
UNIVERSITY OF HERTFORDSHIRE

An Efficient Execution Model for

Reactive Stream Programs

by

Vu Thien Nga Nguyen

A thesis submitted to the University of Hertfordshire

in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

25th September 2014

http://www.herts.ac.uk

Abstract

Stream programming is a paradigm where a program is structured by a set of compu-

tational nodes connected by streams. Focusing on data moving between computational

nodes via streams, this programming model fits well for applications that process long

sequences of data. We call such applications reactive stream programs (RSPs) to distin-

guish them from stream programs with rather small and finite input data.

In stream programming, concurrency is expressed implicitly via communication streams.

This helps to reduce the complexity of parallel programming. For this reason, stream

programming has gained popularity as a programming model for parallel platforms.

However, it is also challenging to analyse and improve the performance without an under-

standing of the program’s internal behaviour. This thesis targets an efficient execution

model for deploying RSPs on parallel platforms. This execution model includes a mon-

itoring framework to understand the internal behaviour of RSPs, scheduling strategies

for RSPs on uniform shared-memory platforms; and mapping techniques for deploying

RSPs on heterogeneous distributed platforms. The foundation of the execution model is

based on a study of the performance of RSPs in terms of throughput and latency. This

study includes quantitative formulae for throughput and latency; and the identification

of factors that influence these performance metrics.

Based on the study of RSP performance, this thesis exploits characteristics of RSPs to

derive effective scheduling strategies on uniform shared-memory platforms. Aiming to

optimise both throughput and latency, these scheduling strategies are implemented in

two heuristic-based schedulers. Both of them are designed to be centralised to provide

load balancing for RSPs with dynamic behaviour as well as dynamic structures. The

first one uses the notion of positive and negative data demands on each stream to

determine the scheduling priorities. This scheduler is independent from the runtime

system. The second one requires the runtime system to provide the position information

for each computational node in the RSP; and uses that to decide the scheduling priorities.

Our experiments show that both schedulers provides similar performance while being

significantly better than a reference implementation without dynamic load balancing.

Also based on the study of RSP performance, we present in this thesis two new heuristic

partitioning algorithms which are used to map RSPs onto heterogeneous distributed plat-

forms. These are Kernighan-Lin Adaptation (KLA) and Congestion Avoidance (CA),

where the main objective is to optimise the throughput. This is a multi-parameter

optimisation problem where existing graph partitioning algorithms are not applicable.

Compared to the generic meta-heuristic Simulated Annealing algorithm, both proposed

algorithms achieve equally good or better results. KLA is faster for small benchmarks

while slower for large ones. In contrast, CA is always orders of magnitudes faster even

for very large benchmarks.

Acknowledgements

First of all, I would like to express my great gratitude to my father, who unfortunately

can not see this day. He once said to me “Con là hoài bão của ba” (Your success is my

dream) and I have carried that saying with me during my master and PhD studies. For

my weakest moments of being homesick, being scared in foreign countries, and feeling

despaired when facing technical problems, his encouragement has helped me to go over

them not pleasantly but strongly to reach this day.

I would like to express my deepest gratitude to my supervisors, Dr. Raimund Kirner and

Prof. Alex Sharafanko, for their time and support. I am very grateful for Dr. Raimund

Kirner for valuable and enjoyable discussions. His patience and insightful comments on

my research ideas had an important impact on this thesis. I have learnt from him not

only precious knowledge but also several useful skills, especially technical writing and

communication.

I would like to thank all my colleagues in the Compiler Technology and Computer

Architecture group, for all their technical support as well as many parties and fun times

together. I would particularly thank Frank Penczek and Michael Zolda for long technical

discussions and useful tips in writing and presentation.

Furthermore, I would like to thank all my family for their support and all my friends

for great time with lots of laugh. Finally, lots and lots of thanks to my husband, Daniel

Rolls, for his understanding, tolerance, encouragement and especially for proofreading

this thesis.

v

Contents

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Reactive Stream Programs . 2

1.2 Execution Model for Reactive Stream Programs 2

1.3 Evaluation of Reactive Stream Programs 3

1.4 Research Questions . 5

1.5 Contributions . 5

1.5.1 Publications . 6

1.6 Structure of the Thesis . 7

1.7 Chapter Summary . 8

2 Background 11

2.1 Data Flow Programming . 11

2.2 Stream Programming . 12

2.2.1 Stream . 12

2.2.2 Stream-Programming Model . 12

2.2.3 Properties of Stream Programs . 14

2.3 Interactive/Reactive Systems . 15

2.4 Context of this Thesis: Reactive Stream Programs 16

2.4.1 Data in Reactive Stream Programs 18

2.4.2 Execution Model of RSPs . 18

2.4.3 Message Derivation . 20

2.4.4 Message Completion . 21

2.5 Instantiation of the Execution Model for Reactive Stream Programs . . . 22

2.5.1 Stream programming with S-Net 22

2.5.2 S-Net Compiler and Runtime System 24

vii

Contents viii

2.5.3 LPEL — A User-mode Microkernel for the Streaming Language
S-Net . 26

2.5.4 S-Net on Distributed Systems . 27

2.6 Chapter Summary . 30

3 Related Work 33

3.1 Monitoring Parallel Programs . 33

3.2 Taxonomy of Scheduling Methods . 35

3.2.1 Offline Scheduling . 35

3.2.2 Online Scheduling . 36

3.2.2.1 Centralised Scheduling 36

3.2.2.2 Distributed Scheduling 36

3.2.2.3 Centralised Mediation . 37

3.3 Scheduling Reactive Stream Programs on Many-Core Systems 38

3.3.1 Static Scheduling . 38

3.3.2 Dynamic Scheduling . 41

3.4 Scheduling Stream Programs on Distributed Systems 43

3.5 Graph Partitioning . 45

3.6 Chapter Summary . 47

4 Use Cases 49

4.1 Data Encryption Standard - DES . 49

4.2 Ant Colony Optimization - ANT . 50

4.3 Ray Tracing - RT . 52

4.4 Fast Fourier Transform - FFT . 52

4.5 Color Histogram Calculation - HIST . 54

4.6 Image Filtering - IMF . 55

4.7 Object Detecting - OBD . 56

4.8 Moving Target Indicator - MTI . 57

4.9 Monte Carlo Option Price - MC . 58

5 Performance Analysis for Reactive Stream Programs 60

5.1 Performance Metrics . 60

5.1.1 Throughput . 60

5.1.2 Latency . 61

5.2 Performance with Different Arrival Rate 62

5.2.1 Theoretical Analysis . 62

5.2.2 Experimental Verification . 63

5.3 Quantitative Analysis of Performance . 67

5.3.1 Throughput Analysis . 68

5.3.1.1 Uniformed Shared Memory Platforms 68

5.3.1.2 Distributed Platforms . 69

5.3.2 Latency Analysis . 71

5.4 Chapter Summary . 72

6 Monitoring of Reactive Stream Programs 73

6.1 Conceptions of the Monitoring Framework 73

6.1.1 Monitoring the Runtime System 73

Contents ix

6.1.2 Monitoring the Execution Layer 74

6.2 Potential Benefits of the Monitoring Framework 75

6.2.1 Performance Metric Measurement 76

6.2.2 Extracting RSP Properties . 77

6.2.3 Automatic Load Balancing . 79

6.2.4 Bottleneck Detection . 80

6.3 Implementation of the Monitoring Framework in S-Net and LPEL 81

6.3.1 Instrumenting the S-Net runtime system 81

6.3.2 Instrumenting the LPEL Execution Layer 82

6.3.3 Operation Modes . 84

6.4 Evaluation of the Monitoring Framework 84

6.5 Chapter Summary . 87

7 Exploiting the Properties of RSPs for Efficiently Scheduling on Uni-
form Shared Memory Platforms 89

7.1 Guidelines For Scheduler Design . 89

7.1.1 Throughput Optimisation . 90

7.1.2 Latency Optimisation . 90

7.2 Heuristic Scheduling Strategies for Performance Optimisation on Sym-
metric Processors . 90

7.2.1 Space scheduler . 91

7.2.2 Time Scheduler . 91

7.2.2.1 Position-based Task Priority 92

7.2.2.2 Demand-based Task Priority 93

7.2.2.3 Scheduling Cycle . 94

7.2.3 Scheduling Design Comparison . 94

7.3 Implementation of the heuristic priority functions 95

7.3.1 Position-based Task Priority Function 97

7.3.2 Demand-based Priority Function 99

7.4 Evaluation: CS-dbp vs CS-pbp . 100

7.4.1 Conceptional Comparison . 100

7.4.2 Implementation Comparison . 101

7.4.3 Experimental Comparison . 102

7.4.3.1 Experiment Set Up . 102

7.4.3.2 Experiment Result . 105

7.5 Evaluation: CS-dbp vs Default LPEL Scheduler 105

7.5.1 Experimental Set Up . 105

7.5.2 Performance Comparison . 108

7.5.3 Scalability Comparison . 111

7.6 Evaluation: CS-dbp vs Centralised Scheduler with Random Priority . . . 111

7.7 Chapter Summary . 112

8 Mapping Reactive Stream Programs onto Distributed Systems 115

8.1 Mapping RSPs onto Distributed Platforms by Graph Partitioning 116

8.2 Usage of Graph Partitions to Optimise Throughput of RSPs 117

8.2.1 Problem Statement . 117

Contents x

8.2.2 Partitioning RSPs with Variable Node Computational Behaviour
and Dynamic Program Structures 119

8.3 New Graph Partition Algorithms to Optimise Throughput of RSPs 119

8.3.1 KL-Adapted Algorithm . 119

8.3.2 Congestion Avoidance Partitioning Algorithm 126

8.3.3 Local Optima in Heuristic Search 127

8.4 Evaluation of the Partitioning Algorithms 128

8.4.1 Experimental Setup . 128

8.4.2 Convergence Speed of KLA and CA 130

8.4.3 Comparison with Simulated Annealing 131

8.5 Chapter Summary . 135

9 An Efficient Execution Model for Reactive Stream Programs 137

9.1 Execution Model . 137

9.1.1 Overview . 137

9.1.2 Integration into S-Net and LPEL 139

9.2 Evaluation . 140

9.2.1 Experimental Set Up . 140

9.2.2 Performance on Distributed Platforms 141

9.2.3 Performance on shared memory platforms 145

9.3 Chapter Summary . 147

10 Conclusion and Outlook 149

10.1 Thesis Summary . 149

10.2 Outlook . 152

Bibliography 155

List of Figures

2.1 Abstract structure of interactive/reactive Systems 16

2.2 Example: program structure of an image filter application 17

2.3 An example of message derivation . 21

2.4 S-Net implementation of the image filter application 22

2.5 An overview of the S-Net execution model using LPEL 25

2.6 Runtime expansion of network combinators in S-Net 26

2.7 The runtime component network of the image filter application (with
three instances of box Filter) . 26

2.8 Execution model of distributed S-Net . 28

2.9 Example of an S-Net program being deployed on a distributed system . . 29

4.1 S-Net implementation of the DES encryption 50

4.2 S-Net implementation of the ant colony optimisation 51

4.3 S-Net implementation of the ray tracing application 52

4.4 S-Net implementation of the FFT algorithm 53

4.5 S-Net implementation of the application of histogram calculation 54

4.6 S-Net implementation of the image filter application 55

4.7 S-Net implementation of object detector application 56

4.8 S-Net implementation of the moving target indicator application 58

4.9 S-Net implementation of the Monte Carlo option price application 59

5.1 Theoretical variation of latency and throughput in different arrival rate
ranges . 62

5.2 Throughput within different ranges of arrival rate 64

5.3 Overall latency and queuing latency in the underuse and operational ranges 65

5.4 Overall latency of individual external input messages of DES on CS-dbp 66

6.1 Monitoring framework . 74

6.2 Latency of an individual task . 76

6.3 Deployment of automatic load balancing 80

6.4 The monitoring framework implementation in S-Net and LPEL 81

6.5 Node executions within a task execution 83

6.6 The overhead of the monitoring framework in time and space 86

7.1 Examples of RSP with multiple entry tasks and multiple exit tasks 92

7.2 Design of heuristic stream schedulers for performance optimisation 96

7.3 Runtime components with location vector of A ? {〈stop〉} 98

7.4 Runtime components with location vectors of the image filter application 98

xi

List of Figures xii

7.5 Throughput convergence of IMF on CS-dpb when increasing the number
of external input messages . 102

7.6 Normalised throughput and latency of CS-dbp and CS-pbp on various
applications . 106

7.7 Normalised peak throughput and processing latency (with λ = TPpeak)
of CS-dbp and DS on various applications 109

7.8 Processing latency comparison with different arrival rates 110

7.9 Performance of HIST using CS-dbp and CS-drp 112

8.1 Graph partitioning and mapping in two phases 116

8.2 Graph partitioning with integrated mapping 117

8.3 Flowchart of the KL-Adapted partitioning algorithm 121

8.4 Flowchart of the Congestion Avoidance partitioning algorithm 124

8.5 Comparison of KLA and CA in the average number of passes 130

8.6 Execution time ratio: etKLA/etCA . 131

8.7 Execution time ratio of 50-run CA and KLA to SA (et50×CA/etSA; et50×KLA/etSA)
. 133

8.8 Achieved quality throughput estimates of 50-run CA and KLA compared
to SA . 133

8.9 Convergence speed of SA, CA and KLA on MTI16 over time 134

9.1 Overview of the new execution model . 138

9.2 New execution model of S-Net using LPEL 139

9.3 Main S-Net structure of the MTI application 140

9.4 Throughput of the MTI application: actual value vs estimation of the CA
partitioner . 142

9.5 Throughput of the MTI application when LPEL conductor and workers
run on exclusive CPU cores . 143

9.6 Difference in task weight of MTI on 1-machine and 16-machine targets . . 144

9.7 Average latency of MTI on distributed platforms when LPEL conductors
and workers run on exclusive CPU cores 145

9.8 Performance of MTI on shared memory platform 146

List of Tables

2.1 Properties of stream programs . 14

2.2 Properties of RSPs supported in the dissertation 17

6.1 Monitoring information needed by different monitoring use cases 75

6.2 Application properties running on a 48-core machine 85

7.1 Values of a location vector element . 97

7.2 Priority functions of the middle tasks . 100

7.3 Set up for experiment CS-dbp vs CS-pbp: RSDstep, NoM , PDThroughput,
and PDLatency of all benchmarks in CS-dbp 103

7.4 Set up for experiment CS-dbp vs CS-pbp: RSDstep, NoM , PDThroughput,
and PDLatency of all benchmarks in CS-pbp 104

7.5 Set up for experiment DS vs CS-dbp: RSDstep, NoM , PDThroughput, and
PDLatency of all benchmarks in DS . 107

7.6 Set up for experiment DS vs CS-dbp: RSDstep, NoM , PDThroughput, and
PDLatency of all benchmarks in CS-dpb 108

8.1 Semantics of built-in functions used in KLA and CA algorithms 120

8.2 Number of vertices and edges of evaluation benchmarks 129

xiii

Abbreviations

CA Congestion Avoidance

CRI Common Runtime Interface

CTQ Central Task Queue

DF Data Fetcher

FIFO First In First Out

ID IDentifier

IM Input Manager

KL Kernighan-Lin

KPN Kahn Process Network

LPEL Light-weight Parallel Execution Layer

MDG Message Derivation Graph

MPI Message Passing Interface

OM Output Manager

PE Processing Element

RC Runtime Component

RSP Reactive Stream Program

RTS RunTime System

SISO Single Input Single Output

SDF Synchronous Data Flow

UID Universal IDentifier

xv

Chapter 1

Introduction

Physical barriers in making processors faster by increasing the clock frequency and the

need for energy-efficient computing have paved the way for many-core computing to

become mainstream. While parallel programming has a long tradition in the field of sci-

entific computing, it has now become an issue of general software development. Stream

programming model has become an active research topic, as it provides many practical

benefits for parallel programming. For example, it makes some forms of parallelism

explicit and the communication over streams facilitates implicit synchronisation.

However, while hiding the intricate issues of parallel programming from the program-

mer, stream programming makes it complicated to control the behaviour of programs.

The performance of stream programs depends highly on the underlying execution model.

Therefore, there is a demand for an efficient execution model that can boost the perfor-

mance of stream programs.

Although there are several research projects in this area, most of them focus on a

narrow class of stream programs where their behaviours are predictable. With this

thesis, we intend to contribute to the state of the art in a specific aspect of generic

stream programs that process virtually infinite sequences of data. We refer to such

stream programs as reactive stream programs (RSPs). We shall focus our efforts on

the study of RSP performance in terms of throughput and latency. This study is the

foundation to efficiently schedule RSPs on parallel platforms.

In this introductory chapter, we provide an overview of the context and motivation of

our research, and then give an outline of our contributions and the structure of this

thesis.

1

Chapter 1. Introduction 2

1.1 Reactive Stream Programs

In stream programming, programs are constructed by computational nodes connected

by communication channels. Following the data flow model, each computation node

can be executed as soon as data is available in its input streams. Streams are com-

munication channels to transfer sequences of data among computation nodes. As a

data-centric model, stream programming fits well for applications that process long or

infinite sequences of data, for example, video and digital signal processing applications.

Traditionally, a program is transformational in the sense that it accepts an input, per-

forms a transformation, returns an output and terminates. These systems usually do not

map well onto stream programs where the inputs are continuously coming from external

environments. Stream programs are usually built as reactive systems which interacts

continuously with their external environment.

To distinguish from those programs with inputs that are rather small and finite, we define

here Reactive Stream Programs as stream programs which continuously interact and

receive inputs from the environment. As this term is frequently used in the rest of this

thesis, it is abbreviated as RSP for convenience.

1.2 Execution Model for Reactive Stream Programs

With the current trend towards an increasing number of execution units running in

parallel, stream programming has gained more attention for bringing some practical

benefits in parallel programming. In particular, it provides explicit forms of parallelism

such as pipeline parallelism and data parallelism. It also facilitates implicit synchroni-

sation via stream communication. This helps to relieve the programmer from explicitly

managing concurrent communication and synchronisation at the same time. Because

of these advantages, several research projects have introduced stream programming

frameworks such as StreamIt [TKA02] which follows the principle of Synchronous Data

Flow [LM87a], SPADE [GAW+08], and S-Net [GSS08] to name a few.

However, implicit synchronisation has made it difficult to analyse the internal behaviour

of programs. With continuous sequences of input data, it becomes even more com-

plicated because of the overlap in processing different input data at the same time.

Without the knowledge of the internal behaviour, it is difficult to derive the perfor-

mance, and even more challenging to build an efficient execution model to obtain the

optimal performance for RSPs.

Chapter 1. Introduction 3

To obtain good performance for RSPs on parallel platforms, the above mentioned

projects have introduced execution models with different scheduling strategies. The

main trend is to fix the program’s behaviour, i.e. to make it predictable. This is the

case of the Synchronous Data Flow (SDF) model where the structure of an RSP is

static and the data rate on each stream is predefined [LM87a]. These properties make

it possible to construct the execution of an SDF program as an iteration of its periodic

schedule [LM87b]. The periodic schedule of an SDF program consists of a number of

executions for each computational node in the SDF program. The problem of schedul-

ing an SDF program now becomes the problem of scheduling its periodic schedule.

There have been several techniques to derive a static schedule of the periodic sched-

ule on different target platforms. Some examples includes declustering [SL93], heuristic

partitioning methods [GTK+02, GTA06], integer linear programming [KM08], machine

learning [WO10], approximation [FKBS11], and model checking [MG13].

While these above approaches limit the range of applications to those with static struc-

tures and static data rates on stream communications, some other approaches tar-

get more general applications by observing the behaviour during runtime. For exam-

ple, [ZLRA08] and [ME13] are centralised approaches that analyse the runtime behaviour

and make dynamic scheduling decisions based on that analysis. A few other approaches

like [CC09] combine static analysis based on the profiled behaviour and dynamic adap-

tation based on the observed behaviour at runtime. There are some other approaches

proposed for specific types of stream programs with their own behavioural properties.

These include COLA [KHP+09] for SPADE programs, and LPEL [Pro10] for S-Net

programs.

1.3 Evaluation of Reactive Stream Programs

Usually, the performance of a program is measured by metrics that directly interest the

end user of the program. In RSPs where long sequences of input data arrive continuously,

these metrics include throughput and latency. Beside direct metrics, RSPs are often

evaluated via indirect performance indicators.

All the approaches mentioned in the previous section aim to achieve the best perfor-

mance. However, most of them use indirect performance indicators rather than using

performance metrics directly. One of the most common indicators is load balancing.

Although it is beyond doubt that load balancing is useful for performance in parallel

programming, it is non-trivial to understand how it affects the direct performance of

RSPs. With a small finite amount of input data, the amount of computation load is

fixed. In this case, the load balancing principle, which is to keep all the resources busy all

Chapter 1. Introduction 4

the time, can guarantee the shortest execution time when the overhead is negligible. In

the case of RSPs where the sequence of input data is potentially infinite, that assurance

no longer holds. A bad scheduler could keep resources busy by taking in a large amount

of input data. Then instead of continuing to process those input data, the scheduler

could keep taking new input data. This bad design could either cause the system to fail

when the amount of input data exceeds the available memory, or lead to a very long

response time.

In an SDF program, an execution of its periodic schedule includes taking in a finite

amount of input data and processing all of them before a new execution is carried out

for new input data. Since the workload of a periodic schedule of an SDF program is

finite, load balancing can be used as a guideline to obtain the minimum execution time of

the periodic schedule. As the execution of an SDF program is a repetition of its periodic

schedule, the execution time of its periodic schedule is effectively an inversion of the

throughput. For this reason, most of the approaches for SDF choose load balancing

as their optimising objective, for example [TKM+02] and [KM08]. [FKBS11] is one of

the rare approaches to use throughput directly as the optimising objective. Targeting

embedded systems, the work in [KTA03] focuses on not only the execution time of the

periodic schedule but also on the buffer size and the code size.

Aiming for the Kahn network process [Kah74] with some SDF properties, the approach

in [CRA09] uses a cost function combined with the convexity constraint as the guideline

for performance. Although it is not clearly stated, the cost function turned out to be the

inverse of the throughput. The convexity constraint is claimed to optimise the memory

requirement and the latency although there is no proven or clear reasoning.

The approaches [ME13] and [CC09] focus on RSPs with stateless computational nodes,

i.e. the node’s outputs depend only on their inputs, but not on the history of the node

itself. Aiming for load balancing, these approaches use the notion of data demand, which

is the amount of data on each stream. The authors of [ZLRA08] also recommend the

use of the concept of data demand to schedule general RSPs although their concrete

method is not clearly presented. The experimental results of these three approaches

show a potential usage of data demand. However, these three approaches lack the deep

analysis necessary to show the level of impact of data demand on the performance

metrics. In addition, there are possibilities for exploring factors other than the data

demand that can tune the performance.

Chapter 1. Introduction 5

1.4 Research Questions

To efficiently deploy RSPs on parallel platforms, it is required to understand the be-

haviour of the RSPs and its influence on the performance. With implicit synchronisa-

tions and the continuous arrival of input data, it is a challenge to devise an efficient

execution model for RSPs on parallel platforms.

Initial proposed approaches tend to be limited towards RSPs with static behaviour.

This makes it simpler to understand the performance and to develop efficient scheduling

methodologies, although it narrows the range of applications. To support a less restricted

class of RSPs, later approaches choose to observe the behaviour instead of making them

fixed. Yet there is a need for an in-depth study of RSP behaviour and its influence on

the performance.

This thesis is motivated by the following research question:

What is an efficient execution model for general reactive stream programs?

This question is fractured into the following sub-questions:

1. Which behavioural factors have influences on the performance of RSPs?

2. How can these behavioural factors be captured?

3. What are the strategies to optimise the performance of RSPs on parallel platforms?

1.5 Contributions

This thesis aims to answer the research question proposed in the previous section via

major contributions as follows:

• Deriving the concepts of throughput and latency in RSPs. We conduct

an in-depth study of the performance in terms of throughput and latency of RSPs.

This includes theoretical reasoning and experimental verification of their manners.

We also show a deep quantitative analysis of the performance of RSPs on both

shared memory and distributed platforms.

• Capturing the behaviour of RSPs. Secondly, we identify information required

to understand the behaviour of RSPs. This information is essential for the per-

formance calculations, profiling and tuning the scheduler to obtain the optimal

Chapter 1. Introduction 6

performance. We also present a monitoring framework to capture this informa-

tion.

• Exploiting the properties of stream programs to efficiently schedule

RSPs on uniform shared-memory platforms. Thirdly, based on the perfor-

mance analysis, we derive two novel approaches of using the properties of RSPs to

tune performance. The first approach utilises the data demands on stream com-

munications while the second one makes use of the structural position of tasks

in the RSP. Since these features are observable at runtime, these two approaches

support general RSPs, especially with variable behaviours and dynamic structures.

This is a particular challenge for static scheduling based on formal constraints or

probabilities.

• Exploiting graph partitioning algorithms for mapping RSPs onto het-

erogeneous distributed systems. Finally, we introduce the use of graph parti-

tioning to map RSPs onto heterogeneous distributed systems. Since existing graph

partitioning algorithms are not adequate for this problem domain, we develop two

new partitioning algorithms. Employing the performance analysis, these two new

algorithms can capture the problem of mapping RSPs to optimise the through-

put. These new graph partitioning algorithms are only applicable to RSPs with

relatively stable behaviours and relatively static structures. In cases where these

features are highly varied during runtime, the propose graph partitions can be used

to find the initial mapping. During runtime, an adaptation method is required to

repartition the RSP when necessary.

The first contribution answers the first sub-question, i.e. identify the behaviour factors

that have influences on the performance of RSPs. The second contribution answers the

second sub-question by presenting techniques to capture behavioural factors required to

optimise the performance of RSPs. The last two contributions answer the third sub-

question, i.e. propose scheduling strategies to optimise the performance of RSPs on both

shared memory platforms and distributed platforms.

1.5.1 Publications

Most of the work in this thesis has been published in the following papers:

• Vu Thien Nga Nguyen, Raimund Kirner, Frank Penkzek, “”Monitoring Framework

for Stream-processing Networks”, In HiPEAC Workshop on Feedback-Directed

Compiler Optimization for Multi-Core Architectures, Paris, France, 2012.

Chapter 1. Introduction 7

• Vu Thien Nga Nguyen, Raimund Kirner, Frank Penkzek, “A Multi-level Moni-

toring Framework for Stream-based Coordination Programs”, In Proc. of 12th In-

ternational Conference on Algorithms and Architectures for Parallel Processing,

Fukuoka, Japan, Sep. 2012.

• Vu Thien Nga Nguyen, Raimund Kirner, “Influences on Throughput and Latency

in Stream Programs” In 2nd HiPEAC Workshop on Feedback-Directed Compiler

Optimization for Multicore Architectures, Berlin, Germany, 2013.

• Vu Thien Nga Nguyen, Raimund Kirner, “A Heuristic Strategy for Performance

Optimisation of Stream Programs” In Proc. of IEEE 19th International Conference

on Parallel and Distributed Systems, Seoul, Korea, December, 2013.

• Vu Thien Nga Nguyen, Raimund Kirner, “Demand-based scheduling priorities for

performance optimisation of stream programs on parallel platforms”, In Proc. of

13th International Conference on Algorithms and Architectures for Parallel Pro-

cessing, Sorrento Peninsula, Italy, Dec. 2013.

• Vu Thien Nga Nguyen, Raimund Kirner, “Throughput Optimisation of Stream Pro-

grams on Heterogeneous Distributed Platforms by Graph Partitioning”, Submitted

to IEEE Transactions on Parallel and Distributed Systems, Jun. 2014.

1.6 Structure of the Thesis

The remainder of this thesis is organised as follows.

Chapter 2 provides some background in the context of this thesis — reactive stream

programs. This includes data flow programming, stream programming, and reactive

systems. This chapter also shows an abstract execution model for RSPs. In addition,

it provides key details of an instantiation of the RSP execution model, which is used as

the main experimental environment for later chapters.

Chapter 3 discusses related work of this thesis. It reviews scheduling methodologies

of RSPs on many-core systems including both static and dynamic techniques. The

chapter also describes mapping strategies for RSPs on distributed systems. Also, some

approaches that target models similar to RSPs are also included.

Chapter 4 introduces a collection of use cases of RSPs. These use cases will be used

as experimental benchmarks for latter chapters.

Chapter 5 investigates the performance of RSPs. Common performance metrics which

interest the end user are throughput and latency. The chapter provides the formal

Chapter 1. Introduction 8

definitions of these metrics and shows how they change in accordance with the arrival

rate of input data. In addition, we derive formulas for throughput and latency of RSPs

on shared memory and distributed systems.

Chapter 6 discusses behavioural information of an RSP to be captured; and how this

information is used in different scenarios such as performance calculation, profiling,

bottleneck detection and automatic load balancing. The chapter also presents the con-

ceptional design and the implementation of a monitoring framework to capture this

information.

Chapter 7 demonstrates the usage of performance analysis to optimise throughput

and latency of RSPs on uniform shared memory platforms. We introduce guidelines

for designing efficient schedulers for RSPs on uniform shared memory platforms. The

guidelines are implemented in two schedulers. The first scheduler makes use of positive

and negative demands on stream communications and is independent from the runtime

system. The second scheduler employs the position of computation nodes in the RSP.

This approach is based on the awareness of the implementation language and the runtime

system.

Chapter 8 introduces the usage of graph partitioning to map RSPs onto heterogeneous

distributed systems. It shows how to formulate the graph partitioning problem by

using the throughput formula of RSPs. The chapter also develops graph partitioning

algorithms for efficiently mapping RSPs onto heterogeneous distributed systems.

Chapter 9 unifies the solution presented in previous chapters and presents a new effi-

cient execution model for RSPs. This execution model integrates the monitoring frame-

work in Chapter 5, partitioning methods in Chapter 7 and the centralised scheduler in

Chapter 6.

Chapter 10 finally summarises the work done and discusses the strong points and the

weak points of the proposed approaches. It also gives directions for future research in

this field.

1.7 Chapter Summary

In this chapter, we have provided an overview of the context and motivation of our

research. This thesis focuses on reactive stream programs (RSPs) which are stream

programs that process virtually infinite sequences of data. The thesis is motivated by

the research question: ‘What is an efficient execution model for general reactive stream

programs?’. This research question has been fractured into three sub-questions: i)

Chapter 1. Introduction 9

Which behavioural factors have influcences on the performance of RSPs? ii) How can

these behavioural factors be captured? and iii) What are the strategies to optimise the

performance of RSPs on parallel platforms?

The first sub-question involves identifying behavioural factors that have influences on

the performance of RSPs. This sub-question will be addressed by Chapter 5 which

includes quantitative analysis of the performance in terms of throughput and latency of

RSPs. The performance analysis in Chapter 5 will help to determine the behavioural

factors that affect the throughput and latency of RSPs.

The second sub-question is to identify techniques to capture these behaviour factors.

Chapter 6 will introduce a monitoring framework which addresses this sub-question.

The third sub-question is to find strategies to optimise the performance of RSPs on

parallel platforms. This sub-question will be tackled in Chapter 7 and Chapter 8. Tar-

geting uniform shared-memory platforms, two novel approaches of using the properties

of RSPs to derive scheduling priorities will be presented in Chapter 7. The first approach

utilises the data demands on the stream communications while the second one makes

use of the structural position of tasks in the RSP. These approaches support general

RSPs especially with variable behaviours and dynamic structures which is a challenge

when using static scheduling based on formal constraints or probabilities. They are

therefore applicable for a large range of applications. Finally, Chapter 8 will introduce

the usage of graph partitioning to map RSPs onto heterogeneous distributed systems.

This chapter will also present two new heuristic algorithms to optimise the throughput

of RSPs on heterogeneous distributed systems. Since these are off-line approaches, they

are restricted to RSPs with relatively stable behaviour and relatively static program

structures. In cases where these properties are highly varied, the proposed algorithms

can be used to find the initial mapping. An adaptation method is then required to

repartition during runtime.

Chapter 1. Introduction 10

Chapter 2

Background

In this chapter, we provide some background in the context of this thesis — reactive

stream programs (RSPs). This includes a brief introduction of data flow programming,

stream programming, and reactive systems. We also present the conceptional execution

model for RSPs, and give an example of this execution model which is used as the main

experimental environment for later chapters.

2.1 Data Flow Programming

Data flow programming is a paradigm that structures programs as networks or graphs

of operator nodes connected by data arcs. In contrast to the traditional control-flow

model, an operator node can be executed as soon as its data become available on the

input arcs. The very first models of data-flow programming were initiated in 1960s with

two main motivations: i) graphically describing computer programs [Sut66]; and ii)

modelling parallel computations of programs [KM66, RRB69, ET63, Mar66]. The rest

of this section gives an overview of data-flow programming. To get a broader and deeper

view of data-flow computing, there are good surveys such as [WP94, JHM04, Ste97].

Since the first data-flow programming models, several approaches have been developed

in two main categories based on the granularity of the operator implementation. The

first one is the fine-grained data-flow model (also called the pure data-flow model) in

which every machine instruction is an operator node. This direction leads to the ap-

pearance of data-flow-based hardware architectures. Some representative examples of

this group are the MIT data-flow supercomputer [Den80] and the data-driven machine

1 (DDMI) [Dav78]. Since the fine-grained data-flow processors perform poorly on se-

quential code and the overhead of token matching is high, this direction was adapted

11

Chapter 2. Background 12

to the threaded data-flow model which is a combination of data-flow and control-flow

mechanisms [PT91, SRU98]. In this model, a subgraph with a low degree of parallelism

is transformed into a single operator node to be executed sequentially.

The second category evolves as a compromise between the pure data-flow approach and

the traditional control flow approach. The approach is called large-grained data-flow

in which each operator node is a chunk of code and is activated by the availability of

data. This approach allows the expression of a complex program in a natural way as a

composition of simpler components. There is a significant number of data-flow models

based on this approach. Some examples are TDFL [Wen75], VAL [ADA79] and Kahn

networks [Kah74]. Lucid [AW77] and SISAL [MSA+85] are also well known for data-

flow programming although they were initially developed for other reasons. Lucid was

originally designed as functional language with single assignment semantics to enable

mathematical proofs of assertions about the program. Aiming for high level parallel

programming, SISAL was developed as a structured functional language with single

assignment semantics, implicit parallelism, and efficient array handling.

2.2 Stream Programming

2.2.1 Stream

Lee and Parks observed different definitions of the term stream in literature [LP95].

There are two main groups. Starting with the first group, Ladin defines streams in

a recursive manner [Lan65]. A stream is defined by two components: one is the first

element in the stream and the other is the procedure to compute the rest of stream. With

this kind of definition, streams are usually treated with lazy semantics, i.e. elements on

a stream only need to be produced when its consumer needs to process them [Bur75].

The second group defines streams as channels, or (possibly infinite) sequences of ele-

ments [FFJ90, Den95]. A stream is modified by adding or removing elements. In the

context of this thesis, the latter definition is used, i.e. streams are regarded as channels.

2.2.2 Stream-Programming Model

Stream programming is a form of data-flow programming where streams are used to

represent the data arcs. A stream program is structured by a set of operator nodes

connected via streams. Following the data-flow model, operator nodes in a stream

program communicate with each other via streams and they can only be executed as

Chapter 2. Background 13

soon as data in their input streams are available. For convenience, from now on we refer

to operator nodes simply as nodes.

There are numerous projects investigating this approach. A good survey can be found

in [Ste97]. This section provides an overview with some notable examples like Kahn

Network, Synchronous Data Flow, StreamIt and S-Net.

In Kahn process networks (KPN), operator nodes are deterministic sequential processes,

and data arcs are FIFO channels (streams) with unbounded capacities [Kah74]. This

results in the deterministic behaviour of the whole network. A reading operation is

blocking, i.e. a process becomes blocked when reading from an empty input stream.

Since streams come with unbounded capacities, writing operations are non-blocking.

Kahn proposed this mathematical model with the main intention to model concurrent

systems. Later this model was found to be suitable for modelling signal processing

systems.

Synchronous Data Flow (SDF) is a restricted variant of KPNs [LM87a]. When a node

in SDF is invoked, it consumes/produces a fixed number of elements from each of its

input/output streams. Each stream in SDF has a property called delay, which defines

the data processing offset between the consumer and producer of the stream [LM87b].

If there is a delay x on a stream from node A to node B, the first x elements on the

stream are not produced by A but are part of the initial state of the program. That

means the (n)th element that B consumes is the (n−x)th element produced by A. With

this constraint, SDF does not require unbounded channels as KPNs and it is guaranteed

to have a static schedule.

As a more recent approach, StreamIt comes as a comprehensive framework including

programming language, compiler and runtime system [TKA02, Thi09]. StreamIt em-

ploys the SDF model in which every node per invocation consumes and produces a given

number of elements. To support node synchronisation, StreamIt introduces the concep-

tion of information flow where messages can carry timing information when transferred

over streams [TKG+01]. The timing information can be used to specify the execution

dependency between two nodes. For example, given a node A that communicates with

node B via a stream s, A can only proceed if there are at least x messages in stream s.

The timing information can also be used to describe the latency to be transferred from

the sender node to the receiver node.

Developed in a different way than StreamIt, S-Net aims to support the transition from

sequential code to parallel code as the concurrency handling is completely managed by

S-Net [GSS08]. Nodes in S-Net are implemented by an independent computational lan-

guage, e.g. ISO C. Nodes communicate over streams with typed messages. S-Net focuses

Chapter 2. Background 14

on coordination, i.e. how nodes connect to each other. S-Net programs are constructed

hierarchically by combinators, such as parallel composition, serial composition, parallel

replication and serial replication. Compared to StreamIt, S-Net is more general and

closer to KPNs. In S-Net, there is no constraint about how many messages a node can

consume or produce for one invocation. S-Net is asynchronous, i.e. there is no global

clock for node executions across the network.

In addition, the program structure can be changed dynamically at runtime.

2.2.3 Properties of Stream Programs

Property Possible values

Stream Communication Type Uni-directional Bi-directional
Node Computation Type Functional Non-functional
Node Computation Behaviour Constant Variable
Inter-node communication Synchronous Asynchronous
Program Structure Static Dynamic

Table 2.1: Properties of stream programs

Stream programs can be classified by different properties of their nodes and streams [Ste97].

These properties are summarised in Table 2.1. In general, streams can be uni-directional

or bi-directional. On a uni-directional stream, messages are transferred in one direction,

i.e. only one task reads messages from the stream and another task writes messages to

the stream. In contrast, a bi-directional stream can transfer messages in two directions,

i.e. it connects two tasks and both of them can read messages to and write messages to

the stream.

A node’s computation can be a functional or non-functional program. The output

messages of a functional node depends only on the input messages, i.e. a functional

node produces the same output messages for the same input messages. For a non-

functional node, the output messages depend not only on the input messages but also

other factors, e.g. the internal state of the node.

The node’s behaviour in terms of execution time and multiplexity can be variable or

constant. For example, the execution time of a node can be constant for all input

messages or can be varied depending on the value of the input message. Multiplexity of

a node is the ratio of the number of input messages to the number of output messages

per node invocation. For example, whenever a node with multiplexity of n-to-m is

invoked, it reads in n input messages and writes out m output messages. A node with

constant multiplexity has n and m unchanged for all invocations. In contrast, various

Chapter 2. Background 15

multiplexity indicates that the value of n and m can be different for each invocation.

They can depend on the internal state of the node or the value of input messages.

The inter-node communication within the stream program can be synchronous or asyn-

chronous. Within a synchronous stream program, each stream communication between

a pair of nodes requires a clock-like mechanism to synchronise the transmitting and

receiving messages. For example, in SDF programs, each stream has a property called

delay, which defines the data processing offset between the producer and consumer of

the stream. In asynchronous stream programs, there is no notion of time and the mes-

sage reading and writing via a stream are proceeded independently. For example, each

stream in an S-Net program can be written to at any time and can be read from at any

time as long as it contains messages.

In addition, the program structure in terms of nodes and their stream connections can be

dynamic or static, i.e. it may change dynamically or remain fixed during the program’s

lifetime. Although dynamic structures are not mentioned in [Ste97] we consider this an

important factor in scheduling stream programs.

2.3 Interactive/Reactive Systems

The conception of reactive systems was first introduced in 1985 by Harel and Pnueli to

differentiate with the traditional view of computer programs [HP85]. In the traditional

view, a computer program is considered as a black box accepting inputs, performing

transformations, returning outputs and terminating. Such programs are called trans-

formational systems and they can be completely described as relations between their

inputs and outputs. In contrast, a reactive system interacts continuously with the en-

vironment to maintain an ongoing relationship between them. The reactive system and

the environment are connected via the input and output interface. A reactive system

cannot be completely described only by the relation between inputs and outputs. The

sufficient description of a reactive system must refer to the ongoing sequence of system’s

states [Pnu86].

Based on the relationship between the system and the environment, Berry splits reactive

systems into two categories: reactive systems and interactive systems. Reactive systems

are those that react continuously to their environment at the speed of the environment,

in contrast with interactive systems which react with the environment at their own

speed [Ber89]. Reactive systems can be real-time, e.g. air-bag systems in cars; or non

real-time, e.g. communication protocols. This distinction is used in most of literature

e.g. [Hal98, ELLSV99].

Chapter 2. Background 16

Reac%ve'System'

Environment'

Ini$alisa$on)
Unit)

Communica$on)Unit)

Computa$on)Unit) Internal)
State)

Input) Output)

Figure 2.1: Abstract structure of interactive/reactive Systems

Schneider later gives a more distinguishable view point in [Sch04]. When dealing with

an interactive system, the environment has to wait for the system to be ready for new

inputs. In contrast, the environment of a reactive system can decide when to initialise

the interaction, i.e. the environment is free to send new inputs at any time. In addition,

Schneider argues that reactive systems have to be fast enough to satisfy time constraints

from the environment and therefore they are real-time systems. This contradicts from

the definition of Berry as presented above. Although we appreciate the new distinguished

point of Schneider, we don’t use their argument that reactive systems automatically have

to be real-time systems, as our work does not explicitly focus on real-time computing.

Although interactive and reactive systems have different ways of reacting to the envi-

ronment, they have a similar structure. Figure 2.1 shows an abstract description of

interactive/reactive systems which includes three main units and an internal state. The

initialisation unit is used to set the first value for the internal state. The communication

unit receives inputs from the environment and passes them to the computational unit.

The computational unit processes the data depending on the behaviour controls derived

from the internal state. After processing the data, the computation unit updates the

internal state and also passes the outputs to the communication unit to return to the

environment.

2.4 Context of this Thesis: Reactive Stream Programs

As discussed in the previous section, reactive and interactive systems are distinguished

by their ways of reacting to the environment. This behaviour is part of the application’s

semantics and there is no structural difference between reactive and interactive systems.

Chapter 2. Background 17

For this reason, within this thesis, we disregard any distinction between interactive and

reactive systems. Instead we adhere to the original definition of reactive system given

in [HP85], and see reactive systems as being interactive.

This thesis focuses on best-effort scheduling strategies for RSPs. An RSP is defined

as a reactive system with its internal implementation designed as a stream program.

Scheduling strategies presented in this thesis aim to optimise the performance by using

stream-related features of the programs.

The work of this thesis targets general RSPs with properties shown in Table 2.2. In

these RSPs, the node computation can be functional or non-functional, and the node

computation behaviour can be constant or variable. The inter-node communication can

be synchronous or asynchronous, and the program structure can be static or dynamic.

The work in this thesis is restricted to RSPs with uni-directional streams. However,

a bi-directional stream can be modelled as a pair of uni-directional streams, one for

each direction. Since in reactive systems there is no strong reason to restrict system

implementations to a concrete type of node computation, node behaviour, inter-node

communication, or program structure. Thus we have chosen to target general RSPs in

order to have a wide applicability of the research results.

The scheduling strategies in Chapter 7 are applicable for general RSPs while those in

Chapter 8 are more restricted. In particular, they are only applicable to RSPs with

relative constant node computational behaviour and relative static program structures.

That means these properties are not highly variable during the runtime.

Property Possible values

Stream Communication Type Uni-directional
Node Computation Type Functional Non-functional
Node Computation Behaviour Constant Variable
Inter-node communication Synchronous Asynchronous
Program Structure Static Dynamic

Table 2.2: Properties of RSPs supported in the dissertation

Spli%er(Merger(

Filter(

Filter(

…
""M" M"…"

Figure 2.2: Example: program structure of an image filter application

An example of an RSP is shown in Figure 2.2. This is the structure of an image filter

application. The RSP includes a node Splitter, which reads in images and splits each of

them into sub-images. All sub-images are scattered in different branches where nodes

Chapter 2. Background 18

of type Filter apply the filter on each sub-image. The filtered sub-images are then sent

to the node Merger. Merger unifies them into a complete image and sends it out.

2.4.1 Data in Reactive Stream Programs

In RSPs, data arrives from the environment as a virtually infinite sequence of messages.

Nodes that receive messages from the environment are entry nodes. Nodes sending

messages to the environment are exit nodes. In the example of Figure 2.2, Splitter is

an entry node and Merger is an exit node. An RSP can have multiple entry nodes and

multiple exit nodes. Input messages of entry nodes come from the external environment

and are therefore called external input messages. Similarly, output messages of exit

nodes are called external output messages. Other messages inside the RSP are referred

to as intermediate messages.

2.4.2 Execution Model of RSPs

Conceptually the execution model of RSPs includes three layers: a compiler, a runtime

system (RTS) and an execution layer. The source code of an RSP is first passed through

the compiler to generate the object code. The RTS uses the object code to allocate

runtime objects including FIFO buffers and runtime components. Each FIFO buffer

represents a stream and each runtime component (RC) represents an instance of a node.

In some RTSs, for example S-Net, a runtime component can represent a node or an

operator. The behaviour of these operators is similar to that of nodes, i.e. they read

input messages, process them and write output messages. Unlike nodes, an operator does

not involve itself in computational activities but instead participates in controlling the

behaviour of the RSP. For example, an operator can direct messages to the appropriate

streams, or it can dynamically change the structure of the RSP.

The duty of the RTS is to enforce the RSP’s semantics. The RTS maintains the graph

of RCs, i.e. makes sure that each runtime component is connected to the appropriate

streams. As shown in Table 2.1 (on page 14), the structure of RSPs can be dynamic. The

set of runtime components and their stream connections can be dynamically changed

during runtime. The RTS is therefore responsible for applying these structural changes.

Beneath the RTS, the execution layer provides a mechanism to wrap RCs into executable

objects called tasks. A task is a process that repeats RC invocations. For each RC

invocation, a task gathers n messages from a set of input streams. The task then

processes these n messages to produce m output messages. These m output messages

are then scattered to a set of output streams. n-to-m is called the multiplexity of the

Chapter 2. Background 19

task, and the execution of the RC invocation can occur only when n required input

messages are available. As the node’s behaviour can be non-deterministic, the two

values n and m can be unpredictable. Also m produced messages can be dynamically

distributed to the output streams. In the example in Figure 2.2, node Splitter can split

one image into a number of sub-images depending on the image size. Depending on the

implementation, this node can have a policy dictating how to scatter these sub-images

into different branches. For example, one can choose to scatter in a round-robin manner.

Besides task management, the execution layer also includes the implementation of FIFO

buffers to transfer messages between tasks. A stream transfer of a message M is

defined as the activity of moving M across a stream from one task to another. The

activity of a stream S therefore consists of stream transfers of all messages passing over

S. On shared memory platforms, message transference is usually implemented simply by

memory access operations, while on distributed platforms it is implemented by message

passing, e.g. Message Passing Interface (MPI).

The graph of RCs now becomes the graph of tasks so-called task graph. Tasks associated

with entry nodes are called entry tasks. Tasks associated with exit nodes are called exit

tasks. Other tasks are called middle tasks.

The execution layer also controls the state of tasks, i.e. when a task is ready to be sched-

uled. According to the model of KPN, streams are unbounded and a task is ready to be

executed if all required messages are available on their input streams. In this case, the

task state is ready. Otherwise the task state is blocked. To avoid the overloading prob-

lem and support back pressure, some execution models implement streams as bounded

buffers which results in additional scheduling constraints. With bounded buffers, a task

can be blocked when trying to write to a full stream.

As the most important part of the execution layer, the scheduler employs a policy to

execute ready tasks on a platform consisting of physical resources. The scheduler’s policy

decides:

• which ready task will be executed;

• which physical resource will perform the ready task; and

• the length of scheduling cycle, i.e. the period for which the physical resource will

perform the ready task

Chapter 2. Background 20

Each physical resource can be a CPU core on shared memory platforms, or a processing

element (PE) on distributed platforms. In the latter case, the scheduler can be hierar-

chical where it includes a mapper to distribute tasks onto PEs, and a local scheduler for

time-shared scheduling within each PE.

2.4.3 Message Derivation

When an RC invocation consumes an input message Mx (and possibly other messages)

to produce an output message My (and possibly other messages), it is said that Mx

derives My, or My is derived from Mx, formally written as Drv(Mx,My). In this case,

Mx is a predecessor of My and My is a successor of Mx. The message derivation relation

is transitive, i.e. Drv(Mx,My) ∧Drv(My,Mz) =⇒ Drv(Mx,Mz). In this case, My is

directly derived from Mx and Mz is indirectly derived from Mx. To distinguish these two

types of derivations, we use DDrv for direct derivation and IDrv for indirect derivation.

We now have the following implications.

DDrv(Mx,My) =⇒ Drv(Mx,My) (2.1)

IDrv(Mx,My) =⇒ Drv(Mx,My) (2.2)

Drv(Mx,My) =⇒ IDrv(Mx,My) ∨DDrv(Mx,My) (2.3)

Drv(Mx,My) ∧Drv(My,Mz) =⇒ Drv(Mx,Mz) (2.4)

DDrv(Mx,My) =⇒ ¬IDrv(Mx,My) (2.5)

IDrv(Mx,My) =⇒ ¬DDrv(Mx,My) (2.6)

The derivation relation between messages can be used to form a directed graph whose

nodes represent messages and edges reflect the derivation relations. There is a directed

edge from message Mx to message My if there exists DDrv(Mx,My). This graph is

called a Message Derivation Graph (MDG). Vertices of the MDG represent message

nodes. Figure 2.3 shows an example of message derivation from external input messages

to external output messages. In this example, we have from external input I2 towards

external output O3 the derivations DDrv(I2,M1), DDrv(M1,M4) and DDrv(M4, O3).

We also have DDrv(M1,M5), DDrv(I3,M5), and DDrv(M5, O4), etc.

For a message M , we denote d successor(M) as the set of messages that are directly

derived from M ; i successor(M) as the set of messages that are indirectly derived from

M ; and successor(M) as the set of messages that are either directly or indirectly derived

from M . Similarly, we have d predecessor(M) and i predecessor(M) which are the set

Chapter 2. Background 21

I1#

M0#

M3#

I2#

M1#

M4#

I3#

M2#

I4#

M6#

M7#M5#

Ix: External Input Message
Ox: External Output Message
Mx: Intermediate Message

Figure 2.3: An example of message derivation

of its messages that directly and indirectly derive M . Also predeccessor(M) is the set

of messages that either directly or indirectly derive M . The formal definitions of these

sets are:

d successor(M) = {Mx | DDrv(M,Mx)} (2.7)

i successor(M) = {Mx | IDrv(M,Mx)} (2.8)

successor(M) = d successor(M) ∪ i successor(M) (2.9)

d predecessor(M) = {Mx | DDrv(Mx,M)} (2.10)

i predecessor(M) = {Mx | IDrv(Mx,M)} (2.11)

successor(M) = d predecessor(M) ∪ i predecessor(M) (2.12)

A message M is an external input message if there is no message that derives M , i.e.

predecessor(M) = ∅. Similarly, M is an external output message if it does not derive

any other message, i.e. successor(M) = ∅. We define derived output(M) as the set

of external messages that are directly or indirectly derived from M respectively. This

includes all leaves of the tree rooted by message node M .

derived output(M) = {Mx | Mx ∈ successor(M) ∧ successor(Mx) = ∅} (2.13)

2.4.4 Message Completion

An external input message Ii when processed by an RSP may derive multiple inter-

mediate messages Mj before deriving any external output messages Ok, written as

DDrv(Ii,Mj), DDrv(Mj , Ok) for each such Mj . An external input message Ii is said to

be completed, i.e. completely processed, when all of its derived external output mes-

sages derived output(Ii) have been sent out. In the example of Figure 2.3, the external

input message I2 is completed when the messages O1, O2, O3, O4 are all sent out.

Chapter 2. Background 22

The completion of an external message is defined as a set of node invocations that

produce all its successor messages and the stream transfer of these messages. Put in

another way, completion of an external input message Ii is the process of performing RC

invocations to generate messages in successor(Ii), and stream transfers to pass them to

other task until all its derived external output messages derived output(Ii) are sent out.

As mentioned above, a task executes a sequence of RC invocations. The contribution

of a task T to an external input message Ii is defined as the group of T ’s RC invocations

that belongs to the completion of Ii. Similarly, contribution of a stream S to an external

input message Ii is the group of S’s stream transfer that belongs to the completion of

Ii.

2.5 Instantiation of the Execution Model for Reactive Stream

Programs

2.5.1 Stream programming with S-Net

S-Net [GSS08] is a declarative coordination language that aims to separate computa-

tions from concurrency management aspects. The computational logic is meant to be

encapsulated inside the individual computational components, also called boxes, while

S-Net focuses on how to connect the communication between these components via

streams. For this reason, S-Net fits stream applications that process long sequences of

data well. Figure 2.4 shows the S-Net code of the Image Filter Application (described

in Section 2.4).

net ImageFilter ({Img} -> {Img})

{

box Splitter ((Img) -> (SubImg , <branch >));

box Filter ((SubImg) -> (SubImg));

box Merger ((SubImg , <branch >) -> (Img));

} connect Splitter .. Filter!<branch > .. Merger;

Figure 2.4: S-Net implementation of the image filter application

Boxes in an S-Net program are re-entrant procedures (written in a conventional program-

ming language) that transform a message from a single input stream into a sequence of

messages on a single output stream without any persistent state, i.e. the value of none

of the internal variables is preserved from one execution to the next.

Chapter 2. Background 23

Each message in an S-Net program is comprised of a set of entries, each of which is

represented by a label. The set of labels defines the type of the message. There are two

different kinds of entries: fields and tags. The data of fields is not revealed to the S-Net

RTS, while tags are integers which are recognised by both the S-Net RTS and within the

user-defined boxes. In S-Net, tags are enclosed within angular brackets. In the above

example, there are three different types of messages: (Img), (SubImg, 〈branch〉) and

(SubImg). 〈branch〉 is a tag while others are fields.

In order to construct an S-Net program composed from boxes, S-Net provides four

combinators. The first two are static combinators, named serial composition (denoted

as ..) and parallel composition (denoted as |), to construct pipelines and branches

respectively. They are static in the sense that only one instance for each of their operands

is created. The other two combinators are dynamic in the sense that they create replicas

of their operands on demand by means of serial and parallel replication. Serial replication

(named the ?-combinator in S-Net) are used to instantiate execution pipelines of dynamic

lengths. Messages in this pipeline are processed and forwarded to the next stage until

the specified exit condition is met. Parallel replication (named the !-combinator) creates

a dynamic number of instances of its operand and combines them in parallel. Each

message is processed by only one of these instances; the concrete instance is determined

by a tag value that the message is expected to carry. Among the above combinators,

only serial compositions preserve message order while others do not. To support this,

S-Net provides for each of them a special order-preserving variant (denoted as ||, ??,

and !!)

The declaration of each S-Net box includes one input type, i.e. the type of message

that the box accepts as input; and multiple output types, i.e types of messages that

the box produces as output. To loosen the restriction of a single input type, S-Net

support an inheritance mechanism, called flow inheritance. This allows a box to accept

all sub-types of the box’s declared input type. Excess fields and tags of a message are

bypassed through the box. That means when a message arrives to a box, only entries

with listed labels in the input type are taken by the box to generate output messages.

Other excess entries are passed over the box and added to each output message. In the

case where an output message contains an entry with the same label, the bypassed label

will be discarded. In the example in Figure 2.4, the output messages of Splitter with

type (SubImg, 〈branch〉) are sent to Filter whose input type is (SubImg). Only fields

labelled SubImg are consumed by Filter, while tags labelled 〈branch〉 are bypassed and

added to the output messages which are sent to Merger.

Boxes in S-Net are SISO entities, i.e. each box has a Single Input stream and a Single

Output stream. Therefore, if a box requires data from several messages as input, these

Chapter 2. Background 24

messages have to be merged first. S-Net provides a primitive entity for this purpose,

called synchro-cell. A synchro-cell is parameterised over the type of message that it is

supposed to merge. As soon as it receives messages of all matching types, it releases a

single combination of these messages.

Streams in S-Net are used to connect entities. They are uni-directional and operate in

the FIFO manner. Each stream has a single reader and single writer. An S-Net program

can be described as a network of entities connected by streams.

2.5.2 S-Net Compiler and Runtime System

The execution model of S-Net is shown in Figure 2.5. An RSP written in S-Net is passed

to a compiler and translated into an internal representation. Based on this internal

representation, the compiler performs basic consistency checks and applies optimisations.

Finally, the compiler generates C-code in a format called the common runtime interface

(CRI) [GP11].

Lying under the compiler, the S-Net runtime system (RTS) includes a CRI deployer

which takes the CRI code and produces a graph of runtime components (RCs) connected

by streams. The graph of RCs, also called the RC graph, is a derived representation of

the original S-Net program. In fact, each RC represents an S-Net entity or operator.

S-Net operators are created to provide desired behaviours of S-Net combinators. Serial

composition is the simple case where operands are connected by pipelined streams, and

therefore no extra operator is required. Figure 2.6 shows the runtime operators repre-

sented for parallel composition, parallel replication and serial replication. To distinguish

entities and operators, figures of RC graphs will denote operators in a pair of angular

brackets <>.

A parallel composition is represented by a pair of operators: parallel compositor and col-

lector. The former distributes messages from its input stream to operand branches while

the later gathers output messages of these operand branches. A similar design is used

for parallel replications, except that the parallel replicator also generates new operand

instance when an input message comes with a tag different from all existing operand

instances. Figure 2.6b shows the parallel replication with one generated operand.

Each serial replication starts with a serial replicator and a collector. When receiving a

message, the serial replicator passes it to the collector if it matches the exit condition.

Otherwise, the message will be sent to the next operand instance. The next operand

instance will need to be generated if it does not exist. A new serial replicator is also

generated following the new operand instance as shown in Figure 2.6c.

Chapter 2. Background 25

CRI Deployer

S-Net Stream
Reactive Program

S-Net Compiler

S-Net Runtime Components

I/O Types &
Patterns

Task
Component

Stream
Component

Box Language
Interface S

-N
et

 R
un

tim
e

S
ys

te
m

Common Runtime
Interface (CRI)

Global Mappers

Local
Scheduler

Processing Element

Worker

CPU

LP
E

L
E

xe
cu

tio
n

La
ye

r

Local
Scheduler

Worker

CPU

Local
Scheduler

Worker

CPU

Task
Manager

Stream
Manager

Figure 2.5: An overview of the S-Net execution model using LPEL

At the runtime system level, each stream is represented as a FIFO buffer with a single

reader and single writer. Since S-Net streams are uni-directional and no operation in

S-Net allows a stream to connect backward to the previous entities, the RC graph is

directed and acyclic. Figure 2.7 shows the RC graph of the Image Filter Application

with 3 instances of box Filter.

Apart from the CRI deployer, the S-Net runtime system also includes modules to support

types and patterns; I/O communication and interfacing with the box language. In

Chapter 2. Background 26

<Parallel'Compositor>' <Collector>'

Operand'

Operand'

…
'

(a) Parallel Composition

<Parallel'Replicator>' <Collector>'Operand'Instance'

(b) Parallel Replication

<Collector>*

<Serial*Replicator>* Operand*Instance* <Serial*Replicator>* …*

(c) Serial Replication

Figure 2.6: Runtime expansion of network combinators in S-Net

<Parallel'Replicator>' <Collector>'

Filter'

Filter'

Filter'Spli2er' Merger'

Figure 2.7: The runtime component network of the image filter application
(with three instances of box Filter)

addition, there is a task manager to facilitate task creation and destruction. Similarly,

a stream manager is provided for stream creation and destruction.

2.5.3 LPEL — A User-mode Microkernel for the Streaming Language

S-Net

The Light-Weight Parallel Execution Layer (LPEL) [Pro10] is an execution layer de-

signed for S-Net to give control over mapping and scheduling. LPEL adopts a user-level

threading scheme providing the necessary threading and communication mechanisms in

user-space. It builds upon the services provided by the operating system or virtual hard-

ware, such as kernel-level threading, context switching in user-space, atomic instructions

and timestamping.

On LPEL, there is a stream component to support stream creation, stream reading,

stream writing and stream replacing. Additionally, a task component is provided to

create a wrapper around each RC before sending them to the scheduler. At the LPEL

level, each S-Net RC is wrapped in a user-level thread, called a task. As there is an

one-to-one mapping between tasks and RCs, they are used interchangeably. Each task

is an iteration of RC invocations, each of which performs either one box’s computation,

Chapter 2. Background 27

one synchronisation for a synchro-cell, or one activity of a operator. The activity of an

operator is to read one message and guide it to the appropriate stream. In the case

of a serial or parallel replicator, the activity can include creating a new operand. For

example, a parallel replicator’s activity is to read in a message, choose the branch with

the correct tag, create the operand branch if it does not exist, and send the message to

the branch via the connecting stream.

Tasks communicate with each other via streams. Each stream is a uni-directional com-

munication channel between two tasks.

LPEL is designed to execute S-Net programs on shared memory platforms. Tasks are

distributed on workers, each of which represents a CPU core or a hardware thread. The

scheduling policy determines a task with a ready state to be dispatched on a worker.

The state of a task changes according to the availability of the input streams. Reading

from an empty stream causes the task to be blocked, and writing to an empty stream

can unblock the task on the other side of the stream.

The current scheduler of LPEL distinguishes between two types of tasks: box tasks

associated with computational boxes in S-Net; and non-box tasks associated with S-

Net operators which contain no computation. The LPEL scheduler employs two global

mappers: one for box tasks and one for non-box tasks. When a task is created, depending

on the task type (box or non-box) it is distributed among workers by one of the mappers.

Both of the global mappers are implemented in a round-robin manner. Each worker has

its own local scheduler which manages its set of assigned tasks and facilitates a round-

robin scheduling policy. To avoid memory overloading and to create back pressure,

LPEL requires streams to be bounded. That means writing to a full stream causes the

writing task to be blocked. Likewise, reading from a full stream unblocks the task on

the other side of the stream.

2.5.4 S-Net on Distributed Systems

To support stream programs on a distributed system of processing elements (PEs), the

S-Net language is extended with a placement-annotation mechanism. This allows the

programmer to statically or dynamically map S-Net RCs to different PEs. In particular,

@NUM is used to statically map a given set of RCs to the PE indexed NUM . For

example, (A..B)@1 indicates that both boxes A and B are mapped to the PE indexed

1; and (A|B)@2 indicates that box A, box B, the parallel compositor and the collector

are mapped to the PE indexed 2. Dynamic placement is only supported for the parallel

replicator by using @ before its tag value. For example, (A..B)!@ < tag > shows that

when a branch of A..B is created, it will be mapped to the PE with the same index as

Chapter 2. Background 28

its tag value. In the case where the placement of an RC is not annotated, the RC is

mapped to the default PE with index 0.

S-Net Compiler

Common Runtime
Interface (CRI)

Common Runtime
Interface (CRI)

Common Runtime
Interface (CRI)

MPI Interface

LPEL LPEL LPEL

Processing Element Processing Element Processing Element

Input
Manager

Output
Manager

Data Fetcher

S-Net RTS

Input
Manager

Output
Manager

Data Fetcher

S-Net RTS

Input
Manager

Output
Manager

Data Fetcher

S-Net RTS

Figure 2.8: Execution model of distributed S-Net

To support S-Net on distributed systems, each PE is equipped with its own S-Net RST

and LPEL execution layer. Figure 2.8 shows the execution model for distributed S-Net.

The compiler first takes the S-Net program with placement annotations and generate

the CRI code for each PE. Within each PE, the CRI code is used to create LPEL tasks

and streams. LPEL is employed for each PE and controls the scheduling of tasks within

the PE.

To maintain the stream communications across the border of PEs, each S-Net RTS

employs two data managers: the input manager (IM) and the output manager (OM).

The out manager keeps the set of streams, each of which is written by one RC at

the current PE, and is read by another RC at another PE. The OM reads messages

from these streams and uses the MPI interface to send them to the corresponding PE.

Similarly, the IM manipulates the set of streams that are read by RCs at the current PE,

and are written by RCs at other PEs. The IM receives messages by the MPI interface

and writes to the corresponding streams.

To avoid unnecessary data transfers, the S-Net RTS represents each field of a message

by a reference, which consists of a unique data identifier (UID) and the PE where the

data is held. The relationship between the data and its UID is managed by a special

component, called the data fetcher (DF). While transferred via the MPI interface, only

the references of fields are sent. When the data is actually needed by an RC, the RC will

Chapter 2. Background 29

send a fetch request to the IM of the PE where the data is kept. The IM then informs

the DF of the same PE. This DF retrieves the data and sends it to the responding PE.

Box_A

{X} ! {Y, Z}

…" Box_B

{Y} ! {T}

Box_C

{T, Z} ! {S}

…"

PE1 PE2 PE3

(a) S-Net program on different PEs

PE1

C1: reference of Y, Z

Box_A

OM

Box_B

IM

IM
C2: data request for Y

C3: data of Y
DF

IM

Box_B

OM

PE3 PE2

IM
C4: reference of T, Z

Box_C
IM

DF

C5: data request for T

C6: data request for Z
IM

IM

C7: data of T

DF
C8: data of Z

Box_C

(b) Communications between PEs

Figure 2.9: Example of an S-Net program being deployed on a distributed system

This is an efficient design to support flow inheritance and to implement S-Net operators

where the data within each field is not directly retrieved. Figure 2.9a shows an example

where three boxes Box A, Box B and Box C of an S-Net program are mapped onto

three different PEs. The interaction among these PEs is shown in Figure 2.9b. Although

Box B only needs the data of field Y from Box A, PE1 and PE2 need three PE-to-PE

Chapter 2. Background 30

communications. On PE1, Box A is executed writing its output of (Y,Z) to its output

stream, the OM of PE1 sends the message containing reference of Y and Z to PE2 (C1).

The IM from PE2 receives the message and writes it to the input stream of Box B.

Box B receives the reference of both Y and Z but needs the data of Y only. Box B

then sends a request to PE1 (C2). The IM of PE1 passes the request to the DF of PE1.

The DF then sends the data of Y to the IM of PE2 (C3). And finally the IM of PE2

passes the data of Y to Box B so that it can continue its computation. Due to the

flow inheritance, the output message of Box B consists of two fields T and Z. Their

reference is then sent to Box C in PE3 (C4). Box C requires the data of both Z and

T . The data of Z is held in PE1 while the data of T is held in PE2. Box C then sends

the data request to the IM of both PE1 and PE2 (C5 and C6). The IM of PE3 then

receives the data of Z and T from the DF of PE1 and PE2 (C7 and C8). The data of Z

and T is sent to Box C to continue its execution.

The IM, OM and DF are implemented as separated threads and are not controlled by

the LPEL scheduler. This design is necessary to avoid deadlocks and also to minimise

the influence on concurrent task execution [GJP12].

2.6 Chapter Summary

This chapter provided the background of the context upon which of this thesis is based.

The thesis focuses on best-effort scheduling strategies for RSPs. An RSP is a reactive

system with its internal implementation designed as a stream program. As a reactive

system, an RSP, as defined in [HP85], maintains an ongoing relationship with the ex-

ternal environment by receiving an infinite sequence of input messages and sending out

an infinite sequence of output messages. Implemented as a stream program, an RSP is

structured as a set of operator nodes connected via streams. A stream, as defined in

[FFJ90] and [Den95], is a channel to transfer an infinite sequence of message between

operator nodes. The chapter also introduced different properties of RSPs, and described

the conceptual execution model of RSPs including the compiler, the runtime system and

the execution layer.

In addition, the chapter made clear the class of RSPs which are supported by scheduling

strategies in Chapter 7 and Chapter 8. In particular, Chapter 7 will propose schedul-

ing techniques on uniform shared memory platforms. These scheduling techniques in

Chapter 7 will require no assumption about the properties of the RSPs. They are there-

fore applicable for general RSPs, especially with variable node behaviour and dynamic

Chapter 2. Background 31

program structures. Chapter 8 will introduce mapping strategies of RSPs onto hetero-

geneous distributed systems. These strategies will only be applicable for RSPs with

relatively stable node behaviour and relatively static program structures.

An instantiation of the execution model supporting S-Net stream languages was also

included in this chapter. This execution model will be used as a benchmark platform

for experiments to evaluate the proposed scheduling strategies later in Chapter 7 and

Chapter 8.

Chapter 2. Background 32

Chapter 3

Related Work

Data-flow based stream processing has received a lot of attention in the context of

scheduling. While implicit synchronisation makes it easier for the programmer, it bur-

dens the system designer with providing efficient scheduling techniques. It is difficult

to obtain good performance when the scheduler has no knowledge of internal behaviour

of stream programs. To the best of our knowledge, our work in Chapter 6 is the first

to propose a monitoring framework specialising in stream programs. In this chapter,

we include an assortment of work in monitoring parallel programs where the internal

activities are captured for the purpose of performance analysis. We also present primary

types of scheduling algorithms, some of which are used in later chapters. In addition,

we present a selection of work on scheduling stream programs classified by the target,

i.e. many-core or distributed systems; and by the manner of the scheduling strategy, i.e.

static or dynamic. Since we use graph partitioning for mapping stream programs onto

distributed systems in Chapter 8, we include in this chapter some representative graph

partitioning algorithms.

3.1 Monitoring Parallel Programs

To obtain the best performance of stream programs, it is necessary to understand their

behaviour. For this reason, one focus of this thesis is to build a monitoring framework

for parallel stream programs. To the best of our knowledge, our monitoring frame-

work described in Chapter 6 is the first one specialising in analysing the performance of

stream programs. As the closest related work we have identified monitoring of parallel

programs, for which we describe a selection in this section. Unlike sequential programs

where the performance is unchanged as long as the execution environment is stable,

33

Chapter 3. Related Work 34

the performance of parallel programs is heavily dependent on the way workload is dis-

tributed over the resources. In stream programming where tasks can be executed fully

asynchronously, the scheduling strategies of the execution layer are as important for the

performance as the internal execution of each individual task. We therefore focus here

on approaches that capture the impact of scheduling strategies in performance analysis.

We limit our view to automated tools that do not require explicit code instrumentation

from the programmer.

One of the very early approaches is IPS which supports automated performance anal-

ysis of parallel and distributed programs [YM89, MCH+90]. Using knowledge of the

program’s structure, IPS aims to capture runtime information at five different levels

ranging from primitive activities such as task entry and exit, blocking and unblocking

by the scheduler, procedure level behaviour such as critical paths, process-level-based

events such as inter and intra process communication, machine level information such

as the summary of communications across machines, to general program behaviour such

as the total execution time.

The Paradyn [MCC+95] framework provides a configuration language called the Para-

dyn Configuration Language (PCL) that allows the programmer to describe the desired

performance metrics. Taking the requirement from the programmer, Paradyn dynami-

cally adds the monitoring codes as instrumentations into the executable programs during

execution. To control the overhead, Paradyn adjusts the monitoring behaviours depend-

ing on the cost of its data collection and a user-defined threshold. One usage of Paradyn

is presented in [XLM97] to find the performance bottleneck of shared-memory parallel

programs.

The TAU performance system provides a selection of tools categorised in three levels:

instrumentation, measurement and analysis [SM06]. The framework can be configured

to combine different tools from these three levels to satisfy different customised perfor-

mance targets. The framework supports both automatic instrumentation and an API

for the programmer to manually annotate the source code of the program. The TAU

framework has been integrated into various systems such as the performance measure-

ment infrastructure for Common Component Architecture (CCA) [MST+05], the online

performance monitoring framework SuperMon [NSM+07], the global performance mon-

itoring framework for MPI [HMSM06], etc.

Targeting large-scale HPC programs, the Scalasca toolset [GWW+10] captures concur-

rent behaviour of the program and uses tracing techniques to aggregate performance

metrics. The toolset particularly focuses on its scalability as well as the integration ca-

pabilities to transform raw measurements into the execution behaviour description and

performance summarisation.

Chapter 3. Related Work 35

In contrast to most of monitoring tools, HPCToolkit [ABF+10] aims to avoid program

instrumentation and uses statistical sampling to generate the histogram of program

contexts. This information is used for performance analysis within processor nodes. To

capture inter-process activities, HPCToolkit intercepts process control routines such as

process creation and destruction, signal handling, dynamic loading, etc.

The Periscope framework [GO10] targets MPI-based distributed programs to provide

performance analysis at both the local level of each machine and the global level of the

whole system. It is similar to Paradyn that the performance analysis is done online

while the program is running. Unlike Paradyn, Periscope deploys distributed analysis

agents to aggregate raw information collected by instrumentation and then integrate

into performance metrics.

3.2 Taxonomy of Scheduling Methods

In this section, we discuss primary types of general scheduling algorithms. Given a set

of tasks and a set of processing elements (PEs), the objective of a tradition scheduling

algorithm is to produce a schedule which is defined as a mapping of tasks onto PEs, and

the execution order of the tasks. The generated schedule must meet the task dependence

constraints and the resource constraints, and at the same time optimise the performance.

Good surveys of different types of scheduling algorithms can be found in [SKH95] and

[FRS+97].

A scheduling algorithm can also be classified as offline or online. A scheduling

algorithm is offline if all the scheduling decisions are made before the execution of the

system.

3.2.1 Offline Scheduling

In offline scheduling, the schedule is generated for the entire task set during compile

time. To make scheduling decisions, the algorithm requires the complete knowledge of

the system, for example the release time and the processing time of each task. This type

of scheduling algorithms is therefore suitable for static systems where the behaviours

are known before the execution. One example in this category is the work of Stone et

al. that describes a method for optimal assignment on a two-processor system based

on the Max Flow/Min Cut algorithm [Sto77]. Another example is the work in [Lo88]

which proposes a heuristic method based on the Stone’s Max Flow/Min Cut algorithm

Chapter 3. Related Work 36

to minimise the overall execution time and the communication delays on heterogeneous

systems.

3.2.2 Online Scheduling

In online scheduling algorithms, decisions are made at runtime on the set of active tasks.

Online scheduling algorithms are based on the distribution of tasks among PEs during

runtime. There are three basic techniques for the task distribution of online scheduling

algorithm: centralised, distributed, and centralised mediation [SS92a].

3.2.2.1 Centralised Scheduling

In the first technique, centralised scheduling, the task distribution is based on a central

agent which collects the information of the system state. In common designs, tasks

are not assigned statically to any PE but stored in in a central task pool. Based on

the current state of the system, the central agent makes decision of distributing tasks

among PEs. The central agent can be a physical PE, which makes the decision of task

distribution based on the system state. One example of this approach is the Condor

scheduler [LLM88]. The central agent can also be a global information directory of the

system state which is shared and accessed by all the PEs. An example of this approach

is the work in [DO87].

3.2.2.2 Distributed Scheduling

In the second technique, distributed scheduling, each PE has its own local task queue,

and the task distribution is initiated only on some conditions, e.g. heavy unbalanced

load. The task distribution can be initiated by either the sender or the receiver.

In the former case where the sender initiates the task distribution, the technique is

called work sharing. This scheduling scheme is also known as task migration. In

work sharing, whenever a PE generates new tasks, it attempts to migrate some of them

to other PEs. Work sharing schedulers usually employ four components: information

policy to specify the required information about the system state, transfer policy to

determine if a PE should participate in a task migration, location policy to identify the

suitable destination PE for the task migration, and a selection policy to decide which

tasks are eligible to migrate. Some examples of the work sharing scheme include [BF81],

[LSK97] and [LFM04].

Chapter 3. Related Work 37

In the later case where the receiver initiates the task distribution, the technique is also

known as work stealing. In this scheme, when a PE has no task in its local queue,

it will initiate the task distribution. This PE, called thief, will choose a PE, called

victim, and steal a task from the victim. This helps to maximise the utilisation of

computing resources. A work stealing scheme requires a policy to determine the victim

and the task to be stolen. Two of the very first ideas for the work stealing approach

were described in [BS81] and [Hal84]. These two ideas have been widely used in several

scheduling libraries, for example Cilk [BJK+95], TBB [RVK08], etc. Since then, several

work stealing schemes have been proposed aiming at different models. Some examples

include [BL99] focusing on multithreaded computations with dependencies, [TDG+11]

targeting at parallel loops on shared cache multicores, and [AHL07] aiming at fork-joined

multithread jobs.

3.2.2.3 Centralised Mediation

The third technique for online scheduling is centralised mediation that uses both aspects

of centralised and distributed techniques. Similar to distributed scheduling, each PE in

this scheme has its own task queue. Similar to centralised scheduling, one PE is chosen

to be the centralised mediator which is responsible for the task distribution. When a

PE is overloaded, i.e. it has too many tasks, it sends a task to the centralised mediator.

Also when a PE is underloaded, i.e. it has no task, it sends a request to the centralised

mediator. The centralised mediator then sends a task to the requested PE. An example

of this scheduling scheme can be found in [SS92b].

In this section, we have provided an overview of different types of scheduling algo-

rithms. Typically, there are two classes of scheduling algorithms: online and offline. As

described in Section 2.4, we target in this thesis general RSPs with variable node be-

haviour and dynamic program structures, offline scheduling methods are not applicable.

The class of online scheduling algorithms is categorised into two subclasses: centralised

and distributed. Our work in this thesis introduces different scheduling strategies which

fall into the categories of centralised scheduling and offline scheduling. In particular,

Chapter 7 will describe centralised schedulers for RSPs on shared memory platforms.

Also, Chapter 8 will propose offline scheduling algorithms to map RSPs onto distributed

systems.

Chapter 3. Related Work 38

3.3 Scheduling Reactive Stream Programs on Many-Core

Systems

3.3.1 Static Scheduling

Among data-flow models, Synchronous Data Flow (SDF) [LM87a] has been the most

attractive direction for being synchronous as the name suggests. SDF differs from the

conventional data-flow model in that its nodes have static input and output rates. That

means the amount of messages that each node consumes and produces during its invoca-

tion is static and predefined. Generally, in an SDF program streams are uni-directional;

node computations are deterministic; node communications are synchronous; and the

program structure is static. These properties are used to generate the periodic schedule

at compile time [LM87b]. The execution of an SDF program is simply an iteration of

this schedule where the data required for the next iteration is generated in the previous

iterations. A periodic schedule is usually represented by a vector of positive numbers,

each of which corresponds to a node. This is the number of node invocations during the

periodic schedule. For example, a periodic schedule {3A, 2B,C} describes the execution

of the SDF program as a repetition of three times invoking node A, two times invoking

node B and one time invoking node C.

The problem of scheduling an SDF program now becomes the problem of scheduling

its periodic schedule. Taking advantage of the periodic schedule, several strategies have

been proposed to map SDF programs into many-core systems. One of them is the work

in [GTK+02] which maps StreamIt, a programming language following the SDF model,

to the Raw architecture [TKM+02]. In StreamIt, each node is called filter and the pe-

riodic schedule is called steady state. This work uses profiling to estimate the required

computation of each filter within a steady state. Based on this information, a greedy

heuristic partitioner is designed to assign filters into each cell of the Raw microprocessor.

The partitioner uses fission operations to split filters with high computational require-

ments; and fusion operations to merge filters with low computational requirements until

the number of filters is equal to the number of cells. The scheduler in this work also

includes a static communication pattern between cells which can be obtained by simula-

tion. This communication pattern is used to determine the maximum buffer size which

avoids deadlock. The later work from the same authors proposes a new approach where

all communications are wrapped into a single stage which is placed by the end of the

steady state [GTA06]. This approach uses another greedy heuristic partitioner which

scans filters in order of decreasing required computations, and assigns each of them to

the processor with the least amount of computation. The bottleneck partition is the pro-

cessor with the highest amount of computational load. To minimise the communication

Chapter 3. Related Work 39

stage, a selective fusion pass is used to fuse two adjacent filters, and the partitioner is

used to remap the new program. This pass is repeated until the new bottleneck increases

by more than a given threshold.

As the first applying modulo scheduling [Rau94] to SDF, the authors of [KM08] aim

to maximise the concurrent execution of nodes and at the same time to overlap the

communication and computation activities. The main idea is to construct a software

pipeline based on the steady state, i.e. start executing a producer node and its consumer

node at different stages. This excludes intra-stage synchronisations within a steady state.

The only synchronisation occurs by the end of each stage to guarantee that all inputs

required for performing a stage have been generated by the previous stage. The work

in [KM08] is part of a StreamIt compiler for the Cell architecture. The first step in

the proposed algorithm is to split nodes by using fission operations and to partition the

StreamIt program. The splitting and partitioning problem is formulated as an integer

linear program (ILP) and is solved by PERPLEX [ILO14]. The second step is to assign

each node invocation in the periodic schedule to a pipeline stage for execution in such a

way that all communications are overlapped with computations on processors. Note that

ILP is applicable for StreamIt specifically and SDF generally because of the constraints

of the static input and output rates.

Udpa et al. [UGT09a] successfully used ILP and modulo scheduling to compile StreamIt

on GPUs. This work also introduces a buffer mapping scheme to exploit the high mem-

ory bandwidth in GPUs. Their later work extends the approach for hybrid architectures

composed of CPUs and GPUs [UGT09b]. The authors also propose a heuristic parti-

tioning algorithm to divide the StreamIt program into two set of nodes, one for CPUs

and one for GPUs. The algorithm starts with some constrained nodes assigned to CPUs

and the rest assigned to GPUs. Nodes from GPUs are then considered to move to CPUs

depending on their speedup benefit. The METIS partitioner [KKK98] is then used to

divide node invocations across the CPUs and GPUs.

To optimise the performance of StreamIt programs on hybrid architectures, the authors

of [dOCLB10] introduced restructuring methods to remove redundant synchronisation

before using an existing partitioner, e.g. METIS [KKK98], to partition the StreamIt

program between CPUs and a GPU. To derive the local schedule for each CPU and the

GPU, the authors use the algorithm proposed in [KM08] to generate two nested modulo

schedules. The outer one is for the GPU which works on large buffer sizes and the inner

one is for CPUs with small buffer sizes.

Since ILP solvers require exponential solving time in the worst case, it is inefficient to

recompile SDF programs whenever the availability of resources (e.g. CPUs, memory)

changes. To address this problem, Flextream is proposed as an adaptive scheduling

Chapter 3. Related Work 40

algorithm combining static scheduling and dynamic adaptation [HCK+09]. For the static

scheduling, Flextream first performs a pass where SDF nodes are replicated to generate

the relevant amount of parallelism. With the assumption that all n PEs are available,

Flextream uses ILP to generate modulo schedule including n work assignments and their

local stage assignments. Before executing the SDF program, Flextream will carry out the

adaptation phase depending on the availability of the CPUs. With m unavailable CPUs,

Flextream chooses m work assignments with the least number of nodes and schedules

them on the (n−m) available CPUs. The adaptive schedule uses heuristic strategies to

distribute those nodes to the CPUs, adjust stage assignment within each CPU, and fit

the buffer allocation with the memory availability.

To avoid using ILP solvers, the work of [FKBS11] introduces an approximation strategy

to maximise the throughput of SDF programs on multi-core systems. When an SDF

program has only one entry node, the throughput is equal to the arrival rate, and

also the input rate of the entry node. Based on the single entry node constraint, this

work derives data rate functions of filters depending on the arrival rate. Quantitative

analysis is then used to identify bottlenecks and transform the SDF programs to remove

bottlenecks. Finally, a 2-approximation algorithm is employed to map each node of the

SDF programs to CPUs so that the arrival rate is maximised.

Although modulo scheduling is helpful for increasing the concurrent execution, it has

some disadvantages: i) requiring barrier synchronisation; ii) supporting only fixed input

and output rates; and iii) not sufficiently managing feedback loops. The work of [PD10]

has aimed to tackle these problems. This work includes two phases: team formation and

atomisation. The first phase groups nodes on the same core into teams by using a greedy

heuristic to maximise the gain as the ratio of synchronisation reduction to the buffer

size growth. Unlike modulo scheduling, this approach requires only steady state within

each team instead of steady state of the entire SDF program. Team communications

are implemented by a blocking mechanism, i.e. a node gets blocked when reading an

empty stream or writing to a full stream. To generate a static schedule of nodes within

a team, existing methods like LISF [BBHL02] are used. The authors also suggest to

partition SDF programs before applying this scheduling phase, although it is unclear

how the partitioning is performed. The second phase is to amortise the inter-team

communication overhead by finding the trade-off between the synchronisation cost and

the buffer size.

A recent approach is to use machine learning to partitioning StreamIt programs for

multi-core systems [WO10]. The approach first uses supervised machine learning to

predict the ideal structure of the partitioned program and then selects from all partition

possibilities the nearest one to the ideal structure.

Chapter 3. Related Work 41

By taking advantage of static properties of SDF programs, all the above approaches have

been proposed for statically scheduling SDF programs on many-core systems. The work

on this thesis however tries to address a more general class of stream program which

allows variable node behaviours, asynchronous inter-node communication and dynamic

program structures. Therefore, the static scheduling strategies proposed for SDF are

inapplicable for general RSPs.

3.3.2 Dynamic Scheduling

Static scheduling has been shown to be efficient in SDF and StreamIt for their static

input/output rate and static program structures. However, these also restrict the class

of applications that they can support. For this reason, the work in [ZLRA08] introduces

a Multi-core lightweight Streaming Layer (MSL) that supports both predictable and

unpredictable stream programs on the Cell architecture. Although it is not clearly

defined, predictable stream programs can be understood as SDF or StreamIt programs

with static input/output rates and static structures. MSL uses the strategy of static

scheduling in [GTK+02] to target this type of stream program. A stream program is

unpredictable when it is difficult to estimate the execution time of each node invocation,

or when the execution time of each node varies during runtime. For these cases, it is

difficult to derive a static schedule with good load balance. The authors in [ZLRA08]

propose to use a central-based scheduler that maintains the state of the program and

tries to optimise the throughput by load balancing. The proposed scheduler does not

statically map nodes to CPUs, but instead dynamically sends nodes to be executed on

CPUs for a number of iterations. The selection policy has not yet been investigated and

is stated to be based on the amount of input and output data of each node.

The approach in [CC09] proposes to use the notion of back-pressure on streams to obtain

load balance. The approach first uses existing techniques to statically map nodes, which

are called filters in this work, onto multi-core platforms. Then profiling is used to identify

bottleneck filters which are stateless, i.e. filters provide the same output for the same

input regardless of the previous sequence of input. For being stateless, multiple instances

of these filters can be created and connected in parallel without changing the program’s

semantics. This approach provides mechanisms to preserve the message order. Copied

instances of these filters are mapped onto the platform by using ILP-based analysis to

maximise their individual throughputs. The execution of those copied instances are

activated during runtime based on the back-pressure on the current capacity of their

output streams.

Chapter 3. Related Work 42

Similar to the approach in [ZLRA08], the work in [ME13] proposes a central-based

scheduler facilitated with dynamic load balancing. In this approach, scheduling decisions

are based on the fill level of the streams. Thanks to its focus on stateless nodes, the

approach also allows concurrent execution of each node to increase the data parallelism

while preserving the message order. When a CPU finishes its execution on a node, the

scheduler decides on which node it should execute next. If the input stream of the node

is empty, the producer of the current node is chosen. If the output stream of the node is

full, one consumer of the current node is executed next. Otherwise, the CPU continues

working on the current node. When the parallelism level of the current node exceeds its

threshold, the CPU will choose a new node based on a probabilistic scheme.

Supporting S-Net programs which is more general than SDF with no constraints on node

behaviour nor on the program structures, LPEL uses dynamic mapping and dynamic

scheduling [Pro10]. An S-Net program is composed of boxes as computational nodes;

and combinators are used to connect these boxes. Before being scheduled by LPEL,

boxes and combinators are wrapped as box tasks and non-box tasks respectively. With

the reasoning that box tasks usually include heavy computation while non-box tasks

requires very little computation, LPEL uses two different round-robin mappers: one for

box tasks and one for non-box tasks. LPEL also uses a round-robin scheduler for local

task scheduling within each core.

Another approach to scheduling S-Net programs is introduced in [GG13] where load

balancing is obtained by work stealing. In this model, a CPU can execute a node if it

holds at least one reading license for every input stream of the node. A reading licence

is a logical representation for a message on the stream and does not indicate any specific

message. If a CPU holds n reading licences of a stream, that means it can read n

messages from the stream, and it can choose to read each of n messages at any time.

The model is designed so that the number of messages on a stream is always equal to

the total number of reading licences on that stream. Each CPU tries to execute nodes

toward the exit if they can. When a CPU can not proceed, it steals from other CPUs

reading licences on the stream towards the entry.

Although the work in [TE92] targets multihop radio networks, we include it here as

they are structurally similar to RSPs. In that work, the authors propose a dynamic

scheduler where the node priority is defined by the queue length of its input and output

streams. With the constraint of static network structure, the authors are able to prove

that their scheduling leads to maximal throughput for any input arrival rate where a

stable schedule (bounded message queues) is possible.

Although static properties of SDF help to ease the burden on scheduling, they limit

the range of applications. Therefore, some dynamic scheduling approaches such as the

Chapter 3. Related Work 43

ones in [ZLRA08] and [ME13] attempt to address general stream programs. However

the work in [ZLRA08] only presents some general requirements for the selection policy

but does not propose any concrete design. The ideas in [ME13] have some similarities

with our work in Chapter 7 in the way the fill level of streams is used in the selection

policy. These are different from ours in that they require the RTS to determine a node

to be stateless. In addition, they focus on load balancing without any reasoning about

throughput and latency. The LPEL scheduler described in [Pro10] uses simple round-

robin strategies and does not provide good performance as shown in Chapter 7. Similar

to our approach in Chapter 7, the work of Tassiulas et al. [TE92] has a similar way of

defining task priority based on the queue length of input and output streams. Focusing

on maximising the throughput, the authors are able to prove that their scheduling

guarantees maximal throughput. However, this is only applicable for stream programs

with fixed structures. The approach in [GG13] uses the same heuristic like ours that the

task priority is higher when it is closer to the exit. Unlike ours, the approach does not

use a central-based scheduler but instead uses work stealing to obtain load balance. In

addition, by aiming for minimal total execution time the approach is rather applicable

for non-reactive system where the sequence of inputs is finite and short.

3.4 Scheduling Stream Programs on Distributed Systems

Unlike many-core systems, PEs on a distributed system do not share memory and the

communication cost among them is significant. Dynamic scheduling therefore seems

unfeasible. To schedule stream programs on a distributed system, most of the approaches

aim to find the best mapping where each node of the stream program is statically

assigned to a PE of the distributed system. All of this work requires knowledge of the

average data rate on each stream and the average load of each node. These values can

be obtained by profiling or derived statically in the case of SDF.

One of the first attempts to map SDF programs onto homogeneous multiprocessor ar-

chitecture is the work of Sih and Lee [SL93]. This approach includes four stages and

aims to divide the SDF program into a set of partitions, each of which is allocated to a

PE. The goal of this approach is to minimise the make-span which is the execution time

of a single periodic schedule and also is the inverse of the throughput. In the first stage,

a technique called declustering is employed to analyse the trade-off between parallelism

benefits and inter-PE communication costs. The result of this analysis is the set of

streams likely to be the connectors between the final partitions. Temporarily removing

these streams forms groups of nodes. Each group is called a basic cluster. In the second

stage, these clusters are repeatedly combined in a pairwise fashion to create a binary

Chapter 3. Related Work 44

tree whose leaves are basic clusters. The cluster combinations are formed by consider-

ing the inter-cluster communications and the parallelism relationships. Examining this

binary tree, the third stage starts with the top level and maps it to the first PE. It

then traverses the binary tree from the top level to the bottom one. At each level, each

cluster is decomposed into its sub-clusters which are also its child-nodes on the binary

tree. One of the sub-clusters is chosen to move to another PE so that the make-span is

minimised. The fourth stage considers breaking out even the basic components if it can

achieve better load balancing.

The approach in [CRA09] is designed to map a class of stream programs, which are

variants of Kahn process networks with some SDF properties, onto heterogeneous mul-

tiprocessor systems. The approach uses a cost function which is defined as the maximum

of the computational cost of each PE; and the communication cost between each pair

of PEs. This cost function turns out to be inversely proportional to the throughput.

The work proposes a 2-phase partitioning algorithm to minimise the cost function. The

first phase is to recursively bi-partition both the stream program and the platform of

PEs. Partitioning the stream program aims to minimise the cost function. Partitioning

the platform aims to maximise a function that balances two objectives. These equalise

the CPU capacity on each partition, and at the same time minimise the total intercon-

nection among partitions. The second phase, refinement, tries to get rid of bottlenecks

lying on the computation of PEs. This phase also considers some other constraints of

convexity. The authors claim that the convexity is a guideline to avoid long pipelines

and therefore to reduce the memory requirement as well as the latency. However, no

proof has been provided and also the experiment focuses on only the total execution

time without considering the throughput and latency.

Another approach is to use graph partitioning to map SPADE stream programs [GAW+08]

into processing elements (PEs) in SYSTEM S [KHP+09]. Note that these PEs are not

physical computational resources but are run-time software units. The approach includes

three components. The first component, PE Scheduler, tries to assign PE to physical

computation resources by using the longest processing time first scheme [Pin08]. The

second one, Oracle, returns the largest PE with more than one node. This PE is passed

to the third component, Graph Partitioner to be split into two non-empty PEs so that

the sparsest cut is minimised. The Graph Partitioner is implemented by using the ap-

proximation algorithm in [LR99]. Based on these three main components, the authors

develop two mapper variants. The first one is called Basic COLA that produces a feasi-

ble mapping where the computation requirement of each PE fits the CPU capacities of

the available physical computational resources; and at the same time the total communi-

cation among PEs is minimised. This mapper variant is implemented as a repetition of

three components Oracle, Graph Partitioner and PE Scheduler until a feasible schedule

Chapter 3. Related Work 45

is generated. The second one, Advanced COLA, generates a feasible mapping that meets

the set of user-specified requirements and has an optimised load balance. This mapper

consists of multiple phases, each of which tries to modify the current mapping to satisfy

one condition. The modification is implemented by employing three components Oracle,

Graph Partitioner and PE Scheduler.

As the first approach using ILP to partition the periodic schedule of SDF programs

on heterogeneous architectures, the work in [MG12] aims to optimise the throughput.

This work provides an ILP formulation based on the resource constraints, the scheduling

constraints and the dependency constraints whilst at the same time taking advantage of

stateless nodes at the granularity optimisation. The main goal of this work is to partition

the periodic schedule not at the node level but at the node invocation level, i.e. a node

can be executed by multiple PEs within a periodic schedule. The optimising target is

the make-span which is inversely proportional to the throughput. One drawback of this

approach is that the ILP formulation does not model well simultaneous multi-threads.

This leads to the limitation that the execution on each PE is sequential. This drawback

does not occur in the later work from the same authors. In this work, the authors use

the Uppaal model checker [ABB+01] to solve the problem instead of using ILP [MG13].

Among these above approaches, those that aim for scheduling SDF on distributed sys-

tems do not fit in the class of stream programs that this thesis focuses on. The approach

in [KHP+09] is similar to our work in Chapter 8 in that it also uses a graph partition

method to divide SPADE stream programs. However, unlike our work that targets gen-

eral heterogeneous distributed architectures, this approach is designed for SYSTEM S

with their own properties. Also the graph partitioning strategy used in [KHP+09] tries

to optimise the total communication cost which does not reflect the throughput as shown

in Chapter 8. The work in [CRA09] uses similar throughput reasoning to our work and

recognises the role of individual communication cost between each pair of partitions.

However, when trying to remove bottlenecks, this work investigates in only those lying

on the partition’s computation. Without any proof, this work considers the convexity

of the stream graph as a guideline to reduce the memory requirement as well as the

latency.

3.5 Graph Partitioning

As a stream program is composed of a set of nodes connected by streams, it can be

described as a graph, call stream graph. The problem of mapping a stream program

onto distributed platforms of PEs is similar to the problem of diving the stream graph’s

vertices into subsets that meet some requirement. This problem is known as graph

Chapter 3. Related Work 46

partitioning. Graph partitioning is a classical NP-hard problem [GJS76]. There has

been an enormous amount of work in this area. We limit ourselves here to only some

representative work.

Graph partitioning is commonly used in various applications such as VLSI design [SK72],

image processing [SM00], distributing workloads for parallel computations [Cha98], etc.

The classic requirement of graph partitioning consists of two criteria: balancing vertex

weight between subsets (called balance criterion), and minimising the total edge cut

among these subsets (called total cut criterion).

In graph partitioning, algorithms using iterative improvement are the most common.

Such an approach favours the balance criterion, i.e. divide the graph into subsets so that

their weights of vertices are approximately equal and then apply refinement methods to

move vertices between them to find the optimal total cut criterion. As a local search,

the iterative improvement starts with an initial solution and repeatedly performs local

perturbation of the current solution. For the local perturbation, iterative improvement

can employ greedy heuristics such as Kernighan-Lin (KL) [KL70] and its algorithmic

improvement Fiduccia-Mattheyses (FM) [FM82]. It can also use hill-climbing techniques

such as simulated annealing [KGV83].

As KL/FM was shown empirically to be efficient [Pot97, JAMS91], many of its variations

have been used for different purposes such as partitioning VLSI networks [Kri84], direct

k-way partitioning [Trä06], etc. In addition, KL/FM is usually used in local refine-

ments in recent multilevel schemes such as the work in [HL95a], METIS [KK98], JOS-

TLE [WC00], ParToH [cA99], KaFFPaE [SS12], SCOTCH [PR96]. These approaches

first coarsen vertices according to some matching criterion to create a smaller graph at

a new level. The coarsening stage is repeated until reaching the lowest level. An initial

partitioning phase is used to generate partitions. The uncoarsening phase walks up each

level, and applies local refinement based on KL/FM method. Employing the similar ba-

sic idea of multilevel partitioning, PARTY [MS04] instead uses another heuristic called

Helpful-Set which is derived by theoretical analysis. KaFFPaE also employs some other

local refinement techniques such as Max-Flow Min-Cut and genetic Algorithms.

Another approach, called spectral partitioning, optimises the total edge cut by using

the eigenvalues and eigenvectors of the graph. Unlike the iterative improvement, this

approach aims to find the global optimal point. Examples of this approach can be found

in [AKY99, PSL90]. This approach is known to find good solutions but is very slow to

run compared to iterative improvement.

Chapter 3. Related Work 47

To improve the spectral approach, there are some proposals to combine the balance

and total cut criteria into a single metric, for example Ratio Cut [HK06] and Sparest

Cut [ARV09, KRV06].

While most of the approaches focus on the balance and total cut criteria, they are

inefficient in some specialised domains. For example, Aspect Ratio [DPSW98] and the

Partition Shape [DPSW00] are shown to be a better metric for partitioning solvers

using the finite element method. Most of the partitioning strategies working on these

criteria use iterative improvement. Starting with a set of seeds, a growing method is

used to generate corresponding subsets. The centres of those subsets are used as seeds

for the next iteration. The growing method can be based on a greedy breadth-first

search [DPSW00], or based on the diffusive process [MMS09].

Shown in Chapter 5, the throughput of RSPs on distributed platforms does not de-

pend on the total cut but depend on individual cuts between each pair of partitions.

Traditional partitioning algorithms are therefore not applicable for the domain of this

problem.

3.6 Chapter Summary

In this chapter, we have presented a range of work related to three aspects: monitoring

parallel programs, scheduling stream programs, and graph partitioning.

To the best of our knowledge, there has been no specialised monitoring work for stream

programs. While there are several monitoring frameworks for parallel programs, these

do not capture the stream properties required to calculate the performance of RSPs

and to support scheduling of RSPs. Therefore we will propose in Chapter 6 a novel

monitoring framework aiming to capture internal behaviours of RSPs. The framework

provides information to calculate the performance for RSPs as well as to derive efficient

scheduling strategies.

In addition, this chapter presented two basic classes of scheduling algorithms: online and

offline. The class of online scheduling algorithms is then categorised into two subclasses:

centralised and distributed. Different scheduling strategies proposed later in this thesis

fall into the categories of centralised scheduling and offline scheduling. In particular,

Chapter 7 will describe centralised schedulers for RSPs on shared memory platforms.

Also, Chapter 8 will propose offline scheduling algorithms to map RSPs onto distributed

systems.

Chapter 3. Related Work 48

This chapter also included scheduling approaches for stream programs both on many-

core systems and distributed systems. As pointed out above, scheduling approaches

for SDF programs are not applicable to the general class of stream programs which is

the target of this thesis. Some other approaches aim for some special types of stream

programs, for example the approach in [KHP+09] is specialised for SPADE stream pro-

grams. There are some approaches that attempt to address general stream programs;

however they are either not fully evolved like [ZLRA08], or limited by some constraints

like [ME13] and [TE92]. Aiming to support general RSPs, our work in Chapter 7 pro-

vides scheduling strategies for shared memory platforms.

Finally, due to the conceptual similarity between the problem of mapping stream pro-

grams onto distributed systems and the problem of graph partitioning, we included some

representative algorithms for graph partitioning. While traditional graph partition algo-

rithms aim to obtain load balance first and then minimise the total cut, the throughput

of RSPs is a function that combines both load balance and individual cuts. These al-

gorithms therefore are not applicable to optimise the throughput of RSPs. Our work

in Chapter 8 introduces new graph partition algorithms to map RSPs onto distributed

system so that the throughput gets optimised.

Chapter 4

Use Cases

In this chapter, we describe the use cases which we use in Chapter 5, Chapter 6, Chap-

ter 7, Chapter 8 and Chapter 9 to experimentally evaluate the contributions of this

thesis. These use cases are chosen for their common usages in the context of reactive

systems. They are also implemented as stream programs using the language S-Net (see

Chapter 2). Besides the functional description of these use cases we also describe the

concurrency available by the concrete implementation in S-Net.

4.1 Data Encryption Standard - DES

The first use case is a DES cipher application [DES77]. This use case is denoted as DES.

Input for this use cases is a sequence of messages, each of which contains a number of

plaintext blocks and their corresponding keys. The S-Net implementation of this use

case is shown in Figure 4.1. The application contains a main structure which performs

the DES encryption. The main structure implements the three stages of the encryption

process. The box InitialP applies the initial permutation and splits a block of bits

into two blocks of equal size. The RoundP box implements the actual ciphering that is

applied to the two blocks. As shown in Figure 4.1, 16 instances of this box are connected

in a pipeline manner to apply 16 rounds of ciphering to the bit blocks. The box FinalP

joins up the two blocks into one cipher text block and applies the final permutations.

The execution time of each box varies depending on the size of input messages, i.e. the

number of plaintext blocks within a message.

The main structure is connected by a parallel replicator. This helps to increase the level

of concurrency by generating a number copies of the main structure and connecting

them in parallel. The number of copies can be defined by the user or automatically

assigned depending on the number of resources on the platform.

49

Chapter 4. Use Cases 50

net Des

{

box initP((PlainTxt , Key , <node >) -> (Txt , Key , <round >));

box subRound ((Txt , Key , <round >) -> (Txt , Key , <round >));

box finalP ((Txt , Key , <round >) -> (CipherTxt));

} connect

(

initP .. subRound .. subRound .. subRound .. subRound .. subRound .. subRound

.. subRound .. subRound .. subRound .. subRound .. subRound .. subRound

.. subRound .. subRound .. subRound .. subRound .. finalP

)!!<node >;

(a) S-Net code

DesRound::* FinalP*::*
Txt,Key,<round>!!
!!!
CipherTxt!

Ini1alP*::*
PlainTxt,Key,
<node>!!!!!!
Txt,Key,<round>!!

DesRound::*
Txt,Key,<round>!!
!!!
Txt,Key,<round>!!

16!“DesRound”!boxes!

…!

16!“DesRound”!boxes!

… …

!!<node>!

Txt,Key,<round>!!
!!!
Txt,Key,<round>!!

DesRound::* FinalP*::*
Txt,Key,<round>!!
!!!
CipherTxt!

Ini1alP*::*
PlainTxt,Key,
<node>!!!!!!
Txt,Key,<round>!!

DesRound::*
Txt,Key,<round>!!
!!!
Txt,Key,<round>!!

…! Txt,Key,<round>!!
!!!
Txt,Key,<round>!!

(b) S-Net structure

Figure 4.1: S-Net implementation of the DES encryption

4.2 Ant Colony Optimization - ANT

This use case implements a solver for combinatorial optimisation problems based on the

behaviour of ants [DS04]. We denote this use case as ANT. Several ants iteratively con-

struct solutions to a given problem and leave a pheromone trail behind. Subsequent ants

use these trails as a guide and base their decisions on it, refining previously found good

solutions. The S-Net implementation of the ANT use case is shown in Figure 4.2. The

ants are simulated by the constructSolution box. The amount of parallel instances

of this box determines the number of ants that are concurrently working on solutions.

The subsequent stage pickBest analyses the solution of each ant and determines the

best one, which is used to update the pheromone matrix that guides the ants during

the next iteration. The iterative process is implemented by means of a ??-combinator

that unfolds instances of the solver into a multi-staged pipeline. Concurrency may be

exploited in space, by means of parallel solver instances, and in time, by overlapping the

execution of multiple stages of the pipeline.

Chapter 4. Use Cases 51

net ant {

box initialise(

(fname , <max_it >, <num_ants >)

-> (results , eval_data , tau , <max_it >, <num_ants >, <ant_id >)

| (best_result , best_t , <seen_ants >));

box constructSolution(

(results , eval_data , tau , <max_it >, <num_ant >, <ant_id >)

-> (results , eval_data , tau , fit , <ant_id >));

box pickBest(

(best_result , best_fit , <seen_ants >, results , eval_data , tau , fit , <ant_id >)

-> (results , eval_data , tau , <max_it >, <num_ants >, best_result , best_fit)

| (best_result , best_fit , <seen_ants >));

box update(

(results , eval_data , tau , <max_it >, <num_ants >, best_result , best_fit)

-> (results , eval_data , tau , <ant_id >, <num_ants >)

| (best_result , best_fit , <seen_ants >)

| (best_result , best_result , <done >));

}

connect initialise ..

(

(constructSolution!<ant_id > | [])..

(

[| {best_result , best_fit , <seen_ants >},

{results , eval_data , tau , fit , <ant_id >} |]

.. (pick_best | [])

) ** {results , eval_data , tau , <max_it >, <num_ants >, best_result , best_fit}

.. update

) ** {<done >};

(a) S-Net code

ini#alise(::(
fname,'C'''!''
R,'C,'<ant_id>'
|''A!

Type'R'='{results,'eval_data,'tau}'Type'C'='{<max_it>,'<num_ants>};'Type'A'='{best_result,'best_fit,'<seen_ants>};'

constructSolu#on(::(

R,C,'<ant_id>'''!''
R,'fit,'<ant_id>'

pickBest(::(
A,R,'fit,'<ant_id>'!''
R,C,'best_result,'best_fit''
|'A'!
'

update::(
R,C,best_result,best_fit''!''
R,'C,'<ant_id>'
|''A |(best_result,'best_fit,'
<done>!

[|(sync(|](::(
{A}!

{R,'fit,'<ant_id>} !

**{R,C,'best_result,'best_fit}' **{<done>}'

.(.(.(

constructSolu#on(::(

R,C,'<ant_id>'''!''
R,'fit,'<ant_id>'

!(<ant_id>((

(b) S-Net structure

Figure 4.2: S-Net implementation of the ant colony optimisation

Chapter 4. Use Cases 52

4.3 Ray Tracing - RT

Ray tracing is a technique for generating 2D images of a 3D scene by tracing the paths

of light from the eye of an imaginary observer through pixels in an image plane and

simulating the effects of their counters with virtual objects [Whi80]. This use case is

denoted as RT.

Figure 4.3 shows the S-Net implementation of a distributed ray tracer. The imple-

mentation uses a fork-join pattern where the original scene that is to be rendered is

broken down into several sub-scenes by the splitter box. Parallel solver instances

work on the sub-scenes concurrently; the number of parallel solvers is dynamic and may

be adapted through a tag parameter. The sub-scenes are collected and merged into a

global result by the merger box before the genImg box transforms the computed scene

into an image. The execution time of each box is dynamic depending on the size of its

input messages.

net raytracing

{

box splitter ((sn, <nodes < <tasks >)-> (sect , <node >));

box solver ((sect , <node > -> chunk));

box merger ((chunk) -> (pic));

box genImg ((pic) -> (img)

} connect splitter .. solver!@<node > .. merge .. genImg;

(a) S-Net code

spli%er(::(
sn,!<nodes>,!<tasks>!!!!
sect, <node> !
!

merger(::(
chunk!!!!
pic!
!

genImg(::(
pic !!!
img!
!

solver(::(
sect,!<node>!!!!
chunk!
!

solver(::(
sect,!<node>!!!!
chunk!
!

...(

!<node>!

(b) S-Net structure

Figure 4.3: S-Net implementation of the ray tracing application

4.4 Fast Fourier Transform - FFT

Fast Fourier transform is a well known algorithm to compute the discrete Fourier trans-

form. We denote this use case as FFT. The S-Net implementation of this algorithm is

Chapter 4. Use Cases 53

shown in Figure 4.4. The application contains a main structure which performs the FFT

algorithm. The main structure includes the initialiser box which allocates memory

Y for to store temporary values during the transformation, generates the series of sine

and cosine waves W, initialises cnt stages as zero, and decides the step size step for

each following FFT round. The round box applies step stages, each of which calculates

the N/2 frequency spectra from N frequency spectra from the previous stage. This box

also increases cnt stages by step. The round box is consecutively applied by means

of a ?-combinator until the all stages have been calculated, i.e. cnt stages equals to

n stages. The execution time of each box varies depending on the size of the input

message, i.e. the number of frequency spectra.

net fft

{

box initialiser(

(X, <n_stages >, <node >)

-> (X, Y, W, <n_stages >, <cnt_stage >, <step >));

box round(

(X, Y, W, <n_stages >, <cnt_stage >, <step >)

-> (X, Y, W, <n_stages >, <cnt_stage >, <step >));

} connect

(

initaliser .. round*<cnt_stage = n_stages >

)!!<node >;

(a) S-Net code

!!

!!
round::'
X,Y,Z,!<n_stages>,!<node>,<step>!
!!!
X,Y,Z,!<n_stages>,!<node>,<step>!

ini)aliser'::'
X,<n_stages>,!<node>!!!!!
X,Y,Z,!<n_stages>,!<cnt_stage>,<step>!

… …

!!<node>!

*{<cnt_stage!=!n_stages>}!

!!
round::'
X,Y,Z,!<n_stages>,!<node>,<step>!
!!!
X,Y,Z,!<n_stages>,!<node>,<step>!

ini)aliser'::'
X,<n_stages>,!<node>!!!!!
X,Y,Z,!<n_stages>,!<cnt_stage>,<step>!

*{<cnt_stages!=!n_stages>}!

(b) S-Net structure

Figure 4.4: S-Net implementation of the FFT algorithm

The main structure is connected by a parallel replicator. This helps to increase the level

of concurrency by generating a number copies of the main structure and connecting

Chapter 4. Use Cases 54

them in parallel. The number of copies can be defined by the user or automatically

assigned depending on the number of resources on the platform.

4.5 Color Histogram Calculation - HIST

net histogram

{

box split((Img , <node >) -> (subImg));

box calHist ((subImg) -> (hisImg));

} connect

(

splitter .. (calHist | calHist | calHist);

)!!<node >;

(a) S-Net code

spli%er(::(
Img,<node>!!!!
subImg !

!!<node>!

calHist::(
subImg!!!!
hisImg!
!

calHist::(
subImg!!!!
hisImg!
!

calHist::(
subImg!!!!
hisImg!
!

(b) S-Net structure

Figure 4.5: S-Net implementation of the application of histogram calculation

In this use case, the application receives input as digital images and calculates their

RGB color histograms. This use case is denoted as HIST. The S-Net implementation

is shown in Figure 4.5. The implementation employs a parallel replicator to generate

instances of the main structure which performs the main calculation of the application.

The number of instances depends on either the user’s input or the number of number

of resources on the platform. The execution time of each box is dynamic depending on

the size of input images.

The main structure of this application starts with a splitter box which separates

RGB channels of the image. Each of these three channels is passed to a calHist box to

calculate the color histogram.

Chapter 4. Use Cases 55

4.6 Image Filtering - IMF

net filter

{

box splitter ((Img , <node >) -> (subImg , <tag >));

box filter ((subImg , <tag >) -> (subImg , <tag >));

box merger ((subImg , <tag >) -> () | (Img));

} connect

(

splitter .. filt!!<tag > .. merger

)!!<node >;

(a) S-Net code

!!<node>!

spli,er.::.
Img,!<node>!!!!
subImg,<tag> !
!

merger.::.
subImg,!<tag>!
!!!
{}|Img!
!

filter::.
subImg,!<tag>!!!!
subImg,!<tag>!!

filter::.
subImg,!<tag>!!!!
subImg,!<tag>!!

....

!!<tag>!

(b) S-Net structure

Figure 4.6: S-Net implementation of the image filter application

This is an application to apply different filters on image inputs. Figure 4.6 shows the

S-Net implementation of this application. The idea is to split the image into several

sub-images and apply the filters on each sub-image concurrently. The main structure of

the application contains the splitter box to divide the input image into sub-images.

The number of sub-images varies depending on the image size. Sub-images are assigned

with different tag values so that they are passed to different instances of the filter box.

This box applies the filters on each sub-image. Filtered sub-images are then aggregated

by the merger box. This box returns the output image when all its sub-images have

been received. The execution time of each box varies depending on the size of the input

image.

To increase the level of concurrency, the implementation employs a parallel replicator to

generate multiple instances of the main structure. The number of instance can be defined

by the user or can be automatically derived depending on the number of resources on

the platform. The application is denoted as IMF.

Chapter 4. Use Cases 56

4.7 Object Detecting - OBD

net object_detector

{

box clone((Img , <node >) -> (Img , <tag >));

box detector ((Img , <tag >) -> (Img , Objs));

box marker ((Img , Objs) -> () | (Img));

} connect

(

split .. (detector!!<tag >) .. marker

)!!<node >;

(a) S-Net code

!!<node>!

clone::+
Img,!<node>!!!!
Img,<tag> !
!

marker::+
Img,Objs! !!!
{}|Img!
!

detector::+
Img,<tag>!!!!
Img,Objs!

detector::+
Img,<tag>!!!!
Img,Objs!

...+

!!<tag>!

(b) S-Net structure

Figure 4.7: S-Net implementation of object detector application

The main function of this use case is to detect a set of objects on input images. The

use case is denoted as OBD. As shown in Figure 4.7, the S-Net implementation consists

of a parallel replicator to create multiple copies of the main structure which perform

object detecting concurrently. Similar to the above use case, the number of copies can

be defined by the user or can be automatically derived from the number of resources on

the platform.

The main structure starts with the clone box to create multiple copies of the image.

When deployed on shared memory platforms, each copy of the image is a pointer to the

actual image. Each copy is coupled with a tag value to indicate the type of objects to be

detected. The pair of image copy and tag value is sent to the detector box. Depending

on the tag value, this box uses an appropriate cascading classifier to search for the

desired objects in the image. The positions of detected objects are then used by the

marker box to mark the object in the original image. This box returns the output image

when all objects have been marked. The execution time of each box varies depending

on the size of input images and the number of detected objects that they contain.

Chapter 4. Use Cases 57

4.8 Moving Target Indicator - MTI

net mtistap

{

box generateClutter ((clutter_rnd_array_2d , <node >) -> (array_2d));

box echoRaf ((array_2d) -> (array_3d));

box noise((array_3d , noise_rnd_array_1_3d , noise_rnd_array_2_3d) -> (array_3d));

box pulseCompression ((array_3d) -> (pulse_array_3d));

box X_3((input_3d_1) -> (array_3d));

box covariance ((array_3d) -> (array_4d));

box X_2((input_3d_2) -> (array_3d_signal));

box X_4((array_4d) -> (array_4d));

box averageCov ((array_4d) -> (array_3d));

box matInversion ((array_3d) -> (inv_array_3d));

box calcSteerVect ((empty_array_3d) -> (calc_steer_array_3d));

box calcFilter ((inv_array_3d , calc_steer_array_3d) -> (array_4d_filter));

box applyFilter ((array_3d_signal ,array_4d_filter) -> (array_4d_filtered));

box X_6((array_4d_filtered) -> (array_4d_filtered));

box calcCohCoefs ((empty_array_2d) -> (coh_array_2d));

box cohSum ((array_4d_filtered , coh_array_2d) -> (sum_array_3d));

box averagePower ((sum_3d_1) -> (array_1d));

box addEdges ((sum_3d_2 , array_1d) -> (array_3d));

box thresholding ((array_3d) -> (threshold_array_3d));

} connect

(

[{clutter_rnd_array_2d , noise_rnd_array_1_3d , noise_rnd_array_2_3d ,

empty_array_3d , empty_array_2d}

->

{clutter_rnd_array_2d , noise_rnd_array_1_3d , noise_rnd_array_2_3d };

{empty_array_2d };

{empty_array_3d}]

..

(calcCohCoefs |

(

(calcSteerVect |

(generateClutter .. echoRaf .. noise .. pulseCompression

.. [{pulse_array_3d} ->

{input_3d_1 = pulse_array_3d };

{input_3d_2 = pulse_array_3d}]

.. (

X_2 |

(X_3 .. covariance .. X_4 .. averageCov .. matInversion)

)

.. ([| {inv_array_3d}, {array_3d_signal} |]

*{ inv_array_3d , array_3d_signal })

)

)

.. ([| {inv_array_3d ,array_3d_signal },{ calc_steer_array_3d} |]*

{inv_array_3d ,array_3d_signal ,calc_steer_array_3d })

.. calcFilter .. applyFilter ..X_6

)

)

.. [|{ array_4d_filtered },{ coh_array_2d }|]*{ array_4d_filtered , coh_array_2d}

.. cohSum

.. [{sum_array_3d}->{sum_3d_1=sum_array_3d ,sum_3d_2=sum_array_3d}]

.. averagePower .. addEdges .. thresholding

)!!<node >;

(a) S-Net code

This use case aims to detect moving objects on the ground from an aircraft. The

input is a periodic sequence of echo radar pulses from the ground. The application

Chapter 4. Use Cases 58

filter_1

calcCohCoef Sync cohSum

filter_2

averagePower addEdges thresholding

calcSteerVect

calcFilter

applyFilter

X_6

generateClutter echoRaf noise pulseCompression

filter_3

X_2

X_3

X_4

covariance

averageCov

matInversion

Sync

Sync

1

1

1

!!<node>!

1 “Sync” is a combination of a synchro-cell inside a serial replicator
to merge the outputs from two branches of the prior parallel compositor

(b) S-Net structure

Figure 4.8: S-Net implementation of the moving target indicator application

uses the method of Space Time Adaptive Processing (STAP) to process these radar

signals to distinguish moving objects from others. The S-Net implementation is shown

in Figure 4.8. To increase the parallelism, the application is implemented with a parallel

replicator to create multiple instances of the main structure. A number of instances

is either defined by the user or generated dynamically depending on the number of

resources available. The detailed implementation of each box in the main structure can

be found in [PHG+10].

4.9 Monte Carlo Option Price - MC

This application calculates option prices using the Monte Carlo method [BS73]. We

denote this application as MC. The S-Net implementation of the application is shown

in Figure 4.9. The png box generates random numbers while the vcall box calculates

the underlying assets. The acc box accumulates all these underlying assets. It then

Chapter 4. Use Cases 59

net OptionPrice

{

box png((<M>) -> (SUM , <count >, <M>) | (N));

box vcall((N) -> (V));

box acc((V, SUM , <count >, <M>) -> (SUM , <count >, <M>) | (CALL));

} connect

png .. (vcall | []) ..

(

([|{V}, {SUM , <count >, <M>}|] .. (acc | [])

) **{<CALL >});

(a) S-Net code

vcall%::%
N !!!!
V!

[|%sync%|]%::%
V!
Sum,<cnt>,<M>!

acc%::%
V,Sum,<cnt>,<M>!!!!
V,<cnt>,<M>!
|CALL!

**{CALL}!

png%::%
<M>!!!!!!
Sum,<cnt>,<M>!
| N!

(b) S-Net structure

Figure 4.9: S-Net implementation of the Monte Carlo option price application

calculates the average value and produces the option price by applying the discount

factor.

Note that this implementation does not map well to RSPs as it has too fine-grained of

concurrency, i.e. each box contains a very small amount of computation. Usually this

kind of implementation is not sufficient in stream programming as the cost of stream

communication surpasses the benefits of concurrency. This use case is included here as

it will be used in Chapter 6 to show the monitoring overhead in the extreme case.

Chapter 5

Performance Analysis for

Reactive Stream Programs

This chapter investigates the throughput and latency which are common performance

metrics in the context of RSPs. The focuses include the formal definitions of these two

metrics, the relationship between them and the arrival rate of input data, and their

quantitative formulas on both shared-memory and distributed systems.

5.1 Performance Metrics

RSPs are similar to communication networks in the sense that they transfer messages

from one end to another via interconnected nodes. For this reason, the performance

of RSPs are evaluated with similar metrics to communication networks, i.e. throughput

and latency. However, unlike communication networks, nodes in RSPs contain exten-

sive computations. These computations need to be executed on a mutual platform of

physical resources (e.g. CPUs). This chapter investigates throughput and latency and

their relations in the context of RSPs.

5.1.1 Throughput

In similarity with communication networks, the throughput of RSPs is the rate of com-

pletely processing external input messages. Throughput is measured in messages per

time unit. In contrast to communication networks, nodes in an RSP perform their com-

putations on a shared platform of physical resources. Thus the throughput of RSPs

depends highly on the scheduling policy.

60

Chapter 5. Performance Analysis for Reactive Stream Programs 61

5.1.2 Latency

The latency is the delay experienced in the system, i.e. the delay to transfer one message

from one entry point to an exit point. In an RSP, the latency of an external input

message is the time interval from when the message arrives at the program to when it

is completely processed.

On a platform with shared physical resources, the latency of an external input message

also depends upon the scheduling policy deciding when a node can perform its compu-

tations. Once an external input message arrives, depending on the scheduler it may or

may not be processed immediately. In the latter case, the message has to wait in input

queues. The length of input queues can grow infinitely if the external input messages

arrive faster than the RSP can consume. Similarly, intermediate messages may not be

processed immediately after produced. They may have to wait inside streams, for ex-

ample because of physical resource limitations; or because of the scheduling policy; or

because processing them requires synchronising with other messages which are not yet

available.

These two waiting periods together with the computation period form the latency. As

the period of waiting in input queues can be separated from two others, we propose

three different types of latency as follows:

• Queuing Latency is the time interval an external input message waits in one of the

input queues.

• Processing Latency is the time interval from when an external input message is

consumed by the RSP until it is completely processed.

• Overall Latency is the sum of queuing latency and processing latency.

All types of latency may vary for different external input messages for different reasons.

One reason is that each message may require a different amount of computation and

therefore requires a different amount of processing time. For example, the Image Filter

application requires more time to process a larger image. Another reason is the scheduler

which decides how long a message has to wait before getting processed. For the above

reasons, the average latency is usually used to evaluate the performance of an RSP. The

average latency is calculated as the arithmetic mean of latencies of all external input

messages. In the context of this thesis, latency is used to indicate the average latency

unless it is explicitly stated as latency of a specific message.

Chapter 5. Performance Analysis for Reactive Stream Programs 62

5.2 Performance with Different Arrival Rate

5.2.1 Theoretical Analysis

As unidirectional streams can be considered as queues of messages which are required

to pass through connected nodes, an RSP can be considered as a queuing system. Let

λ be the arrival rate at which external input messages arrive to the RSP. This section

discusses the relations between the arrival rate and the performance in queuing systems

in general and in RSPs specifically.

There are three ranges of the the arrival rate with different effects on the throughput and

latency. These ranges are shown in Figure 5.1 and explained in more detail as follows.

Let Mcp be the average number of external input messages currently processed by the

RSP.

La
te

nc
y

Th
ro

ug
hp

ut

Input Rate

Trough Latency

Peak Throughput

IRtroughL IRpeakTp

Latency
Throughput

Range λ TP L

Underuse [0, λTroughL) λ Ltrough

Operational [λtroughL, λpeakTP] λ bounded
Overload (λpeakTP ,∞) TPpeak ∞

Figure 5.1: Theoretical variation of latency and throughput in different arrival rate
ranges

Underuse Range. At the time t = 0, when the first external input message arrives it is

processed exclusively by all physical resources. The message’s latency therefore reaches

its smallest value. If λ is low enough so that Mcp is not greater than one, every external

input message once arrived is processed immediately and exclusively by all physical

resources. The latency is the smallest possible value for every message. The average

latency is therefore smallest and this value is called trough latency (Ltrough).

Chapter 5. Performance Analysis for Reactive Stream Programs 63

In this scenario, any external input message, once it has arrived, is completed after a

period of Ltrough. The throughput therefore equals the arrival rate of input messages,

i.e. λ.

The highest value of λ at which Mcp is still not greater than one and the latency is as

low as Ltrough is called λTroughL. The range [0, λTroughL) is called the underuse range

as there are time periods where physical resources are inactive waiting for messages.

Operational Range. When λ exceeds λTroughL, Mcp is greater than one and external

input messages are no longer processed exclusively. Instead the processing of external

input messages tends to overlap. When an external input message arrives, the physical

resources are currently processing other messages. The message has to share resources

with other messages or even has to wait in input queues. The latency is therefore higher

than Ltrough.

If Mcp is bounded, the latency L is also bounded. In this case, an external input message

once arrived is completed after a time period of L. As with the underuse range, the

throughput in this range also equals the arrival rate λ.

The highest value of λ at which Mcp is still bounded defines the upper limit of the

operational range. At this value of the arrival rate, the system reaches its highest

throughput called peak throughput (TPpeak). This TPpeak value is also the maximum

arrival rate that the system can cope with. If the arrival rate exceeds this value, the

system will get saturated and that causes Mcp to become infinite. This arrival rate

is called λpeakTP . We therefore have the operational range as [λTroughL, λpeakTP], and

λpeakTP is equivalent to TPpeak.

Overload Range. The last range is defined as (λpeakTP ,∞). Once λ is higher than

λpeakTP , Mcp becomes infinity. This means external input messages on average have

to wait for an infinite amount of time before being processed. This makes the latency

infinite.

In this circumstance the system cannot consume external input messages as fast as the

arrival rate. The system’s throughput therefore cannot exceed TPpeak. As the system

is saturated and cannot keep up with the requested arrival rate, this range is called the

overload range.

5.2.2 Experimental Verification

To verify the theoretic analysis above, an experiment is carried out with the DES bench-

mark which applies DES encryption on messages of 8 KB. The benchmark is performed

Chapter 5. Performance Analysis for Reactive Stream Programs 64

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●● ●●●●●● ●● ● ●●●● ●● ●● ●● ●●●

0.001 0.002 0.003 0.004 0.005 0.006

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

Arrival Rate λ (messages/ms)

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

λpeakTP ≈ 0.0048

(a) DES on DS scheduler

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

● ● ● ● ● ●

●

●
● ● ● ● ●

0.01 0.02 0.03 0.04 0.05 0.06

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

Arrival Rate λ (messages/ms)

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

λpeakTP ≈ 0.01688

(b) DES on CS-dbp scheduler

Figure 5.2: Throughput within different ranges of arrival rate

Chapter 5. Performance Analysis for Reactive Stream Programs 65

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

0.001 0.002 0.003 0.004 0.005

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Arrival Rate λ (messages/ms)

O
ve

ra
ll

La
te

nc
y

(m
s)

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

0
10

20
30

40

Q
ue

ui
ng

 L
at

en
cy

 (
m

s)

●

●

Overall Latency
Queuing Latency

λpeakTP ≈ 0.0048
λtroughL ≈ 0.0033

(a) DES on DS scheduler

● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ●●● ●

0.006 0.008 0.010 0.012 0.014 0.016

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Arrival Rate λ (messages/ms)

O
ve

ra
ll

La
te

nc
y

(m
s)

● ●●●

●

0
10

20
30

40

Q
ue

ui
ng

 L
at

en
cy

 (
m

s)

●

●

Overall Latency
Queuing Latency

λpeakTP ≈ 0.01688
λtroughL ≈ 0.01581

(b) DES on CS-dbp scheduler

Figure 5.3: Overall latency and queuing latency in the underuse and operational
ranges

Chapter 5. Performance Analysis for Reactive Stream Programs 66

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

40
0

41
0

42
0

43
0

44
0

45
0

Messages

La
te

nc
y

(m
s)

Underload Range: λ ≈ 0.01246 messages/ms

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

40
0

42
0

44
0

46
0

Messages

La
te

nc
y

(m
s)

Operational Range: λ ≈ 0.01688 messages/ms

●
●

●●●

●●●
●
●●
●
●●●
●
●
●

●
●●
●●●
●
●

●
●
●

●

●
●●
●●●
●

●

●●●

●

●●●
●●●●

●

●●●●
●●
●

●
●●
●
●

●●
●

●

●●

●●

●
●
●●
●●

●●

●●●●●●
●
●

●●
●●
●
●
●
●

●
●

●

●

●
●

●

●

●●

●
●
●●

●

●

●●

●
●●●

●

●

●●

●
●
●●

●

●

●●

●●

●
●●

●

●●

●
●

●
●●

●
●●

●●●
●

●

●
●●

●
●

●

●
●

●

●
●

●●●●
●
●

●●
●●
●●
●●

●
●

●●

●●

●●

●●

●●

●
●

●
●

●●●
●

●●

●●

●

●
●
●
●
●

●●
●
●

●
●

●
●
●●

●
●

●

●
●
●

●
●

●
●

●●

●

●

●
●
●

●
●

●

●

●

●
●
●
●●
●
●●
●●

●
●

●
●

●
●

●●
●

●

●
●
●

●
●
●●●

●
●

●●

●●●
●

●●

●●

●

●
●●
●●

●●

●●

●

●

●●
●
●

●
●
●
●

●●

●●●
●

●
●

●

●
●

●

●
●
●●●

●

●

●
●●●●

●
●

●

●
●
●●●

●●

●●

●●

●

●

●●
●
●
●●
●
●

●●
●

●

●
●

●
●

●

●

●●

●

●

●●

●●

●●

●
●
●
●●●

●
●

●●●●

●
●

●●

●
●

●
●

●●
●

●
●
●●●

●
●
●●

●

●
●●

●●

●

●

●●

●●

●
●

●●●
●
●
●●●

●

●●
●

●
●●●

●
●
●

●

●●●
●●●
●
●

●

●

●
●

●

●
●●

●●
●●

●

●

●●

●●

●
●

●
●

●
●

●
●
●●

●
●

●
●

●●●
●

●●●●●●
●

●

●●

●
●

●
●

●●

●

0 100 200 300 400 500

40
0

60
0

80
0

10
00

Messages

La
te

nc
y

(m
s)

Overload Range: λ ≈ 0.01716 messages/ms

Figure 5.4: Overall latency of individual external input messages of DES on CS-dbp

with two different schedulers: the default scheduler of LPEL, and the centralised sched-

uler with demand-based priority. The former is denoted as DS and a detailed description

is presented in Section 2.5. The later is denoted as CS-dbp and a detailed description

is presented in Section 7.2.

Figure 5.2 is shown to verify the theoretical analysis of the throughput behaviour in

different ranges of λ. The figure demonstrates the throughput of the DES application

with different λ values. The figure shows that for both schedulers CS-dbp and DS,

the throughput increases and is approximately equivalent to λ. When the arrival rate

reaches the value of λpeakTP , the throughput stops increasing and stays stable instead.

This matches the throughput behaviour as shown in Figure 5.1 where the throughput

Chapter 5. Performance Analysis for Reactive Stream Programs 67

is equivalent to λ in the underuse and operational range. In the overload range where

λ exceeds the λpeakTP , the throughput remains unchanged. The throughput behaviour

shown in Figure 5.2 therefore verifies the theoretical analysis discussed in Section 5.2.1.

Figure 5.3 shows the empirical evidence supporting the theoretical analysis of the la-

tency behaviour in the underuse and operational ranges. The figure shows the overall

latency and queueing latency of both schedulers CS-dpb and DS. The overall latency and

queueing latency values are obtained by observing the first 500 external input messages

of the DES application. Figure 5.3 shows that on both schedulers, the overall latency

and queuing latency the overall latency and queuing latency are bounded while λ is in

the underuse and operational ranges. Within the underuse range, the queuing latency

is approximately zero and the overall latency remains stable until λ reaches the value of

λTroughL. In the operational range [λTroughL, λpeakTP], the queuing latency is no longer

close to zero and increases when λ increases. The overall latency also rises in this range.

The behaviour of queuing and overall latency shown in Figure 5.3 verifies the theoretical

analysis in Section 5.2.1.

Figure 5.4 shows the empirical evidence supporting the theoretical analysis of the latency

behaviour in the overload range. According to the analysis in Section 5.2, the latency

in the operational range is infinity. The latency of external input messages increases

gradually and eventually reaches infinity. As it is not feasible to observe the latency

of an infinite number of external input messages, we observe the trend in latency of

individual external input messages. Figure 5.4 shows the latency of 500 continuously

arriving external input messages within three ranges of arrival rate. In the underuse and

operational ranges, the latency fluctuates but the general tendency is stable. In contrast,

the latency in the overload range tends to increase. This shows that the latency will then

eventually reach infinity. And this confirms the theoretical analysis in Section 5.2.1.

5.3 Quantitative Analysis of Performance

In this section we present quantitative analysis of throughput and latency of RSPs. This

will be used later as a guideline for the scheduler to optimise the performance. An RSP

receives an infinite sequence of external input messages from the environment, processes

them and sends out their outputs. When an external input message arrives and the RSP

is too busy to take the message in, the message has to wait in the input queue. Based

on this behaviour, an RSP can be considered as a queuing system. We consider here

only stable systems where the arrival rate does not exceed the peak throughput and the

number of external input messages inside the RSP Mcp is bounded. That is when the

arrival rate is in the underuse and operational ranges.

Chapter 5. Performance Analysis for Reactive Stream Programs 68

5.3.1 Throughput Analysis

5.3.1.1 Uniformed Shared Memory Platforms

Consider an RSP deployed on a uniformed shared memory platform consisting of N

homogeneous CPU cores for a time interval P = [0, p].

After the time interval P , M external input messages have been completed and Mcp ex-

ternal input messages are partly processed. Let the average computational time required

to complete one external input message be C. The total computational time required

to complete these M messages is CM = M ·C. The total computational time for partly

processing these messages is CMcp. Since Mcp is bounded, Mcp is bounded and so is

CMcp.

During the interval P, the total processing time of N cores is τ = N · p. The average

idling time per core is W and the average overhead time per core is O. The relative

idling time of the system is defined as W̃ = W
p . This is the average amount of CPUs

which are idle. Similarly the relative overhead time is Õ = O
p and this is the average

amount of CPUs on overhead work.

On shared memory platforms, stream transfers are simply memory access operations

and therefore are negligible compared to node computations. It is plausible to consider

that N cores spend the period P only for the computations of M completed messages;

the computations of Mcp partly processed messages; and idling time. We have:

τ = N · p

= CM + CMcp +W +O

= M · C + CMcp + W̃ · p+ Õ · p

Therefore,

M =
N · p− CMcp − (W̃ + Õ) · p

C

Chapter 5. Performance Analysis for Reactive Stream Programs 69

The throughput over the period P is:

TP =
M

p

=
N · p− CMcp − (W̃ + Õ) · p

C · p

=
1

C
·
(
N −

CMcp

p
−
(
W̃ + Õ

))

When the RSP processes infinite external input messages, the overall throughput is

obtained when p → +∞. As CMcp is bounded, limp→+∞
CMcp

p = 0. Therefore, the

overall throughput is:

TPp→∞ =
(N − W̃ − Õ)

C
(5.1)

5.3.1.2 Distributed Platforms

On shared memory platforms, the communication cost between nodes is negligible. This

makes the throughput independent from where each task is executed. When deploying

RSPs on distributed platforms, the communication cost becomes significant and the

throughput formula in Equation 5.1 is no longer applicable.

Consider a distributed platform consisting of multiple PEs, each of which is a uniform

shared memory platform. When deploying an RSP on such a platform, an intuitive

approach is to divide the set of tasks of the RSP into multiple subsets, and assign them

to separate PEs of the platform. Each PE has its own local scheduler for their assigned

tasks. This approach only works for static RSPs with fixed structures during runtime.

For dynamic RSPs, statistical observation of changing structure can be used to sta-

bilise the RSP before applying this approach. In this section, we present a quantitative

evaluation of throughput for distributed platforms.

A distributed platform is represented as an undirected graph H = (R,L) where R is

the set of vertices, also the set of PEs; and L is the set of edges, each of which is the

communication link between PEs. This graph is called target graph. Each PE, R, has

weight w(R), which equates to its number of cores. A communication link between

two processing elements Ri and Rj is denoted as LRiRj and has weight w(LRiRj) which

equates to its bandwidth in Byte/s.

As detailed in Section 2.4, each task is a representation for an instance of a node and

they communicate with each other via uni-directional streams. The RSP therefore can

be represented as a directed graph G = (T ,S) where T is the set of tasks, and S is the

set of streams. This graph is called task graph. The computation weight of each task T

Chapter 5. Performance Analysis for Reactive Stream Programs 70

in T is defined as the average time that T requires to performs its contribution to an

external input message. This amount of time depends on the PE onto which the task

is mapped. The computation weight of task T on processing element R is notated as

wR(R) and is measured in seconds.

A stream connecting two tasks Ti and Tj is denoted as STiTj . The stream also has a

weight, called the communication weight w(STiTj), equal to the average amount of data

to be transferred over STiTj for the completion of an external input message. It is the

average total size of messages that the stream STiTj transfers during its contribution

to each external input message. The unit of the stream weight is Byte/message. The

values of wR(T) and w(STiTj) can be easily obtained using an appropriate monitoring

framework, for example the one presented in Chapter 6.

A mapping configuration of an RSP G = (T ,S) over a distributed platformH = (R,L) is

defined as group of partitions MpC = {PR | R ∈ R}. The partition PR is the set of tasks

that are mapped to R, i.e. (∀R ∈ R PR ⊆ T) ∧ (∀Ri, Rj ∈ R, Ri 6= Rj PRi ∩ PRj =

∅) ∧ (∪R∈R PR = T).

For shared memory platforms where we can ignore the message transfer; the completion

of an external input message is formed by a set of node invocations spread over the

contributions of all tasks. On distributed platforms, the cost to transfer messages on a

stream within a partition can still be considered minor. In contrast, message transference

on a stream across two partitions is costly. The completion of an external input message

therefore spreads over both tasks on both partitions and the stream communications

among them.

Partition PR is considered to complete an external input message Ix when its tasks have

completed their contributions to Ix. The communication weight between two partitions

PRi and PRj is defined as the total weight of all streams across them. This represents

the average amount of data to be transferred between the two partitions PRi and PRj

within the completion of an external input message.

Comm(PRi , PRj) =
∑

Ti∈PRi ,Tj∈PRj

w(STiTj) (5.2)

Since the completion of an external input message is stretched over all partitions and

the communications among them, the throughput of the RSP is determined based on

two kinds of throughput: the computation throughput and communication throughput.

The computation throughput of the partition PR is the average number of external

input messages that PR completes within a time unit. Since each PE is a uniform shared

Chapter 5. Performance Analysis for Reactive Stream Programs 71

memory platform, Equation 5.1 can be used to derive the throughput of partition Pr as

follows:

TP comp(PR) =
w(R)− W̃R − ÕR

CR

=
w(R)− W̃R − ÕR∑

T∈PR
wR(T)

(5.3)

In this formula, CR is the average time that all tasks in the partition contribute to

completely process an external input message. This equals the total computation weight

of all tasks in the partition. W̃R and ÕR are the relative idling time and the relative

overhead time of the local scheduler of R, respectively.

The communication throughput between the two partitions PRi and PRj is amount

of their communication weight that can be transferred via the physical link between

the PEs Ri and Rj within a time unit. This is determined by dividing the bandwidth

between PEs Ri and Rj by the communication weight between two partitions:

TP comm(PRi , PRj) =
w(LRiRj)

Comm(PRi , PRj)
(5.4)

The communication weight Comm(PRi , PRj) is the amount of data that needs to be

transferred between the two partitions PRi and PRj for the completion of an external in-

put message. The communication throughput therefore can be considered as the number

of external input messages that can be completed by the communication link.

Since the computation of partitions and communication among them can occur in par-

allel, the throughput of the RSP with a mapping configuration MpC is intuitively the

minimum of all computation throughputs and communication throughputs.

TP(MpC) = min
Ri,Rj ,Rk∈R

(
TP comp(PRi),TP comm(PRj , PRk)

)
(5.5)

5.3.2 Latency Analysis

According to Little’s law [Lit61], the overall latency is equivalent to the average number

of external input messages in the RSP, divided by the message consumption rate of the

RSP:

L =
Mcp

λconsumption
(5.6)

Chapter 5. Performance Analysis for Reactive Stream Programs 72

Where L is the latency and λconsumption is the rate at which the RSP consumes external

input messages. λconsumption is also called the consumption rate.

Within a stable system, λconsumption = TP . The latency in this case is:

Lstable =
Mcp

TP
(5.7)

5.4 Chapter Summary

This chapter has discussed the performance of RSPs in terms of throughput and latency.

By analysing the effect of the message arrival rate on the performance, this chapter

identified the borders of throughput and latency within different ranges of the arrival

rate. Additionally, the chapter presented a quantitative analysis of throughput and

latency, which is used in Chapter 7 and Chapter 8 for deriving efficient scheduling of

RSPs on shared-memory multi-core platforms and distributed platforms.

Chapter 6

Monitoring of Reactive Stream

Programs

In this chapter, we present a multi-level monitoring framework for RSPs on shared mem-

ory platforms. The monitoring framework provides information required to understand

the RSP’s runtime behaviour. We also show that the collected information is useful to

calculate the performance metrics and give some potential guidelines for automatic load

balancing, bottle detection and efficient scheduling strategies.

6.1 Conceptions of the Monitoring Framework

At the runtime system level, an RSP is represented by a set of runtime components

connected by streams. At the execution layer, each runtime component later is wrapped

into a task and sent to a scheduler. A typical scheduler includes two main components:

a mapper and a time scheduler. The mapper decides where a task should be executed

and the time scheduler decides when and how long.

In the following, we present the concept of our monitoring framework as shown in Fig-

ure 6.1. The framework collects the information from two levels: the runtime system

and the execution layer.

6.1.1 Monitoring the Runtime System

At the runtime system level, the monitoring framework observes runtime components

and messages to obtain the following information:

73

Chapter 6. Monitoring of Reactive Stream Programs 74

MpEs, TScEs, LS

SS

MgEs

MDG, MgS

Tasks

Runtime System

Streams

Execution Layer

Message

M
onitoring Fram

ew
ork

Scheduler

Runtime Component

Figure 6.1: Monitoring framework

• Message Derivation Graph (MDG). To be distinguishable, each message on

creation is assigned with a unique identifier (ID). While an RC consumes input

messages and produces output messages, the monitoring framework observes the

relationships of these messages. These relationships are used to create the MDG

as described in Section 2.4.3.

• Message Size (MgS). When a message is sent to or created by the RSP, the

monitoring framework obtains the size the message. The unit of message size is

Byte.

6.1.2 Monitoring the Execution Layer

The monitoring framework observes three main objects of the execution layer including

tasks, streams and the scheduler to obtain the following information:

• Message Event (MgE). When a task consumes or produces a message, the

monitoring framework records this as a message event, i.e. message-consumed or

message-produced, respectively. The event information comprises: the time it

happens, the processing task, and the message involved.

• Stream State (SS). The monitoring framework observes every communication

channel, i.e. stream, to memorise the task reading from the stream (called the task

reader), the task writing to the stream (called the task writer), and the number of

messages waiting on the stream (called the fill level). Together with the stream’s

maximum capacity, the fill level is used to determine if the stream is full or empty.

Chapter 6. Monitoring of Reactive Stream Programs 75

• Mapping Event (MpE). A mapping event occurs when a task is assigned to a

core. For these events, the monitoring framework records the event time, the core

and the task.

• Time Scheduling Event (TScE). A time scheduling event occurs when a task

is created, destroyed, blocked, dispatched (i.e. sent to a core for execution), and

yielded (i.e. halted while input messages are still available due to the scheduling

policy). These events are denoted as task-created, task-destroyed, task-dispatched,

task-blocked, and task-yielded respectively. The information of these events com-

prises the task identification, the event name and the time it has occurred.

• Resource Load (RL). The monitoring framework keeps track of the workload on

each core including execution time and idling time. Adding these two time values

provides the response time.

6.2 Potential Benefits of the Monitoring Framework

As presented in Section 6.1, the monitoring framework provides seven kinds of informa-

tion: Message Derivation Graph (MDG), Message Size (MgS), Message Event (MgE),

Stream State (SS), Mapping Event (MpE), Time Scheduling Event (TScE) and Re-

source Load (RL).

These kinds of information can be used for different purposes including monitoring and

optimisation. In this section, we present 4 potential usages from different combinations

of the information (Table 6.1).

Information Performance Metric Automatic Bottleneck Extracting
Calculation Load Balancing Detection RSP Properties

MDG 3 3

MgS 3

MgE 3 3

SS 3 3

MpE 3

TScE 3 3 3 3

RL 3

Table 6.1: Monitoring information needed by different monitoring use cases

For convenience, we denote reader(S) and writer(S) as the task reader and the task

writer of stream S. Also size(M) is denoted as the size of message M . Since an

RSP receives a virtually infinite sequence of external input messages from the environ-

ment, some variables are calculated based on a sufficiently large interval P. We define

Chapter 6. Monitoring of Reactive Stream Programs 76

consumedP (T) as the set of messages consumed by task T during the observed interval

P ; and producedP (T) as the set of messages produced by T during P . These two sets

can be easily extracted from MgEs. The set of messages being processed by T during P

is:

processedP (T) = {M |M ∈ consumedP (T) ∧ d successor(M) ⊆ producedP (T)}

transferredP (S) is defined as the set of messages which have passed over S during the

observed interval P . These are messages produced by the writer of S and consumed by

the reader of S during P .

transferredP (S) = producedP (writer(S)) ∩ consumedP (reader(S)) (6.1)

During the interval P , a task T can be dispatched several times due to the scheduling

policy and the availability of input. The execution of T during P is therefore spread over

multiple intervals. Each interval is marked by 2 time scheduling events. The starting

mark is an either task-created or task-dispatched event of T . The ending mark is the

next either task-destroyed or task-blocked or task-yielded event of T . The sum of these

intervals forms the execution time of T over interval P . This is denoted as ETP (T).

6.2.1 Performance Metric Measurement

The performance of RSPs is usually evaluated for individual nodes and for the overall

RSP in terms of latency and throughput.

TScE: <T, task-blocked>

ME:<M’s output,
message-produced>

ME:<M, message-
consumed>

TScE: <T, task-created>

ME:<M’s last output,
message-produced>

TScE: <T, task-dispatched>

P1 P2

ME:<M1, message-
consumed>

S E

Figure 6.2: Latency of an individual task

Chapter 6. Monitoring of Reactive Stream Programs 77

Latency of an individual task T for processing a message M — Latency(T,M).

This is the execution time of T within the interval between two points: i) where T

consumes M (S in Figure 6.2); and ii) where T produces M ’s last output message (E

in Figure 6.2). The monitoring framework provides this information as follows. The

MDG is used to find M ’s output messages, i.e. M ’s successors. Then appropriate MgEs

are used to determine the two interval points: the event time S when M is consumed

and the event time E when the last output message is produced. Finally, TScEs of T

help to yield T ’s total execution time within the specified interval. In the example in

Figure 6.2, the latency is the sum of P1 and P2.

Throughput of an individual task T — TP(T). It is calculated by dividing the

total execution time of T by the number of processed messages during the observed

interval P .

TP(T) =
|processedT (P)|

ETP (T)

Latency of an RSP for processing an external input message I — L(I). This

is the time interval from when I is consumed by the RSP until all its derived exter-

nal output messages derived output(I) are produced. The MDG is used to calculate

derived output(I). Then MgEs are used to determine when I is consumed and when

the last external output message is produced.

Throughput of an RSP — TP . It is computed based on the number of external input

messages the RSP has completely processed during the observed interval P. By using the

MDG and TScEs, we can identify the set of external input messages consumed during P

and we denote this set as EI P . Similarly, the set of external output messages produced

during P are denoted as EOP . The number of completed external input messages is

the cardinality of CEI P which is the set of completed external input message within P.

CEI P is calculated as follows.

CEI P = {X| (X ∈ EI P) ∧ (derived output(X) ⊆ OIP)}

The throughput is calculated by dividing the cardinality of CEI P by P :

TP =
|CEI P |
P

6.2.2 Extracting RSP Properties

In addition to performance calculations, the monitoring framework provides sufficient

information to extract properties of an RSP including the computation weight of each

Chapter 6. Monitoring of Reactive Stream Programs 78

task and the communication weight of each stream. These two properties are used to

analyse the throughput of RSPs on distributed systems as presented in Chapter 5.

The computation weight of a task T is the average computational time required for

T to finish its contribution to an external input message. The computation weight of T

is varied depending on which processing element it is executed on. It is common that

the RSP is run on each processing element R of the distributed system to derive the

computational weight for each task. The communication weight of a stream S is

the average amount of data to be transferred over S to complete its contribution to an

external input message. These two properties can be obtained by using the monitoring

framework to observe the activity of the RSPs during an interval of P . The monitoring

information is then used to derive these properties as follows.

Computation weight of a task T — WR(T). Given an external input message I,

the computational time that T requires to complete its contribution to I is:

computation timeR(T, I) =
∑

M∈consumedP (T)∩successor(I)

Latency(T,M)

With EIP is the set of external input messages consumed by the RSP during P , we

compute the computation weight of T as follows:

wR(T) =

∑
I∈EIP

computation timeR(T, I)

|EIP |

Communication weight of a stream S — W (S). With an external input message

I, the amount of data to be transferred over S during I’s completion is:

data size(S, I) =
∑

M∈transferredP (S)∩successor(I)

size(M)

Where EIP is the set of external input messages during P , the data weight of S is:

W (S) =

∑
I∈EIP

data size(S, I)

|EIP |

In addition to the above profiling statistics, the monitoring framework also allows the

user to keep track of the graph of tasks, i.e. the structure of the RSP, by updating the

relations between tasks and streams.

Chapter 6. Monitoring of Reactive Stream Programs 79

6.2.3 Automatic Load Balancing

Load balancing is a basic strategy to improve system performance by maximising re-

source utilisation. There are two types of algorithms for load balancing: static and

dynamic. The static ones are applied before any input processing and require prior

assumptions about runtime behaviour such as the response time of each task. The

dynamic load balancing algorithms are different in that they use the system-state and

are applied at runtime. For this reason, dynamic algorithms are a natural use case for

our monitoring framework. In the following, we present two approaches of using the

monitoring information to guide dynamic load balancing.

The first approach is the online placement balancing technique (also called centralised

load balancing in [WA05]) in which new tasks are dynamically assigned to physical

resources depending on the system state (Figure 6.3a). Using the monitoring framework,

the system state can be expressed by the RL in terms of execution time and idling time.

This information is used to implement the mapping policy: a task is assigned to the

physical resource with the least execution time, i.e. most idling time. In the example in

Figure 6.3a the second physical resource will be chosen for the new task. This simple

dynamic mapping aims to balance the working load while minimising the idling time of

physical resources.

The second approach is a task migration technique which controls the load balance

by moving tasks among physical resources (Figure 6.3b). Many algorithms have been

designed using this approach [ELZ86, SK90, SKS92, ZKS94, LSK97]. Algorithms of this

approach usually have four components:

• Information Policy : specifies what information about the system-state is necessary

and how to collect such information

• Transfer Policy : determines whether a physical resource should participate in a

task migration

• Location Policy : identifies the suitable destination for the task migration

• Selection Policy : decides which tasks are eligible to migrate.

In the following, we define a simple instance of this approach using the monitoring

information to define these policies:

• Information Policy. The collected information includes RL and TScEs, and the

method of collecting is using our monitoring framework.

Chapter 6. Monitoring of Reactive Stream Programs 80

50
%

75
%

25 %

 1 2 3
Physical Resources

Working Time Idling Time

Mapper

? ? ?

New Task

(a) Online placement

Task 1 = 50%

Physical Resources

Task 2 = 35%

Task 3 = 15%

Task 4 = 70%

Task 5 = 10%

Idling = 20%

Working Time Idling Time

Task Migration

(b) Migration of tasks

Figure 6.3: Deployment of automatic load balancing

• Transfer Policy. A physical resource PRs should participate in a task migration if

its current load is 100%, i.e. the idling time is zero.

• Location Policy. A physical resource PRd should be a destination with the largest

non-zero idling time.

• Section Policy. If there exists a PRd and a PRs, a task T is chosen from PRs to

migrate if T ’s current load is smaller than the idling time of PRd. T ’s current load

is calculated by using TScEs (discussed in Section 6.1.2).

In the example in Figure 6.3b, the first physical resource is busy all the time while the

second one has a 30% idling time. Therefore, tasks from the first physical resource are

migrated to the second one. Among the three tasks of the first physical resource, Task 3

is the best candidate for the migration since only its workload is smaller than the idling

time of the second physical resource.

6.2.4 Bottleneck Detection

Bottlenecks occur where the performance of a system is limited by a single task or a

limited set of tasks (called bottleneck points). Knowledge of bottleneck points can help

to improve performance by different mechanisms: for example, by assigning the higher

scheduling priority to the bottleneck points so that they are scheduled more often.

In the following, we demonstrate a technique to detect bottleneck points by using SSs

and TScEs. By intercepting the task-blocked state, TScEs of a task A can provide the

blocking frequency of A. The reason for A being blocked is provided by the SS of the

Chapter 6. Monitoring of Reactive Stream Programs 81

communication streams between A and other tasks. In particular, the SS of a stream

keeps track of alternations on the stream revealing the dynamic interrelation among the

stream reader and stream writer. Consider a stream where A is the task reader, and B

is the task writer. A is blocked by B if A tries to read from the stream while it is empty.

In case of bounded streams, B is blocked by A when trying to write to the stream while

it is full.

After obtaining the frequency of which a task blocks others, determining bottleneck

points is straightforward. Tasks that cause high blocking frequencies to others tasks are

considered bottleneck points.

6.3 Implementation of the Monitoring Framework in S-

Net and LPEL

In this section, we show the implementation of the monitoring framework in the S-Net

runtime system and LPEL execution layer. The implementation’s overview is shown in

Figure 6.4.

Task

S-Net Runtime System

Message

LPEL Execution Layer

Stream Worker

Message
Id

TMO SMO

TScMO

WMO

Mapper Local Scheduler

MMO

Monitoring components

Message
Size

Figure 6.4: The monitoring framework implementation in S-Net and LPEL

6.3.1 Instrumenting the S-Net runtime system

Our goal is to obtain the monitoring information presented in Section 6.1 for the S-Net

runtime system:

• MDG. Each node in the MDG is denoted as the message ID. When a message is

created, the monitoring framework generates its ID. When the RSP is executed

Chapter 6. Monitoring of Reactive Stream Programs 82

on a distributed system, the message ID includes two parts. The first part is

the unique index of the PE on which the message is created. The second part

is the sequence number of the message within the PE. This sequence number

is increased by one after generating an ID for each message. When the RSP is

executed on a shared memory platform, the first part of the message ID is ignored.

Edges of the MDG are constructed by the relationships between messages which

can be obtained by observing the consumption and production activity of each

RC. As each RC is wrapped into one task, these relationships can also observed in

the execution layer. It is implemented this way for the simplification as it involves

stream read and write activities which are under the control of the execution layer.

• Message Size. The message size is used to extract the communication weight of

each stream. This weight represents the communication cost between RCs and is

used to calculate the communication cost between PEs of the distributed system

(Chapter 5). However, when deploying an S-Net program on a distributed system,

the communication between PEs consists of not only the cost to exchange data

but also the cost to send the references and to request for data in the case of flow

inheritance (see Section 2.5.4). The monitoring framework therefore instrument

the S-Net RTS before it invokes the MPI interface to send references, fetch requests

and data. To obtain the accurate communication cost between each pair of RCs,

the S-Net program needs to be run in a special mode where each RC of the S-Net

program is mapped onto a separate logical PE. Each logical PE is a process on

the same physical PE. Although sharing the same physical PE, the data commu-

nication pattern between RCs still hold and therefore their communication cost

can be measured accurately.

6.3.2 Instrumenting the LPEL Execution Layer

As depicted in Figure 6.4, LPEL is instrumented with different monitor objects to pro-

vide MgEs, SS MpEs, ScEs and RL as follows:

• Message Event. Each task in S-Net is assigned with a unique identifier and is

also equipped with a Task Monitor Object (TMO) as shown in Figure 6.4. The

TMO monitors the task execution to catch two kinds of message events: message-

consumed and message-produced. Whenever any of these events happens, the TMO

records the time and the message information including the identifier and size.

An S-Net task at runtime may process several messages within one execution

(Figure 6.5a). However, information from message events can be used to construct

the MDG without any extra information. This is because box executions for

Chapter 6. Monitoring of Reactive Stream Programs 83

Task Execution

Message
M1

Message
M4

Message
M3

Message
M2

Message
M5

Message
M6

Message
M7

RC Invocation RC Invocation

(a) Task execution with MgEs and ScEs

M1# M2# M5# M6#

M3# M4# M7#

(b) The corresponding MDG

Figure 6.5: Node executions within a task execution

different input messages are not interleaved, and with the message-consumed and

message-produced events there is an unambiguous causality from input to output

messages, expressed as directed edges in Figure 6.5b.

• Stream State. Each stream in S-Net is instrumented by a Stream Monitor Object

(SMO) to memorise the identifiers of the task reader and the task writer. The SMO

also keeps track of the number of messages inside the stream.

• Mapping Event. The LPEL mapper is instrumented by a Mapping Monitor

Object (MMO) to capture mapping events. Each worker in LPEL is assigned a

unique identifier. When a task is allocated to a worker, i.e. a mapping event occurs,

the MMO records the identifiers of the task and the worker.

• Time Scheduling Event. Each LPEL worker has its own local time scheduler,

which is instrumented by a Time Scheduling Monitor Object (TScMO). When

a task changes its state, i.e. a scheduling event occurs, the TScMO records the

time, the task identifier and its new state. In LPEL, there are five task states:

task-created, task-blocked-by-input, task-blocked-by-output, task-resumed, and task-

destroyed.

• Resource Load. Each worker is exclusively mapped to a processor/core, which is

considered to be an individual computational resource. Therefore, each worker is

instrumented by a Worker Monitor Object (WMO). The worker’s WMO produces

Chapter 6. Monitoring of Reactive Stream Programs 84

the execution time by accumulating execution times of all its tasks. A worker

becomes idle when it has no ready task. The WMO also observes these occurrences

to form the worker’s idling time.

6.3.3 Operation Modes

The implementation of the monitoring framework in LPEL and S-Net supports different

monitoring flags to control the level of desired monitoring information.

• MAPPING FLAG indicates mapping events are captured

• SCHEDULING FLAG is set to catch time scheduling events

• STREAM FLAG indicates SMOs are active to observe stream states

• MESSAGE FLAG is set to record message events

• LOAD FLAG is set to collect the resource load

• ALL FLAG is an alias to set all other flags

If no flag is set, the application is executed as normal but without producing any mon-

itoring information. Different flags can be combined for specific purposes.

6.4 Evaluation of the Monitoring Framework

The monitoring framework instruments the LPEL and the S-Net runtime system by

placing control hooks to collect monitoring information. This causes some overhead

compared to the original S-Net and LPEL implementation even if no information is

collected. Currently, all monitoring information is sent to the file system and stored in

log files. The overhead is evaluated experimentally in terms of response time and size

of log files.

In the experiments we measure the overhead with different use cases by setting the

following different flag combinations:

• COM1: no flag is set. This is used to measure the minimum overhead caused by

monitoring controls without observing any events.

• COM2: the combination of MESSAGE FLAG and SCHEDULING FLAG is used

for performance metric calculation (Section 6.2)

Chapter 6. Monitoring of Reactive Stream Programs 85

Application #MpE #ScE #Message #Stream

ANT 278 · 103 2.4 · 106 1.15 · 106 10 · 103

DES 320 · 103 4.7 · 106 470 · 103 62
MC 5 · 106 33.8 · 106 19.3 · 106 5 · 106

RT 1.8 · 103 20 · 103 23 · 103 100

Table 6.2: Application properties running on a 48-core machine

• COM3: MAPPING FLAG, SCHEDULING FLAG and LOAD FLAG are set for

automatic load balancing (Section 6.2)

• COM4: SCHEDULING FLAG and STREAM FLAG are combined to detect bot-

tlenecks (Section 6.2)

• COM5: ALL FLAGS is used to capture all events are captured, providing the

maximum overhead

Note that the use case of extracting RSP properties is not included here as it is commonly

used with the off-line mode, i.e. the RSP is pre-run with sample data to extract the

properties which are analysed to generate a good mapping configuration for running

with the real data.

The monitoring overhead is caused by observing messages (TMO), streams (SMO), work-

ers (WMO), the mapper (MMO), and the scheduler (TScMO). The overhead caused by

observing messages and streams is proportional to the number of messages and streams,

respectively. The overhead of MMO depends on the amount of mapping events while

the overhead of TScMO and WMO depends on the number of scheduling events. These

kinds of overhead are therefore affected by LPEL’s scheduling policies. The experiment

is performed on different applications ANT, DES, MC, and RT with various values of

these variables as shown in Table 6.2. The details of these applications are presented in

Chapter 4.

As shown in Table 6.2, MC has a very large number of tasks, each of which has very

short life time. It also has an enormous number of scheduling events and messages. This

is because the implementation of MC is too fine grained. Usually this kind of imple-

mentation is not sufficient in stream programming. MC is chosen for this experiment to

show the overhead in an extreme case.

All applications are run on a 48-core machine comprising of 4 sockets with a 12-core

AMD Opteron 6174 and a total of 256 GB main memory. The time and space overhead

is shown in Figure 6.6. Generally, the time overhead depends on the number of monitored

events. The minimum overhead (COM1) is negligible for most of the cases. There is even

a negative overhead for MC and RT. We attribute this negative overhead to scheduling

anomalies similar to timing anomalies in processors [WKPR05].

Chapter 6. Monitoring of Reactive Stream Programs 86

 0

 5

 10

 15

 20

 25

 30

ANT DES MC RT

P
e

rc
e

n
ta

g
e

 o
f

T
im

e
 O

v
e

rh
e

a
d

 (
%

)

Applications

COM1
COM2
COM3
COM4
COM5

(a) The time overhead

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

ANT DES MC

S
p

a
c
e

 O
v
e

rh
e

a
d

 (
M

B
)

Applications

COM1
COM2
COM3
COM4
COM5

 0

 0.2

 0.4

 0.6

 0.8

 1

RT

S
p

a
ce

 O
v
e

rh
e

a
d

 (
M

B
)

Applications

(b) The space overhead (in MB)

Figure 6.6: The overhead of the monitoring framework in time and space

Chapter 6. Monitoring of Reactive Stream Programs 87

The time overhead of different combinations of flags varies from application to applica-

tion depending on the number of monitored objects (mapping events, scheduling events,

messages and streams). In the current implementation, the monitoring information is

sent to the file system and therefore the time overhead is also affected by the response

time of the application. As the file I/O is performed asynchronously by the operating

system, the time overhead is quite small for a relatively long running application. Con-

sequently, for most of the applications the time overhead is relatively small for all flag

combinations. For the MC application the overhead is quite large because it has a very

large number of monitored objects while the response time is small compared to the

amount of data which outweighs any benefits of asynchronous I/O operations.

The space overhead is proportional to the amount of collected data, or the number of

monitored objects. As shown in Figure 6.6b, MC with the highest number of monitored

objects has the highest space overhead. Similarly, RT has the least space overhead as it

has the smallest number of monitored objects.

6.5 Chapter Summary

The support of monitoring is essential for achieving high system utilisation of parallel

execution platforms. In this chapter we presented a monitoring framework that is geared

towards RSPs to monitor data for use cases including the calculation of performance

metrics, extraction of RSP properties, automatic load balancing, and bottleneck detec-

tion. This monitoring framework extracts information from both, the runtime system

as well as from the underlying execution layer.

The extracted information provides the trace of non-deterministic behaviours of the

application at both levels. The monitoring approach is fully transparent to the user

and is purely software based. The overhead of different monitoring scenarios is given

in Figure 6.6, which shows for most benchmarks a negligible overhead of less than 5%.

Only in the MC benchmark the overhead reaches up to about 26%, which is explained

by the fact that in this benchmark the concurrency is too fine grained to be efficiently

exploited using stream programming.

Chapter 6. Monitoring of Reactive Stream Programs 88

Chapter 7

Exploiting the Properties of

RSPs for Efficiently Scheduling

on Uniform Shared Memory

Platforms

Based on the performance analysis in Chapter 5, this chapter presents a guideline for

optimising both throughput and latency of RSPs. We use this guideline to design two

novel heuristic schedulers. As centralised approaches, these schedulers exploit the prop-

erties of RSPs to define the task priority. The first one uses the notion of data demands

on stream communications while the second one takes advantage of the structural po-

sition of tasks in the RSP. Since these features can be observed during runtime, these

scheduling approaches require no assumptions about the RSP properties. They there-

fore are applicable to general RSPs with properties shown in Table 2.2. Particularly,

they support general RSPs where the node computation behaviour can be variable and

the program structure can be dynamic while this is a particular challenge for static

scheduling based on formal constraints or probabilities.

7.1 Guidelines For Scheduler Design

This section presents guidelines to design a scheduler aiming for performance optimisa-

tion. The guidelines are based on the quantitative analysis of the performance discussed

in Chapter 5.

89

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 90

7.1.1 Throughput Optimisation

According to Chapter 5, the throughput of an RSP is equivalent to the arrival rate λ in

the underuse and operational ranges when Mcp is bounded. In the overload range when

Mcp becomes infinity, the system gets overloaded while the throughput does not exceeds

its peak value. We therefore focus only on the underuse operation ranges.

According to Equation 5.1, we have the following formula or the throughput:

TP =
(N − W̃ − Õ)

C

Since C is the mean required computation time to completely process one external input

messages, C depends on the implementation and the underlying hardware. These factors

are not under the sphere of control of the scheduler. To optimise the throughput the

scheduler therefore should: i) keep Mcp bounded and ii) reduce the relative idling time

W̃ and the relative overhead time Õ.

7.1.2 Latency Optimisation

Since the latency becomes infinity in the overload range, we do not consider this range

here. The latency optimisation is focused on two other ranges where Mcp is bounded.

According to Equation 5.6, we have:

L =
Mcp

λconsumption

To reduce the overall latency, the scheduler needs to increase the consumption rate

and at the same time keep Mcp low. Within stable systems, the consumption rate is

equivalent to the throughput, therefore to maximise throughput is also to contribute

towards minimising the overall latency.

7.2 Heuristic Scheduling Strategies for Performance Opti-

misation on Symmetric Processors

In this section we propose a scheduler aiming to optimise the performance of RSPs on a

uniform shared memory platform. The proposed scheduler employs heuristic strategies

based on the above guidelines. Maximising throughput means maximising λconsumption

and therefore contributing towards minimising the overall latency. For this reason, the

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 91

propose scheduler first tries to reach the optimal throughput by using a centralised

approach. With the maximised throughput, the scheduler then attempts to minimise

the latency.

Consider a shared memory platform of homogeneous physical resources, each of which

is a CPU core. To deploy an RSP on such platforms, a scheduler consists of two sub-

schedulers: a space scheduler which decides on which CPU core a task should be exe-

cuted; and a time scheduler which decides when a task is executed and for how long. This

section presents a scheduler based on the above guildlines to optimise both throughput

and latency by minimising W̃ , Õ and Mcp.

7.2.1 Space scheduler

In the proposed scheduler, we can consider one CPU core as a worker. The terms core

and worker are used interchangeably in the rest of the chapter.

The space scheduler does not permanently map tasks to any worker. Instead ready

tasks are stored in a central queue (CTQ). A task is assigned to a worker whenever

it is free. Dynamic program structures are well supported by using the CTQ with its

dynamic scheduling of tasks to available resources. That helps to reduce the relative

idling time W̃ but does not guarantee to minimise it. This depends on the time scheduler

which controls the availability of ready tasks. This design of the space scheduler allows

flexibility for the time scheduler to control the availability of ready tasks as well as adjust

the value of Mcp.

7.2.2 Time Scheduler

One responsibility of the time scheduler is to take a relevant ready task from the CTQ

to be executed by a free worker, i.e. to define the task priority. Another responsibility

is to decide for how long a worker should execute the assigned task, i.e. to define the

scheduling cycle. For RSPs, it is hard to derive an exact scheduling policy providing

the best performance because of their dynamic properties such as dynamic program

structures and variable node behaviour.

The time scheduler on one hand has to activate enough ready tasks to keep the relative

idling time W̃ low; and on the other hand it has to control Mcp. Note that the availability

of ready tasks is also implied by the availability of messages inside the RSP. In the

following, we propose two heuristic strategies for the task priority function which decides

when a task should get executed. Tasks with higher priorities will be executed first.

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 92

7.2.2.1 Position-based Task Priority

This heuristic decides the task priority by its structural position in the RSP. The general

idea is a task that is closest to the exit tasks should be executed first. As all streams

are uni-directional, this heuristic intuitively moves messages forward to the exit tasks

as soon as possible, and therefore keeps Mcp low.

There are two ways to design of this heuristic. In the first design, the priority of a task

is defined as the inverse of its distance to the exit tasks. The distance is defined as the

number of tasks a message and its successors need to pass over until being sent out to

the environment. This equals the number of vertices on route from the current task to

an exit task on the task graph.

A" B"

D"

C" E"

F" G"

(a) An RSP with multiple exit tasks

A" B"

D"

C" E"

(b) An RSP with multiple entry tasks

Figure 7.1: Examples of RSP with multiple entry tasks and multiple exit tasks

This design requires the RSP to have only one exit task. Otherwise, it is unable to

determine the priority for tasks from which there are multiple routes to different exit

tasks. Consider the example shown in Figure 7.1a, an output message from B can be sent

either to the exit task D or to C and then to the exit E. As the behaviour of B can be

variable, it is not feasible to decide to use the distance fromB toD or the distance fromB

to E as its priority. This design is also restricted to RSPs with a single entry task. In the

case where there are more than one entry tasks with different distances to the exit task,

this heuristic design can cause starvation and live-lock. Consider the example shown in

Figure 7.1b, there is one exit task E and there are two entry tasks A and D continuously

receiving messages from the environment. With the heuristic priority biased toward

the exit task, we have task priority as: Priority(E) > Priority(C) > Priority(B) =

Priority(D) > Priority(A). Consider an application deployed in a platform with three

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 93

workers. When D constantly receives external input messages from the environment,

three tasks D, C, E are constantly activated and occupy all the workers. That means

inputs entering to A will not be processed. In the case where there is only one worker

and C requires messages from both B and D before proceeding, live-lock occurs. This

is because D has a higher priority than A and therefore it is constantly executed and

sending messages to C. Meanwhile C can not be executed because it needs messages

from B which depends on the execution of A.

The second design defines a task’s priority as its distance from the entry tasks. As with

the first design, this is also restricted to RSPs with a single entry task. Unlike the first

one, this design support RSPs with multiple exit tasks as there is no task depending on

their outputs. Therefore starvation and live-lock do not occur in this case.

Both of the above designs are restricted to RSPs with single entry tasks and also dis-

favour tasks close to the entry task. The entry task has the lowest priority and will not

be scheduled until no other task is ready. This can lead to the scenario that increases

the value of W̃ . That is when two or more workers finish their tasks at the same time

and the entry task is the only ready task. Only one worker will get the entry task and

others have to wait.

7.2.2.2 Demand-based Task Priority

This heuristic is based on the positive demand SI and the negative demand SO, where

SI is the total number of messages in the input streams and and SO is the total number

of messages in the output streams. The heuristic is proposed as follows.

• The priority of an entry task should have a negative correlation with its

SO. Entry tasks are ready as soon as there are external messages. Their executions

create input for following tasks and make these tasks ready. This heuristic helps

entry tasks to be executed when the potential of ready tasks is low. Once executed,

their priority is reduced and after a certain time they have to release resources for

other tasks. This keeps Mcp bounded.

• The priority of exit tasks should be higher than other types of tasks.

This is because exit tasks send messages to the external environment, they should

be executed as soon as possible to keep Mcp as low as possible.

• The priority of a middle task should have a positive correlation with

SI and negative correlation with SO. Exit tasks should be executed as soon

as possible, however they become ready only when messages are transferred over

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 94

the RSP passing other middle tasks. A middle task T0 while performing an RC

invocation consumes n messages from its input streams and produces m messages

to its output streams which are read by other tasks Ti|1≤i≤n. The SI value of T0

is reduced by n and the SO value of T0 is increased by m. With this heuristic, the

priority of T0 is reduced and its chance to hold physical resources is reduced. Mean-

while the SI values of tasks Ti|1≤i≤n are increased. That means tasks Ti|1≤i≤n
will have a higher chance to be scheduled and the newly created messages are likely

to move forward to the output.

7.2.2.3 Scheduling Cycle

Ideally each task after executing for a period should be returned so that other higher pri-

ority tasks can proceed. Task switching can cause overhead and locality loss. Therefore

the worker should run a task long enough so that the task switching overhead becomes

negligible. We propose a heuristic strategy to define the scheduling cycle based on a

timeout value Esc. Once assigned to a worker, a task is executed until it is blocked or

the timeout value has been reached. The timeout value Esc can be defined based on the

number of RC invocations, the number of produced output messages or a time period.

It is hard to analytically derive the value of Esc. We therefore propose to derive this

value through practical experiments.

7.2.3 Scheduling Design Comparison

We have presented above a centralised scheduling approach with two different heuristics

for defining the task priority. These two heuristics aim to optimise both throughput

and latency by minimising W̃ , Õ and Mcp. Here we compare our scheduling design with

other alternatives.

As discussed in Section 3.2, there are two general classes of schedulers: offline and online.

Although offline schedulers often provide nearly optimal results, they require complete

knowledge of the system at compile time. Our work here targets general RSPs with

variable node behaviours and dynamic program structures. Therefore, offline schedulers

are not suitable to solve our problem. We then focus on different scheduling approaches

of online schedulers which make decisions at runtime based on the current state of the

system.

As presented in Section 3.2, there are three main techniques to design an online scheduler:

centralised, distributed and centralised mediation. Our scheduling approach is designed

as an online scheduler where tasks are not statically assigned to any PE but are stored in

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 95

a central task queue. Two different heuristics are proposed to define task priority which

decides the order of task execution. Since all tasks are stored together in the central

task queue, the task distribution is based purely on the task priority.

In contrast, the distributed scheduling and centralised mediation techniques do not store

all the tasks centrally. The decisions regarding task distribution are therefore affected not

only by the task priority but also by the cost of relocating the task from the sender PE to

the receiver PE. Consequently, the distributed scheduling technique is not appropriate

to highlight the benefits of using the task priority to optimise the performance which is

the focus of our work. However, the heuristics for defining the task priority can be still

useful in these scheduling techniques when combined with other relevant policies.

7.3 Implementation of the heuristic priority functions

The proposed stream schedulers are implemented as new schedulers for the execution

layer LPEL to support S-Net programs. LPEL was chosen for supporting task real-

location among CPU cores on a shared memory platform without extra cost; and for

providing a sufficient mailbox implementation for core-to-core communications.

As presented above, the space scheduler does not permanently map tasks to any worker.

Instead ready tasks are stored in a central queue (CTQ) and the order of tasks depends

on their priority. When a worker is free, the task with highest priority will be sent to the

worker. There are two alternatives of how to implement it. The first one is to dedicate

a worker that acts as the conductor to manage the CTQ. Free workers will need to

communicate with the conductor to request for a new task. The second one is to allow

all workers to access the CTQ and to provide a locking mechanism to enforce mutual

exclusion access.

Compared to the first option, the second one has some disadvantages. First, it requires

workers to be interrupted for updating the task priority as the task priority can be

varied during runtime. Second, any change of task status or task priority will require

to update the CTQ. Since only one worker can access the CTQ at a time, updating

the CTQ causes to prolong this exclusive period. This therefore increases the chance of

worker contention and also extends the contention period.

In contrast, with the second option of implementation, the conductor always keeps the

CTQ up-to-date and therefore the response to a task request from workers takes con-

stant time. In fact, when receiving a task request, the conductor retrieves the task

with highest priority in a constant time, and sends to the requesting worker. While

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 96

Mailbox(

Running(Task(

Monitoring(
Monitoring(
Monitoring(
Monitoring(
Monitoring(

monitoring(

Worker(

CPU(

Mailbox(

Conductor(
Central((
Task(Queue(Ready(Task(Ready(Task(Ready(Task(

Ready(Task(

CPU(

Mailbox(

Running(Task(

Monitoring(
Monitoring(
Monitoring(
Monitoring(
Monitoring(

monitoring(

Worker(

CPU(

Figure 7.2: Design of heuristic stream schedulers for performance optimisation

the worker is working on the new task, the conductor is free to update the CTQ. Util-

ising the conductor also provides the flexibility for updating the task priority without

interrupting workers. In addition, this way of implementation brings open directions

for efficient communication protocols between the conductor and workers to avoid the

bottleneck. These directions will be presented with more detail in Chapter 10. Although

the dedicated conductor can be considered as scheduling overhead, this overhead can be

paid off with a large number of cores.

For these above reasons, we use the first option to implement our proposed schedulers.

The design of our schedulers is demonstrated in Figure 7.2. As the task priority is

dynamically changing over time, one worker is dedicated as the conductor to keep

track of the task priority. The conductor also arranges ready tasks according to their

priorities by using a heap structure. The conductor is responsible to update the task

priority when necessary. Once a worker is free, it requests a new task from the conductor.

The conductor then chooses the ready task with the highest priority from the CTQ and

sends to the requesting worker. All the communication between the conductor and

workers is exercised via mailboxes.

Since S-Net constructs the RSP by a hierarchical combination of SISO operators, S-Net

programs have single entry task and single exit task. Both the task priority functions are

therefore feasible for S-Net. The rest of this section presents the implementation of two

task priority functions. These functions are integrated into the centralised scheduling

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 97

approach to form new schedulers. We denote the scheduler with position-based task

priority as CS-pbp, and the scheduler with demand-based task priority as CS-dbp.

7.3.1 Position-based Task Priority Function

To implement the position-based priority, one needs to know the structural position of

a task within the RSP. This information could be obtained from the generic stream

program information at the LPEL layer by keeping track of the task-stream relation.

However, doing so is not feasible in case of potentially dynamic program structures, as

this would result in a dynamic change during runtime of the task-stream relation as well.

Keeping track of these relations can be very costly and would outweigh the benefits.

In this section, we present an alternative implementation that retrieves information

about the RSP structures from the runtime system of the coordination language S-

Net. This information is used to calculate the distance-based priority. The principle

behind this technique is the fact that S-Net programs are always structured such that

sub-networks with single input and output (SISO) are composed by operators which

preserve this SISO property. Based on these structured network compositions the S-Net

runtime system can maintain explicit information at each RC about its relative path

through the network. We use this information on each S-Net RC as its distance from

the entry. As introduced in Chapter 2, each S-Net RC is wrapped in a LPEL task. The

terms RC and task therefore can be used alternatively

To provide the structural position of every task, S-Net associates each task with a data

structure, called a location vector, describing the path from the entry task to the task

itself. A location vector is a list of elements, each of which is a tuple of a combinator

type and an index number. The values and meaning of these elements are shown in

Table 7.1. For example, 〈P, 2〉 indicates the second operand of a parallel composition;

〈R, 3〉 specifies the third instance of a serial replication. Note that serial and parallel

compositions can have more than two operands, for example A | B | C is a parallel

composition of three operands A, B, and C. In the case where the S-Net program

contains only one box, it can be considered as one serial composition with one operand.

Combinator Type Index Number

S Serial Composition
Operand Index

P Parallel Composition

R Serial Replication
Instance Index

I Parallel Replication

Table 7.1: Values of a location vector element

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 98

As presented in Chapter 2, during runtime each parallel composition is represented by

a pair of operators: a parallel compositor and a collector. There are indexed as 0 and

∞ respectively to indicate the beginning and ending operator of the composition. It is

implemented similarly for parallel replication. The implementation of serial replication

is more complicated as it has multiple serial replicators generated dynamically. They

are indexed together with the operands as demonstrated in Figure 7.3. The first serial

replicator and the collector are indexed with 0 and ∞.

<Collector>*

<Serial*Replicator>* A* <Serial*Replicator>* A* <Serial*Replicator>*
{<R,0>}({<R,1>}({<R,2>}({<R,3>}({<R,4>}(

{<R,∞>}(

Figure 7.3: Runtime components with location vector of A ? {〈stop〉}

A location vector {〈T1, N1〉, 〈T2, N2〉 . . . 〈Tk, Nk〉}, where Ti is a combinator type and Ni

is an index number, specifies an RC which is the operand/instance indexed Nk of the

combinator Tk; and Tk is the operand/instance indexed Nk−1 of the combinator Tk−1;

and so on. Figure 7.4 shows location vectors of RCs in the Image Filter Application.

At the top level, the application is formed by a serial composition with 3 operanDS.

The first operand is box Splitter with location vector {〈S, 1〉}, and the third operand is

box Merger with location vector {〈S, 3〉}. The second operand is a parallel replication

represented by a parallel replicator {〈S, 2〉, 〈I, 0〉} and a collector {〈S, 2〉, 〈I,∞〉}. Three

operands of the parallel replication are instances of box Filter with location vector

{〈S, 2〉, 〈I, 1〉}, {〈S, 2〉, 〈I, 2〉}, {〈S, 2〉, 〈I, 3〉} respectively.

<Parallel'Replicator>' <Collector>'

Filter'

Filter'

Filter'
{<S,2>,'<I,0>}'

{<S,2>,'<I,1>}'

{<S,3>}'
Spli2er' Merger'
{<S,1>}' {<S,2>,'<I,∞>}'

{<S,2>,'<I,3>}'

{<S,2>,'<I,2>}'

Figure 7.4: Runtime components with location vectors of the image filter application

A location vector of a task T shows the tracking from the entry task to T . Thus the

distance dentry from the entry task can be deduced from its location vector. Although

it is not easy to derive a concrete value for the distance, it is trivial to compare the

distance between two tasks. Before explaining how to compare dentry of two tasks, we

present 4 rules to compare dentry of two location vector elements.

• When comparing operands/instances of a serial composition or serial replication,

the one with larger index has a higher dentry;

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 99

• When comparing operands/instances of a parallel composition or parallel replica-

tion, they have the same dentry;

• Parallel compositor 〈P, 0〉 and parallel replicator 〈I, 0〉 always have a lower dentry

than their operands;

• The collectors of parallel composition 〈P,∞〉 and parallel replicator 〈I,∞〉 always

have a higher dentry than their operands.

To compare the dentry between two tasks, one can traverse along their location vectors

and compare each pair of elements. If these elements have the same dentry, the process

continues to the next pair. Otherwise, comparison of the last pair returns the final

result. In the case where the process reaches the end of one location vector before the

other, the one with larger size has the higher dentry.

7.3.2 Demand-based Priority Function

According to Section 7.2, the priority of a middle task should have a positive correlation

to its SI and a negative correlation to its SO. Table 7.2 lists some priority functions for

middle tasks according to the proposed heuristic in Section 7.2. Functions PF 1 and PF 4

are simple and typical for functions with the same significance of SI and SO. Function

PF 2 is an example for which SI has higher significance and function PF 3 is an example

for which SO has higher significance. The priority function for entry tasks is the same

for middle tasks but with SI being zero. As an exit task (with SO = 0) should have

higher priority than other tasks, there are two choices. The first is to use the priority

function of middle tasks but with SO is zero; this makes an exit task a higher priority

compared to a middle task with the same SI value. The second is to set the priority of

exit tasks to infinity (+∞).

We carried out experiments with all the combinations of these priority functions for

entry, exit and middle tasks. None of them has shown superior performance compared

to the others. In fact, the variation coefficient is relatively small, about 2∼3%. For its

simplicity, we choose to use the priority function PF 4 for middle tasks, for entry tasks

with SI = 0, and for exit tasks with SO = 0.

To obtain instant values of SI and SO during runtime, the scheduler is supported by

the stream monitoring framework presented in Chapter 6. This monitoring framework

allows us to observe the fill level of streams (i.e. the number of messages currently in the

stream). As the program structure is dynamic, a task’s input and output streams are

dynamic. This monitoring framework also allows us to keep track of this information.

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 100

Priority Function TMiddle

PF1
SI+1
SO+1

PF2
(SI+1)2

SO+1

PF3
SI+1

(SO+1)2

PF4 SI − SO

For the first three priority functions, ’1’ is added to SO to avoid division-by-zero.
’1’ is also added to SI to have a fair proportion against SO.

Table 7.2: Priority functions of the middle tasks

From the stream state of the monitoring framework, we can derive the task-stream

relations and therefore calculation of the SI and SO values of each task is trivial. Note

that, only local information about task-stream relations is required, the whole structure

of the RSP is not necessary. In addition, the monitoring framework provides the other

required information to analyse the throughput and latency of RSPs.

Although a task’s priority changes whenever its SI or SO values changes, it is ineffi-

cient to constantly re-evaluate the priority and update its order in the CTQ. In this

implementation, the task priority is updated in the two following situations.

• A task’s priority is re-evaluated when it becomes ready and is added to the CTQ

• When a task T is halted (because either it is blocked, or it terminates, or it

has finished its scheduling cycle), the priority of ready tasks that have stream

connections with T is updated.

7.4 Evaluation: CS-dbp vs CS-pbp

In this section we compare the two priority functions based on the heuristic strategies

CS-dbp and CS-pdp. The comparison is carried out in conceptional, implementational,

and experimental matters.

7.4.1 Conceptional Comparison

Both of the schedulers are similar in that they use a quantitative analysis to optimise

throughput and latency. To maximise the throughput, they both attempt to bound Mcp

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 101

and cut down W̃ by using the central approach. To minimise the latency, they both try

to minimise the Mcp.

To obtain these goals, while the CS-dbp uses the task’s computational demand, the

CS-pbp employs the structural information. Although both the computational demand

and the structural information can be obtained by monitoring, it is easier and cheaper

to get the former one. To acquire the computational demand of each task, only local

information is needed. That includes the set of input streams, the set of output streams

and the fill levels of these streams. In contrast, to obtain the program structure, the

monitoring framework needs a global picture of task-stream relations. In addition, it

needs to keep track of these relations while they are dynamically changed when the

structure of the program is altered.

A cheaper way to obtain the structural information is to initialise the program structure

from the source code; and then to rely on the RTS to maintain changes in the program

structure during runtime. However, this technique spoils the separation between the

execution layer and the RTS. That means the execution layer is no longer portable for

other stream languages.

Furthermore, the position-based priority is only applicable to a smaller class of RSPs.

It is restricted to RSPs with a single entry task if using the distance to the entry task

metric. To use the distance to the exit task, the heuristic strategy requires RSPs to have

both a single entry task and a single exit task.

7.4.2 Implementation Comparison

By using different priority functions, the conductor’s response time varies and therefore

can cause different worker waiting times. For CS-dbp, the task priority is dynamic, i.e. it

varies during runtime depending on the task’s positive demand SI and negative demand

SO. When a task is executed, it changes the SI and SO not only of the task itself but

also of its neighbours (tasks which it has a stream connection with). The conductor

then needs to update the priority for all these involved tasks.

For CS-pbp, the priority of a task is unchanged during its lifetime and the conductor

does not need to update it. However, unlike in CS-dbp, the task priority in CS-pbp is

not a single numeric value but a vector. Comparing location vectors is more expensive.

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 102

7.4.3 Experimental Comparison

7.4.3.1 Experiment Set Up

The experimental comparison between two schedulers is performed on different S-Net

applications including:

• DES: performs DES encryption on 32KB-size messages

• FFT: computes the FFT algorithm on messages of 220 discrete complex values

• HIST: calculates a histogram of images with an average size of 5342 × 3371

• IMF: applies a series of filters on images with average size of 4658 × 3083

• OBD: detects 4 different types of objects from 1920 × 1080 images

●

●

●
●

●

●
●

●

●
● ● ●

●
● ●

●

●

● ● ●

5 10 15 20

0.
01

7
0.

01
8

0.
01

9
0.

02
0

Steps

Th
ro

ug
hp

ut
 [M

es
sa

ge
/m

s]

Figure 7.5: Throughput convergence of IMF on CS-dpb when increasing the number
of external input messages

Each application is composed of a sub-network that performs the application’s main

function, and a parallel replication to create multiple instances of this sub-network. The

number of instances depends on the number of cores. Therefore, an application will have

more tasks when being executed with more cores. The details of these applications are

shown in Chapter 4.

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 103

Benchmark RSDstep NoM PDThroughput PDLatency

DES2 0.02 2000 0.02 0.09
DES4 0.12 4000 0.15 0.32
DES8 0.14 8000 0.02 0.08
DES16 0.05 16000 0.01 1.37
DES32 0.00 32000 0.04 0.28
DES46 0.01 46000 0.04 0.72
FFT2 0.07 3600 0.29 0.23
FFT4 0.08 7200 0.23 0.09
FFT8 0.05 14400 1.97 2.64
FFT16 0.05 28800 1.15 1.04
FFT32 0.02 57600 2.0 2.69
FFT46 0.05 82800 0.66 3.85
HIST2 0.05 2400 0.24 0.21
HIST4 0.06 4800 0.95 0.99
HIST8 0.05 9600 0.27 0.43
HIST16 0.04 19200 0.14 0.6
HIST32 0.05 38400 0.58 0.33
HIST46 0.08 55200 1.02 0.88
IMF2 0.03 2000 0.29 0.26
IMF4 0.10 4000 0.73 0.7
IMF8 0.08 8000 0.08 0.24
IMF16 0.10 16000 0.58 0.7
IMF32 0.11 32000 0.37 1.32
IMF46 0.08 46000 0.45 1.82
OBD2 0.02 2000 0.09 0.16
OBD4 1.16 4000 2.61 2.64
OBD8 0.51 8000 2.95 2.92
OBD16 1.44 16000 0.28 0.52
OBD32 1.08 32000 0.51 0.24
OBD46 1.66 46000 0.72 0.95

Benchmark Ax | A ∈ {DES,FFT,HIS, IMF,OBD}: benchmark of application A deployed with x cores
RSDstep: standard deviation of observed throughput over the last 5 steps while determining the number of messages
NoM : number of external input messages used for the experiment
PDThroughput: percentage difference in throughput between two runs
PDLatency : percentage difference in latency between two runs

Table 7.3: Set up for experiment CS-dbp vs CS-pbp: RSDstep, NoM , PDThroughput,
and PDLatency of all benchmarks in CS-dbp

In this experiment, all applications are set up with a high level of concurrency, i.e. having

a very large number of sub-network instances. This creates a large number of tasks, i.e.

increases the conductor’s workload and therefore highlights its efficiency which is the

main implementation difference between two schedulers. In addition, Esc is set as one

RC invocation so that the priority function is evaluated frequently and that helps to

contrast the performance of these two schedulers.

All applications were executed on a shared memory machine with 4 AMD Opteron™

6174 12-core Processors and 256GB of shared memory. Of the total 48 cores, 2 are

used to imitate the source producing external input messages and the sink consuming

external output messages.

All applications are evaluated in terms of peak throughput and processing latency when

the peak throughput is achieved. To achieve peak throughput, the source is implemented

with a greedy manner, i.e. the source generates external input messages as much as the

application can consume. The number of external input messages is experimentally

determined. It is initially set as an initial value iv and gradually increased for multiple

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 104

Benchmark RSDstep Number of Messages PDThroughput PDLatency

DES2 0.02 2000 3.38 3.57
DES4 0.04 4000 0.09 0.04
DES8 0.03 8000 0.06 0.19
DES16 0.03 16000 0.01 0.97
DES32 0.02 32000 0.03 0.25
DES46 0.03 46000 0.02 0.26
FFT2 0.08 3600 0.03 0.02
FFT4 0.05 7200 0.15 0.21
FFT8 0.03 14400 0.41 0.48
FFT16 0.02 28800 0.08 0.19
FFT32 0.02 57600 0.06 0.11
FFT46 0.04 82800 0.66 1.3
HIST2 0.06 2400 0.19 0.19
HIST4 0.06 4800 0.25 0.42
HIST8 0.08 9600 0.89 0.94
HIST16 0.11 19200 3.29 3.02
HIST32 0.03 38400 0.61 0.55
HIST46 0.05 55200 0.19 0.27
IMF2 0.02 2000 0.37 0.37
IMF4 0.09 4000 0.22 0.07
IMF8 0.07 8000 0.59 0.42
IMF16 0.12 16000 1.71 1.86
IMF32 0.07 32000 3.52 3.2
IMF46 0.04 46000 2.36 2.2
OBD2 0.08 2000 0.61 0.61
OBD4 0.37 4000 1.73 1.65
OBD8 0.16 8000 2.35 2.25
OBD16 0.32 16000 0.3 0.18
OBD32 0.17 32000 0.72 0.48
OBD46 1.03 46000 0.32 0.15

Benchmark Ax | A ∈ {DES,FFT,HIS, IMF,OBD}: benchmark of application A deployed with x cores
RSDstep: standard deviation of observed throughput over the last 5 steps while determining the number of messages
NoM : number of external input messages used for the experiment
PDThroughput: percentage difference in throughput between two runs
PDLatency : percentage difference in latency between two runs

Table 7.4: Set up for experiment CS-dbp vs CS-pbp: RSDstep, NoM , PDThroughput,
and PDLatency of all benchmarks in CS-pbp

steps until the observed throughput converges. In each step, the number of external

input messages is increased by a value of iv. Figure 7.5 demonstrates the convergence

of throughput of the IMF application on CS-dbp over 20 steps. We denote the standard

deviation of observed throughput over the last 5 steps as RSDstep. In our experiment,

the number of external input messages is increased gradually until RSDstep is less than

2%. The final number of external input messages is denoted as NoM . The RSDstep

and NoM values of all benchmarks of CS-dbp and CS-pbp are shown in Table 7.3 and

Table 7.4 respectively. We use Ax | A ∈ {DES,FFT,HIS, IMF,OBD} to denote the

benchmark of application A deployed with x cores.

In addition, to show the stability of the results, we performed each benchmark twice.

The difference between the results of these two runs is relative small. In particular,

the percentage difference in all benchmarks is less then 4%. Also, all the benchmarks

are implemented in S-Net where computation nodes do not maintain persistent states

and the system is free of deadlock. For this reason, the small difference between two

runs shows that the system is unlikely to be trapped in atypical behaviour within a run.

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 105

Table 7.3 and Table 7.4 show the percentage difference of throughput (PDThroughput) and

percentage difference of latency (PDLatency) between two runs in CS-dbp and CS-pbp.

7.4.3.2 Experiment Result

Figure 7.6 shows the comparison between two schedulers CS-dbp and CS-pbp. Neither

scheduler provides superior performance compared to the other. There is almost no

difference in throughput of DES. For other applications, CS-dbp is better for some

cases and CS-pbp is better for others. For example, throughput of HIST in CS-dbp is

respectively 1.2%, 1.9%, 6.7%, 8.5%, 5.5% and 8.2% better on 2, 4, 8, 16, 32 and 46

cores. However, the throughput of FFT in CS-pbp is 17.4%, 3.5%, and 1.8% better on

16, 32 and 46 cores respectively. Similarly, CS-pbp brings better latency for some cases

and worse latency for others. The best case for CS-pbp is FFT running on 16 cores

where the latency is 26% better and the worst case is OBD on 8 cores where the latency

is 17.6% worse.

The scalability of both schedulers appears to be good for all applications except for

FFT. In the FFT implementation, there are ?-combinators which create multiple serial

replicators. These tasks have very short RC invocations and therefore it causes more task

requests to the conductor. That potentially increases the conductor’s response time and

therefore causes workers to wait. On 46 cores, with its large number of ?-combinators,

FFT has not scaled well for both schedulers.

7.5 Evaluation: CS-dbp vs Default LPEL Scheduler

In this section, we compare the performance of these two scheduler against the default

LPEL scheduler. As shown in the previous section, two proposed schedulers CS-dbp and

CS-pbp have similar performance. We therefore choose CS-dbp as the representative.

The default LPEL scheduler is denoted as DS. The comparison is shown in terms of the

peak throughput and the corresponding processing latency when the peak throughput

is achieved.

7.5.1 Experimental Set Up

The experiment is set up in a similar way to the experiment in Section 7.4. It uses the

same set of applications and platform. Also, 2 cores of the platform are used to imitate

the source producing external input messages and the sink consuming external output

messages.

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 106

2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
10

20
30

40
50

Number of cores (logarithmic scale)

●

●

●

●

●
●

●

●

●

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

DES

CS−dbp
CS−pbp

●

Peak Throughput
Processing Latency

2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

Number of cores (logarithmic scale)

●

●

● ●

●

●

●

●

● ●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

FFT

CS−dbp
CS−pbp

●

Peak Throughput
Processing Latency

2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
10

20
30

Number of cores (logarithmic scale)

●

●

●

●
● ●

●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

HIST

CS−dbp
CS−pbp

●

Peak Throughput
Processing Latency

2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

20
25

30
35

Number of cores (logarithmic scale)

●

●

●

●
●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

IMF

CS−dbp
CS−pbp

●

Peak Throughput
Processing Latency

2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

20
25

Number of cores (logarithmic scale)

●

●

●

●
●

●

●

●

●

● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

OBD

CS−dbp
CS−pbp

●

Peak Throughput
Processing Latency

normalised(TPsched=x
core=i) =

TPsched=x
core=i

TPsched=CS−dbp
core=2

normalised(Lsched=x
core=i) =

Lsched=x
core=i

Lsched=CS−dbp
core=2

Figure 7.6: Normalised throughput and latency of CS-dbp and CS-pbp on various
applications

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 107

Benchmark RSDstep Number of Messages PDThroughput PDLatency

DES1 1.35 500 0.04 0.02
DES2 0.89 1000 0.01 0.03
DES4 0.53 2000 0.01 0.05
DES8 0.28 4000 0.11 0.13
DES16 0.34 8000 0.32 0.38
DES32 0.43 16000 0.04 0.03
DES46 0.21 23000 0.02 0.02
FFT1 0.10 900 0.33 0.31
FFT2 0.68 1800 0.02 0.08
FFT4 0.45 3600 0.27 0.18
FFT8 0.33 7200 1.12 1.19
FFT16 1.49 14400 0.58 0.55
FFT32 0.14 28800 0.51 0.42
FFT46 0.07 41400 3.89 3.46
HIST1 0.57 600 0.06 0.09
HIST2 0.50 1200 0.63 1.1
HIST4 0.47 2400 0.27 0.71
HIST8 0.11 4800 0.13 0.12
HIST16 0.05 9600 0.18 0.14
HIST32 0.13 19200 0.83 0.67
HIST46 0.08 27600 0.24 0.22
IMF1 0.36 500 0.08 0.06
IMF2 0.73 1000 0.28 0.24
IMF4 1.17 2000 0.11 0.14
IMF8 0.96 4000 0.34 0.28
IMF16 0.29 8000 0.33 0.42
IMF32 0.21 16000 0.0 0.84
IMF46 0.05 23000 0.65 0.83
OBD1 0.11 500 0.01 0.03
OBD2 0.30 1000 0.14 0.21
OBD4 0.09 2000 0.21 0.26
OBD8 0.20 4000 0.1 0.23
OBD16 0.73 8000 1.81 2.12
OBD32 0.59 16000 0.22 0.2
OBD46 0.39 23000 0.01 0.61

Benchmark Ax | A ∈ {DES,FFT,HIS, IMF,OBD}: benchmark of application A deployed with x cores
RSDstep: standard deviation of observed throughput over the last 5 steps while determining the number of messages
NoM : number of external input messages used for the experiment
PDThroughput: percentage difference in throughput between two runs
PDLatency : percentage difference in latency between two runs

Table 7.5: Set up for experiment DS vs CS-dbp: RSDstep, NoM , PDThroughput, and
PDLatency of all benchmarks in DS

Note that each application in this experiment is set up with an appropriate concurrency

level. That means the application has a substantial number of tasks to avoid the case

where workers idle because there is no available task. At the same time, the number of

tasks should not too large to avoid boosting the overhead.

We derived the scheduling cycle Esc by experiments on these 5 applications with different

values of Esc from 1 to 30 RC invocations. The observed difference in throughput and

latency has been relatively small. This shows that the task-switching overhead in LPEL

is negligible. Thus, for the further experiments we choose an arbitrary value for Esc in

the range of 1 to 30 RC invocations.

Similarly to the experiment in Section 7.4, the number of external input messages is

derived experimentally by gradually incrementing them over several steps. The incre-

ment process stops when the relative standard deviation of observed throughput over

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 108

Benchmark RSDstep Number of Messages PDThroughput PDLatency

DES2 0.21 1000 0.06 0.07
DES4 0.24 2000 0.11 0.02
DES8 0.24 4000 0.07 0.42
DES16 0.28 8000 0.04 0.23
DES32 0.22 16000 0.0 1.5
DES46 0.26 23000 0.09 0.97
FFT2 0.93 1800 0.58 0.58
FFT4 0.19 3600 0.15 0.22
FFT8 0.11 7200 0.01 0.12
FFT16 0.11 14400 0.02 0.42
FFT32 0.42 28800 0.03 0.12
FFT46 0.38 41400 0.05 0.09
HIST2 0.32 1200 0.09 0.08
HIST4 0.12 2400 0.08 0.22
HIST8 0.07 4800 0.04 0.11
HIST16 0.17 9600 0.16 0.58
HIST32 0.17 19200 0.87 0.74
HIST46 0.26 27600 0.3 0.1
IMF2 0.22 1000 0.11 0.12
IMF4 0.21 2000 0.32 0.59
IMF8 0.16 4000 0.07 0.15
IMF16 0.26 8000 0.05 1.01
IMF32 0.05 16000 0.26 0.1
IMF46 0.26 23000 0.33 0.32
OBD2 0.07 1000 0.04 0.04
OBD4 0.02 2000 0.0 0.12
OBD8 0.53 4000 0.11 0.13
OBD16 0.93 8000 0.27 0.06
OBD32 0.47 16000 0.82 0.73
OBD46 0.47 23000 0.19 1.33

Benchmark Ax | A ∈ {DES,FFT,HIS, IMF,OBD}: benchmark of application A deployed with x cores
RSDstep: standard deviation of observed throughput over the last 5 steps while determining the number of messages
NoM : number of external input messages used for the experiment
PDThroughput: percentage difference in throughput between two runs
PDLatency : percentage difference in latency between two runs

Table 7.6: Set up for experiment DS vs CS-dbp: RSDstep, NoM , PDThroughput, and
PDLatency of all benchmarks in CS-dpb

the last five steps (RSDstep) is less than 2%. The RSDstep and number of external input

messages (NoM) are shown in Table 7.5 for DS and in Table 7.6 for CS-dpb. Also, each

benchmark is performed twice showing that the difference in results between two runs

is small. In particular, the difference in all benchmarks is less than 4%. The percentage

difference of throughput (PDThroughput) and percentage difference of latency (PDLatency)

between two runs are shown in Table 7.5 for DS and in Table 7.6 for CS-dpb.

7.5.2 Performance Comparison

Figure 7.7 demonstrates the comparison in performance and throughput scalability be-

tween CS-dbp and DS. We dedicate one worker as the conductor and we only measure

CS-dbp with 2 or more cores. Since the relative overhead time of CS-dbp is one CPU

core for the conductor, the peak throughput is better in DS when the number of CPU

cores is small. When the number of cores increases, this overhead is reduced and the

peak throughput of CS-dbp is improved. In the case of 46 cores, the peak throughput of

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 109

1 2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

20
25

30

Number of cores (logarithmic scale)

●

●

●

●

●
● ●

●

●

●
●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

DES

CS−dbp
DS

●

Peak Throughput
Processing Latency

1 2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

20

Number of cores (logarithmic scale)

●

●

●

●
●

●
●

●

●

● ●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

FFT

CS−dbp
DS

●

Peak Throughput
Processing Latency

1 2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

20

Number of cores (logarithmic scale)

●

●

●

●

●

●
●

●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

HIST

CS−dbp
DS

●

Peak Throughput
Processing Latency

1 2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

Number of cores (logarithmic scale)

●

●

●

●

●

●
●

●

●

●

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

IMF

CS−dbp
DS

●

Peak Throughput
Processing Latency

1 2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

20

Number of cores (logarithmic scale)

●

●

●

●

●

● ●

●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

OBD

CS−dbp
DS

●

Peak Throughput
Processing Latency

normalised TPsched=x
core=i =

TPsched=x
core=i

TPsched=DS
core=1

normalised Lsched=x
core=i =

Lsched=x
core=i

Lsched=DS
core=1

Figure 7.7: Normalised peak throughput and processing latency (with λ = TPpeak)
of CS-dbp and DS on various applications

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 110

8 16 32 46

Number of Cores

N
or

m
al

is
ed

 P
ro

ce
ss

in
g

La
te

nc
y

0.
00

0.
05

0.
10

0.
15

0.
20

DS with λ = TPpeak
DS

CS−dbp with λ = TPpeak
CS−dbp

CS−dbp with λ = TPpeak
DS

OBD

Figure 7.8: Processing latency comparison with different arrival rates

CS-dbp is significantly higher than DS. In particular, the peak throughput of the DES,

FFT, HIST, IMF and OBD are respectively 1.8, 1.8, 2.7, 2.0, and 2.3 times higher with

CS-dbp.

The processing latency of CS-dbp on 2 cores is better than DS for IMF and the same

for FFT despite the higher overhead of CS-dbp. Starting from 4 cores, the processing

latency of CS-dbp is better than or equal to DS for all applications. Note that the

processing latency is measured when the peak throughput is achieved. CS-dbp provides

higher peak throughput than DS in most of the cases, i.e. the applications can cope with

a higher arrival rate. Furthermore, if the arrival rate for CS-dbp gets reduced down to

the peak throughput of DS, then CS-dbp will exercise a significantly lower processing

latency. Figure 7.8 demonstrates this for the OBD application. With λ = TPpeak,

i.e. when two schedulers are compared with their own peak throughput, the processing

latency of CS-dbp is 1.5 to 2.4 times lower than DS. With λ = TPDS
peak, i.e. when two

schedulers are compared with the same arrival rate, the processing latency of CS-dbp is

7.7 to 12.4 times lower than DS. The cases of 2 and 4 cores are not shown because the

peak throughput of CS-dbp is smaller or equivalent to DS, as mentioned above.

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 111

7.5.3 Scalability Comparison

The processing latency depends on the concurrency level of the RPS which is reflected in

the structure of the program. For this reason, the comparison in the latency scalability

between two schedulers is not so appropriate. We therefore focus on the throughput scal-

ability. The results in Figure 7.7 show that CS-dbp has a better throughput scalability

than DS.

For the DES application, with 2 to 16 cores CS-dbp and DS scale at the same rate. DES

is a special application where the RPS structure consist of multiple pipelines. Each

pipeline has 16 tasks with the same amount of computations. As DS uses a round-robin

approach to map tasks to cores, it creates a load balanced mapping when the number

of tasks is a multiple of the number of cores. In this case, the relative idling time is

minimal and therefore the best throughput is achieved. With 32 and especially 46 cores,

the number of tasks is not a multiple of the number of cores, the round-robin mapper of

DS does not provide a good load balance. Consequently the throughput does not scale

well for DS. In contrast, the scalability of CS-dbp is not affected and overtakes DS.

7.6 Evaluation: CS-dbp vs Centralised Scheduler with Ran-

dom Priority

We evaluate the heuristic priority function of CS-dbp by comparing it with the random

task priority. In the CS-dbp scheduler, the priority of a task varies during its lifetime.

To access the demand-based priority, we use the centralised scheduler that dynamically

assigns a random priority for ready tasks before they are added to the CTQ. This

scheduler is denoted as CS-drp. The experiment uses the same set up as in Section 7.5.

Since the behaviour of all applications are quite similar, we present here one illustrated

case of the HIST application in Figure 7.9. As explained in Section 7.2, with a bounded

Mcp the throughput is maximised when the relative idling time and the relative overhead

time are minimised. As Mcp is controlled by entry and exit tasks, the random task

priority does guarantee the Mcp to be bounded although the chance of unbounded growth

is low. Using the centralised approach, the CS-drp has minimised the relative idling time

W̃ . CS-drp has less time overhead Õ than CS-dbp because it does not need to monitor

the stream fill level and keep track of the task-stream relationship. Therefore when Mcp

is bounded the peak throughput of CS-drp is better than CS-dbp.

Since the stream structure of the program is cloned into more copies for more cores,

the number of tasks and streams is increased according to the number of cores. The

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 112

0
5

10
15

20
25

30
35

1 2 4 8 16 32 46

N
or

m
al

is
ed

 p
ea

k
th

ro
ug

hp
ut

0
5

10
15

20
25

30
35

Number of cores (logarithmic scale)

●
● ● ● ● ●

●

●

● ●
●

●

0
5

10
15

20

N
or

m
al

is
ed

 p
ro

ce
ss

in
g

la
te

nc
y

HIST

CS−dbp
CS−drp

●

Peak Throughput
Processing Latency

Figure 7.9: Performance of HIST using CS-dbp and CS-drp

overhead for monitoring tasks and streams in CS-dbp increases when the the number of

cores increases. The difference in throughput between CS-dbp and CS-drp is higher for

higher numbers of cores.

In contrast, the processing latency of CS-dbp is significantly better than CS-drp for

all numbers of cores. This shows that the proposed priority function has a meaningful

influence on the processing latency. However, the overhead of calculating the priority

function at the same time reduces the maximum throughput.

7.7 Chapter Summary

This chapter considered various properties of stream programs to provide efficient heuris-

tics to obtain good load balancing with online scheduling. This chapter introduced two

heuristic approaches: demand-based priority (CS-dbp) and position-based priority (CS-

pbp). CS-dbp uses the state of the input and output streams of each node to define

its priority. As the stream state is dynamic, CP-dbp requires a perpetual re-evaluation.

CS-pbp uses the notion of position which needs to be evaluated only once, when the

respective node is created. Although the CS-pbp heuristic avoids the perpetual re-

evaluation of CS-dbp, our experimental evaluation indicates that the throughput and

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 113

latency achieved by CS-pbp is just comparable to that of CS-dbp. This is because in

our implementation of CS-pdp priorities are vectors that come with a significantly more

expensive comparison operation, whereas CS-pdp priorities are numeric scalars that can

be compared efficiently.

Furthermore, this chapter compared CS-dbp with the default scheduler of LPEL which

does not not deploy knowledge about the structure and state of the RSP. The experimen-

tal results show that CS-dbp offers significant improvements of throughput compared

to the default scheduler. For 46 cores the throughput showed improvements by a factor

of 1.6 to 2.7. When limiting the arrival rate of the new scheduler down to the peak

throughput of the default scheduler, we observed at the same time improvements of the

latency by a factor of 7.7 to 12.4 for the OBD application on 8 or more cores.

Chapter 7. Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform
Shared Memory Platforms 114

Chapter 8

Mapping Reactive Stream

Programs onto Distributed

Systems

In this chapter, we propose a graph partitioning method particularly suitable for op-

timising the throughput of RSPs on heterogeneous distributed platforms. As an old

NP-hard problem [GJS76], graph partitioning has a significant volume of existing work.

The usual solutions are heuristic and approximation algorithms trying to divide a graph

into separated partitions to optimise an objective. While the classical and well investi-

gated objective is to equalise the size of partitions first and then minimise the total cuts

between them, this objective is not necessarily sufficient for all problems. For RSPs,

the throughput is decided not purely by the workload on each partition, but also by the

communication cost between each pair of partitions. It is even more complicated when

the distributed platform has heterogeneous resources and communication bandwidth is

not uniform among them.

This chapter introduces two new heuristics to capture the problem space of graph parti-

tioning for RSPs to optimise throughput. Although the thesis targets general RSPs (as

shown in Table 2.2), these two new algorithms are suitable to a more restricted class of

RSPs with relatively stable node behaviour and relatively static program structures. For

RSPs with highly variable node computational behaviour and highly dynamic program

structures, the proposed algorithms can be used for initial partitioning. During runtime

when these properties vary, an adaptation method is required to repartition the RSP.

115

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 116

8.1 Mapping RSPs onto Distributed Platforms by Graph

Partitioning

This section explains the usage of graph partitioning methods for mapping RSPs onto

distributed platforms. The problem of mapping an RSP onto a distributed platform

consisting of multiple PEs can be viewed as the partitioning and mapping of the task

graph of the RSP to all the PEs.

A"

B"
C"

D"

E

F"
G"

"{A,"E},"{B,"F,"D},"{G,"C}"

Graph"Par11on:""
""divide%graph%into%3%par//on%

PE1"="{B,"F,"D}"
PE2"="{G,"C}"
PE3"="{A,"E}"

Mapping"

Figure 8.1: Graph partitioning and mapping in two phases

One technique is to use a graph partitioning algorithm to divide the task graph into as

many partitions as the number of PEs, and then apply a mapping algorithm to assign

individual partitions onto PEs. The technique is demonstrated in Figure 8.1, including

two phases known as graph partitioning and mapping. The graph partitioning phase

is applied first to divide the task graph into multiple partitions. The mapping phase

is then applied to assign the generated partitions to PEs. This technique is often used

for mapping parallel programs onto uniform distributed platforms where all the PEs are

homogeneous. The graph partitioning algorithm usually aims to obtain the load balance.

In the case where all PEs of the platform are homogeneously connected, the graph

partitioning algorithm also needs to minimise the communication cost. The mapping

in this case is a straightforward process where each partition is exclusively mapped to

an arbitrary PE. In cases where the connections among PEs are not homogeneous, the

mapping algorithm is designed to minimise the communication cost.

Another technique is to integrate the mapping work into the graph partitioning algorithm

as shown in Figure 8.2. This technique requires us to assign each PE with an unique

identification number. Let n be the number of the PEs, where each PE is enumerated

from 1 to n. The graph partitioning algorithm is then used to divide the task graph into

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 117

n partitions, each of which is also assigned with a unique identification number from 1

to n. The identification number of each partition indicates the PE that the partition is

mapped to, i.e. partition i is assigned to PE i with i = 1..n. This technique is suitable for

heterogeneous distributed platforms where each PE has a different configuration since it

attaches each partition to a PE before the partition is generated. This gives the graph

partitioning algorithm more control to generate partitions so that the goal is optimised.

A"

B"
C"

D"

E

F"
G"

Graph"Par..oning"(mapping"integrated):""
!generate!par))on!1,!par))on!2,!par))on!3!
!(par))on!1!will!be!mapped!to!PE1,!!
!!!par))on!2!will!be!mapped!to!PE2,!
!!!par))on!3!will!be!mapped!to!PE3)!

Par..on1"

Par..on2"

Par..on3"

PE1" " "PE2" " "PE3"

A"

B"
C"

D"

E

F"
G"

Figure 8.2: Graph partitioning with integrated mapping

The latter technique is chosen to develop the graph partition algorithms in this chapter as

we target the mapping of RSPs onto heterogeneous distributed platforms. The mapping

problem is integrated into the graph partitioning problem by coupling each partition

with the PE which has the same identification number. The following section presents

graph partitioning algorithms that divide the task graph into partitions so that the

throughput is maximised.

8.2 Usage of Graph Partitions to Optimise Throughput of

RSPs

8.2.1 Problem Statement

We introduce graph partitioning algorithms to generate a mapping configuration so that

its throughput is maximised. Inputs of these algorithms include the task graph of the

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 118

RSP and the target graph of the distributed platform. The task graph is denoted as

G = (T ,S) where T is the set of tasks, and S is the set of streams. The computation

weight of each task T in T is defined as the average time that T requires to performs its

contribution to an external input message. This amount of time depends on the PE onto

which the task is mapped. The computation weight of task T on processing element R is

notated as wR(R) and is measured in seconds. A stream connecting two tasks Ti and Tj

is denoted as STiTj . The communication weight of the stream is denoted as w(STiTj). It

equals to the average amount of data to be transferred over STiTj for the completion of

an external input message. It is the average total size of messages that the stream STiTj

transfers during its contribution to each external input message. The unit of the stream

weight is Byte/message. The values of wR(T) and w(STiTj) can be easily obtained using

an appropriate monitoring framework, for example the one presented in Chapter 6.

The target graph is denoted as H = (R,L) where R is the set of vertices, also the set of

PEs; and L is the set of edges, each of which is the communication link between PEs.

Each PE, R, has weight w(R), which equates to its number of cores. A communication

link between two processing elements Ri and Rj is denoted as LRiRj and has weight

w(LRiRj) which equates to its bandwidth in Byte/s.

The graph partitioning problem involves dividing G into |R| partitions, each of which has

a unique identification number from 1 to |R|. The partition i is mapped to PE Ri with

i = 1..|R|. The set of partitions is called a mapping configuration MpC = {PR | R ∈ R}.
The goal of our graph partitioning algorithms is to find the mapping configuration so

that the throughput is maximised.

In Section 5.3.1, we presented a method to calculate the throughput of RSPs when

deployed on a distributed platform with a mapping configuration. Given a mapping

configuration MpC , the throughput is the minimum value of computation throughput

of each partition, and the communication throughput of each pair of partitions:

TP(MpC) = min
Ri,Rj ,Rk∈R

(
TP comp (PRi) ,TP comm

(
PRj , PRk

))
with

TP comp(PR) =
w(R)− W̃R − ÕR

CR

=
w(R)− W̃R − ÕR∑

T∈PR
wR(T)

TP comm(PRi , PRj) =
w(LRiRj)

Comm(PRi , PRj)

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 119

8.2.2 Partitioning RSPs with Variable Node Computational Behaviour

and Dynamic Program Structures

To generate the task graph G = (T ,S), we need to use the monitoring framework in

Chapter 6 to extract properties of RSPs including the task weight, the stream weight

and the structure of RSPs. Since the approach of using graph partitioning for mapping

RSPs is an offline approach, it requires these properties to be relatively constant during

runtime. Therefore, RSPs with highly varied task weights, stream weights and program

structures during the runtime are not addressed by our proposed algorithms. However,

the proposed algorithms can be used to find an initial mapping configuration by fixing

the varied properties with average values. During runtime when these properties change,

an adaptation method would be required to repartition the RSP.

8.3 New Graph Partition Algorithms to Optimise Through-

put of RSPs

In this section, we focus on finding the mapping configuration so that the throughput

is maximised. We assume that the local scheduler of each PE has predictable relative

idling time W̃ and relative overhead time Õ. We also assume that these values are not

affected by the partitioning method.

We introduce two partitioning algorithms to generate a mapping configuration so that

its throughput is maximised. The first algorithm, called KL-Adapted (KLA), is a trivial

adaptation from the well-known graph partitioning algorithm, Kernighan-Lin [KL70].

The second one, called Congestion Avoidance (CA), operates in a similar way but instead

of considering all possible moves, the method detects the congestion point and examines

only moves that can help to improve the congestion point.

For convenience, we denote by par(MpC , T) the partition in MpC that task T belongs

to.

8.3.1 KL-Adapted Algorithm

The original Kernighan-Lin algorithm (KL) [KL70] aims to divide a graph into two

partitions such that they are balanced in terms of the number of vertices with a minimum

number of edges across them. The algorithm introduces the gain of a vertex as the total

of edge cut which will be decreased if the vertex is moved to the complimentary partition.

The gain of each vertex is calculated based on internal edges connecting the vertex with

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 120

Function Input Output Semantics

rndGen Task graph G Mapping configuration Generate a random mapping
Target graph H configuration of G onto H

TP Mapping configuration MpC Throughput Calculate the throughput of
mapping configuration MpC

append List of elements L New list Append E to L
Element E and return L

move Mapping configuration MpC New mapping configuration Given the current mapping
Task T configuration MpC, the function
Partition P relocates task T to partition P

and returns MpC

Table 8.1: Semantics of built-in functions used in KLA and CA algorithms

vertices on the same partition, and external edges connecting the vertex with vertices

on the complimentary partition.

Starting with a randomly generated partition, the algorithm uses a greedy heuristic

to find an optimal sequence of operations between two partitions which maximise the

improvements. Each operation includes choosing a vertex from the first partition with

the maximum gain to move to the second partition, and similarly choosing a vertex from

the second partition with the maximum gain to move to the first partition. After each

move, the gain of all vertices are updated locally by examining the moved vertex and

its neighbours.

The Fiduccia and Mattheyses algorithm (FM) [FM82] is an improvement of Kernighan-

Lin by using an appropriate data structure. When gain values are integers and fall in a

bounded range, a set of buckets can be used to store vertices. Each bucket is labelled

with a value in the gaining range. Each vertex is stored in one bucket with the label

matching with the vertex’s gain value. This helps to choose the best vertex to move,

that is one of the vertices in the bucket with the largest label. When the gain of a vertex

changes, the vertex is moved to the new bucket according to its new gain.

We adapt the Kernighan-Lin algorithm to the multiple-way partitioning approach where

each operation is to move one task to a new partition. Our new algorithm is called

the KL-Adapted (KLA) Partitioning Algorithm. Similar to the original Kernighan-Lin

algorithm, KLA starts with a randomly generated initial mapping configuration where

each task is randomly assigned to a PE. KLA then applies the greedy heuristic pass

iteratively until the throughput stops increasing. We denote these passes as KLA passes

to distinguish them from passes in the CA algorithm presented later. Each KLA pass

searches for the best move operation which relocates a task to a new PE so that the

throughput after the move operation is maximum. After being relocated, a task is locked

so that it is moved only once during a KLA pass. This process is carried on until all

tasks have been moved. At the end of the KLA pass, the sequence of move operations

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 121

BEGIN

INPUT
Stream Program G = (T ,S)

Distributed Platform H = (R,L)

cur map ← rndGen(G,H)
cur tp ← TP(cur map)

tmp map ← cur map
moved task ← ∅
moved par ← ∅
moved tp ← ∅

FIND T ∈ T \moved task and P ∈ tmp map
SUCH THAT P 6= par(T)
AND moving T to P gives the best throughput tp

T, P exist
?

moved task ← append(moved task, T)
moved par ← append(moved par, par(T))
moved tp ← append(moved tp, tp)
tmp map ← move(tmp map, T, P)

FIND index k of the highest value in moved tp
max tp ← getElt(moved tp, k)

max tp > cur tp
?

cur tp ← max tp
for i ← 1 to k:

T ← getElt(moved task, i)
P ← getElt(moved par, i)
cur map ← move(cur map, T, P)

OUTPUT
Mapping Configuration = cur map

END

no

yes

no

yes

KLA Pass

A

B

C

D

E

F

G

H

I

J

The semantics of built-in functions are explained in Table 8.1

Figure 8.3: Flowchart of the KL-Adapted partitioning algorithm

that creates the new mapping configuration with the highest throughput are chosen to

be applied.

In the original KL/FM algorithm, the gain of a vertex is tracked so that it is easy and

quick to choose the best vertex to move. This is feasible since after moving a vertex,

only the gain of its neighbours needs to be updated by simple arithmetic operations. In

our problem, moving a vertex may change the gain values of all vertices and therefore

tracking the gain value of each vertex is not beneficial. We instead keep track of the

computation throughput of each partition and the communication throughput between

each pair of partitions. The KLA pass in our algorithm needs to examine all possible

move operations to find the best move operation. When applying a move operation, the

computation and communication throughputs of involved partitions will be updated.

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 122

Data: G = (T ,S), H = (R,L)
Result: Map with optimal TP(Map)
cur map← rndGen(G,H) ;
cur tp← TP (cur map) ;
tmp map← cur map ;
cont flag ← TRUE ;
repeat

// KLA pass

moved task ← ∅ ;
moved par ← ∅ ;
moved tp← ∅ ;
repeat

FIND T ∈ T \moved task and P ∈ tmp map ;
SUCH THAT P 6= par(T) ;
AND moving T to P gives the best throughput tp;

if T and P exits then
moved task ← append(moved task, T) ;
moved par ← append(moved par, par(T)) ;
moved tp← append(moved tp, tp) ;
tmp map← move(tmp map, T, P)

end

until T and P do not exist ;
// extract the best move sequence

FIND index k of the highest value in moved tp ;
tmp tp← getElt(moved tp, k) ;
if tmp tp > cur tp then

for i : 1→ k do
T ← getElt(moved task, i) ;
P ← getElt(moved par, i) ;
tmp map← move(tmp map, T, P) ;

end
cur tp← tmp tp ;
cur map← tmp map ;

else
cont flag ← FALSE ;

end

until cont flag = FALSE;

The semantics of built-in functions are explained in Table 8.1

Algorithm 1: Pseudo code of KL-Adapted partitioning algorithm

The throughput of the new mapping configuration then is calculated as the minimum

value of all computation and communication throughputs.

The details of KLA are shown in Figure 8.3, labelled as steps A to J . The input

to the KLA algorithm includes the RSP G = (T ,S), and the distributed platform

H = (R,L) (step A). At the beginning, a random mapping configuration is generated and

its throughput is evaluated as in step B. The KLA algorithm uses three lists moved task,

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 123

moved par and moved tp to store the history of move operations. Starting with the

empty history, each KLA pass operates on a temporary mapping configuration tmp map

which is a copy of the current mapping configuration cur map (step C). The KLA pass

then finds the task T not in moved task and the partition P so that moving T to P

carries out the highest throughput compared to all other possible move operations. If

the move operation exists (step E with ‘yes’), it is applied to generate a new mapping

configuration. The move operation is also added to the history, i.e. T is appended

to moved task, P is appended to moved par, and the new throughput value is added

to moved tp (step F). Note that some move operations in the history can reduce the

throughput, i.e. an element in moved tp can have a smaller value than others before it.

To avoid the case where a task is repeatedly exchanged between two partitions, one task

is moved at most once within a pass. That means tasks in moved task are not considered

to move again within the current KLA pass. When all tasks have been moved once, i.e.

no move operation can be found (step E with ‘no’), the list moved tp is examined to

find the maximum throughput value max tp and its index k (step G). The current KLA

pass terminates and a new pass will proceed if max tp is higher than the throughput of

the current mapping configuration (step H with ‘yes’). Before starting a new KLA pass,

the current mapping configuration cur map needs to be updated by applying all move

operations in the history up to index k (step I). In the case where max tp is not higher

than the throughput of cur map (step H with ‘no’), that means the heuristic KLA pass

can not find any better mapping configuration. The KLA algorithm therefore returns

cur map as the final mapping configuration (step J) and terminates.

The pseudo code of the KLA algorithm is also included in Algorithm 1. The inner loop

of each KLA pass is repeated until no move is made. Since each task is moved exactly

once, |T | moves are applied in a KLA pass, i.e. the inner loop is applied |T | times.

For each iteration of the inner loop, the algorithm needs to search for a task T and a

partition P so that relocating T to P would bring the best throughput. To find the

best T and P , the algorithm needs to examine all possibilities of task relocation. The

complexity of this examination is |Texamined| × (|R| − 1), where Texamined is the number

of the task to be examined. For the first iteration of the inner loop, Texamined equals to

T . After each iteration, the number of the tasks to be examined is reduced by one until

the last iteration where there is only one task to be examined. The complexity of the

KLA pass is therefore:

O(
|T |∑
i=1

i× (|R| − 1)) = O(|T |2 × |R|)

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 124

BEGIN

INPUT
Stream Program G = (T ,S)

Distributed Platform H = (R,L)

cur map ← rndGen(G,H)
cur tp ← TP(cur map)

tmp map ← cur map
moved task ← ∅
moved par ← ∅
moved tp ← ∅

IDENTIFY the congestion point C of tmp map

Type of C
?

Ttry ← Pr
Ttry ← {T1, T2|T1 ∈ Pri

∧ T2 ∈ Prj
∧

∃ST1T2
∈ S

FIND T ∈ Ttry \moved task and P ∈ tmp map

SUCH THAT P 6= par(t)
AND moving T to P gives the best throughput tp

T, P exist
?

FIND index k of the highest value in moved tp
max tp ← getElt(moved tp, k)

moved task ← append(moved task, T)
moved par ← append(moved par, par(T))
moved tp ← append(moved tp, tp)
tmp map ← move(tmp map, T, P)

max tp > cur tp
?

cur tp ← max tp
for i ← 1 to k:

T ← getElt(moved task, i)
P ← getElt(moved par, i)
cur map ← move(cur map, T, P)

OUTPUT
Mapping Configuration = cur map

END

C lies on computation of Pr
C lies on communication of (Pri

, Prj
)

yes

no

no

yes

CA Pass

A

B

C

D

E

F

G

H

I

J

K

L

M

N

The semantics of built-in functions are explained in Table 8.1

Figure 8.4: Flowchart of the Congestion Avoidance partitioning algorithm

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 125

Data: G = (T ,S), H = (R,L)
Result: Map with optimal TP(Map)
cur map← RndGen(G,H) ;
cur tp← TP (cur map) ;
tmp map← cur map ;
cont flag ← TRUE ;
repeat

// CA pass

moved task ← ∅ ;
moved par ← ∅ ;
moved tp← ∅ ;
repeat

IDENTIFY congestion point C of tmp map ;
if C lies in Pi then
Ttry ← Pr ;

end
if C lies in (Pi, Pj) then
Ttry ← {T1, T2|T1 ∈ Pi ∧ T2 ∈ Pj ∧ ∃ST1T2 ∈ S} ;

end
FIND T ∈ Ttry \moved task and P ∈ tmp map ;
SUCH THAT P 6= par(T) ;
AND moving T to P gives the best throughput tp ;

if T and P exits then
moved task ← append(moved task, T) ;
moved par ← append(moved par, par(T)) ;
moved tp← append(moved tp, tp) ;
tmp map← move(tmp map, T, P) ;

end

until T does not exist ;
// extract the best move sequence

FIND index k of the highest value in moved tp ;
tmp tp← getElt(moved tp, k) ;
if tmp tp > cur tp then

for i : 1→ k do
T ← getElt(moved task, i) ;
P ← getElt(moved par, i) ;
tmp map← move(tmp map, T, P) ;

end
cur tp← tmp tp ;
cur map← tmp map ;

else
cont flag ← FALSE ;

end

until cont flag = FALSE;

The semantics of built-in functions are explained in Table 8.1

Algorithm 2: Pseudo Code of Congestion Avoidance partitioning algorithm

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 126

8.3.2 Congestion Avoidance Partitioning Algorithm

Similar to KLA, the Congestion Avoidance (CA) partitioning algorithm begins with an

initial mapping configuration and repeats a heuristic pass until the throughput reaches an

optimal value. We denote the heuristic pass here as CA pass. Unlike a KLA pass, a CA

pass does not examine all possible move operations, but focuses on only those around the

congestion point identified by inspecting the throughput formula of Equation 5.5. Within

each pass, the CA identifies the congestion point of the current mapping configuration

and tries move operations that potentially improve the throughput.

From Equation 5.5, the throughput of an RSP with a mapping configuration MpC is the

minimum value of a set of computation and communication throughputs. A congestion

point is where the throughput is settled, i.e. where the minimum value occurs. If the

minimum value is TP comp(PR), the congestion is said to lie on the computation of PR. In

this case, only tasks from PR are considered to be moved to other partitions. This helps

to reduce
∑

t∈PR
wt
R and therefore increase TP comp(PR). Thus the throughput TP(MpC)

then improves.

Similarly if TP comm(PRi , PRj) is the minimum value, the congestion lies on the com-

munication between partitions PRi and PRj . In this case, only move operations that

reduce the communication weight between PRi to PRj are considered. Those are move

operations involving tasks which have a stream connection across PRi and PRj . Relo-

cating these tasks potentially reduces the communication weight between PRi and PRj

and therefore potentially improves TP comm(PRi , PRj).

The details of the CA algorithm are shown in Figure 8.4, labelled as steps A to N .

Taking an RSP G = (T ,S) and a distributed platform H = (R,L) as inputs (step A),

CA starts by generating a random mapping configuration cur map (step B) before it

starts heuristic passes. Similar to KLA, CA stores the history of move operations in

three lists moved task, moved par and moved tp. Each CA pass also starts with an

empty history and a temporary mapping configuration tmp map which is copied from

the current mapping configuration cur map (step C). By evaluating the throughput

formula (Equation 5.5) on tmp map, the CA pass identifies the congestion point. The

type of congestion point is used to determine the set of tasks Ttry so that reallocating

them can potentially improve the congestion point (steps E, F and G). If the congestion

point lies on the computation of PR, Ttry consists of tasks in PR. If the congestion point

lies on the communication of PRi and PRj , Ttry includes pairs of tasks, one in PRi and

one in PRj , which are connected by a stream. In step H, the algorithm examines move

operations of re-allocating tasks in Ttry which have not been moved during the current

pass, i.e. are not in the list moved task. The result of this step is the move operation

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 127

of a task T to another partition P that brings the highest throughput compared to

other examined move operations. The remaining steps of the CA pass are similar to a

KLA pass. The move operation is applied and added to the history if it exists (step

J). Otherwise, the algorithm scans the history of move operations to find the highest

throughput value max tp and its index k (step K). The algorithm decides to update

cur map and continues a new CA pass if max tp is better than the throughput of

cur map (step M). If not, the algorithm terminates with cur map as the output.

The pseudo code of CA is also included in Algorithm 2. The inner loop of each CA pass

is repeated until no move is made. Since each task is moved at most one, |T | moves

are applied in a KLA pass, i.e. the inner loop is applied |T | times at most. For each

iteration of the inner loop, the algorithm needs to search for a task T and a partition P

so that relocating T to P would bring the best throughput. To find the best T and P ,

the algorithm needs to examine all tasks in Ttry. The complexity of this examination is

|Ttry| × (|R| − 1), where Ttry is either the number of tasks in PR if the congestion point

lies on the computation of PR, or the number of tasks in PRi and PRj if the congestion

point lies on the communication link between PRi and PRj .

On average, each partition contains |T ||R| tasks. For the first iteration of the inner loop,

the average value of Ttry equals to c× |T ||R| , where constant c = 1 if the congestion point

lies on the computation of a partition, or c = 2 if the congestion point lies on the

communication links of a pair of partitions. After each iteration, the average number of

the tasks to be examined is reduced by 1
|R| until the last iteration the there is only one

task to be examined. The complexity of the CA pass is therefore:

O
((
|T |
|R| + |T |−1

|R| + ...+ |R|
|R|

)
× (|R| − 1)

)
= O

(
|R|−1
|R| ×

|T |∑
i=|R|

i

)
= O(T 2 −R2)

8.3.3 Local Optima in Heuristic Search

Since the proposed algorithms KLA and CA are local search heuristics, they can be

trapped in local optimum. There are a number of approaches to overcome this problem.

One simple approach is to run the partitioning algorithm multiple times with different

initial mapping configurations. Another more complicated approach is to integrate the

local search heuristic into multilevel schemes. This has been shown have been shown

to be successful in overcoming the localized nature of KL/FM [KK98], [HL95b]. In this

work, we focus on the effectiveness of our new local search heuristic. We therefore choose

to perform our algorithms multiple times with different initial mapping configurations.

The approach of integrating into multilevel schemes will be considered in our future

work.

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 128

8.4 Evaluation of the Partitioning Algorithms

In this section we evaluate the performance and efficiency of the two heuristic algorithms

KLA and CA presented in Section 8.2. To the best of our knowledge, we are the first to

use the throughput calculation using Equation 5.5 as the optimisation metric for graph

partitioning. Despite using another version of this formula, the approach in [CRA09]

does not consider congestion points lying on the communications but attempts to elimi-

nate only those lying on the computations. We therefore compare our proposed heuristics

with Simulated Annealing (SA) as it is a generic technique for finding the global optima

of a specific function.

8.4.1 Experimental Setup

We perform our experiments with RSPs implemented by S-Net. We use the monitoring

framework presented in Chapter 6 to obtained the profiling information for the RSP

graph. Each PE on the distributed system has its own LPEL execution layer facilitated

with the centralised scheduler CS-dbp as presented in Chapter 7. With this scheduler,

the relative overhead time W̃ is predictable. It is equal to one CPU core which is used

as the conductor to manage the central task queue.

We use five different applications:

• DES: performs DES encryption

• OBD: detects four different types of objects from images

• HIST: calculates histograms of images

• MTI: detects moving objects on the ground from an aircraft [PHG+10]

• S500 : a synthetic application

The first 4 applications are implemented using S-Net. Each of them contains a main

sub-network that performs the application’s main function. To increase the level of

concurrency, parallel replication is used to create multiple instances of the main sub-

network. The number of instances is decided by the number of machines of the deployed

targets. Therefore, each application when deployed on different targets will have a

different number of nodes and streams. The details of these applications are shown in

Chapter 4.

To diversify the experiment, we include a synthetic application called S500 . As the

name suggests, it has 500 nodes. Each pair of nodes is connected with a probability of

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 129

Application # Vertices/Nodes # Edges/Streams

DES 4 74 76
OBD4 98 144
HIST 4 122 180
MTI 4 126 140
DES 8 146 152
OBD8 194 288
HIST 8 242 360
MTI 8 250 280

DES 16,DESS16 290 304
OBD16,OBDS16 386 576
HIST 16,HISTS16 482 720
MTI 16,MTI S16 498 560
S500 16,S500S16 500 62414

Table 8.2: Number of vertices and edges of evaluation benchmarks

50%. The weight of each node is randomly chosen between the minimum and maximum

weights of nodes in other applications.

The target platforms of our experiments are clusters of 4, 8, and 16 machines. Each

machine has 2 sockets with Xeons E5520 CPUs. Each machine also has 24 GB of

shared memory. The machines are connected via a 4xDDR Infiniband network where

the traffic between pairs of machines is guaranteed for a full bandwidth of 16Gbits/s.

For convenience, TARGET i is used to denote the target with i machines. Note that

although each machine has 8 cores, only 7 cores are used for the computation as one

core is used as the conductor. Also, for each target, one of its machines needs to reserve

2 cores to simulate the source and sink of the application. The source is a process that

continuously sends external input messages to the application while the sink continuously

consumes its external output messages. We also include one synthetic target with 16

machines. The number of cores on each machine is chosen randomly from 1 to 7 cores.

The bandwidth of their connections is assigned arbitrarily from 0 to 16 Gbits/s. This

synthetic target is denoted as TARGETS16.

We use Ai | A ∈ {DES,HIS,OBD,MTI, S500} to denote for the benchmark of appli-

cation A deployed on target TARGET i.

Table 8.2 shows the number of vertices and edges for all benchmarks. As described

above, each application when deployed on different platforms will have different numbers

of nodes and streams. The more machines that the platform has, the more nodes and

streams that the application includes. Note that the number of nodes is the number of

vertices of the input graph. Similarly, the number of streams is the number of edges.

The synthetic benchmarks S50016 and S500S16 come with the largest graphs. They have

similar numbers of vertices as MTI16 and MTIS16 but significantly more edges.

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 130

8.4.2 Convergence Speed of KLA and CA

Av
er

ag
e

Nu
m

be
r o

f P
as

se
s

1
2

3
4

5

Applications

CA
KLA

DE
S 4

O
BD

4

HI
ST

4

M
TI

4

DE
S 8

O
BD

8

HI
ST

8

M
TI

8

DE
S 1

6

O
BD

16

HI
ST

16

M
TI

16

DE
S S

16

O
BD

S1
6

HI
ST

S1
6

M
TI

S1
6

S5
00

16

S5
00

S1
6

Figure 8.5: Comparison of KLA and CA in the average number of passes

In this section we investigate the convergence in terms of the number of passes and the

execution time of two proposed algorithms, KLA and CA. Figure 8.5 shows the average

number of passes of these two algorithms. The average value is calculated based on 100

runs. For all the evaluation benchmarks, both of the algorithms require a small number

of passes with the highest value being 5. Comparing between KLA and CA, it is not

clear which one is better in terms of number of passes. However, the difference is not

significant, it is less than 1 for most of our benchmarks.

As presented in Section 8.2, each CA pass considers only move operations around the

congestion point while KLA examines all possible move operations. The execution time

of CA is therefore significantly less than KLA although they take similar numbers of

passes. This is confirmed by the execution time ratio of KLA to CA shown in Figure 8.6.

In general, KLA is significant slower than CA and it seems to be the trend that this

ratio increases for benchmarks with larger numbers of vertices and edges. For example,

KLA is 3 to 6 times slower for small benchmarks like DES4, OBD4, HIST4 and MTI4.

KLA is 14 to 22 times slower for DES8, OBD8, HIST8 and MTI8. For very large

benchmarks DES16, OBD16, HIST16 and MTI16, KLA takes 62 to 400 times longer to

execute than CA.

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 131

Ex
ec

ut
io

n
Ti

m
e

Ra
tio

 (L
og

ar
ith

m
ic

Sc
al

e)
5

10
20

50
10

0
20

0
50

0

Applications

DE
S 4

O
BD

4

HI
ST

4

M
TI

4

DE
S 8

O
BD

8

HI
ST

8

M
TI

8

DE
S 1

6

O
BD

16

HI
ST

16

M
TI

16

DE
S S

16

O
BD

S1
6

HI
ST

S1
6

M
TI

S1
6

S5
00

16

S5
00

S1
6

Figure 8.6: Execution time ratio: etKLA/etCA

8.4.3 Comparison with Simulated Annealing

As mentioned in Section 8.2, both CA and KLA are local search heuristics and therefore

can be trapped in local optima. To overcome this, the most common strategy is to

repeat the algorithms multiple times with different initial mapping configurations. We

compare 50 runs of our heuristic algorithms with the generic global search algorithm,

Simulated Annealing (SA) [KGV83].

Simulated annealing (SA) is a generic probabilistic metaheuristic for finding the global

optimization of a given function with a large search space. SA is often more efficient than

an exhaustive search for finding the nearly optimal point. Inspired by the cooling process

of heated metals, the SA algorithm starts with an initial state and initial temperature

Tinit and applies an iteration of cooling steps. At each step, SA considers some neighbour

state s′ of the current state s. If the s′ is better than s then SA moves to s′, otherwise

SA also moves to s′ with a probability. At the end of each step, the temperature is

reduced by a factor called the cooling ratio rt. The cooling step is repeated until the

temperature reaches the cooling temperature Tmin.

The SA algorithm is used here to find the mapping configuration of an RSP so that the

throughput is maximised. The psuedo code of SA is shown in Algorithm 3. Starting

with a randomly generated mapping configuration, and an initial temperature, SA then

applies an iteration of cooling steps. At each step, SA considers L neighbour mapping

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 132

Data: G = (T ,S), H = (R,L)
Result: Map with optimal TP(Map)
cur map← RndGen(G,H) ;
cur temp← init temperature ;
L← temperature length ;
rt ← cooling ratio ;
k ← Boltzmann constant;
repeat

// SA cooling step

for i = 1 to L do
T ← RndTask(T) ;
P ← RndPar(R) so that T 6= Par(T) ;
new map← move(cur map, T, P) ;
δ ← TP (new map)− TP (cur map) ;
if δ > 0 then

cur map← new map ;
end

if e
−δ

k×cur temp > random[0, 1) then
cur map← new map ;

else

end

end
cur temp← rt × cur temp ;

until cur temp > Tmin;
Algorithm 3: Pseudo code of Simulated Annealing algorithm

configurations where L is the temperature length. Each neighbour mapping configura-

tion is generated by moving an arbitrary task to an arbitrary partition. A neighbour

mapping configuration is accepted if it gives a better throughput. Otherwise, it is still

accepted with a probability p = e
−δ

(k×cur temp) , where δ is the throughput different be-

tween the neighbour mapping configuration and the current mapping configuration. At

the end of a cooling step, the temperature is reduced by the cooling ratio rt. The cooling

process is repeated until the temperature reaches the minimum temperature Tmin.

Tinit, Tmin, rt, L are the parameters of the SA algorithm. These parameters are chosen

so that acceptable results can be reached within a feasible time. By trying multiple

combinations of the parameters, we found the following parameters where SA behaves

well for all non-synthetic benchmarks:

• initial temperature Tinit = 109.00

• minimum/cooling temperature Tmin = 0.02

• cooling ratio rt = 0.985

• temperature length L = 0.1× neighbour size

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 133

Applications

Pe
rc

en
ta

ge
 R

at
io

 in
 E

xe
cu

tio
n

Ti
m

e
(L

og
ar

ith
m

ic
Sc

al
e)

CA
KLA

DE
S 4

O
BD

4

HI
ST

4

M
TI

4

DE
S 8

O
BD

8

HI
ST

8

M
TI

8

DE
S 1

6

O
BD

16

HI
ST

16

M
TI

16

DE
S S

16

O
BD

S1
6

HI
ST

S1
6

M
TI

S1
6

S5
00

16

S5
00

S1
6 0
.0

1
 0

.1
0

 1
.0

0
 1

0.
00

 5
0.

00
60

0.
00

Figure 8.7: Execution time ratio of 50-run CA and KLA to SA (et50×CA/etSA;
et50×KLA/etSA)

Applications

Re
la

tiv
e

Di
ffe

re
nt

 in
 T

hr
ou

gh
pu

t o
f O

ut
co

m
e

[%
]

~~ ~~

~~

CA
KLA

 0
 1

 2
 1

0
25

1
25

2

DE
S 4

O
BD

4

HI
ST

4

M
TI

4

DE
S 8

O
BD

8

HI
ST

8

M
TI

8

DE
S 1

6

O
BD

16

HI
ST

16

M
TI

16

DE
S S

16

O
BD

S1
6

HI
ST

S1
6

M
TI

S1
6

S5
00

16

S5
00

S1
6

10.56

252.5

Figure 8.8: Achieved quality throughput estimates of 50-run CA and KLA compared
to SA

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 134

T
hr

ou
gh

pu
t o

f O
ut

co
m

e
M

ap
pi

ng
 C

on
fig

ur
at

io
n

[M
es

sa
ge

s/
se

co
nd

]
(L

og
ar

ith
m

ic
 S

ca
le

)

 0 400 800 1200 1600 2000 2400

30

35

40

45

50

55

60

CA
KLA
SA

(a) Convergence speed of SA, CA and KLA

●

●

●●●●●●●●●●●●●●●

●

●
●●

T
hr

ou
gh

pu
t o

f O
ut

co
m

e
M

ap
pi

ng
 C

on
fig

ur
at

io
n

[M
es

sa
ge

s/
se

co
nd

]
(L

og
ar

ith
m

ic
 S

ca
le

)

 0 20 40 60 80 100 140 180

30

35

40

45

50

55

60

CA
KLA

(b) Convergence speed of CA and KLA (zoom of Figure 8.9a)

Figure 8.9: Convergence speed of SA, CA and KLA on MTI16 over time

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 135

Note that the temperature length is the number of iterations at each temperature.

neighbour size is the number of neighbours of each state and it is also the number

of new mapping configurations that can be generated by relocating one task to a new

partition: neighbour size = |T | × (|R| − 1).

Figure 8.7 and Figure 8.8 both show the comparison in terms of execution time and

quality of the outcome mapping configuration. For benchmarks with a small number of

edges and vertices, 50 runs of KLA is always faster than SA. For example, to partition

DES4 the 50 runs of KLA take around 0.06% of SA’s execution time. The ratio is

1.4%, 0.2% and 0.11% for HIS4, OBD4 and MTI4 respectively. When partitioning

benchmarks with a large number of edges and vertices, 50 runs of KLA can take more

time than SA. For example, it takes 242%, 567% and 683% of the execution time of SA

to partition DES16, S50016 and S500S16.

In contrast, the 50 runs of CA are always significantly faster than SA. It takes less

than 5% of the execution time of SA for all benchmarks except for S50016 and S500S16.

To partition these instances of S500, the 50 runs of CA take 9.3% and 15.7% of the

execution time of SA for S50016 and S500S16, respectively.

For the quality of outcome mapping configurations, all three partitioning algorithms

provide similar results for the non-synthetic benchmarks. The difference in throughput

of these mapping configurations is less than 1%, except for DES16 where CA’s result

is 1.19% better than SA. For synthetic benchmarks S50016 and S500S16, CA and KLA

provide mapping configurations with throughputs 10.56% and 252.6% higher than SA’s

outcome. Although one can search for a new set of parameters so that SA can provide a

comparable result to CA and KLA, this may reduce the quality of the outcome mapping

configuration or cause longer execution times for other benchmarks.

We also examine the convergence speed of all three partition algorithms. For all cases,

CA is the fastest: it takes only a few milliseconds for small benchmarks like DES4;

and a few seconds for large ones like MTI16 and S50016 to converge. Despite being a

lot slower than CA, KLA still outperforms SA. For large benchmarks, KLA converges

in a few hundred seconds while SA takes thousands of seconds. Figure 8.9a shows the

convergence of these three algorithms on MTI16. To better see the fast converge of CA,

Figure 8.9b shows a zoomed version of Figure 8.9a.

8.5 Chapter Summary

Traditional graph-partitioning problems with the optimisation criterion being formed

by the total number of cuts, are not applicable to the throughput optimisation of RSPs.

Chapter 8. Mapping Reactive Stream Programs onto Distributed Systems 136

This chapter proposed two novel heuristic graph partitioning methods to partition the

workload of RSPs to optimise throughput on heterogeneous distributed platforms. The

first graph-partitioning algorithm is KLA, an adaptation of Kernighan-Lin. The second

algorithm, called CA, narrows the search space compared to KLA, in particular by

focusing on search points around the congestion, i.e. where the throughput is dimmed.

Since KLA and CA are both local search heuristics, they have to be re-run multiple times

in order to overcome local optima. We experimentally evaluated KLA and CA with

five applications on four different platform configurations. We compared both methods

with the generic meta-heuristic simulated annealing (SA) as a reference method. Even

without restricting the available time for optimisation, both KLA and CA achieve at

least as good throughput results as SA, sometimes even better. But the most important

difference is their convergence speed. For small benchmarks KLA with its multiple reruns

is up to 67 times faster than SA, but up to 7 times slower than SA for larger benchmarks.

CA with its multiple reruns on the other hand is always orders of magnitudes faster than

both KLA and SA, even for large graphs. Depending on the benchmark and platform,

CA has been up to 300 times faster than KLA and up to 6000 times faster than SA. The

outstanding speed of CA makes CA also potentially attractive for the re-partitioning of

systems at runtime.

Chapter 9

An Efficient Execution Model for

Reactive Stream Programs

This chapter combines all the work in previous chapters to create a new and efficient

execution model for RSPs on two types of parallel platforms: i) uniform shared mem-

ory multi-core platforms, and ii) heterogeneous distributed systems consisting of uniform

shared memory multi-core machines. The new execution model is facilitated with a mon-

itoring framework (Chapter 6), a central-based scheduler for symmetric shared memory

platforms (Chapter 7), and a partitioner to divide an RSP on distributed systems (Chap-

ter 8).

9.1 Execution Model

9.1.1 Overview

This section gives an overview of the new execution model for RSPs. The execution

model is designed to support RSPs on shared memory platforms and heterogeneous

distributed platforms.

The design of the execution model is shown in Figure 9.1. This execution model includes

three main layers: compiler, runtime system, and execution layer. Apart from these,

the execution model is facilitated with two extra components: a monitoring framework

as described in Chapter 6; and a CA partitioner as described in Chapter 8. In addition,

the scheduler CS-dbp described in Chapter 7 is employed in the execution layer for local

scheduling on each shared memory PE.

137

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 138

Compiler

 Runtime System

Execution Layer

CS-dbp Scheduler
M

on
ito

rin
g

Fr
am

ew
or

k

CA Partitioner Profiling Info

Stream State

3

1

2

Profiling Phase 1 2 Partitioning Phase 3 Executing Phase

Reactive Stream Program

Execution Model

Mapping Configuration
3 3

1

Figure 9.1: Overview of the new execution model

To execute an RSP on distributed platforms, the execution model requires the following

three phases. A shared memory platform can be considered as a special case of dis-

tributed platforms of one PE. Deploying an RSP on such platforms does not require the

first two phases.

• Profiling phase: The RSP is executed with sample data. The monitoring frame-

work is set up to extract the RSP properties including the task weight and stream

weight. The task-stream relations are also captured to create the task graph.

• Partitioning phase: The graph of the RSP is formed from the monitoring informa-

tion in the profiling phase. This graph together with the graph of target platform

are passed as inputs of the CA partitioner to generate a good mapping configura-

tion for the RSP.

• Executing phase: The RSP is deployed with the mapping configuration generated

in the previous phase to process real data. In this phase, the monitoring framework

is set up to observe the stream state and delegate to the CS-dbp scheduler for the

task priority calculation.

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 139

9.1.2 Integration into S-Net and LPEL

In this section, we present how the new execution model is integrated into the S-Net

RTS and the LPEL execution layer. An overview of the integration is shown in Fig-

ure 9.2. Components of the monitoring framework are integrated into the S-Net RTS

and LPEL. The monitoring framework writes monitoring information into text files. As

these monitoring files contain raw data, a component called the Graph Constructor is

employed to generate the graph of tasks.

Task

S-Net Runtime System

Message

LPEL Execution Layer

Stream Worker

Message Id

TMO SMO

TScMO

WMO

CS-dbp Scheduler

Message Size

Compiler

Stream Reactive
Program

Monitoring Files

CA Partitioner

Graph
Constructor

Target Graph

Ta
sk

 G
ra

ph

Mapping
Configuration

S
tre

am

S
ta

te

Figure 9.2: New execution model of S-Net using LPEL

The first job of the Graph Constructor is to create the structure of the task graph

where vertices are tasks of the RSP and edges are streams connecting them. To do

so, the Graph Constructor can extract the state of each stream to identify its task

reader and task writer. This information shows the task-stream relations and therefore

helps to construct the task graph. The second job of the Graph Constructor is to

calculate the computational weight of each task, and the data weight of each stream.

These calculations are performed based on the other monitoring information including

MDG, message size, message events, and time scheduling events. The details of these

calculations are presented in Section 6.2.2.

The task graph together with the target graph are passed to the CA Partitioner to

generate the mapping configuration. The scheduler in LPEL is now replaced by the

CS-dbp scheduler. The CS-dbp scheduler requires stream state information from the

monitoring framework to operate.

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 140

filter_1

calcCohCoef Sync cohSum

filter_2

averagePower addEdges thresholding

calcSteerVect

calcFilter

applyFilter

X_6

generateClutter echoRaf noise pulseCompression

filter_3

X_2

X_3

X_4

covariance

averageCov

matInversion

Sync

Sync

1

1

1

P1

P1

P2

P2

P3

P3

1 “Sync” is a combination of a synchro-cell inside a serial replicator
to merge the outputs from two branches of the prior parallel compositor

P1,P2,P3 Parallel Compositors

Figure 9.3: Main S-Net structure of the MTI application

The detailed implementations of the monitoring framework, CS-dbp scheduler and CA

partitioner are presented in Section 6.3, Section 7.3, and Section 8.3.1 respectively. The

RSP Graph Constructor has not been implemented and the task graph is currently

generated manually.

9.2 Evaluation

9.2.1 Experimental Set Up

To evaluate the performance of the new execution model, we choose the Moving Target

Indication (MTI) application as the use case. To increase the parallelism, the applica-

tion is implemented with a parallel replication whose operand is a main S-Net structure

that performs the MTI application’s function. This structure is shown in Figure 9.3 and

the detailed implementation can be found in [PHG+10]. A number of instances of this

structure are generated dynamically depending on the number of machines available.

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 141

The experiment platform is a cluster of 16 machines, each of which has 24Gb memory

and 2 Xeons E5520 CPUs. Each CPU has 4 cores. The machines are connected via a

4xDDR Infiniband network where the traffic between each pair of machines is guaranteed

for a full bandwidth of 16 Gbits/s.

Since all the machines on the platform have the same configuration, we first run the

MTI application with sample data on one machine in the platform. We then use the

monitoring framework to obtain the task graph. With the monitoring framework, we

can also extract the task weight and stream weight. These are the computational cost

of each task and the communication cost between each pair of tasks respectively.

9.2.2 Performance on Distributed Platforms

In this section, we evaluate the performance of the MTI application on the target of 1,

2, 4, 8 and 16 machines. For each target, one of its machine needs to dedicate 2 cores

to simulate the source and sink for the MTI application.

The configuration of each target together with the task graph of the MTI application

are used as the input for the CA partitioner. The output is the mapping configuration

for each target.

Figure 9.4 shows the actual throughput of the MTI application compared to the es-

timated throughput from the CA partitioner. Figure 9.4 shows that the throughput

of MTI scales up when the number of machine increases. However, the throughput is

matches the estimation only in the case of one machine. For other cases, it is lower

compared to the estimated value, and the difference seems to increase when the number

of machines increases.

One reason for this phenomena is that the LPEL conductor and workers do not have

exclusive usage of the CPU cores when deploying S-Net on a distributed platform. As

presented in Section 2.5.4, the distributed S-Net RTS creates three extra threads for the

input manager (IM), output manager (OM) and data fetcher (DF). These threads are

run independent from LPEL conductor and workers. They also share the same set of

CPU cores with the LPEL conductor and the workers. This invalidates the information

of task weight and therefore varies the actual throughput.

To avoid this phenomena, each machine of the distributed platform dedicates three CPU

cores for the IM, OM and DF. This guarantees that each LPEL conductor and worker

has its own exclusive CPU core. The throughput of the MTI application on this new

platform is shown in Figure 9.5. The different between the actual throughput value and

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 142

1 2 4 8 16

Number of machines

T
hr

ou
gh

pu
t

 [m
es

sa
ge

/s
ec

on
d]

0
20

40
60

80
Throughput
Estimated Throughput

Figure 9.4: Throughput of the MTI application: actual value vs estimation of the
CA partitioner

the estimated value has been improved although it is still high in the cases of 8 and 16

machines. There are two reasons behind this.

Firstly, the computational weight of each task when deploying on distributed platforms

may increase in an unpredictable way compared to when deploying on shared memory

platforms. As described in Section 2.5.4, when running on a distributed platforms, the

distributed S-Net RTS does not send actual data via streams across the border of PEs.

Instead only the reference of the data is included in the message and when an RC needs

the data, it will send a fetch request. The fetch request is sent inside the RC by using

the function MPI Send which operates in blocking mode. This means the function call

MPI Send does not return until the fetch request is received by the destination PE.

During this time, the task associated with the RC performs no computation but does

not release the worker so that another task can be executed. This time period is therefore

counted as the execution time of the task. Note that on each machine, only IM listens

and responds to the MPI communications. The length of this idling period depends

on the status of the MPI buffer on the destination PE. This value therefore varies for

different fetch requests and is unpredictable. Figure 9.6 shows the difference in task

weight of boxes in the MTI application when running on a single machine target where

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 143

1 2 4 8 16

Number of machines

T
hr

ou
gh

pu
t

 [m
es

sa
ge

/s
ec

on
d]

0
10

20
30

40

Throughput
Estimated Throughput

Figure 9.5: Throughput of the MTI application when LPEL conductor and workers
run on exclusive CPU cores

no MPI function is invoked, and when running on a 16-machine target. The difference

in task weight is significant for some boxes such as 78.4 seconds for applyFilter, 42.9

seconds for echoRaf, and 33.2 seconds for calcFilter.

Since the distributed S-Net RTS changes the behaviours of tasks, their computation

weight extracted by the monitoring framework is no longer accurate. With a larger

number of machines, it is likely to have more fetch requests and that decreases the

accuracy. The difference between the actual and estimated throughput values is therefore

more significant when the number of machines increases.

Secondly, the relative idling time of the CS-dbp scheduler varies between deployments on

shared memory and distributed platforms. According to Section 8.2, the CA partitioner

designed based on an assumption that the local scheduler of each PE has predictable

relative idling time W̃ and relative overhead time Õ. In the case where the CS-dpb

scheduler is used, the relative overhead time is fixed. It is equal to 1 as one CPU core is

dedicated for the conductor. The relative idling time on the other hand is not guaranteed

to be fixed. CS-dbp is a heuristic approach that aims to minimise the relative idling

time. In this scheduler, a worker is idle when it has to wait for a new task from the

conductor. With a sufficient input arrival rate, we can consider that there are always

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 144

D
iff

er
en

ce
 in

 T
as

k
W

ei
gh

t [
m

ili
se

co
nd

s]

 (
Lo

ga
rit

hm
ic

 S
ca

le
)

70

 5
00

 1
00

0
 5

00
0

10
00

0
50

00
0

fil
te

r_
1

ca
lc

C
oh

C
oe

fs

ca
lc

S
te

er
V

ec
t

ge
ne

ra
te

C
lu

tte
r

ec
ho

R
af

no
is

e

pu
ls

eC
om

pr
es

si
on

fil
te

r_
2

X
_2

X
_3

co
va

ria
nc

e

X
_4

av
er

ag
eC

ov

m
at

In
ve

rs
io

n

ca
lc

F
ilt

er

ap
pl

yF
ilt

er

X
_6

co
hS

um

fil
te

r_
3

av
er

ag
eP

ow
er

ad
dE

dg
es

th
re

sh
ol

di
ng

Boxes

Figure 9.6: Difference in task weight of MTI on 1-machine and 16-machine targets

ready tasks in the CTQ. A worker therefore would become idle only when the conductor

is busy with task requests from other workers, or busy updating the task priority in the

CTQ. The idling time therefore depends on the number of tasks and the number of

workers. With a large number of workers, it is more likely that two or more workers

happen to request tasks at the same time. This appears not to be an issue here as the

number of workers is 2 for the first machine where source and sink are simulated; and

is 4 for other machines. Since the CTQ is implemented by a heap structure, updating a

task priority requires a complexity of O(log(|RT |)) where |RT | is the number of ready

tasks. With a larger number of ready tasks the update of the task priority will take

more time, although it is logarithmic. In this case, it will take a longer time to update

the task priority. When running on a platform with a large number of machines, more

instances of the primary S-Net structure in MTI are generated. This creates more tasks

and this is likely to increases the relative idling time.

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 145

1 2 4 8 16

Number of machines

La
te

nc
y

 [
se

co
nd

]

0
2

4
6

8
10

12

Figure 9.7: Average latency of MTI on distributed platforms when LPEL conductors
and workers run on exclusive CPU cores

The CA partitioner has been designed for throughput optimisation without considering

the latency. However, we include here the latency result on distributed platforms for

reference. Optimising latency in the partitioning algorithms will be discussed in the

future work. Figure 9.7 shows the latency of MTI on distributed platforms of 1, 2, 4, 8,

and 16 machines. In this experiment, each machine dedicates 3 CPU cores for IM, OM,

and DF. In addition, the first machine also dedicates 2 more CPU cores for source and

sink simulation.

9.2.3 Performance on shared memory platforms

In this section, we perform the experiment to evaluate these metrics of MTI on shared

memory platforms. The deployed platform is one machine from the distributed platform

described in the previous section. The machine has 8 CPU cores and 2 of them are used

to simulate the source and sink. Figure 9.8 shows the performance of MTI on the

shared memory platform of 2, 3, 4, 5, and 6 CPU cores. Both the throughput and

latency are improved when the number of CPU cores increases from 2 to 5. While

throughput scales almost in a linear way, the latency does not scale that well because

of the limited concurrency available in the MTI benchmark. As shown in Figure 9.3,

there are only three parallel compositions P1, P2, and P3, where computation of an

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 146

2 3 4 5 6

0
1

2
3

4

T
hr

ou
gh

pu
t

 [m
es

sa
ge

s/
se

co
nd

]

0
1

2
3

4

Number of CPU cores

●
●

●
●

●

0.
0

0.
5

1.
0

1.
5

La
te

nc
y

[s

ec
on

ds
]

●

Throughput
Latency

Figure 9.8: Performance of MTI on shared memory platform

external input message can be performed concurrently. All these parallel compositors

connect with a Sync structure which merges the output of their branches together. This

requires the output of their branches to wait for each other before being moved further.

The maximum concurrency in processing one external input message occurs when two

branches of each parallel compositors are executed at the same time. As shown in

Figure 9.3, one of two branches in all P1, P2, and P3 contains only one box. This in fact

limits the level of concurrency. Therefore, increasing the number of cores can improve

the latency only by a small factor.

With 6 CPU cores, the throughput is still increased but not at the same scale. The

latency in this case is worse, it is 10% higher than the latency in case of 5 CPU cores. This

is because of the bottleneck at the conductor. As the number of CPU cores increases,

there are more workers while there is only one conductor. With more workers, there is

a higher chance that multiple workers send their requests to the conductor at the same

time. Only one request is served while others have to wait. This increases the idling time

of workers. Thus, it degrades the latency and slightly reduces the scaling of throughput.

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 147

9.3 Chapter Summary

By combining the work from the previous chapters, this chapter described an efficient

execution model for RSPs at both conceptual and implementation levels. The execution

model makes use of the CA algorithm in Chapter 8 to map the RSP onto distributed

platforms and the centralised scheduler CS-dbp (described in Chapter 7) for scheduling

the RSP on each shared memory PE. The execution model also makes use of the

monitoring framework described in Chapter 6 to extract RSP properties as the input

of the CA algorithm; and to provide the stream state for calculating task priority in

CS-dbp.

In addition, this chapter used an industrial application to evaluate the new execution

model. The experiment results shows unexpected throughput compared to the estimated

value by the CA algorithm. This is explained by the implementation of the distributed

S-Net RTS, which alters the task behaviours; and the bottleneck of the conductor in

CS-dbp. This bottleneck also limits the scalability of the CS-dbp scheduler.

Chapter 9. An Efficient Execution Model for Reactive Stream Programs 148

Chapter 10

Conclusion and Outlook

This chapter concludes the thesis by summarising the main features and contributions.

It also gives an overview of future research directions in scheduling RSPs on parallel

platforms.

10.1 Thesis Summary

This dissertation presented novel approaches for efficiently scheduling RSPs for both

uniform shared memory multi-core platforms, and heterogeneous distributed platforms

consisting of multi-core machines with uniform shared memory. The challenge is that

implicit synchronisation via stream communication together with variable behaviour of

computational nodes make it intricate to analyse and regulate the performance of RSPs.

As discussed earlier in Chapter 3, most of the existing work in the stream programming

literature focuses on SDF programs, a simplified stream programming model with static

properties. This work, on the other hand, focuses on the general class of RSPs. As

presented in Chapter 2, these RSPs can have functional or non-functional node com-

putation, constant or variable node behaviour, synchronous or asynchronous inter-node

communications, and static or dynamic program structures. Existing work is therefore

not suitable for this type or RSPs. By analysing the performance of general RSPs, we

identified factors that affect the performance. We then introduced methods to maximise

the performance and integrate it into a new execution model for RSPs.

The dissertation aims to answer the research question proposed in Chapter 1:

What is an efficient execution model for general reactive stream programs?

149

Chapter 10. Conclusion and Outlook 150

This question is fractured into the following sub-questions:

1. Which behavioural factors have influences on the performance of RSPs?

2. How can these behavioural factors be captured?

3. What are the strategies to optimise the performance of RSPs on parallel platforms?

To answer the above sub-questions, the dissertation has made following contributions:

Throughput and latency in RSPs: To answer the first sub-question, the contribu-

tion in Chapter 5 first provided a study of the performance in terms of throughput

and latency of RSPs. The study recognised border limits of both throughput and

latency. The chapter also presented quantitative formulae of throughput and la-

tency within the underuse and operational ranges of the input arrival rate. The

quantitative formulae help to identify the behaviour factors that have influences on

the performance of RSPs.

Capturing the behaviour of RSPs: Next, to answer the second sub-question, we have

presented in Chapter 6 a monitoring framework to capture essential behavioural

information of the RSP. The chapter included both the concept design and imple-

mentation of the monitoring frame work. The monitoring information was shown to

be useful in different scenarios including performance calculation, property extrac-

tion, automatic load balancing and bottle neck detection. The experimental results

in Chapter 6 show that the overhead of this monitoring framework is negligible for

application implementations that are suitable for the stream programming model.

Using properties of RSPs to derive task priority on shared memory plat-

forms: Addressing the third sub-question of optimising the performance of RSPs

on uniform shared memory platform, Chapter 7 introduced novel approaches of util-

ising the RSP properties to derive scheduling priorities. Based on the performance

analysis in Chapter 5, we determined two characteristics of RSPs to form the task

priority for optimising the performance in terms of throughput and latency. These

characteristics are the data demand on stream communications, and the structural

position of tasks within the RSP. These characteristics are used to construct two

schedulers CS-dbp and CS-pbp for RSPs on uniform shared memory platforms.

While the CS-dbp makes use of the notion of data demands on stream commu-

nication to derive the task priority, the CS-pdp takes advantage of the structural

position of each task in the stream graph. Although they achieve similar perfor-

mance, CS-dbp is more beneficial as its implementation is independent from the

RTS, and its applicability is not restricted to RSPs with single entry and/or single

Chapter 10. Conclusion and Outlook 151

exit nodes. The experimental results in Chapter 7 show that CS-dbp surpasses the

default scheduler of LPEL in terms of both throughput and latency. CS-dbp and

CS-pdp utilise the data demands and the structural positions to define the task

priority. Since these features are observable during runtime, these schedulers are

applicable for general RSPs, especially with variable node behaviour and dynamic

program structures.

Exploiting graph partitioning to map RSPs onto heterogeneous distributed

systems: Also addressing the third sub-question, Chapter 8 aimed to optimise the

throughput of RSPs on distributed systems. Based on the performance analy-

sis in Chapter 5, we presented in Chapter 8 two new heuristic partitioning algo-

rithms to efficiently map RSPs onto heterogeneous distributed platforms. These

are Kernighan-Lin Adapted (KLA), and Congestion Avoidance (CA). In contrast

to traditional partitioning algorithms where the total cut is the main optimisation

target, these two aim to optimise the throughput of RSPs where individual cuts play

an important role. KLA is designed as an adaptation from the famous Kernighan

Lin algorithm. This works well although it performs very slowly. CA is an improve-

ment of KLA by narrowing the search space to points around the congestion points.

This helps to speed up CA and makes it more attractive for the consideration of

online repartition. Chapter 8 compares CA with Simulated Annealing (SA), which

is a generic multi-parameter optimisation algorithm. CA is significantly faster than

SA while producing mapping configurations with the same quality. Depending on

the benchmark, CA can be 4 to 300 times faster than KLA, and 1.6 to 6000 times

faster than SA. Since CA and KLA are off-line approaches, they are only applicable

to RSPs with relatively stable node behaviour and relatively static program struc-

tures. In cases where these properties are highly variable, CA and KLA can still be

used to generate the initial mapping configuration. During runtime, an adaptation

mechanism is required for repartitioning the RSP when necessary.

Integration into a new efficient execution model for RSPs: Finally, we presented

a complete integration of the monitoring framework, the CS-dbp scheduler, and

the CA partitioner to form an integrated execution model. We also showed the

three phases to deploy an RSP using the new execution model. These include a

profiling phase to extract properties of the RSP and form the input for the CA

partitioner; a partitioning phase to generate the mapping configuration for the

RSP on the distributed system; and an executing phase to execute the RSP with

the generated mapping configuration. The experiment results in Chapter 9 have

shown good achievements of the new execution model both on shared memory

platforms and distribution systems. The composition of the presented monitoring

strategy, scheduling techniques and mapping algorithms towards a new execution

Chapter 10. Conclusion and Outlook 152

model finally provides an answer to the overall research question: ‘What is an

efficient execution model for general RSPs?’.

10.2 Outlook

Within this thesis, we have presented the current state of our research in optimising the

performance of RSPs on parallel platforms. We have introduced approaches to exploit

properties of RSPs to effectively schedule RSPs on shared memory platforms; as well as

strategies to map RSPs onto distributed platforms. Although the results presented in

previous chapters have demonstrated the effectiveness of these approaches, it could be

further developed in a number of ways:

• Further study of RSP properties in deriving scheduling priorities. Chap-

ter 7 has demonstrated the usages of two different RSP properties to derive the

task priority in the centralised scheduling approach. These properties include data

demand of stream communication; and the structural position of tasks within the

RSP. While the first is dynamic and requires perpetual evaluation, the second is

fixed and can be generated on task creation. However, the task priority based on

the structural position is a vector describing the path from the entry task to the

task itself. Comparing the priority between tasks in this case is therefore slow. To

overcome this problem, one could investigate a new way to represent the structural

position so that it speeds up the priority comparison. Also, there may be other

ways of defining the task priority which do not require perpetual evaluation while

allowing fast priority comparisons.

• Conquering the bottleneck in centralised scheduling. The experimental

results in Chapter 7 and Chapter 9 have shown that throughput and latency do not

scale well with high numbers of workers. This occurs with most of the centralised

scheduling approaches. The reason behind this is the bottleneck of the conductor.

When a conductor receives a task request from a worker, it needs to pick a new

task, and send it to the worker. The conductor is also responsible for updating

the central task queue. With the current implementation, a worker requests a new

task when it finishes its work for the current task. This causes a delay when a

worker requests a task while the conductor is busy either serving task requests

from other workers or updating the CTQ. To overcome this problem, there are

some directions to be considered:

– Fast updating of the central task queue. As described in Chapter 7, the central

task queue is implemented by a heap data structure to store only ready tasks.

Chapter 10. Conclusion and Outlook 153

To update the task queue, it requires the complexity of O(log(|RT |)), where

|RT | is the number of ready tasks. This implementation fits well when a

task’s priority is dynamically changed during its life time. In the case where

the task priority is fixed, there are potential data structures that can help to

shorten the time to update the CTQ.

– Efficient conductor-worker communication protocol. Instead of requesting a

new task after finishing the work of the current task, a worker could request a

new task earlier. This gives the conductor an appropriate amount of time to

pick the task and update the CTQ. An alternative way is that the conductor

can predict when a worker is close to finish its current work and send a new

task beforehand. This would allow the conductor the flexibility to prepare for

the new task for each worker. This technique has a risk of causing a worker to

wait when the conductor can not predict accurately when the worker finishes

its current work. Therefore, it requires methods for precisely predicting the

finishing time of workers. The disadvantage of these two proposed techniques

is that they relax the order of task executions. Since the new task for a

worker is chosen before it is actually needed, other tasks with higher priority

becoming available after that will be delayed for execution. This can be

improved by appropriate strategies to allow the conductor to replace the new

task of each worker. Alternatively, the conductor can send the new task

with higher priority to a worker. The worker then can choose to execute the

highest priority task and return other tasks back to the conductor.

• Considering latency when partitioning RSPs. Chapter 8 has presented par-

titioning algorithms to map RSPs onto distributed platforms for throughput opti-

misation. It has shown that the throughput is improved when deploying the RSP

on larger numbers of PEs. It is more complicated when dealing with latency as the

level of concurrency in processing one external input message depends on the im-

plementation of the RSP. With a low level of concurrency, increasing the number

of PEs does not help to improve the latency. It however is more likely to burden

the latency as the cost of inter-PE communication is significant. The remaining

question is how to minimise the effect on the latency. According to Equation 5.6,

the latency is proportional to the number of external input messages currently

being processed (Mcp). Mapping nodes of an RSP onto different PEs breaks the

notion of data demands on streams across PEs. The inter-PE communication

channels provide extra space for these streams to store more partly processed ex-

ternal input messages and therefore increase Mcp. As a result, the increment of

Mcp is controlled by the number of cuts among partitions. It would be promising

to integrate this optimising parameter into the proposed partitioning algorithms.

Chapter 10. Conclusion and Outlook 154

It would be also interesting to see if there is a conflict between this new parameter

and the existing ones.

• Online adaptation by repartitioning. As we mentioned in Chapter 8, the

properties of the RSP graph are statistically derived from the monitoring infor-

mation. As these properties are not static, they can change during runtime and

the mapping configuration as a consequence might be no longer efficient. In this

case, online adaptation strategies are required. Since the CA algorithm is shown

to be very fast, it could be a promising direction for repartitioning the RSP during

runtime. Of course, it would need some modifications in the optimisation target

to consider the cost of migrating tasks to different PEs.

Bibliography

[ABB+01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, PedroR. D’Argenio,

Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,

KimG. Larsen, M.Oliver Möller, Paul Pettersson, Carsten Weise, and Wang

Yi. Uppaal - now, next, and future. In Franck Cassez, Claude Jard,

Brigitte Rozoy, and MarkDermot Ryan, editors, Modeling and Verification

of Parallel Processes, volume 2067 of Lecture Notes in Computer Science,

pages 99–124. Springer Berlin Heidelberg, 2001. ISBN 978-3-540-42787-

2. Available from: http://dx.doi.org/10.1007/3-540-45510-8_4, doi:

10.1007/3-540-45510-8_4.

[ABF+10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent. HPCTOOLKIT: tools for performance anal-

ysis of optimized parallel programs. Concurrency and Computation: Prac-

tice and Experience, 22(6):685–701, 2010. ISSN 1532-0634. Available from:

http://dx.doi.org/10.1002/cpe.1553, doi:10.1002/cpe.1553.

[ADA79] W. B. Acherman, J. B. Dennis, and William B Ackerman. Val- oriented

algorithmic language, preliminary reference manual. Technical report, Cam-

bridge, MA, USA, 1979.

[AHL07] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. Adaptive work steal-

ing with parallelism feedback. In Proceedings of the 12th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP

’07, pages 112–120. ACM, New York, NY, USA, 2007. ISBN 978-1-59593-

602-8. Available from: http://doi.acm.org/10.1145/1229428.1229448,

doi:10.1145/1229428.1229448.

[AKY99] Charles J Alpert, Andrew B Kahng, and So-Zen Yao. Spectral partitioning

with multiple eigenvectors. Discrete Applied Mathematics, 90(1–3):3 – 26,

1999.

155

http://dx.doi.org/10.1007/3-540-45510-8_4
http://dx.doi.org/10.1007/3-540-45510-8_4
http://dx.doi.org/10.1007/3-540-45510-8_4
http://dx.doi.org/10.1002/cpe.1553
http://dx.doi.org/10.1002/cpe.1553
http://doi.acm.org/10.1145/1229428.1229448
http://dx.doi.org/10.1145/1229428.1229448

Bibliography 156

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric

embeddings and graph partitioning. J. ACM, 56(2):5:1–5:37, April 2009.

ISSN 0004-5411.

[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with

iteration. Commun. ACM, 20, July 1977. ISSN 0001-0782.

[BB91] Albert Benveniste and Gerard Berry. The synchronous approach to reactive

and real-time systems. In Proceedings of the IEEE, pages 1270–1282, 1991.

[BBHL02] Shuvra S. Bhattacharyya, Joseph T. Buck, Soonhoi Ha, and Edward A.

Lee. Readings in hardware/software co-design. chapter Generating Com-

pact Code from Dataflow Specifications of Multirate Signal Processing

Algorithms, pages 452–464. Kluwer Academic Publishers, Norwell, MA,

USA, 2002. ISBN 1-55860-702-1. Available from: http://dl.acm.org/

citation.cfm?id=567003.567042.

[Ber89] Gérard Berry. Real time programming: Special purpose or general purpose

languages. In IFIP Congress, pages 11–17, 1989.

[BF81] R. M. Bryant and Raphael A. Finkel. A stable distributed scheduling algo-

rithm. In Proceedings of the 2nd International Conference on Distributed

Computing Systems, Paris, France, 1981, pages 314–323, 1981.

[BFH+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,

Mike Houston, and Pat Hanrahan. Brook for gpus: Stream computing on

graphics hardware. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04,

pages 777–786. ACM, New York, NY, USA, 2004. doi:10.1145/1186562.

1015800.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multi-

threaded runtime system. SIGPLAN Not., 30(8):207–216, August 1995.

ISSN 0362-1340. doi:10.1145/209937.209958.

[BL99] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded

computations by work stealing. J. ACM, 46(5):720–748, September 1999.

ISSN 0004-5411. doi:10.1145/324133.324234.

[BS73] Fischer Black and Myron Scholes. The Pricing of Options and Corporate

Liabilities. The Journal of Political Economy, 81(3):637–654, 1973. ISSN

00223808. Available from: http://dx.doi.org/10.2307/1831029, doi:

10.2307/1831029.

http://dl.acm.org/citation.cfm?id=567003.567042
http://dl.acm.org/citation.cfm?id=567003.567042
http://dx.doi.org/10.1145/1186562.1015800
http://dx.doi.org/10.1145/1186562.1015800
http://dx.doi.org/10.1145/209937.209958
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.2307/1831029
http://dx.doi.org/10.2307/1831029
http://dx.doi.org/10.2307/1831029

Bibliography 157

[BS81] F. Warren Burton and M. Ronan Sleep. Executing functional programs

on a virtual tree of processors. In Proceedings of the 1981 Conference on

Functional Programming Languages and Computer Architecture, FPCA ’81,

pages 187–194. ACM, New York, NY, USA, 1981. ISBN 0-89791-060-5.

doi:10.1145/800223.806778.

[BT93] Dimitris Bertsimas and John Tsitsiklis. Simulated Annealing. Statistical

Science, 8(1):10–15, 1993.

[Bur75] William H. Burge. Stream processing functions. IBM Journal of Research

and Development, 19(1):12–25, 1975.

[cA99] Ümit V. Çatalyürek and Cevdet Aykanat. Hypergraph-partitioning-based

decomposition for parallel sparse-matrix vector multiplication. IEEE Trans.

Parallel Distrib. Syst., 10(7):673–693, 1999.

[CC09] Rebecca L. Collins and Luca P. Carloni. Flexible Filters: Load balanc-

ing through backpressure for stream programs. In Proceedings of the Sev-

enth ACM International Conference on Embedded Software, EMSOFT ’09,

pages 205–214. ACM, New York, NY, USA, 2009. ISBN 978-1-60558-

627-4. Available from: http://doi.acm.org/10.1145/1629335.1629363,

doi:10.1145/1629335.1629363.

[Cha98] Bradford L. Chamberlain. Graph partitioning algorithms for distributing

workloads of parallel computations. Technical report, 1998.

[CRA09] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Mapping stream

programs onto heterogeneous multiprocessor systems. In Proceedings of the

2009 International Conference on Compilers, Architecture, and Synthesis

for Embedded Systems, CASES ’09, pages 57–66. ACM, New York, NY,

USA, 2009. ISBN 978-1-60558-626-7.

[Dav78] A. L Davis. The architecture and system method for DDM1: A recur-

sively structured data-driven machine. In 5th Annual Symp. on Computer

Architecture, 1978.

[Den77] JackB. Dennis. A language design for structured concurrency. In JohnH.

Williams and DavidA. Fisher, editors, Design and Implementation of Pro-

gramming Languages, volume 54 of Lecture Notes in Computer Science,

pages 231–242. Springer Berlin Heidelberg, 1977.

[Den80] Jack B. Dennis. Data flow supercomputers. Computer, 13(11):48–56, 1980.

doi:10.1109/MC.1980.1653418.

http://dx.doi.org/10.1145/800223.806778
http://doi.acm.org/10.1145/1629335.1629363
http://dx.doi.org/10.1145/1629335.1629363
http://dx.doi.org/10.1109/MC.1980.1653418

Bibliography 158

[Den95] Jack B. Dennis. Stream data types for signal processing, pages 87–102. IEEE

Computer Society Press, 1995.

[DES77] DES. Data Encryption Standard. In FIPS PUB 46-3, Federal Information

Processing Standards Publication, 1977.

[DO87] Fred Douglis and John K. Ousterhout. Process migration in the sprite

operating system. In Proceedings of the 7th International Conference on

Distributed Computing Systems, Berlin, Germany, September 1987, pages

18–27, 1987.

[dOCLB10] Pablo de Oliveira Castro, Stéphane Louise, and Denis Barthou. Automatic

mapping of stream programs on multicore architectures. In International

Workshop on Compilers for Parallel Computers, 2010.

[DPSW98] Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw. As-

pect radio for mesh partitioning. In Euro-Par, pages 347–351, 1998.

[DPSW00] Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw.

Shape-optimized mesh partitioning and load balancing for parallel adap-

tive fem. Parallel Comput., 26(12):1555–1581, November 2000.

[DS04] M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford Book, 2004.

[ELLSV99] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. De-

sign of embedded systems: Formal models, validation, and synthesis. In

PROCEEDINGS OF THE IEEE, pages 366–390, 1999.

[ELZ86] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load

sharing in homogeneous distributed systems. IEEE Trans. Softw. Eng., 12

(5):662–675, May 1986. ISSN 0098-5589. Available from: http://dl.acm.

org/citation.cfm?id=5527.5535.

[ET63] G. Estrin and R. Turn. Automatic assignment of computations in a variable

structure computer system. Electronic Computers, IEEE Transactions on,

EC-12(6):755–773, 1963.

[FFJ90] John Franco, Daniel P. Friedman, and Steven D. Johnson. Multi-way

streams in scheme. Comput. Lang., 15(2):109–125, April 1990. ISSN

0096-0551. Available from: http://dx.doi.org/10.1016/0096-0551(90)

90014-G, doi:10.1016/0096-0551(90)90014-G.

[FKBS11] Sardar M. Farhad, Yousun Ko, Bernd Burgstaller, and Bernhard Scholz.

Orchestration by approximation: Mapping stream programs onto multicore

http://dl.acm.org/citation.cfm?id=5527.5535
http://dl.acm.org/citation.cfm?id=5527.5535
http://dx.doi.org/10.1016/0096-0551(90)90014-G
http://dx.doi.org/10.1016/0096-0551(90)90014-G
http://dx.doi.org/10.1016/0096-0551(90)90014-G

Bibliography 159

architectures. SIGPLAN Not., 46(3):357–368, March 2011. ISSN 0362-1340.

doi:10.1145/1961296.1950406.

[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the 19th Design Automation Confer-

ence, DAC ’82, pages 175–181. IEEE Press, Piscataway, NJ, USA, 1982.

ISBN 0-89791-020-6.

[FRS+97] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik,

and Parkson Wong. Theory and practice in parallel job scheduling. In

Proceedings of the Job Scheduling Strategies for Parallel Processing, IPPS

’97, pages 1–34. Springer-Verlag, London, UK, UK, 1997. ISBN 3-540-

63574-2.

[GAF+09] Buğra Gedik, Henrique Andrade, Andy Frenkiel, Wim De Pauw, Michael

Pfeifer, Paul Allen, Norman Cohen, and Kun-Lung Wu. Tools and strategies

for debugging distributed stream processing applications. Softw. Pract.

Exper., 39:1347–1376, November 2009. ISSN 0038-0644. Available from:

http://dx.doi.org/10.1002/spe.v39:16, doi:http://dx.doi.org/10.

1002/spe.v39:16.

[GAW+08] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and

Myungcheol Doo. SPADE: The System S declarative stream processing en-

gine. In Proceedings of the 2008 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’08, pages 1123–1134. ACM, New York,

NY, USA, 2008. ISBN 978-1-60558-102-6. Available from: http://doi.

acm.org/10.1145/1376616.1376729, doi:10.1145/1376616.1376729.

[GG13] Bert Gijsbers and Clemens Grelck. An efficient scalable runtime sys-

tem for macro data flow processing using S-Net. International Jour-

nal of Parallel Programming, pages 1–24, 2013. ISSN 0885-7458. doi:

10.1007/s10766-013-0271-8.

[GJP12] Clemens Grelck, Jukka Julku, and Frank Penczek. Distributed S-Net:

Cluster and grid computing without the hassle. In Proceedings of the

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (Ccgrid 2012), CCGRID ’12, pages 410–418. IEEE Com-

puter Society, Washington, DC, USA, 2012. ISBN 978-0-7695-4691-9.

doi:10.1109/CCGrid.2012.140.

[GJS76] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-complete

graph problems. Theoretical Computer Science, 1(3):237 – 267, 1976. ISSN

0304-3975.

http://dx.doi.org/10.1145/1961296.1950406
http://dx.doi.org/10.1002/spe.v39:16
http://dx.doi.org/http://dx.doi.org/10.1002/spe.v39:16
http://dx.doi.org/http://dx.doi.org/10.1002/spe.v39:16
http://doi.acm.org/10.1145/1376616.1376729
http://doi.acm.org/10.1145/1376616.1376729
http://dx.doi.org/10.1145/1376616.1376729
http://dx.doi.org/10.1007/s10766-013-0271-8
http://dx.doi.org/10.1007/s10766-013-0271-8
http://dx.doi.org/10.1109/CCGrid.2012.140

Bibliography 160

[GO10] M. Gerndt and M. Ott. Automatic performance analysis with periscope.

Concurr. Comput. : Pract. Exper., 22(6):736–748, April 2010. ISSN 1532-

0626. doi:10.1002/cpe.v22:6.

[Gor10] Michael I. Gordon. Compiler Techniques for Scalable Perfor-

mance of Stream Programs on Multicore Architectures. Ph.d. the-

sis, Massachusetts Institute of Technology, Cambridge, MA, May

2010. Available from: http://groups.csail.mit.edu/commit/papers/

10/mgordon-phd-thesis.pdf.

[GP11] Clemens Grelck and Frank Penczek. Implementation architecture and mul-

tithreaded runtime system of S-NET. In Proceedings of the 20th Interna-

tional Conference on Implementation and Application of Functional Lan-

guages, IFL’08, pages 60–79. Springer-Verlag, Berlin, Heidelberg, 2011.

ISBN 978-3-642-24451-3.

[GSS08] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. A Gentle Intro-

duction to S-Net: Typed Stream Processing and Declarative Coordination

of Asynchronous Components. Parallel Processing Letters, 18(2):221–237,

2008.

[GTA06] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploit-

ing coarse-grained task, data, and pipeline parallelism in stream pro-

grams. In Proceedings of the 12th International Conference on Architec-

tural Support for Programming Languages and Operating Systems, ASP-

LOS XII, pages 151–162. New York, NY, USA, 2006. ISBN 1-59593-

451-0. Available from: http://doi.acm.org/10.1145/1168857.1168877,

doi:10.1145/1168857.1168877.

[GTK+02] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S.

Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David

Maze, and Saman Amarasinghe. A stream compiler for communication-

exposed architectures. SIGARCH Comput. Archit. News, 30(5):291–303,

October 2002. ISSN 0163-5964. Available from: http://doi.acm.org/10.

1145/635506.605428, doi:10.1145/635506.605428.

[GWW+10] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel

Becker, and Bernd Mohr. The Scalasca performance toolset architecture.

Concurrency and Computation: Practice and Experience, 22(6):702–719,

April 2010. doi:10.1002/cpe.1556.

[Hal84] Robert H. Halstead, Jr. Implementation of multilisp: Lisp on a multiproces-

sor. In Proceedings of the 1984 ACM Symposium on LISP and Functional

http://dx.doi.org/10.1002/cpe.v22:6
http://groups.csail.mit.edu/commit/papers/10/mgordon-phd-thesis.pdf
http://groups.csail.mit.edu/commit/papers/10/mgordon-phd-thesis.pdf
http://doi.acm.org/10.1145/1168857.1168877
http://dx.doi.org/10.1145/1168857.1168877
http://doi.acm.org/10.1145/635506.605428
http://doi.acm.org/10.1145/635506.605428
http://dx.doi.org/10.1145/635506.605428
http://dx.doi.org/10.1002/cpe.1556

Bibliography 161

Programming, LFP ’84, pages 9–17. ACM, New York, NY, USA, 1984.

ISBN 0-89791-142-3. doi:10.1145/800055.802017.

[Hal98] Nicolas Halbwachs. Synchronous programming of reactive systems - a tu-

torial and commented bibliography. In In Tenth International Conference

on Computer-Aided Verification, CAV’98, Vancouver (B.C.), LNCS 1427,

pages 1–16. Springer Verlag, 1998.

[HCK+09] Amir Hormati, Yoonseo Choi, Manjunath Kudlur, Rodric M. Rabbah,

Trevor N. Mudge, and Scott A. Mahlke. Flextream: Adaptive compila-

tion of streaming applications for heterogeneous architectures. In PACT,

pages 214–223, 2009.

[HK06] L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning

and clustering. Trans. Comp.-Aided Des. Integ. Cir. Sys., 11(9):1074–1085,

November 2006. ISSN 0278-0070.

[HL95a] Bruce Hendrickson and Robert Leland. A multilevel algorithm for par-

titioning graphs. In Proceedings of the 1995 ACM/IEEE Conference on

Supercomputing, Supercomputing ’95. ACM, New York, NY, USA, 1995.

ISBN 0-89791-816-9. doi:10.1145/224170.224228.

[HL95b] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partition-

ing graphs. In Proceedings of the 1995 ACM/IEEE Conference on Super-

computing, Supercomputing ’95. ACM, New York, NY, USA, 1995. ISBN

0-89791-816-9. Available from: http://doi.acm.org/10.1145/224170.

224228, doi:10.1145/224170.224228.

[HMSM06] Kevin A. Huck, Allen D. Malony, Sameer Shende, and Alan Morris. TAUg:

Runtime global performance data access using mpi. In Proceedings of

the 13th European PVM/MPI User’s Group Conference on Recent Ad-

vances in Parallel Virtual Machine and Message Passing Interface, Eu-

roPVM/MPI’06, pages 313–321. Springer-Verlag, Berlin, Heidelberg, 2006.

ISBN 3-540-39110-X, 978-3-540-39110-4. doi:10.1007/11846802_44.

[HP85] D. Harel and A. Pnueli. Logics and models of concurrent systems. chapter

On the Development of Reactive Systems, pages 477–498. Springer-Verlag

New York, Inc., New York, NY, USA, 1985. ISBN 0-387-15181-8.

[hSOH11] Tae ho Shin, Hyunok Oh, and Soonhoi Ha. Minimizing buffer requirements

for throughput constrained parallel execution of synchronous dataflow

graph. In Design Automation Conference (ASP-DAC), 2011 16th Asia

http://dx.doi.org/10.1145/800055.802017
http://dx.doi.org/10.1145/224170.224228
http://doi.acm.org/10.1145/224170.224228
http://doi.acm.org/10.1145/224170.224228
http://dx.doi.org/10.1145/224170.224228
http://dx.doi.org/10.1007/11846802_44

Bibliography 162

and South Pacific, pages 165–170, Jan 2011. ISSN 2153-6961. doi:

10.1109/ASPDAC.2011.5722178.

[ILO14] ILOG. CPLEX math programming engine, July 2014. Available from:

http://www.ilog.com/products/cplex/.

[JAMS91] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine

Schevon. Optimization by simulated annealing: An experimental evalua-

tion; part II, graph coloring and number partitioning. Oper. Res., 39(3):

378–406, May 1991. ISSN 0030-364X. doi:10.1287/opre.39.3.378.

[JHM04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in

dataflow programming languages. ACM Comput. Surv., 36(1):1–34, 2004.

ISSN 0360-0300.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming.

In J. L. Rosenfeld, editor, Information processing, pages 471–475. North

Holland, Amsterdam, Stockholm, Sweden, Aug 1974.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, 1983.

[KHP+09] Rohit Khandekar, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Joel

Wolf, Kun-Lung Wu, Henrique Andrade, and Buğra Gedik. COLA: Op-

timizing stream processing applications via graph partitioning. In JeanM.

Bacon and BrianF. Cooper, editors, Middleware 2009, volume 5896 of Lec-

ture Notes in Computer Science, pages 308–327. Springer Berlin Heidelberg,

2009. ISBN 978-3-642-10444-2. Available from: http://dx.doi.org/10.

1007/978-3-642-10445-9_16, doi:10.1007/978-3-642-10445-9_16.

[KhSHO11] Jinwoo Kim, Tae ho Shin, Soonhoi Ha, and Hyunok Oh. Resource mini-

mized static mapping and dynamic scheduling of sdf graphs. In ESTImedia,

pages 83–92, 2011.

[KK98] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme

for irregular graphs. J. Parallel Distrib. Comput., 48(1):96–129, January

1998. ISSN 0743-7315. Available from: http://dx.doi.org/10.1006/

jpdc.1997.1404, doi:10.1006/jpdc.1997.1404.

[KKK98] G. Karypis, V. Kumar, and Vipin Kumar. Multilevel k-way partitioning

scheme for irregular graphs. Journal of Parallel and Distributed Computing,

48:96–129, 1998.

http://dx.doi.org/10.1109/ASPDAC.2011.5722178
http://dx.doi.org/10.1109/ASPDAC.2011.5722178
http://www.ilog.com/products/cplex/
http://dx.doi.org/10.1287/opre.39.3.378
http://dx.doi.org/10.1007/978-3-642-10445-9_16
http://dx.doi.org/10.1007/978-3-642-10445-9_16
http://dx.doi.org/10.1007/978-3-642-10445-9_16
http://dx.doi.org/10.1006/jpdc.1997.1404
http://dx.doi.org/10.1006/jpdc.1997.1404
http://dx.doi.org/10.1006/jpdc.1997.1404

Bibliography 163

[KL70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for parti-

tioning graphs. Bell System Technical Journal, 49(2):291–307, 1970. ISSN

1538-7305. doi:10.1002/j.1538-7305.1970.tb01770.x.

[KM66] Richard .M Karp and Raymond E. Miller. Properties of a model for par-

allel computations: determinacy, termination, queueing. SIAM J. Applied

Mathematics, 14(4):1390–1411, 1966.

[KM08] Manjunath Kudlur and Scott Mahlke. Orchestrating the execution of

stream programs on multicore platforms. In Proceedings of the 2008 ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’08, pages 114–124. ACM, New York, NY, USA, 2008. ISBN 978-

1-59593-860-2. Available from: http://doi.acm.org/10.1145/1375581.

1375596, doi:10.1145/1375581.1375596.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed

Embedded Applications. Kluwer Academic Publishers, Norwell, MA, USA,

1st edition, 1997. ISBN 0792398947.

[Kri84] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI

networks. Computers, IEEE Transactions on, C-33(5):438–446, May 1984.

ISSN 0018-9340. doi:10.1109/TC.1984.1676460.

[KRV06] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning

using single commodity flows. In Proceedings of the Thirty-eighth An-

nual ACM Symposium on Theory of Computing, STOC ’06, pages 385–390.

ACM, New York, NY, USA, 2006. ISBN 1-59593-134-1.

[KTA03] Michal Karczmarek, William Thies, and Saman Amarasinghe. Phased

scheduling of stream programs. In Proceedings of the 2003 ACM SIG-

PLAN Conference on Language, Compiler, and Tool for Embedded Sys-

tems, LCTES ’03, pages 103–112. ACM, New York, NY, USA, 2003. ISBN

1-58113-647-1. doi:10.1145/780732.780747.

[Lan65] P. J. Landin. Correspondence between ALGOL 60 and Church’s Lambda-

notation: Part I. Commun. ACM, 8(2):89–101, 1965. doi:10.1145/

363744.363749.

[LDWL06] Shih-wei Liao, Zhaohui Du, Gansha Wu, and Guei-Yuan Lueh. Data and

computation transformations for brook streaming applications on multipro-

cessors. In Proceedings of the International Symposium on Code Generation

and Optimization, CGO ’06, pages 196–207. IEEE Computer Society, Wash-

ington, DC, USA, 2006. ISBN 0-7695-2499-0. doi:10.1109/CGO.2006.13.

http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://doi.acm.org/10.1145/1375581.1375596
http://doi.acm.org/10.1145/1375581.1375596
http://dx.doi.org/10.1145/1375581.1375596
http://dx.doi.org/10.1109/TC.1984.1676460
http://dx.doi.org/10.1145/780732.780747
http://dx.doi.org/10.1145/363744.363749
http://dx.doi.org/10.1145/363744.363749
http://dx.doi.org/10.1109/CGO.2006.13

Bibliography 164

[LFM04] Hu Liang, Meng Faner, and Hu Ming. A dynamic load balancing system

based on data migration. In Computer Supported Cooperative Work in

Design, 2004. Proceedings. The 8th International Conference on, volume 1,

pages 493–499 Vol.1, May 2004. doi:10.1109/CACWD.2004.1349072.

[Lit61] John D. C. Little. A Proof for the Queuing Formula: L= λ W. Operations

Research, 9(3):383–387, 1961. ISSN 0030364X. doi:10.2307/167570.

[LLM88] M.J. Litzkow, M. Livny, and M.W. Mutka. Condor-a hunter of idle work-

stations. In Distributed Computing Systems, 1988., 8th International Con-

ference on, pages 104–111, Jun 1988. doi:10.1109/DCS.1988.12507.

[LM87a] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of

the IEEE, 75:1235–1245, 1987. ISSN 0018-9219. doi:10.1109/PROC.1987.

13876.

[LM87b] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of

synchronous data flow programs for digital signal processing. IEEE Trans.

Comput., 36(1):24–35, 1987. ISSN 0018-9340. doi:10.1109/TC.1987.

5009446.

[Lo88] V.M. Lo. Heuristic algorithms for task assignment in distributed systems.

Computers, IEEE Transactions on, 37(11):1384–1397, Nov 1988. ISSN

0018-9340. doi:10.1109/12.8704.

[LP95] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Pro-

ceedings of the IEEE, 83:773–801, 1995.

[LR92] H.-C. Lin and C.S. Raghavendra. A dynamic load-balancing policy with a

central job dispatcher (lbc). Software Engineering, IEEE Transactions on,

18(2):148–158, Feb 1992. ISSN 0098-5589. doi:10.1109/32.121756.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems

and their use in designing approximation algorithms. J. ACM, 46(6):787–

832, November 1999. ISSN 0004-5411. Available from: http://doi.acm.

org/10.1145/331524.331526, doi:10.1145/331524.331526.

[LSK97] An-Chow Lai, Ce-Kuen Shieh, and Yih-Tzye Kok. Load balancing in dis-

tributed shared memory systems. In Performance, Computing, and Com-

munications Conference, 1997. IPCCC 1997., IEEE International, pages

152 –158, feb 1997. doi:10.1109/PCCC.1997.581502.

[Mal09] Rajib Mall. Real-Time Systems: Theory and Practice. Prentice Hall

Press, Upper Saddle River, NJ, USA, 1st edition, 2009. ISBN 8131700690,

9788131700693.

http://dx.doi.org/10.1109/CACWD.2004.1349072
http://dx.doi.org/10.2307/167570
http://dx.doi.org/10.1109/DCS.1988.12507
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1109/12.8704
http://dx.doi.org/10.1109/32.121756
http://doi.acm.org/10.1145/331524.331526
http://doi.acm.org/10.1145/331524.331526
http://dx.doi.org/10.1145/331524.331526
http://dx.doi.org/10.1109/PCCC.1997.581502

Bibliography 165

[Mar66] David Frederic Martin. Volume I. The Automatic Assignment and Sequenc-

ing of Computations on Parallel Processor Systems. Volume Ii. Program

Listings. PhD thesis, 1966. AAI6606812.

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.

Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchitha-

padam, and Tia Newhall. The paradyn parallel performance measure-

ment tool. Computer, 28:37–46, November 1995. ISSN 0018-9162. Avail-

able from: http://dx.doi.org/10.1109/2.471178, doi:http://dx.doi.

org/10.1109/2.471178.

[MCH+90] B.P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.-S. Lim, and

T. Torzewski. IPS-2: the second generation of a parallel program mea-

surement system. Parallel and Distributed Systems, IEEE Transactions on,

1(2):206 –217, apr 1990. ISSN 1045-9219. doi:10.1109/71.80132.

[ME13] Changwoo Min and Young Ik Eom. DANBI: Dynamic scheduling of irreg-

ular stream programs for many-core systems. In Proceedings of the 22nd

International Conference on Parallel Architectures and Compilation Tech-

niques, PACT ’13, pages 189–200. IEEE Press, Piscataway, NJ, USA, 2013.

ISBN 978-1-4799-1021-2. Available from: http://dl.acm.org/citation.

cfm?id=2523721.2523749.

[MG12] Avinash Malik and David Gregg. Executing synchronous data flow graphs

on heterogeneous execution architectures using integer linear programming.

Technical report, School of Computer Science and Statistics, Trinity College

Dublin, Ireland, February 2012. Available from: https://www.scss.tcd.

ie/publications/tech-reports/tr-index.12.php.

[MG13] Avinash Malik and David Gregg. Orchestrating stream graphs using model

checking. TACO, 10(3):19, 2013.

[MM08] Alexander V. Mirgorodskiy and Barton P. Miller. Diagnosing distributed

systems with self-propelled instrumentation. In Proceedings of the 9th

ACM/IFIP/USENIX International Conference on Middleware, Middle-

ware ’08, pages 82–103. Springer-Verlag New York, Inc., New York, NY,

USA, 2008. ISBN 3-540-89855-7. Available from: http://dl.acm.org/

citation.cfm?id=1496950.1496957.

[MMS09] Henning Meyerhenke, Burkhard Monien, and Stefan Schamberger. Graph

partitioning and disturbed diffusion. Parallel Comput., 35(10-11):544–569,

October 2009. ISSN 0167-8191. Available from: http://dx.doi.org/10.

1016/j.parco.2009.09.006, doi:10.1016/j.parco.2009.09.006.

http://dx.doi.org/10.1109/2.471178
http://dx.doi.org/http://dx.doi.org/10.1109/2.471178
http://dx.doi.org/http://dx.doi.org/10.1109/2.471178
http://dx.doi.org/10.1109/71.80132
http://dl.acm.org/citation.cfm?id=2523721.2523749
http://dl.acm.org/citation.cfm?id=2523721.2523749
https://www.scss.tcd.ie/publications/tech-reports/tr-index.12.php
https://www.scss.tcd.ie/publications/tech-reports/tr-index.12.php
http://dl.acm.org/citation.cfm?id=1496950.1496957
http://dl.acm.org/citation.cfm?id=1496950.1496957
http://dx.doi.org/10.1016/j.parco.2009.09.006
http://dx.doi.org/10.1016/j.parco.2009.09.006
http://dx.doi.org/10.1016/j.parco.2009.09.006

Bibliography 166

[MS04] Burkhard Monien and Stefan Schamberger. Graph partitioning with the

party library: Helpful-sets in practice. In Proceedings of the 16th Symposium

on Computer Architecture and High Performance Computing, SBAC-PAD

’04, pages 198–205. IEEE Computer Society, Washington, DC, USA, 2004.

ISBN 0-7695-2240-8. doi:10.1109/SBAC-PAD.2004.18.

[MSA+85] J. Mcgraw, S. Skedzielewski, S. Allan, Oldehoeft Oldehoeft, J. Glauert,

C. Kirkham, B. Noyce, and R. Thomas. SISAL: Streams and iteration in a

single assignment language, language reference manual version 1.2, 1985.

[MST+05] A. Malony, S. Shende, N. Trebon, J. Ray, R. Armstrong, C. Rasmussen, and

M. Sottile. Performance technology for parallel and distributed component

software. Concurrency and Computation: Practice and Experience, 17(2-4):

117–141, 2005. ISSN 1532-0634. Available from: http://dx.doi.org/10.

1002/cpe.931, doi:10.1002/cpe.931.

[NSM+07] Aroon Nataraj, Matthew Sottile, Alan Morris, Allen D. Malony, and Sameer

Shende. TAUoverSupermon: Low-overhead online parallel performance

monitoring. In Proceedings of the 13th International Euro-Par Conference

on Parallel Processing, Euro-Par’07, pages 85–96. Springer-Verlag, Berlin,

Heidelberg, 2007. ISBN 3-540-74465-7, 978-3-540-74465-8.

[PD10] Jongsoo Park and William J. Dally. Buffer-space efficient and deadlock-free

scheduling of stream applications on multi-core architectures. In Proceed-

ings of the Twenty-second Annual ACM Symposium on Parallelism in Al-

gorithms and Architectures, SPAA ’10, pages 1–10. ACM, New York, NY,

USA, 2010. ISBN 978-1-4503-0079-7. Available from: http://doi.acm.

org/10.1145/1810479.1810481, doi:10.1145/1810479.1810481.

[PG10] V. Petkov and M. Gerndt. Integrating parallel application development

with performance analysis in Periscope. In Parallel Distributed Processing,

Workshops and Phd Forum (IPDPSW), 2010 IEEE International Sympo-

sium on, pages 1 –8, april 2010. doi:10.1109/IPDPSW.2010.5470940.

[PHG+10] Frank Penczek, Stephan Herhut, Clemens Grelck, Sven-Bodo Scholz, Alex

Shafarenko, Rémi Barrière, and Eric Lenormand. Parallel signal processing

with S-Net. Procedia Computer Science, 1(1):2079 – 2088, 2010. ISSN

1877-0509. ICCS 2010. doi:DOI:10.1016/j.procs.2010.04.233.

[PHS+10] Frank Penczek, Stephan Herhut, Sven-Bodo Scholz, Alex Shafarenko, Jung-

Sook Yang, Chun-Yi Chen, Nader Bagherzadeh, and Clemens Grelck. Mes-

sage Driven Programming with S-Net: Methodology and Performance. Par-

allel Processing Workshops, International Conference on, 0:405–412, 2010.

http://dx.doi.org/10.1109/SBAC-PAD.2004.18
http://dx.doi.org/10.1002/cpe.931
http://dx.doi.org/10.1002/cpe.931
http://dx.doi.org/10.1002/cpe.931
http://doi.acm.org/10.1145/1810479.1810481
http://doi.acm.org/10.1145/1810479.1810481
http://dx.doi.org/10.1145/1810479.1810481
http://dx.doi.org/10.1109/IPDPSW.2010.5470940
http://dx.doi.org/DOI: 10.1016/j.procs.2010.04.233

Bibliography 167

ISSN 1530-2016. doi:http://doi.ieeecomputersociety.org/10.1109/

ICPPW.2010.61.

[Pin08] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer

Publishing Company, Incorporated, 3rd edition, 2008. ISBN 0387789340,

9780387789347.

[Pnu86] A. Pnueli. Applications of temporal logic to the specification and verifica-

tion of reactive systems: A survey of current trends. In J.W. de Bakker,

W.-P. de Roever, and G. Rozenberg, editors, Current Trends in Concur-

rency, volume 224 of Lecture Notes in Computer Science, pages 510–584.

Springer Berlin Heidelberg, 1986. ISBN 978-3-540-16488-3. Available from:

http://dx.doi.org/10.1007/BFb0027047, doi:10.1007/BFb0027047.

[Pot97] Alex Pothen. Graph partitioning algorithms with applications to scien-

tific computing. In Parallel Numerical Algorithms, pages 323–368. Kluwer

Academic Press, 1997.

[PR96] François Pellegrini and Jean Roman. Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture graphs.

In Heather Liddell, Adrian Colbrook, Bob Hertzberger, and Peter Sloot, ed-

itors, High-Performance Computing and Networking, volume 1067 of Lec-

ture Notes in Computer Science, pages 493–498. Springer Berlin Heidelberg,

1996. doi:10.1007/3-540-61142-8_588.

[Pro10] Daniel Prokesch. A light-weight parallel execution layer for shared-memory

stream processing. Master’s thesis, Technische Universität Wien, Vienna,

Austria, Feb. 2010.

[PSL90] Alex Pothen, Horst D. Simon, and Kan-Pu Liou. Partitioning sparse ma-

trices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):

430–452, May 1990. ISSN 0895-4798.

[PT91] G.M. Papadopoulos and K.R. Traub. Multithreading: a revisionist view of

dataflow architectures. In Computer Architecture, 1991. The 18th Annual

International Symposium on, pages 342–351, 1991.

[Rau94] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for

software pipelining loops. In Proceedings of the 27th Annual Interna-

tional Symposium on Microarchitecture, MICRO 27, pages 63–74. ACM,

New York, NY, USA, 1994. ISBN 0-89791-707-3. Available from: http:

//doi.acm.org/10.1145/192724.192731, doi:10.1145/192724.192731.

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.61
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.61
http://dx.doi.org/10.1007/BFb0027047
http://dx.doi.org/10.1007/BFb0027047
http://dx.doi.org/10.1007/3-540-61142-8_588
http://doi.acm.org/10.1145/192724.192731
http://doi.acm.org/10.1145/192724.192731
http://dx.doi.org/10.1145/192724.192731

Bibliography 168

[RRB69] J. E. Rodrigues and Jorge E Rodriguez Bezos. A graph model for parallel

computations. Technical report, Cambridge, MA, USA, 1969.

[RVK08] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work

stealing in tbb. In Parallel and Distributed Processing, 2008. IPDPS 2008.

IEEE International Symposium on, pages 1–8, April 2008. ISSN 1530-2075.

doi:10.1109/IPDPS.2008.4536188.

[Sch04] Klaus Schneider. Verification of Reactive Systems: Formal Methods and

Algorithms. SpringerVerlag, 2004. ISBN 3540002960. 12 pp.

[SK72] D. G. Schweikert and B. W. Kernighan. A proper model for the parti-

tioning of electrical circuits. In Proceedings of the 9th Design Automa-

tion Workshop, DAC ’72, pages 57–62. ACM, New York, NY, USA, 1972.

doi:10.1145/800153.804930.

[SK90] N.G. Shivaratri and P. Krueger. Two adaptive location policies for global

scheduling algorithms. In Distributed Computing Systems, 1990. Proceed-

ings., 10th International Conference on, pages 502 –509, may-1 jun 1990.

doi:10.1109/ICDCS.1990.89320.

[SKH95] Behrooz A. Shirazi, Krishna M. Kavi, and Ali R. Hurson, editors. Scheduling

and Load Balancing in Parallel and Distributed Systems. IEEE Computer

Society Press, Los Alamitos, CA, USA, 1995. ISBN 0818665874.

[SKS92] N.G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally

distributed systems. Computer, 25(12):33 –44, dec. 1992. ISSN 0018-9162.

doi:10.1109/2.179115.

[SL93] G. C. Sih and E. A. Lee. Declustering: A new multiprocessor schedul-

ing technique. IEEE Trans. Parallel Distrib. Syst., 4(6):625–637, June

1993. ISSN 1045-9219. Available from: http://dx.doi.org/10.1109/

71.242160, doi:10.1109/71.242160.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-

tion. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905, August 2000.

ISSN 0162-8828. doi:10.1109/34.868688.

[SM06] Sameer S. Shende and Allen D. Malony. The TAU parallel perfor-

mance system. Int. J. High Perform. Comput. Appl., 20(2):287–311, May

2006. ISSN 1094-3420. Available from: http://dx.doi.org/10.1177/

1094342006064482, doi:10.1177/1094342006064482.

http://dx.doi.org/10.1109/IPDPS.2008.4536188
http://dx.doi.org/10.1145/800153.804930
http://dx.doi.org/10.1109/ICDCS.1990.89320
http://dx.doi.org/10.1109/2.179115
http://dx.doi.org/10.1109/71.242160
http://dx.doi.org/10.1109/71.242160
http://dx.doi.org/10.1109/71.242160
http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482

Bibliography 169

[SMM07] Sameer Shende, Allen D. Malony, and Alan Morris. Workload character-

ization using the tau performance system. In Proceedings of the 8th In-

ternational Conference on Applied Parallel Computing: State of the Art

in Scientific Computing, PARA’06, pages 289–296. Springer-Verlag, Berlin,

Heidelberg, 2007. ISBN 3-540-75754-6, 978-3-540-75754-2.

[SRU98] Jurij Silc, Borut Robic, and Theo Ungerer. Asynchrony in parallel comput-

ing: From dataflow to multithreading, 1998.

[SS92a] Sharon L. Smith and Robert B. Schnabel. Unstructured scientific com-

putation on scalable multiprocessors. chapter Centralized and Distributed

Dynamic Scheduling for Adaptive, Parallel Algorithms, pages 301–321. MIT

Press, Cambridge, MA, USA, 1992. ISBN 0-262-13272-9.

[SS92b] S.L. Smith and R.B. Schnabel. Dynamic Scheduling Strategies for an Adap-

tive, Asynchronous Parallel Global Optimization Algorithm. CU-CS. De-

partment of Computer Science, University of Colorado, 1992. Available

from: http://books.google.co.uk/books?id=jUu8SgAACAAJ.

[SS12] Peter Sanders and Christian Schulz. High quality graph partitioning. In

Graph Partitioning and Graph Clustering, pages 1–18, 2012.

[Ste97] R. Stephens. A survey of stream processing. Acta Informatica, 34, 1997.

ISSN 0001-5903.

[Sto77] Harold S. Stone. Multiprocessor scheduling with the aid of network flow

algorithms. Software Engineering, IEEE Transactions on, SE-3(1):85–93,

Jan 1977. ISSN 0098-5589. doi:10.1109/TSE.1977.233840.

[Sut66] William R. Sutherland. The On-Line Graphical Specification of Computer

Procedures. PhD thesis, Massachusetts Institute of Technology, 1966.

[TDG+11] Marc Tchiboukdjian, Vincent Danjean, Thierry Gautier, Fabien Le Mentec,

and Bruno Raffin. A work stealing scheduler for parallel loops on

shared cache multicores. In Euro-Par 2010 Parallel Processing Work-

shops, volume 6586 of Lecture Notes in Computer Science, pages 99–

107. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21877-4. doi:

10.1007/978-3-642-21878-1_13.

[TE92] Leandros Tassiulas and Anthony Ephremides. Stability properties of con-

strained queuing systems and scheduling policies for maximum throughput

in multihop radio networks. IEEE Transaction on Automatic Control, 37

(12):1936–1948, Dec. 1992.

http://books.google.co.uk/books?id=jUu8SgAACAAJ
http://dx.doi.org/10.1109/TSE.1977.233840
http://dx.doi.org/10.1007/978-3-642-21878-1_13
http://dx.doi.org/10.1007/978-3-642-21878-1_13

Bibliography 170

[Thi09] William Thies. Language and Compiler Support for Stream Programs.

Ph.d. thesis, Massachusetts Institute of Technology, Cambridge, MA, Feb

2009. Available from: http://groups.csail.mit.edu/commit/papers/

09/thies-phd-thesis.pdf.

[TKA02] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt:

A language for streaming applications. In Proceedings of the 11th Inter-

national Conference on Compiler Construction, CC ’02, pages 179–196.

Springer-Verlag, London, UK, UK, 2002. ISBN 3-540-43369-4. Available

from: http://dl.acm.org/citation.cfm?id=647478.727935.

[TKG+01] William Thies, Michal Karczmarek, Michael I. Gordon, David Z. Maze,

Jeremy Wong, Henry Hoffman, Matthew Brown, and Saman Amaras-

inghe. StreamIt: A compiler for streaming applications. Technical Re-

port MIT/LCS Technical Memo LCS-TM-622, Massachusetts Institute of

Technology, Cambridge, MA, Dec 2001. Available from: http://groups.

csail.mit.edu/commit/papers/01/StreamIt-TM-622.pdf.

[TKM+02] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae

Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee,

Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman,

Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agar-

wal. The Raw Microprocessor: A computational fabric for software cir-

cuits and general-purpose programs. IEEE Micro, 22(2):25–35, March 2002.

ISSN 0272-1732. Available from: http://dx.doi.org/10.1109/MM.2002.

997877, doi:10.1109/MM.2002.997877.

[Trä06] Jesper Larsson Träff. Direct graph k-partitioning with a Kernighan–Lin

like heuristic. Operations Research Letters, 34(6):621 – 629, 2006. ISSN

0167-6377. doi:http://dx.doi.org/10.1016/j.orl.2005.10.003.

[UGT09a] Abhishek Udupa, R. Govindarajan, and Matthew J. Thazhuthaveetil. Soft-

ware pipelined execution of stream programs on gpus. In Proceedings of

the 7th Annual IEEE/ACM International Symposium on Code Genera-

tion and Optimization, CGO ’09, pages 200–209. IEEE Computer Society,

Washington, DC, USA, 2009. ISBN 978-0-7695-3576-0. Available from:

http://dx.doi.org/10.1109/CGO.2009.20, doi:10.1109/CGO.2009.20.

[UGT09b] Abhishek Udupa, R. Govindarajan, and Matthew J. Thazhuthaveetil.

Synergistic execution of stream programs on multicores with accelera-

tors. In Proceedings of the 2009 ACM SIGPLAN/SIGBED Conference

on Languages, Compilers, and Tools for Embedded Systems, LCTES ’09,

http://groups.csail.mit.edu/commit/papers/09/thies-phd-thesis.pdf
http://groups.csail.mit.edu/commit/papers/09/thies-phd-thesis.pdf
http://dl.acm.org/citation.cfm?id=647478.727935
http://groups.csail.mit.edu/commit/papers/01/StreamIt-TM-622.pdf
http://groups.csail.mit.edu/commit/papers/01/StreamIt-TM-622.pdf
http://dx.doi.org/10.1109/MM.2002.997877
http://dx.doi.org/10.1109/MM.2002.997877
http://dx.doi.org/10.1109/MM.2002.997877
http://dx.doi.org/http://dx.doi.org/10.1016/j.orl.2005.10.003
http://dx.doi.org/10.1109/CGO.2009.20
http://dx.doi.org/10.1109/CGO.2009.20

Bibliography 171

pages 99–108. ACM, New York, NY, USA, 2009. ISBN 978-1-60558-

356-3. Available from: http://doi.acm.org/10.1145/1542452.1542466,

doi:10.1145/1542452.1542466.

[WA05] Barry Wilkinson and Michael Allen. Parallel programming - techniques

and applications using networked workstations and parallel computers (2nd

Edition). Pearson Education, 2005. ISBN 978-0-13-191865-8. 200-204 pp.

[WC00] C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and

refinement algorithm. SIAM J. Sci. Comput., 22(1):63–80, January 2000.

ISSN 1064-8275. doi:10.1137/S1064827598337373.

[Wen75] K.S Weng. Stream oriented computation in recursive data-flow schemas.

Technical report, Laboratory for Computer Science, MIT, Cambridge, MA,

1975.

[Whi80] Turner Whitted. An improved illumination model for shaded display.

Commun. ACM, 23(6):343–349, June 1980. ISSN 0001-0782. Avail-

able from: http://doi.acm.org/10.1145/358876.358882, doi:10.1145/

358876.358882.

[WKPR05] Ingomar Wenzel, Raimund Kirner, Peter Puschner, and Bernhard Rieder.

Principles of timing anomalies in superscalar processors. In Proc. 5th Inter-

national Conference of Quality Software. Melbourne, Australia, Sep. 2005.

[WO10] Zheng Wang and Michael F.P. O’Boyle. Partitioning streaming parallelism

for multi-cores: A machine learning based approach. In Proceedings of the

19th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’10, pages 307–318. ACM, New York, NY, USA, 2010.

ISBN 978-1-4503-0178-7. Available from: http://doi.acm.org/10.1145/

1854273.1854313, doi:10.1145/1854273.1854313.

[WP94] Paul G. Whiting and Robert S. V. Pascoe. A history of data-flow languages.

IEEE Ann. Hist. Comput., 16(4):38–59, 1994.

[XLM97] Zhichen Xu, James R. Larus, and Barton P. Miller. Shared-memory per-

formance profiling. In Proceedings of the sixth ACM SIGPLAN sympo-

sium on Principles and practice of parallel programming, PPOPP ’97,

pages 240–251. ACM, New York, NY, USA, 1997. ISBN 0-89791-906-

8. Available from: http://doi.acm.org/10.1145/263764.263796, doi:

10.1145/263764.263796.

http://doi.acm.org/10.1145/1542452.1542466
http://dx.doi.org/10.1145/1542452.1542466
http://dx.doi.org/10.1137/S1064827598337373
http://doi.acm.org/10.1145/358876.358882
http://dx.doi.org/10.1145/358876.358882
http://dx.doi.org/10.1145/358876.358882
http://doi.acm.org/10.1145/1854273.1854313
http://doi.acm.org/10.1145/1854273.1854313
http://dx.doi.org/10.1145/1854273.1854313
http://doi.acm.org/10.1145/263764.263796
http://dx.doi.org/10.1145/263764.263796
http://dx.doi.org/10.1145/263764.263796

Bibliography 172

[YM89] C.-Q. Yang and B.P. Miller. Performance measurement for parallel and

distributed programs: a structured and automatic approach. Software En-

gineering, IEEE Transactions on, 15(12):1615 –1629, dec 1989. ISSN 0098-

5589. doi:10.1109/32.58772.

[ZKS94] Y. Zhang, H. Kameda, and K. Shimizu. Adaptive bidding load balancing

algorithms in heterogeneous distributed systems. In Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems, 1994., MAS-

COTS ’94., Proceedings of the Second International Workshop on, pages

250 –254, jan-2 feb 1994. doi:10.1109/MASCOT.1994.284414.

[ZLRA08] David Zhang, Qiuyuan J. Li, Rodric Rabbah, and Saman Amarasinghe.

A lightweight streaming layer for multicore execution. SIGARCH Com-

put. Archit. News, 36(2):18–27, May 2008. ISSN 0163-5964. Available

from: http://doi.acm.org/10.1145/1399972.1399978, doi:10.1145/

1399972.1399978.

http://dx.doi.org/10.1109/32.58772
http://dx.doi.org/10.1109/MASCOT.1994.284414
http://doi.acm.org/10.1145/1399972.1399978
http://dx.doi.org/10.1145/1399972.1399978
http://dx.doi.org/10.1145/1399972.1399978

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Reactive Stream Programs
	1.2 Execution Model for Reactive Stream Programs
	1.3 Evaluation of Reactive Stream Programs
	1.4 Research Questions
	1.5 Contributions
	1.5.1 Publications

	1.6 Structure of the Thesis
	1.7 Chapter Summary

	2 Background
	2.1 Data Flow Programming
	2.2 Stream Programming
	2.2.1 Stream
	2.2.2 Stream-Programming Model
	2.2.3 Properties of Stream Programs

	2.3 Interactive/Reactive Systems
	2.4 Context of this Thesis: Reactive Stream Programs
	2.4.1 Data in Reactive Stream Programs
	2.4.2 Execution Model of RSPs
	2.4.3 Message Derivation
	2.4.4 Message Completion

	2.5 Instantiation of the Execution Model for Reactive Stream Programs
	2.5.1 Stream programming with S-Net
	2.5.2 S-Net Compiler and Runtime System
	2.5.3 LPEL — A User-mode Microkernel for the Streaming Language S-Net
	2.5.4 S-Net on Distributed Systems

	2.6 Chapter Summary

	3 Related Work
	3.1 Monitoring Parallel Programs
	3.2 Taxonomy of Scheduling Methods
	3.2.1 Offline Scheduling
	3.2.2 Online Scheduling
	3.2.2.1 Centralised Scheduling
	3.2.2.2 Distributed Scheduling
	3.2.2.3 Centralised Mediation

	3.3 Scheduling Reactive Stream Programs on Many-Core Systems
	3.3.1 Static Scheduling
	3.3.2 Dynamic Scheduling

	3.4 Scheduling Stream Programs on Distributed Systems
	3.5 Graph Partitioning
	3.6 Chapter Summary

	4 Use Cases
	4.1 Data Encryption Standard - DES
	4.2 Ant Colony Optimization - ANT
	4.3 Ray Tracing - RT
	4.4 Fast Fourier Transform - FFT
	4.5 Color Histogram Calculation - HIST
	4.6 Image Filtering - IMF
	4.7 Object Detecting - OBD
	4.8 Moving Target Indicator - MTI
	4.9 Monte Carlo Option Price - MC

	5 Performance Analysis for Reactive Stream Programs
	5.1 Performance Metrics
	5.1.1 Throughput
	5.1.2 Latency

	5.2 Performance with Different Arrival Rate
	5.2.1 Theoretical Analysis
	5.2.2 Experimental Verification

	5.3 Quantitative Analysis of Performance
	5.3.1 Throughput Analysis
	5.3.1.1 Uniformed Shared Memory Platforms
	5.3.1.2 Distributed Platforms

	5.3.2 Latency Analysis

	5.4 Chapter Summary

	6 Monitoring of Reactive Stream Programs
	6.1 Conceptions of the Monitoring Framework
	6.1.1 Monitoring the Runtime System
	6.1.2 Monitoring the Execution Layer

	6.2 Potential Benefits of the Monitoring Framework
	6.2.1 Performance Metric Measurement
	6.2.2 Extracting RSP Properties
	6.2.3 Automatic Load Balancing
	6.2.4 Bottleneck Detection

	6.3 Implementation of the Monitoring Framework in S-Net and LPEL
	6.3.1 Instrumenting the S-Net runtime system
	6.3.2 Instrumenting the LPEL Execution Layer
	6.3.3 Operation Modes

	6.4 Evaluation of the Monitoring Framework
	6.5 Chapter Summary

	7 Exploiting the Properties of RSPs for Efficiently Scheduling on Uniform Shared Memory Platforms
	7.1 Guidelines For Scheduler Design
	7.1.1 Throughput Optimisation
	7.1.2 Latency Optimisation

	7.2 Heuristic Scheduling Strategies for Performance Optimisation on Symmetric Processors
	7.2.1 Space scheduler
	7.2.2 Time Scheduler
	7.2.2.1 Position-based Task Priority
	7.2.2.2 Demand-based Task Priority
	7.2.2.3 Scheduling Cycle

	7.2.3 Scheduling Design Comparison

	7.3 Implementation of the heuristic priority functions
	7.3.1 Position-based Task Priority Function
	7.3.2 Demand-based Priority Function

	7.4 Evaluation: CS-dbp vs CS-pbp
	7.4.1 Conceptional Comparison
	7.4.2 Implementation Comparison
	7.4.3 Experimental Comparison
	7.4.3.1 Experiment Set Up
	7.4.3.2 Experiment Result

	7.5 Evaluation: CS-dbp vs Default LPEL Scheduler
	7.5.1 Experimental Set Up
	7.5.2 Performance Comparison
	7.5.3 Scalability Comparison

	7.6 Evaluation: CS-dbp vs Centralised Scheduler with Random Priority
	7.7 Chapter Summary

	8 Mapping Reactive Stream Programs onto Distributed Systems
	8.1 Mapping RSPs onto Distributed Platforms by Graph Partitioning
	8.2 Usage of Graph Partitions to Optimise Throughput of RSPs
	8.2.1 Problem Statement
	8.2.2 Partitioning RSPs with Variable Node Computational Behaviour and Dynamic Program Structures

	8.3 New Graph Partition Algorithms to Optimise Throughput of RSPs
	8.3.1 KL-Adapted Algorithm
	8.3.2 Congestion Avoidance Partitioning Algorithm
	8.3.3 Local Optima in Heuristic Search

	8.4 Evaluation of the Partitioning Algorithms
	8.4.1 Experimental Setup
	8.4.2 Convergence Speed of KLA and CA
	8.4.3 Comparison with Simulated Annealing

	8.5 Chapter Summary

	9 An Efficient Execution Model for Reactive Stream Programs
	9.1 Execution Model
	9.1.1 Overview
	9.1.2 Integration into S-Net and LPEL

	9.2 Evaluation
	9.2.1 Experimental Set Up
	9.2.2 Performance on Distributed Platforms
	9.2.3 Performance on shared memory platforms

	9.3 Chapter Summary

	10 Conclusion and Outlook
	10.1 Thesis Summary
	10.2 Outlook

	Bibliography

