspects must be consid-
ered. We consider these aspects in a two-dimensional
workspace, such as a table surface.

If the initial configuration of the (same or corre-
sponding) objects is the ‘same’ for both the model
and the imitator agents, then there is no observable
distinction between using either the absolute and rel-
ative displacement/rotation or the relative position (if
the objects are manipulated in the same order). But if
the agents are active in a different workspace starting
from a different initial configuration of objects, or the
timing and the order of the manipulations is not the
same, it will be impossible to satisfy simultaneously
all the aspects. Therefore choosing to satisfy one par-
ticular aspect will result in a qualitatively different
effect than if another one was chosen, but still satisfy
those similarity quantitative criteria.

2.3.1 Displacement Effect Metrics

The model is moving an object from position XM to
position X ′

M on the workspace, achieving an object
displacement ∆XM = X ′

M − XM , where XM =
[

xM

yM

]

, X ′

M =

[

x′

M

y′

M

]

, and ∆XM = X ′

M −

XM =

[

x′

M − xM

y′

M − yM

]

. The imitator should move

the same (or corresponding) object from position XI

to position X ′

I on the workspace, with a displacement
∆XI = X ′

I −XI , such that a displacement metric is
minimised (see Fig. 4, left).
Relative Displacement Effect Metric is minimized

if ∆XI = ∆XM and X ′

I = XI +∆XM =

[

xI

yI

]

+
[

x′

M − xM

y′

M − yM

]

=

[

xI + x′

M − xM

yI + y′

M − yM

]

.

Absolute Displacement Effect Metric is minimized
if X ′

I = X ′

M and ∆XI = X ′

M − XI =
[

x′

M − xI

y′

M − yI

]

.

Relative Position Effect Metric is minimized if the
object is moved to a similar position relative to other
objects in the workspace. The relative position ef-
fect metric is defined here for three objects in the
workspace.

The center of the manipulated object is defined as

A =

[

xA

yA

]

, and the centers of the other two ob-

jects as B =

[

xB

yB

]

and C =

[

xC

yC

]

. The imita-

tor must move the same (or corresponding) object to
form a triangle ABC so that it is the “same” as the
triangle formed by the model, i.e. the angles CÂB,
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Figure 4: A selection of displacement (left) and angular metrics (right). To evaluate the similarity between
object displacements, the relative displacement, absolute position and relative position effect metrics can be used.
To evaluate the similarity between object rotations, the rotation and orientation effect metrics can be used. The
second row shows the way the corresponding object (in a different workspace) needs to be moved or rotated by
an imitator to match the corresponding effects. The grey triangles are superimposed to show that for the relative
position effect metric, the relative final positions of the objects are the same.

AB̂C and BĈA are equal. The triangle sides ĀB,
B̄C and C̄A can be equal only if the objects start
from the same initial configuration for both agents
and are manipulated in the same order, so only the
equality of the angles can be used in general1.

The relative position effect metric is minimized if

X ′

I = A and ∆XI = A − XI =

[

xA − xI

yA − yI

]

.

2.3.2 Angular Effect Metrics

The model is rotating an object from orientation θM

to orientation θ′M on the workspace, with a rotation
∆θM = θ′M − θM . The imitator should rotate the
same (or corresponding) object from orientation θI

to orientation θ′I on the workspace, with a rotation
∆θI = θ′I − θI , such that a displacement metric is
minimised (see Fig. 4, right).
Rotation Effect Metric is minimized if ∆θI = ∆θM

and θ′I = θI + ∆θM .
Orientation Effect Metric is minimized if θ′I = θ′M
and ∆θI = θ′M − θI .

2.3.3 Other Effect Metrics

Depending on the initial configuration of the corre-
sponding objects in the imitator’s workspace, or the
particular task that the imitator would like to achieve,
it might be desirable to use also other metrics that take
into account mirror symmetry, both positional and an-
gular, to features of the environment or other agents.
For example:

Mirror Displacement Effect Metric is minimized if

∆XI = −∆XM and X ′

I = XI−∆XM =

[

xI

yI

]

−
[

x′

M − xM

y′

M − yM

]

=

[

xI − x′

M + xM

yI − y′

M + yM

]

.

Mirror Rotation Effect Metric is minimized if
∆θI = −∆θM and θ′I = θI − ∆θM .
Parallel Orientation Effect Metric is minimized if
θ′I = ϑ and ∆θI = ϑ − θI , where ϑ is the orienta-
tion of a feature in the environment (e.g. one edge
of the table). If the features in the workspace of the
imitator are the same as the model’s, then ϑ ≡ θ′M
and this metric becomes equivalent to the orientation
effect metric.

2.4 Combinations of Effect Metrics
To evaluate both the movement and the orientation
of an object, both metric types must be used. To
match the observed effect, the (corresponding) object
needs to be moved on the workspace according to the
displacement given by the displacement effect met-
ric and rotated according to the angular effect metric
used.

A weighted combination of more than one dis-
placement metric can also be used, by averaging the
displacement vectors that minimise each metric. For

example, if ∆Xi =

[

∆xi

∆yi

]

is the displacement

that minimises a displacement effect metric i, and
ω1, ... , ωn are the weights of the n displacement
effect metrics to be combined, the displacement that
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Figure 5: The three robots as objects imitator plat-
form.

minimizes this composite metric is then given by

∆X =

[

|∆X| × cos(φ)
|∆X| × sin(φ)

]

, where |∆X| = ω1 ×
√

∆x1
2 + ∆y1

2 + ... + ωn ×
√

∆xn
2 + ∆yn

2 and
φ = ω1 × tan−1

(

∆y1

∆x1

)

+ ... + ωn × tan−1

(

∆yn

∆xn

)

.

2.5 Imitator

The system is addressing the correspondence prob-
lem for dissimilarly embodied imitators, so the how
to imitate module must produce action commands
that can be used by multiple different target platforms
as imitator agents, both in simulation (software) and
hardware (robots).

Each particular target platform will pose different
embodiment restrictions and constraints to the ac-
tions, states and effects it can achieve, and eventually
to the quality and character of the imitation.

The demonstrator and the imitator might share the
same workspace or they might operate in different
ones. Even in the same workspace, unless the objects
and agents positions are arranged back into the same
initial configuration before the imitative behaviour,
the context will be different and the imitator therefore
has to take that into consideration when imitating.

Two targeted platforms are used in the current re-
alization of the system, both implemented using the
WebotsTM robot simulation software.

2.5.1 Three Robots As Objects

In the first imitator platform, the imitator’s workspace
contains no objects. Instead, the imitator is ‘embod-
ied’ as three mobile robots, each corresponding to
one of the objects manipulated by the demonstrator
(see Figure 5). Each robot is square 4cm by 4cm (so
in this case, besides dissimilar demonstrator-imitator

Figure 6: The manipulator and three objects imita-
tor platform.

embodiments, there is also dissimilar object corre-
spondence, mapping the objects to mobile robots).
The robots can follow the individual trajectories of
the objects as arranged by the demonstrator, but can-
not match the orientation (while moving) because
they are differential wheel robots. Therefore the an-
gular effect aspect will be ignored when they imitate,
matching only the displacement effect aspect.

In the simulation, as the robots move around the
workspace, they leave behind a colored trail (of same
color as themselves and their corresponding objects)
to help visualize the imitated trajectories.

2.5.2 Manipulator and Three Objects

In the second targeted imitator platform, the imita-
tor’s workspace contains three objects, of the same
size and color as the corresponding objects in the
demonstrator’s workspace (in this case). The imitator
is embodied as a single arm manipulator, positioned
above the workspace and able to pick-up, move and
rotate the three objects (see Figure 6). This embod-
iment, although dissimilar to the one of the human
demonstrator, is nevertheless able to match both dis-
placement and angular effect aspects of the demon-
stration.

As the objects are moved (and rotated) around the
workspace by the manipulator in the simulation, they
leave behind a colored trail (of same color as them-
selves) to help visualize the imitated trajectories. The
manipulator is shown as a vertical yellow cylinder
mounted at the end of a bar positioned above the
workspace.

2.6 How to Imitate Module

The how to imitate module uses the captured data
from the demonstration, the metrics and the sub-goal
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granularity discovered by the what to imitate mod-
ule to produce a sequence of action commands for an
agent to execute and imitate. These action commands
are made target specific by taking into account the
particular embodiment, affordances and restrictions
of the target imitator agent, and also contextual infor-
mation (including the initial state) for both the agent
and the environment. In the current system imple-
mentation both the metrics and the sub-goal granu-
larity (critical points) are given.

Concentrating on the effects aspect of the
demonstrated behaviour to be imitated only, an
embodiment-independent solution to the correspon-
dence problem can be found, taking into account the
effect metrics and the sub-goal granularity. For exam-
ple consider a human opening a cupboard, removing
an object, closing the cupboard and placing the object
on a table. This sequence of events can be achieved
by agents of varying embodiments, ignoring state as-
pects like e.g. which hand was used to open the cup-
board or how the object was held (or grasped) or even
action aspects e.g. the way the human walked (gait)
across the room. Any agent that can open the cup-
board, transport the object and place it on the table
can potentially imitate the effects of this particular
demonstration. But for this solution to be useful to
an imitating robotic companion, it must be converted
to action commands that take into account its embod-
iment and also the context (e.g. the cupboard is al-
ready open, the object is located on a different shelf
in the cupboard, the table is in another room), so that
the imitator uses its motors and actuators to achieve
the desired effects of the task.

The how to imitate module considers the given ef-
fect metrics and sub-goal granularity, together with
the (possible dissimilar) initial configuration of the
objects in the imitator’s workspace (also given) to
produce initially an embodiment-independent corre-
spondence solution (since only the effects behaviour
aspects are considered).

To discover this correspondence, the JABBER-
WOCKY system currently uses a simple simulation
of the 2D workspace that can handle various ‘block’
objects moving and rotating around, accounting for
object collisions and workspace confines. This sim-
ulation can replay the captured model data at a given
granularity, displaying the trajectory and orienta-
tion of the objects as they move and rotate on the
workspace, from the initial configuration to the final
captured frame. In parallel, starting from a different
initial configuration of the same (or different) cor-
responding objects on the imitator’s workspace, the
simulation produces a sequence of changes to dis-

placement and rotation for each object, that minimize
the given effect metrics.

For example if the effect metric used is the rela-
tive displacement effect metric, and the demonstrator
moved an object 10 cm to the right, then in order to
minimize the metric, the corresponding object in the
imitator’s workspace must be also moved 10 cm to the
right. But some displacements or rotations, although
minimizing the metric, might be invalid because the
path or final position is occupied by other objects or
agents, e.g. if the corresponding object is less than
10 cm away from the right edge of the workspace
(because the initial position was different), the entire
move cannot be performed. The how to imitate mod-
ule will then have to discover an alternative way in
the given context (including other agents, static or dy-
namic obstacles) to achieve the same effects accord-
ing to the metric. In this case it might be acceptable
to move the object up to the right edge and then con-
tinue the rest of the imitative behaviour. In another
context, it might be preferable not to move the ob-
ject at all. This contextual information should be ide-
ally provided by the what to imitate module, based
on observations of the currently demonstrated task
and not pre-defined. In the current JABBERWOCKY
implementation, the system attempts to move (or ro-
tate) the objects until they reach an obstacle (based on
simple 2D object collision detection), and then stop,
instead of considering another path to reach the po-
sition (and/or achieve the orientation) that minimizes
(if possible) the metric used.

To imitate and achieve similar effects as the model,
an imitator agent will have to adopt this (largely)
embodiment-independent correspondence solution to
move and rotate the objects, using a generated se-
quence of action command instructions. These ac-
tion commands will be targeted to multiple imitator
platforms, taking into account the embodiment con-
straints and restrictions of imitator embodiments.

Figure 7 (left) shows an example correspondence
converted to action commands for the three robots
as objects target platform. Each robot is given a se-
quence of way-points, depending on its correspond-
ing object. For each of these way-points, the robot
must use its differential wheel embodiment to move
in a straight line up to that position in the workspace,
and after reaching the target position, move on to the
next. Figure 7 (right) shows the resulting captured
imitative behaviour.

Figure 8 (left) shows an example correspondence
converted to action commands for the manipulator
and three objects target platform. The action se-
quence consists of a continuous (closed) path, with
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Figure 7: An example of corresponding action
commands for the three robots as objects imita-
tor platform (left) and the resulting imitative be-
haviour (right). Using the critical points shown in
Figure 2, starting from the initial positions shown in
Figure 3, and minimizing the absolute displacement
(red object), relative displacement (green) and rela-
tive position (blue) effect metrics, each of the robots
must move along the way-points shown (left). The
initial (dotted outline) and final (solid outline) posi-
tions are shown as circles, indicating that the orienta-
tion of the robots is not considered (the actual robots
are square, but of equivalent size). Each way-point is
indicated as a dot. The robots then perform an imi-
tative behaviour (in Webots) and the captured results
from the simulation are shown in the right plot.

way-points above the current (and future) positions
of the objects. When the manipulator is above an ob-
ject that must be moved, the manipulator will pick it
up, then move (together with the object) to the tar-
get position and place the object down (while also,
if required, rotating it), before continuing to the next
object. To match the effects at each critical point, the
order the manipulator approaches the objects is the
same (red object, green, blue). If no displacement or
rotation is required for an object during each of these
turns, that object is ignored, simplifying the manipu-
lator’s path. Figure 8 (right) shows the resulting cap-
tured imitative behaviour.

3 Conclusions and Discussion.
The experiments shown in Figures 7 and 8 illus-
trate the diverse character of different successful im-
itative behaviours optimized to match particular as-
pects of the effects of demonstrated human manip-
ulation of objects. Aspects captured by metrics for
absolute displacement, relative displacement, rela-
tive position, rotation and orientation could all suc-
cessfully be matched. The results illustrate the multi-
platform targetability of the JABBERWOCKY system
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Figure 8: An example of corresponding action
commands for the manipulator and three objects
imitator platform (left) and the resulting imitative
behaviour (right). Using the critical points shown in
Figure 2, starting from the initial positions shown in
Figure 3, and minimizing the absolute displacement
(red object), relative displacement (green) and rel-
ative position (blue) effect metrics, the manipulator
must follow the continuous closed path (starting and
ending at the left top corner of the workspace) shown
as a dotted line (left). Since the human demonstrator
did not rotate the objects, no angular effect metrics
were used. The line in drawn using a gray to black
color gradient to indicate the direction of the path.
When reaching an object, the orientation that the ob-
ject must be rotated to is shown by a small arrow. The
manipulator then performs an imitative behaviour (in
Webots) and the captured results from the simulation
are shown in the right plot.

to map human demonstrated manipulations to match-
ing robotics manipulations (in simulation), generaliz-
ing to different initial object configurations.

From the examples shown it becomes apparent that
the relative/absolute position and rotation of objects
are important aspects of a demonstrated task to match
(or not) according to effect metrics, depending on the
state of the objects in the environment and the con-
text. The exploratory characterization of the space
of effect metrics reveals that matching of “results”
is a more sophisticated issue that generally acknowl-
edged. This wide range of possible effect metrics il-
lustrates that even the effect aspect of the correspon-
dence problem for human-robot interaction by itself
is already quite complex. Goal extraction in terms
of effect metrics and granularity may have many dif-
ferent solutions that might not all be appropriate ac-
cording to the desired results or context. Depend-
ing on the constraints of the imitator embodiment, a
‘many-to-one’ or ‘one-to-many’ correspondence be-
tween imitator and model sub-goals may be required
for specific parts of the task. It is also possible that an

17



imitating agent has to switch metrics and granularity
during the imitation attempt. This has not been em-
phasized at all in the literature so far (but see Alissan-
drakis et al. (2004)). This creates particular problems
and challenges for sub-goal and metric extraction
systems that can be used in programming robots by
demonstration. The use of repeated demonstrations
(Billard et al. (2004)), saliency detection (Scassellati
(1999)) and goal-marking via deixis and non-verbal
signaling by humans (Butterworth (2003); Call and
Carpenter (2002); Bekkering and Prinz (2002)) may
help contribute solutions to these problems. Other re-
search questions yet to be addressed include the im-
portance of order effects in manipulation and estab-
lishing object-object correspondence.
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Notes
1 Given CÂBM , AB̂CM , BĈAM and BCI , we can find the other two sides ACI =

√

(1−cos2(AB̂CM ))×BC
2

I

(1−cos2(CÂBM ))
and ABI =

√

(1−cos2(BĈAM ))×BC
2

I

(1−cos2(CÂBM ))
, to satisfy the equalities CÂBI = CÂBM , AB̂CI = AB̂CM and BĈAI = BĈAM .

Assuming that side BCI lies on the (0, +∞) x-axis with points B =

[

0
0

]

and C =

[

|BCI |
0

]

corresponding to BI and CI , we can

then find a point A =





BC
2

I
−AC

2

I
+AB

2

I

2×BCI
√

(−BCI+ACI−ABI )×(−BCI−ACI+ABI )×(−BCI+ACI+ABI )×(BCI+ACI+ABI )

2×BCI



 corresponding to

AI , such that the equalities AB = ABI , BC = BCI and CA = CAI are satisfied.

To find AI we need to rotate and translate A in respect to the actual co-ordinates of BI =

[

xB

yB

]

and CI =

[

xC

yC

]

in the imitator’s

workspace: A =

[

xA

yA

]

=

[

cosφ sinφ

−sinφ cosφ

]

×A +

[

xB

yB

]

, where φ = tan−1
(

yC−yB

xC−xB

)

.
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