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Abstract. We provide a set of atomic lines which are suitable for the description of ultracool dwarf spectra from 10 000 to
25 000 Å. This atomic linelist was made using both synthetic spectra calculations and existing atlases of infrared spectra of
Arcturus and Sunspot umbra. We present plots which show the comparison of synthetic spectra and observed Arcturus and
Sunspot umbral spectra for all atomic lines likely to be observable in high resolution infrared spectra.
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1. Introduction

Ultracool dwarfs extend from the cool M dwarfs into the brown
dwarf regime and include the spectral types L and T. It is likely
that most of the ultracool dwarfs are not massive enough to un-
dergo nuclear fusion in their cores to burn hydrogen and are
thus brown dwarfs rather than stars. Here we are concerned in
general terms with the spectroscopy of cool objects and use
the broad temperature classification “ultracool dwarf” in pref-
erence to more specific terms with a physical meaning such
as M dwarf and brown dwarf (Jones & Steele 2001).

The astrophysical importance of ultracool dwarf stars de-
rives from the large-scale cosmological significance of their
mass density, to their extremely slow chemical evolution and
to their formation process and their distinction from planets.
Ultracool dwarfs span the mass range from the coolest stars
through two orders of magnitude in mass to giant planets.
By determining their fundamental parameters, such as effec-
tive temperature, metallicity and surface gravity, their position
in the Hertzsprung-Russell diagram can be determined. So far
these parameters, in particular surface gravity and metallicity,
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are poorly determined. Yet to derive a reliable mass function
across the brown dwarf regime and to discern the abundance
patterns of low-metallicity brown dwarfs, it is essential to de-
sign much finer tools of analysis. Changes in effective tempera-
tures, surface gravity and metallicity can lead to similar spectral
changes. To disentangle these effects requires observations of
several spectral diagnostics that respond differently to changes
in these parameters (e.g., Reid & Hawley 2000).

Colour information has proved crucial in the identification
of most ultracool dwarfs. However, their complex energy dis-
tributions mean that colours do not change monotonically with
changing luminosity and temperature. This makes differenti-
ation of second order effects such as metallicity and gravity
very difficult to discern. Spectroscopic observations are crucial
and low-mass objects have been successfully classified both in
the optical (Kirkpatrick et al. 2000; Basri et al. 2000) and in-
frared (McLean et al. 2001; Geballe et al. 2001; Leggett et al.
2001) regimes across the M and L spectral classes. However
by the T spectral class there is insufficient flux at short wave-
lengths to use optical wavelengths. Furthermore even by the
early L spectral class the energy distribution at optical wave-
lengths is almost completely dominated by broad alkali reso-
nance lines and dust opacities (Pavlenko 1998; Pavlenko et al.
2000; Burrows et al. 2000; Tsuji 2002). The infrared region is
also difficult to model with strong molecular opacities of wa-
ter, iron hydride and at cooler temperatures methane as well.
However, there are also a number of atomic lines observable
in the infrared spectra of ultracool dwarfs (e.g. McLean et al.
2003). These infrared atomic lines lie across the peak in energy
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distribution for these stars and are thus comparatively easier to
observe than lines of the same atoms in the visible.

In recent years there has been a focus on improvements to
the atomic data in the optical region, e.g., NIST (Kelleher et al.
1999), Opacity Project (Seaton et al. 1992). However, currently
the accuracy and completeness of the atomic data, in particular
oscillator strengths, in the IR region are far poorer. In many
cases either the oscillator strengths are highly inaccurate or
there are simply no measurements available. This becomes ev-
ident when synthetic spectra are generated to match infrared
spectra, e.g., Jones et al. (1996), Jones & Viti (2000). Here we
identify suitable sensitive infrared atomic lines that may one
day be used for reliable temperature, gravity and abundance
analyses for a wide range of ultracool dwarfs, from M dwarf
stars through brown dwarfs as well as extra-solar giant plan-
ets. Our paper is the first step in the development of a database
of infrared atomic lines with reliable oscillator strengths suit-
able for the study of low temperature astrophysical objects. Our
specific focus is the interpretation of ultracool dwarfs covering
the temperature space from the M dwarfs through the brown
dwarfs to extra-solar giant planets.

Our focus is the prioritisation of atomic lines whose oscil-
lator strengths we are either already measuring or planning to
measure. Section 2 describes the observational material, atomic
line lists and theoretical spectra necessary for this study. Our
procedures for identifying important infrared atomic transitions
are discussed in Sect. 3. In Sect. 4 we discuss our results and
conclusions. In Sect. 5 we outline our plans for experimental
measurements of the atomic data.

2. Input datasets

2.1. Observed spectra of Arcturus and Sunspot umbra

For comparisons and the robust identification of atomic lines
we used both electronic and hard copies of the “Infrared
Atlas of the Arcturus spectrum, 0.9–5.3 µm” (hereafter
“Arcturus atlas”) (Hinkle et al. 1995) and “An Atlas of a Dark
Sunspot Umbral spectrum from 1970 to 8640 cm−1 (1.16
to 5.1 µm)” (hereafter “Sunspot umbra atlas”) (Wallace &
Livingston 1992). We used the electronic versions of both at-
lases (ftp://ftp.noao.edu/catalogs/arcturusatlas/
ir/ and ftp://ftp.noao.edu/fts/spot1atl/) to com-
pare with our synthetic spectra.

Arcturus (α Boo) is a K1 III star of effective temperature
Teff = 4300±30 K and log g = 1.5±0.15 (Peterson et al. 1993).
These parameters are far from adequate to describe ultracool
dwarf atmospheres (Teff ≤ 2600 K, log g ∼ 4.5−5.0) though
the Arcturus atlas provides careful identification of atomic lines
and gives an opportunity to assess the behaviour of atomic lines
when decreasing effective temperature from 4000 K to 2000 K.
The atlas contains winter and summer observations. Since only
the telluric spectrum is affected by seasons, in this paper we
only use the telluric free summer data. The resolution of this
atlas is of the order of R ∼ 100 000. The presence of a mag-
netic field in Arcturus is indirectly confirmed by strong emis-
sion lines in the ultraviolet spectral region formed in chromo-
sphere of Arcturus (Ayres et al. 1986). However the average

value of the magnetic field is, probably, similar to the solar one,
since atomic line splitting is not seen in the observed sprectrum.

The Sunspot umbra atlas has a spectral type of M2–M5 V,
which corresponds to an effective temperature range of around
Teff = 3170−3520 K (Wallace & Livingston 1992; Viti
et al. 1998). The magnetic field strength is estimated as
≈3360 Gauss. Due to the position of the umbra near the centre
of the solar disk we see only σ-components of Zeeman split
lines of large Lande factor g in the Sunspot umbra atlas. Due
to the strong magnetic field in the spot most of the atomic
lines in the Sunspot umbral spectrum have doublet-like pro-
files. Molecular lines, with few exceptions, are magnetically
insensitive and show single profiles. The Sunspot umbra atlas
provides a spectrum corrected for atmospheric absorption. Its
resolution is R ∼ 200 000 between 10 000 and 25 000 Å.

2.2. Synthetic spectra

Computations of synthetic spectra were carried out us-
ing the WITA6 program (Pavlenko 2000) assuming Local
Thermodynamic Equilibrium.

For the computation of synthetic specta we used the
NextGen model atmospheres structures (Hauschildt, private
communication; Hauschildt et al. 1999) for cool spectra, and
model atmosphere structures of Kurucz (1994) for the higher
temperature synthetic spectra of Arcturus.

The atomic linelist used for our spectral modeling and
line identification was taken from the VALD database (Kupka
et al. 1999). VALD is a compilation of several different lists of
atomic line data which were obtained from experimental mea-
surements and theoretical calculations by various authors.

Chemical equilibria were computed for the mix of around
100 molecular species. Input molecular data and continuum
opacity sources are described elsewhere (Pavlenko et al. 1995;
Pavlenko 1997, 2000). The profiles of absorption lines are de-
scribed by the Voigt function H(a, v). The formulae of Unsold
(1955) were used for calculation of damping constants. For
these model atmospheres we adopt the conventional value of
microturbulent velocity vt = 2 km s−1. Theoretical spectra were
computed with a wavelength step of 0.05 Å and then convolved
with Gaussians to match the instrumental broadening.

We should note, that we didn’t consider dusty effects in
our synthetic spectra calculations, since the main purpose of
the present work was not to model the real spectra of ultracool
objects, but to reveal the prominent atomic features to be ob-
served in such objects. The effects of dust will modify atomic
line strengths in ultracool dwarf spectra. But dust will not af-
fect the quantum-mechanical parameters which we intend to
measure at the present time.

3. Procedure

Our procedure of line identification and selection is based on
the comparison of synthetic spectra with the observed spectra
of Arcturus and Sunspot umbra from 10 000 to 25 000 Å.

For ultracool dwarfs we used only synthetic spectra. The
choice of model atmosphere parameters was aimed at obtaining
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a reliable atomic line list for ultracool dwarfs in the IR region.
A model atmosphere of Teff/ log g/[M/H] = 2000/5.0/0.0
was selected (hereafter “ultracool dwarf model”). This cor-
responds to an ultracool dwarf spectral class of around L0
(Kirkpatrick et al. 1999; Martin et al. 1999). The half width
of the Gaussian we used to account for instrumental broaden-
ing in the “ultracool dwarf” synthetic spectrum is 0.4 Å which
corresponds to resolution R ∼ 20 000−40 000, approximately
the resolution available to modern infrared echelle spectrome-
ters operating between 10 000–25 000 Å. Another model atmo-
sphere 4000/4.5/0.0 (hereafter “Arcturus-like model”) was cho-
sen to select some observable spectral atomic features formed
in hotter atmospheres. The half width of the Gaussian for
this synthetic spectrum is 0.13 Å to match the line broad-
ening by macroturbulent velocity vmacro = 3.5 km s−1 in the
Arcturus spectrum (Peterson et al. 1993). The Teff = 4000 K
is slightly lower than Arcturus Teff = 4300 K (Peterson et al.
1993), and higher than the temperature of the Sunspot umbra
Teff ∼ 3170−3520 K (Wallace & Livingston 1992).

In the electronic versions of the Arcturus and Sunspot um-
bra atlases the data are given on a wavenumber scale. We trans-
form the wavenumbers to wavelengths in air using the formula
from Allen’s Astrophysical Quantities (2000).

It is well known that the difficulties of line identification in
IR spectra of ultracool dwarfs have a number of causes. There
are many strong molecular lines of H2O (Jones et al. 2002),
FeH (Cushing et al. 2003), CO (Pavlenko & Jones 2003), CH4

(Noll et al. 2000) native to ultracool dwarfs as well as tel-
luric molecular lines, particularly strong between the J, H and
K bands. Nevertheless, we were able to identify many absorp-
tion features in the atmospheres of Arcturus and Sunspot um-
bra spectra likely to be present in ultracool dwarfs. To do this,
we developed a procedure based on the inter-comparison of
computed and observed spectra designed to minimise possible
errors in line identification. The line identification files were
made using:

a) “ultracool dwarf” synthetic spectrum (2000/5.0/0.0);
b) “Arcturus-like” synthetic spectrum (4000/4.5/0.0).

In addition we used line identification files from hard copy
Arcturus and Sunspot umbra atlases.

In our identification procedure we assume that lines absorb
only at a given wavelength. This assumption provides an upper
limit of absorption. In the real spectra the residual intensity may
be lower due to contribution of other lines. For every line from
the VALD linelist in the range of 10 000–25 000 Å the residual
flux rν =

(Flux in line)ν
(Flux in continuum)ν

was computed. Atomic lines from
VALD with central intensities deeper than 0.8 of the residual
flux in the spectrum of 2000/5.0/0.0 atmosphere were selected
to restrict the number of lines to those likely to be observable in
cool spectra. These lines are given in the Table 1. The set of the
selected lines is rather large and thus we assign different levels
of priority to the lines. The main criteria for selecting lines of
the highest priority is that the central intensity of the identified
line ought to be greater than 0.6 of the residual flux (Col. 4 in
the Table 1) in the “ultracool dwarf” synthetic spectrum.

Plots for all spectral regions containing atomic
lines of interest are shown in Fig. 1 (they are also

available at http://www.astro.livjm.ac.uk/∼hraj/
spectralatlas/index.html). The identifications of atomic
features are labelled in the spectra. Arrows and labels at the
top of the plots show identification in the “ultracool dwarf”
synthetic spectrum, the same labels in the bottom of the plots
are for the “Arcturus-like” spectrum. The Sunspot umbral
spectrum is shown by bold line, the Arcturus spectrum by a
dotted line, the “ultracool dwarf” synthetic spectrum as a solid
line and “Arcturus-like” synthetic spectrum as a dashed line.
In order to simplify our plots molecular line identifications
are not included. Usually molecular lines have narrow deep
profiles allowing them to be distinguished from atomic lines.
Their identification in the Sunspot umbra and Arcturus can be
found in the hard copy atlases.

4. Results

Our results are shown in two tables. Table 1 contains all iden-
tified lines with central intensities deeper than 0.8 of residual
flux using “ultracool dwarf model” identifications. Table 2 in-
vestigates the sensitivity of priority 1 lines identified in Table 1
to temperature, gravity and metallicity.

In the first column of Table 1 we estimate the priority of
lines for measurement of atomic data.

a) Priority 1 indicates that the atomic line is deeper than 0.6
in the 2000/5.0/0.0 synthetic spectrum. Also we include
as first priority three lines of Ti (22211.229, 22232.838,
22274.012 Å) which are shallower than 0.6. They are lo-
cated far from strong atomic and molecular lines and thus
are good for identification purposes in the spectra of ultra-
cool dwarfs.

b) Priority 2 indicates that the residual flux of an atomic line
is between 0.8–0.6.

c) Priority 3 indicates that the atomic line is located in the
wing of a nearby stronger line or in a wavelength region
with strong telluric absorption.

Atomic lines without an assigned priority might be relevant in
the analysis of ultracool dwarf spectra, but they are predicted
to be weak in the synthetic spectrum.

The second column shows the wavelength of the line
in Å in air. These values were taken from VALD. We check that
wavelengths from Arcturus and Sunspot umbra atlases identi-
fication files are in a good agreement with VALD. The wave-
lengths of a few lines differ from VALD values by less than
0.1 Å in the region 10 000–20 000 Å and by less than 0.3 Å be-
yond 20 000 Å.

The third column shows the atomic identifications of the
line.

Columns 4–7 show the linedepths of identified lines.
Column 4 – the residual flux in the line obtained from the “ul-
tracool dwarf” synthetic spectrum; Col. 5 – from the “Arcturus-
like” synthetic spectrum; Col. 6 – measured from the hard copy
of Arcturus atlas depth of identified atomic lines; Col. 7 – the
same as Col. 6 for the hard copy of the Sunspot umbra atlas.
As was mentioned above we used the hard copy versions of
the Arcturus and Sunspot umbra atlases to measure linedepths.
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The accuracy of our line depth measurements from the hard-
copy atlases is ∼0.01–0.02 for the Arcturus atlas (Col. 6) and
∼0.02–0.03 for the Sunspot umbra atlas (Col. 7). We note that
linedepth information given in Cols. 6 and 7 is only used to
check the presence of a line in the observed spectra. Thus we
do not need high accuracy linedepth measurements for the ob-
servable spectra of the Sunspot umbra and Arcturus.

We note that the data in the Sunspot umbra atlas provide a
spectrum from 11 600 Å, rather than 10 000 Å where our fig-
ures and tables start from. Some lines are labelled (see Col. 7)
by the symbol “∼” which means that part of the line in the hard
copy of the atlas is obscured by a gap in the data and the value
given in the table is for the visible part of the line. In Cols. 6
and 7 there are also some lines with “bl” suffices. This means
that these lines are blended with stronger nearby lines.

There are two regions with strong telluric absorption
(marked in Cols. 6 and 7 by

⊕
): 13 600–14 770 Å and

18 260–19 450 Å, regions between the J and H, and H and
K photometric bands. Lines identified from VALD in these re-
gions are difficult to observe in ground based observations but
can be used in probable future space observations of ultracool
dwarfs.

Finally we note, that in Table 1 we italicise atomic lines of
Rb, Y, Ba and Lu, identified only using theoretical computa-
tions. Although these lines are not seen in the observations of
Arcturus and Sunspot umbra, they are strong in the synthetic
spectrum computed for the 2000/5.0/0.0 model atmosphere,
and therefore also likely to be strong below 2000 K.

In Table 2 we show only lines which were marked in
Table 1 as first priority lines. The first column are wavelengths
in Å; the second column are names of elements. In the third
column we give the central line intensity for the “ultracool
dwarf” (2000/5.0/0.0) spectrum. We compute some synthetic
spectra for ultracool objects varying parameters of Teff, log g
and metallicity to show the sensitivity of the central intensi-
ties of identified lines to these parameters. For our computa-
tions we chose the minimal step in model atmospheres grid:
∆Teff = 100 K, ∆ log g = 0.5, ∆[M/H] = −0.5. In Cols. 4–6
we show the difference of central intensity (in %) computations
with “new” models from central intensity computations for our
“ultracool dwarf model”. Negative values in Cols. 4–6 indicate
that a line is stronger in the new model relative to the reference
model 2000/5.0/0.0.

Column 4 shows the dependence of residual fluxes on ef-
fective temperature. For comparison a 2100/5.0/0.0 synthetic
spectrum was used. One can see that only a few lines show
strong temperature dependence for ∆Teff = 100 K. The
NextGen 2000/4.5/0.0 model was used with 2000/5.0/0.0 to
test gravity sensitivity. The dependence for ∆(log g) = 0.5
is also relatively weak for most lines and is shown in Col. 5.
∆[M/H] = 0.5 from computations using NextGen model at-
mospheres 2000/5.0/-0.5 and 2000/5.0/0.0 is shown in Col. 6.
The metallicity dependence is relatively high for all lines. Thus
Table 2 indicates that relatively small variations of model at-
mosphere parameters will not seriously affect our line selection
and prioritisation.

5. Experimental work

The identification and prioritisation of atomic lines presented
in this paper is only the first step in our project and is primar-
ily based on a theoretical treatment. Our program of measure-
ments of atomic data for the priority lines given in this paper is
underway. We are currently measuring oscillator strengths by
measurements of sets of relative line intensities using the high
resolution Fourier transform spectrometers at Imperial College
(Pickering 2002) and NIST (National Institute of Standards and
Technology, US). We have already recorded spectra of Ti, Mn
and Na, and measurements of Mg, K, Ca and Fe are in progress.
Measurements of other species listed in Table 1 are underway
in the near future. These line intensities will be used to obtain
branching ratios which are then combined with level lifetimes
to obtain f -values. We expect to achieve uncertainties in f -
values of around 10–15%.
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Fig. 1. Plots for all spectral regions containing atomic lines of interest in the 10 000–25 000 Å region. The identifications of atomic features are
made by atomic name and arrows by the line of interest. Identification at the top of the plots is for the “ultracool dwarf” spectrum; identification
at the bottom of the plots is for the “Arcturus-like” spectrum.
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