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Abstract

Improving predictions of the skin permeability coefficient
is a difficult problem. It is also an important issue with the
increasing use of skin patches as a means of drug delivery.
In this work, we apply K-nearest-neighbour regression, sin-
gle layer networks, mixture of experts and Gaussian pro-
cesses to predict the permeability coefficient. We obtain a
considerable improvement over the quantitative structure-
activity relationship (QSARs) predictors. We show that us-
ing five features, which are molecular weight, solubility pa-
rameter, lipophilicity, the number of hydrogen bonding ac-
ceptor and donor groups, can produce better predictions
than the one using only lipophilicity and the molecular
weight. The Gaussian process regression with five com-
pound features gives the best performance in this work.

1. Introduction

In this paper, we address the problem of predicting the
rate at which various compounds penetrate human skin.
This is an important issue with the increasing use of skin
patches as a means of drug delivery. There are two main
approaches used to predict and understand the skin pene-
tration procedure. One is quantitative structure-activity re-
lationships (QSARs), and the other is mathematical mod-
elling [4]. Recently more new approaches, for example, ar-
tificial neural network and fuzzy modelling, have been ap-
plied to this domain [3].

One problem addressed here is how to improve predic-
tions of the skin permeability coefficient by applying ad-
vanced machine learning techniques, for example, Gaus-
sian Processes. To the best of our knowledge this is the first
time that Gaussian processes modelling has been applied

to skin permeability data. One key feature of this prob-
lem domain is that the target, skin permeability coefficient,
may have a strongly non-linear relationship with the com-
pound descriptors (features). We demonstrate a feasibility
of prediction improvement by using computational regres-
sion modelling methods.

Another issue discussed in this work is to investigate new
compound descriptors to the problem. We show that in-
volving three new descriptors, which are solubility parame-
ter, the number of hydrogen bonding acceptor and donor
groups, simply gives a more detailed description of the
molecule in relation to the skin.

2 Problem Domain

Percutaneous absorption has been a significant challenge
for pharmaceutical scientists for the last 50 years. As re-
cently as the 1960′s, it was assumed that drugs could not
pass through the skin. However, as knowledge of the de-
tailed structure of the skin barrier - the stratum corneum, the
skin’s outermost layer - increased, new technologies grad-
ually became available for the treatment of medical condi-
tions by transdermal therapy. The stratum corneum is the
main barrier to percutaneous absorption, and this is due to
its structure and properties. It is a very thin layer, com-
monly 15 − 30μm on the volar forearm, for example. This
layer effectively governs the rate of passage of exogenous
chemicals across the skin and into the viable tissues from
the external environment. It is a densely packed layer con-
sisting of dead, flattened keratin cells enmeshed in a lipid
domain.

While qualitative estimates of percutaneous absorption
were common until the 1980′s, it was not until 1990, and the
publication of the Flynn dataset [5] that a quantitative ap-
proach to skin absorption was proposed. Flynn determined,
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in a semi-quantitative manner, that skin absorption was in-
fluenced predominately by two compound descriptors - the
lipophilicity of a molecule and its molecular weight (MW ).
The former descriptor defines the ability of a molecule to
partition between lipid and aqueous layers, represented by
n-octanol and water (or buffer), respectively. This is then
defined as log P , the logarithm of the ratio of concentrations
in, respectively, the lipid and aqueous domains. Molecular
weight is effectively a measure of the size of the molecule,
and is related to the lipophilicity in a generalised sense that,
when MW is increased it is most likely due to the addition
of lipophilic groups onto the molecule.

Potts and Guy [14] used the Flynn dataset to derive a
linear equation that quantified percutaneous absorption:

log Kp = 0.71 log P − 0.0061MW − 6.3 , (1)

where log Kp is the permeability coefficient, a
concentration-corrected measure of drug transport, or
flux, across a membrane (such as the skin), log P is the
lipophilicity and MW the molecular weight.

In essence, Flynn used the data that was available to him
from the literature. This means that there is an uneven dis-
tribution of this data across the whole range of interest, and
that the data is generally skewed by certain compound de-
scriptors, such as log P and MW .

Moss and Cronin [8] developed the Potts and Guy model
by evaluating the role of steroids in the dataset. Thus, the
model is based on a slightly larger and more robust dataset.
It is represented by the following equation:

log Kp(cm/s) = 0.74 log P − 0.0091MW − 2.39 , (2)

where log Kp, log P and MW are as defined earlier.
A number of similar equations have been derived since

the publication of Potts and Guy’s model. Moss et al [10]
compared a series of published models. They showed that
there were significant differences between log Kp values
that were measured experimentally and those that were de-
termined using the Potts and Guy (and other) equations. In-
terestingly, they showed that the greatest difference between
experimental and predicted values was found at high log P
values. In effect, the absorption is Gaussian in its distribu-
tion, if assessed by log P in particular. This contradicts the
linear nature of the Potts and Guy (and similar) equations,
although the concomitant increase in log P and MW is of-
ten offset by the negative sign in front of MW .

Therefore, there is compelling qualitative evidence that
suggests the non-linear response to skin absorption that is
missing from the linear equations, such as Potts and Guy.
Non-linear modelling might provide a prediction for percu-
taneous absorption for molecules with a wide range of log P
values.

In [2], an artificial neural network was developed, where
MW , log P and partial change of the penetrant molecule

were used as inputs, and was applied to skin permeability
data for the first time. In [11], an ensemble model using K-
nearest-neighbour and ridge regression to predict skin per-
meability coefficients was proposed, where three computa-
tional descriptors, which are MW , log P and solvation free
energy, were used as inputs. Note that both partial change
of the penetrant molecule and solvation free energy are use-
ful descriptors, but they are difficult to be calculated without
specialist software.

In previous work [13], Gaussian processes (GP) mod-
elling has been used to predict log P . To the best of our
knowledge, the GP methods have not been applied to skin
permeability data. In this work, we investigate the non-
linear response to skin absorption by applying computa-
tional regression modelling methods: K-nearest-neighbour
regression, single layer networks (SLN), mixture of experts
and Gaussian processes.

3 A Description of the Data

The dataset employed in this study has been collated
with reference to a range of literature sources. It predomi-
nately consists of the Flynn dataset, used by Potts and Guy,
and others. It contains several additions, whose origins
are described in Moss et al. [9]. The whole dataset con-
sists of 149 compounds. Usually, log P and MW appear
to be the only significant features in QSAR forms. How-
ever, in some cases (such as [12]) other features achieve
significance; these features are often calculated using ex-
pensive specialised software. Since they often provide only
marginal improvements in the prediction of log Kp com-
pared to other QSAR models, there is little application of
them in the field. In this work, 5 molecular features in total
are involved. They are molecular weight (MW ), solubil-
ity parameter (SP ), log P (often described, for example by
Potts and Guy, as log Pknown), counts of the number of
hydrogen bonding acceptor (HA) and donor groups (HD),
respectively, that can be found on a molecule.

SP relates the solubility of a penetrant to the solubility
of the stratum corneum, the skin barrier. If a molecule is too
soluble in the stratum corneum it might not be soluble in the
rest of the skin, and it might therefore have poor skin pen-
etration overall. So, the use of SP will provide an indica-
tion of the mostly lipophilic molecules likely to exhibit this
behaviour. HA and HD are the hydrogen-bonding terms.
Hydrogen bonds (H-bonds) are specific covalent bonds be-
tween a hydrogen on one molecule and a highly electroneg-
ative atom on a different molecule. HA is a H-bond ac-
ceptor, such as oxygen, nitrogen or fluorine. HD is a H-
bond donor, normally a hydrogen which is itself attached
to a highly electronegative atom. HA and HD are associ-
ated with electronegativity and H-bonding. This is a polar
phenomenon and as such might be associated with retarding
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Figure 1. A scatter plot matrix of the skin
dataset. The diagonal shows the shape of
the distribution of each feature. The graphs
in the lower triangle are the transpose of the
graphs in the upper triangle.

percutaneous absorption.
There is very little work which uses the five descriptors

we employ in this work. We are interested in looking at new
compound descriptors. The descriptors above are chosen
not only for their applicability but for the ease with which
they can be determined.

3.1 Visualisation of the skin data

The scatter plot matrix in Figure 1 shows data for all 149
compounds with 5 features against each other, and the diag-
onal shows the shape of the distribution of each feature. The
subplot appearing in the first row and last column shows
MW against log Kp. It suggests that very similar log Kp

values can correspond to many different MW values. This
is also true of log Pknown and log Kp. It can also be seen
that there is no simple linear replationship between any pair
of descriptors.

3.2 Canonical correlation analysis

Canonical correlation analysis (CCA) [6] can be used
to find a projection that maximises the correlation between
two sets of variables.

In this work, we group MW , SP , log P , HA and HD
into one set, and log Kp into another set. Our aim is to in-
vestigate the correlating linear relationship between log Kp

and the 5 compound descriptors. The canonical variable 1
(CV1) in Figure 2 is a combination of 5 descriptors used in
this work: CV 1 = 0.002MW − 0.116SP +0.033 log P +
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Figure 2. The canonical correlation between
5 compound descriptors and log Kp.

0.107HA + 0.6655HD, while the canonical variable 2
(CV2) in Figure 2 is given by CV 2 = −0.686 log Kp. As
one can see that there is no linear relationship between the
two sets of variables. It is interesting to note that in CV1
the least important features (those with lowest coeffecients)
are MW and log P . Actually, the canonical correlation
coefficient is approximately 0.415, while the canonical cor-
relation coefficient between log Kp and a group of two vari-
ables, MW and log P is about 0.238.

4 Modelling Methods

4.1 Single layer network

First of all, we consider a single layer network (SLN) on
the regression problem, which is a simple linear regression.
The output y is the weighted sum of the components of an
input x, The weights are set so that the sum squared error
function is minimised on a training set.

4.2 K-nearest-neighbour regression

Given a test input x, the algorithm finds K closest points
to x among all the training inputs. The prediction of the
model is therefore the average of those K target values.
In our experiments, we apply Euclidean distance in the
K-nearest-neighbour (KNN) regression to do the distance
measurement.

4.3 Mixture of experts

The mixture of experts [7] divides the input space into
a nested set of regions. In each region a simple surface is
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fitted to the data. It consists of a gating network and ex-
perts. The function of the gating network is to partition the
input space so that each expert only needs to model a small
region. The gating network receives the input x, and out-
puts a scalar value pi with the property that pi ≥ 0 and∑

i pi = 1. The final prediction of the model is a sum of
the expert predictions weighted by pi. In this work, all local
experts are linear regression models.

4.4 Gaussian process regression - GPR

Gaussian process (GP) modelling is a non-parametric
method, which does not produce an explicit functional rep-
resentation of the data. Here it is assumed that the under-
lying function, f(x), that produces the data will remain un-
known, but that the data is produced from a (infinite) set
of functions, with a Gaussian distribution in the function
space.

A Gaussian process is completely characterised by its
mean and covariance function. For simplicity, we usually
consider the mean function to be the zero everywhere func-
tion. The covariance function, k(xi,xj), is crucial to GP
modelling. It expresses the expected correlation between
values f(x) at the two points xi,xj . In other words, it de-
fines nearness or similarity between data points.

In this work, we apply the squared exponential covari-
ance function, which incorporates noise into the model, as
follows:

k(xi,xj) = σ2
f exp

(
− 1

2
(xi−xj)T M(xi−xj)

)
+σ2

nδij ,

(3)
where M = l−2I , l is characteristic length-scale, σf is
signal variance, σn is noise variance, and δij is a Kronecker
delta which is one iff i = j and zero otherwise.

To make a prediction f(x∗) at a new input
x∗, we need to compute the conditional distribu-
tion p(f(x∗)|y1, . . . , yNtrn

) on the observed vector
[y1, . . . , yNtrn

]. Since our model is a Gaussian process, this
distribution is also a Gaussian and is completely defined by
its mean and variance. The mean at x∗ is given by

E[f(x∗)] = kT
∗ (K + σ2

nI)−1y . (4)

In eq(4), k∗ denotes the vector of covariances between the
test point and the Ntrn training data; K denotes the covari-
ance matrix of the training data; σ2

n denotes the variance
of an independent identically distributed Gaussian noise,
which means observations are noisy; and y denotes the vec-
tor of training targets.

The variance at x∗ is given by

var[f(x∗)] = k(x∗,x∗) − kT
∗ (K + σ2

nI)−1k∗, (5)

where k(x∗,x∗) denotes the variance of y∗.
We use the mean as our prediction and the variance as

error bars on the prediction.

5 Performance Measures

We apply three common measurements for assessing re-
gression performance, which are normalised mean squared
error (NMSE), percent improvement over a naive model
(ION), and negative log loss (NLL).

The mean squared error (MSE) measures the average
squared difference between model predictions and the cor-
responding targets . Here we report the NMSE which is to
normalise MSE by the variance of target values.

In the naive model for any input the prediction is always
the same value, namely the mean of log Kp in the train-
ing set. Denote mean squared error of a naive model as
MSEnaive. The degree of improvement of the model over
the Naive predictor can be quantified by the ION measure
[13], that is ION = MSEnaive−MSE

MSEnaive
× 100%.

Finally, when we investigate GP’s results, we also con-
sider the average negative log estimated predictive den-
sity NLL, given by NLL = 1

N

∑
n − log p(yn|xn), where

N is the number of test cases, and − log p(y∗|x∗) =
1
2 log(2πσ2

∗) + (y∗−E[f(x∗)])2

2σ2∗
, in which case σ2

∗ is the pre-
dictive variance, and y∗ is the target value at x∗. A small
value shows good performance.

When we analyse the results, we want a model which
on the test set provides low values of both NMSE and NLL
and high values of both ION and the correlation coefficient
(CORR).

6 Experiments

6.1 Simulation setup

In this work, we randomly divided the whole dataset into
a training set including 130 compounds, and an independent
test set consisting of the remaining 19 compounds. We then
applied those modelling methods described in Section 4 on
the training set and do prediction on the independent test set
using the trained models. We repeated this whole procedure
10 times, each time for a different randomly assigned train-
ing and test sets. To investigate whether predictions can be
improved by involving all 5 features rather than the original
2 features used in the QSAR forms, (MW and log P ), we
employed regression modelling methods with both 2 and 5
compound features.

In K-nearest-neighbour modelling, we varied the
number of neighbours, K, between 1 and 10; in the
mixture of experts, we set the number of experts between
2 and 5. In Gaussian process modelling, we initialised
the logarithm of characteristic length-scale, the loga-
rithm of signal variance, and noise variance from the set
[log(1.0) log(1.0) log(0.1); log(2.0) log(1.0) log(0.1);
log(1.0) log(2.5) log(0.3); log(0.7) log(2.5) log(0.3);
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log(0.3) log(1.0) log(0.1); log(1.0) log(1.2) log(0.9);
log(2.0) log(1.2) log(0.9); log(0.3) log(1.2) log(0.9);
log(1.0) log(0.6) log(0.01); log(0.7) log(0.6) log(0.01)].

We used a 5-fold cross-validation procedure to select op-
timal parameters for each of K-nearest-neighbour, the mix-
ture of experts, and Gaussian process. In these cases, each
training set is further divided into training and validation
sets.

We applied Rasmussen and Williams’s [15] GP toolbox
to do Gaussian process modelling; and employed the Bayes
Net Toolbox, which is publicly available at
http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html#ack, to
do the mixture of experts modelling.

6.2 Experimental results

Before we do experiments using the trainable regression
models, we first apply the QSAR forms (eqs. (1) & (2)) in-
troduced in section 2 to the whole dataset. Table 1 shows
the results. The results are the averages on the 10 indepen-
dent test sets. For comparison, Table 1 also shows results
from the Naive model. In general, all QSAR predictions are
worse than naive predictions, especially with Potts’ QSAR
form.

Table 2 shows results obtained using computational
modelling methods from the machine learning field with
MW and log P as descriptors. One can see that all 4 meth-
ods have improved the naive predictions, with K-nearest-
neighbour giving the best results. The average of the opti-
mal number of neighbours, K, was equal to 8.4. Not sur-
prisingly, the single layer network, which is a simple linear
regression model, performed worst.

Results obtained with 5 compound descriptors are shown
in Table 3. Comparing with Table 2, one can see that all
4 regression modelling methods have improved their per-
formance when using 5 features rather than 2. This big
improvement in performance confirms that the 3 additional
features are very important in predicting skin permeability.

The Gaussian process regression gives the best perfor-
mance, Figure 3 displays a box plot of normalised mean
squared errors from 10 independent test sets on Naive
model, the Moss QSAR form, and those 4 computational
modelling methods with 5 features. It shows that the Gaus-
sian process regression with 5 features (GPRf5) gives the
lowest upper quartile, median and lower quartile values on
NMSE. Although the mixture of experts with 5 features
(MIXEXPf5) has comparable low median and lower quar-
tile values, its upper quartile value and the largest NMSE
value are much bigger than those obtained from GPRf5. It
suggests that GPRf5 has a relatively stable and robust per-
formance. On the other hand, one can see the QSAR form
(Moss) has the highest lower quartile, median and upper
quartile values. Both K-nearest-neighbour with 5 features

Naive Moss KNNf5 SLNf5 MIXEXPf5 GPRf5
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Figure 3. Box plot of normalised mean
squared errors from 10 independent test sets
on 6 different models.

(KNNf5) and single layer network with 5 features (SLNf5)
were relatively stable, but in general not as good as GPRf5
and MIXEXPf5.

7 Conclusions

There are two main quantitative conclusions from this
study. First, we get a considerable improvement over the
linear QSAR predictor by using non-linear regression meth-
ods. In fact, the QSAR prediction even gives worse predic-
tion than the naive model. Secondly, the trainable regres-
sion methods with five features have much better results
than those obtained using only two features. We conclude
that the Gaussian processes model with five compound de-
scriptors has the best performance on the NMSE, ION and
CORR measures.

Involving the three new descriptors, SP , HA and HD,
simply gives a more detailed description of the molecule in
relation to the skin. Quantifying a key molecular descriptor
might provide more information for the model, and it might
allow a more detailed estimation of the key properties of
a penetrant. There are lots of other descriptors we could
have looked at, and which we should look at in future work.
However, the descriptors used in this work are chosen not
only for their applicability but for the ease with which they
can be determined. This means that any method which uses
these descriptors is not only significant but can be easily
used by other researchers.
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