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Abstract
We propose a model that explains the reliable emergence of power laws (e.g., Zipf’s law)

during the development of different human languages. The model incorporates the principle

of least effort in communications, minimizing a combination of the information-theoretic

communication inefficiency and direct signal cost. We prove a general relationship, for all

optimal languages, between the signal cost distribution and the resulting distribution of sig-

nals. Zipf’s law then emerges for logarithmic signal cost distributions, which is the cost distri-

bution expected for words constructed from letters or phonemes.

Introduction
Zipf’s law [1] for natural languages states that the frequency p(s) of a given word s in a large
enough corpus of a (natural) language is inversely proportional to the word’s frequency rank.
Zipf’s law postulates a power-law distribution for languages with a specific power law exponent
β, so if st is the t-th most common word, then its frequency is proportional to

pðstÞ �
1

tb
; ð1Þ

with β� 1. Empirical data suggests that the power law holds across a variety of natural lan-
guages [2], but the exponent β can vary, depending on the language and the context, with a
usual value of β� 2 [3]. While the adherence to this “law” in different languages suggests a
underlying common principle or mechanism, a generally accepted explanation for this phe-
nomenon is still lacking [4].

Several papers [5–7] suggest that random texts already display a power law distribution suf-
ficient to explain Zipf’s law, but a detailed analysis [8] with different statistical tests rejects this
hypothesis and argues, that there is a “meaningful”mechanism at play, which causes this distri-
bution across different natural languages.
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If we reject the idea that Zipfian distribution are produced as a result of a process that ran-
domly produces words, then the next logical step is to ask what models can produce such dis-
tributions and agrees with our basic assumptions about language? Mandelbrot [9] models
language as a process of producing symbols, where each different symbol (word) has a specific
cost. He argues that this cost grows logarithmically for more expensive symbols. He then con-
siders the information of this process, and proves that a Zipfian distribution of the symbols
produces the maximal information per cost ratio. Similar, more recent models [10] prove that
power laws result from minimizing a logarithmic cost functions while maximising a process’s
entropy (or self-information) [11]. But all these cost functions look at languages as a single ran-
dom process, only optimizing the output distribution and ignoring any relationship between
used words and intended meaning. This makes it a questionable model for human language
(similar to the models with random text) as it does not account for communication efficiency,
i.e., the model is not sensitive to how much information the words contain about the referenced
concepts, nor does it offer any explanation on how certain words come to be assigned to certain
meanings.

An alternative model by Cancho and Solé [12] follows the original idea of Zipf [1], by
modelling the evolution of language based on the principle of least effort, where the assignment
of words to concepts is optimized to minimize a weighted sum of speaker and listener effort.
While simulations of the model produce distributions which qualitatively resemble power
laws, a detailed mathematical investigation [4] reveals that the optimal solution of this model
is, in fact, not following a power law; thus, the power law characteristics of the simulation
results seems to be an artefact of the particular optimization model utilized.

Thus, to our knowledge, the question of how to achieve power laws in human language
from the least effort principle is still not satisfactorily solved. Nevertheless, the idea from [1,
12] to explain power laws as the result of an evolutionary optimization process that minimizes
some form of language usage cost remains attractive. In this vein, we present an alternative
model for the least effort principle in language: we minimize a cost function consisting of com-
munication inefficiency and an inherent cost for each signal (word). To avoid past pitfalls of
statistical analysis when looking for power laws [13], we offer mathematical proof that any
optimal solution for our cost function necessarily realizes a power law distribution, as long as
the underlying cost function for the signals increases logarithmically (if the signals are ordered
according to cost rank). The result generalizes beyond this as we can state a general relationship
between the cost structure of the individual signals and the resulting optimal distribution of the
language signals.

We should also point out that a power-law often is not the best fit to real data [14]. How-
ever, the motivation of our study differs from that of [14] which attempted to find a mecha-
nism, i.e., Random Group Formation (RGF), that fits and, crucially, predicts the data very well
—instead, we attempt to find a model formalizing the least effort principle as a mechanism
generating power laws.

Another important consideration is that there in general may be multiple mechanisms gen-
erating power laws, and one cannot post hoc reconstruct necessarily which mechanism resulted
in the observed power law. We believe, however, that it is nevertheless useful to develop a
mathematically rigorous version of such a mechanism (i.e., the least effort principle) applicable
to languages in particular, as it would provide additional explanatory capacity in analyzing
structures and patterns observed in languages [15, 16].

The resulting insights may be of interest beyond the confines of power-law structures and
offer an opportunity to study optimality conditions in other types of self-organizing coding
systems, for instance in the case of the genetic code [17]. The suggested formalization covers a
general class of optimal solutions balancing cost and efficiency, with power laws appearing as a
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special case. Furthermore, the proposed derivation highlights a connection between scaling in
languages and thermodynamics, as the scaling exponent of the resulting power law is given by
the corresponding inverse temperature (which in general relates the information-theoretic or
statistical-mechanical interpretation of a system through its entropy and the system’s thermo-
dynamics associated with its energy).

1 Model
We will use a model, similar to that used by Ferrer i Cancho and Solé [12], which considers lan-
guages as an assignment of symbols to objects, and then optimizes this assignment function in
regard to some form of combined speaker and listener effort. The language emerging from our
model is also based on the optimality principle of least effort in communication, but uses a dif-
ferent cost function.

The model has a set of n signals S and a set ofm objects R. Signals are used to reference
objects, and a language is defined by how the speaker assigns signals to objects, i.e. by the
relation between signals and objects. The relation between S and R in this model can be
expressed by a binary matrix A, where an element ai,j = 1 if and only if signal si refers to
object rj.

This model allows one to represent both polysemy (that is, the capacity for a signal to have
multiple meanings by referring to multiple objects), and synonymy, where multiple signals
refer to the same object. The relevant probabilities are then defined as follows:

pðsijrj Þ ¼
ai;j
oj

ð2Þ

where ωj is the number of synonyms for object rj, that is ωj = ∑i ai,j. Thus, the probability of
using a synonym is equally distributed over all synonyms referring to a particular object.
Importantly, it is also assumed that pðrjÞ ¼ 1

m
is uniformly distributed over the objects, leading

to a joint distribution:

pðsi; rj Þ ¼ pðrj Þ pðsijrjÞ ¼
ai;j
moj

: ð3Þ

In the previous model [12] each language has a cost based on a weighted combination of
speaker and listener effort. The effort for the listener should be low if the received signal si
leaves little ambiguity as to what object rj is referenced, so there is little chance that the listener
misunderstands what the speaker wanted to say. In the model of Ferrer i Cancho and Solé [12],
the cost for listening to a specific signal si is expressed by the conditional entropy:

HRjsiðpÞ � �
Xm
j¼1

pðrjjsiÞlogm pðrjjsiÞ : ð4Þ

The overall effort for the listener is then dependent on the probability of each signal and the
effort to decode it, that is

HRjSðpÞ �
Xn

i¼1

pðsiÞHRjsi : ð5Þ

Ferrer i Cancho and Solé argue that the listener effort is minimal when this entropy is minimal,
in which case there is a deterministic mapping between signals and objects.
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The effort for the speaker is expressed by the entropy HS, which is, as the term in Eq (5),
bound between 0 and 1, via the log with respect to n:

HSðpÞ � �
Xn

i¼1

pðsiÞlogn pðsiÞ : ð6Þ

Ferrer i Cancho and Solé then combine the listener’s and speaker’s efforts within the cost func-
tion Oλ as follows:

Ol ¼ lHRjS þ ð1� lÞHS ; ð7Þ

with 0� λ� 1.
It can be shown that the cost function Oλ given by Eq (7) is a specific case of a more general

energy function that a communication system must minimize [4, 18]

O0
l ¼ �lIðS;RÞ þ ð1� lÞHS ; ð8Þ

where the mutual information I(S;R) =HR −HRjS captures the communication efficiency, i.e.
how much information the signals contain about the objects. This energy function better
accounts for subtle communication efforts [19], since HS is arguably both a source of effort for
the speaker and the listener because the word frequency affects not only word production but
also recognition of spoken and written words [16]. The component I(S;R) also implicitly
accounts for both HSjR (a measure of the speaker’s effort of coding objects) and HRjS (i.e., a
measure of the listener’s effort of decoding signals). It is easy to see that

O0
l ¼ �lHR þ lHRjS þ ð1� lÞHS ¼ �lHR þ Ol ; ð9Þ

and so when the entropy HR is constant, e.g. under the uniformity condition pðrjÞ ¼ 1
m
, the

more generic energy function O0
l reduces to the specific Oλ.

We propose instead another cost function that not only produces optimal languages exhibit-
ing power laws, but also retains the clear intuition of generic energy functions which typically
reflect the global quality of a solution. Firstly, we represent the communication inefficiency by
the information distance, the Rokhlin metric, HSjR +HRjS [20, 21]. This distance is often more
sensitive than − I(S;R) in measuring the “disagreements” between variables, especially in the
case when one information source is contained within another [22].

Secondly, we define the signal usage effort by introducing an explicit cost function c(si),
which assigns each signal a specific cost. The signal usage cost for a language is then the
weighted average of this signal specific cost:

Xn

i¼1

pðsiÞcðsiÞ : ð10Þ

This is motivated by the basic idea that words have an intrinsic cost associated with using
(speaking, writing, hearing, reading) them. To illustrate, a version of English where each use of
the word “I” is replaced with “Antidisestablishmentarianism” and vice versa should not have
the same signal usage cost as normal English. The optimal solution considering the signal
usage cost alone would be to reference every object with the cheapest signal.

The overall cost function for a language Oc
l is the energy function trading off the communi-

cative inefficiency with the signal usage cost, with 0< λ� 1 trading off the efforts as follows:

Oc
lðpÞ ¼ lðHSjRðpÞ þ HRjSðpÞÞ þ ð1� lÞ

Xn

i¼1

pðsiÞcðsiÞ ; ð11Þ
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where p = p(si, rj) is the joint probability. A language can be optimized for different values of λ,
weighting the respective costs. The extreme case (λ = 0) with only the signal usage cost defining
the energy function is excluded, while the opposite extreme (λ = 1) focusing on the communi-
cation inefficiency is considered. Following the principle of least effort, we aim to determine
the properties of those languages that have minimal cost according to Oc

l.

2 Results
First of all, we establish that all local minimizers, and hence all global minimizers, of the cost
function (11) are solutions without synonyms. Formally, we obtain the following result.

Theorem 1. Each local minimizer of the function

C ! R; p 7! Oc
lðpÞ;

where

C :¼ fp 2 P S� Rð Þ : pðrjÞ ¼ P
i pðsi; rjÞ ¼

1

m
for all jg ;

and Oc
lðpÞ is specified by the Eq (11), 0< λ� 1, can be represented as a function f: R! S such

that

pðsi; rjÞ ¼
(
1=m if si ¼ f ðrjÞ;

0 otherwise:
ð12Þ

The proof is given in Appendix 1. Note that each solution, i.e. each distribution p in expression
(3), corresponds to a matrix A (henceforth calledminimizer matrix) which is given in terms of
function f as follows:

ai;j ¼
(
1 if si ¼ f ðrjÞ;

0 otherwise:
ð13Þ

The main outcome of this observation is that the analytical minimization of the suggested cost
function results in solutions without synonyms—since any function f precludes multiple sig-
nals s referring to the same object r. That is, each column in the minimizer matrix has precisely
one non-zero element. Polysemy is allowed within the solutions.

We need the following lemma as an intermediate step towards deriving the analytical rela-
tionship between the specific word cost c(s) and the resulting distribution p(s).

Lemma 2. For each solution p minimizing the function Oc
l,

HRjS þ
1

logn m
HS ¼ 1 : ð14Þ

The proof follows from the joint entropy representations

HS;R ¼
HRjS

1þ logm n
þ HS

1þ logn m
ð15Þ

¼ HSjR
1þ logn m

þ HR

1þ logm n
; ð16Þ

noting that for each minimal solutionHSjR = 0, while HR = 1 under the uniformity constraint
pðrjÞ ¼ 1

m
.
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Corollary 3. If n = m, HRjS + HS = 1.
Using this lemma, and noting that each such solution represented as a function f : R! S

has the propertyHSjR = 0, we reduce the Eq (11) to

Oc
lðpÞ ¼ l 1� 1

logn m
HSðpÞ

� �
þ ð1� lÞ

X
pðsiÞcðsiÞ ð17Þ

¼ lþ l
lognm

X
pðsiÞlogn pðsiÞ þ ð1� lÞ

X
pðsiÞcðsiÞ: ð18Þ

Varying with respect to p(si), under the constraint ∑p(si) = 1, yields the extremality condi-
tion

l
logn m

logn pðsiÞ þ 1
� �þ ð1� lÞcðsiÞ � k0 ¼ 0 ð19Þ

for some Lagrange multiplier κ0. The minimum is achieved when

pðsiÞ ¼ ke�bcðsiÞ ; ð20Þ

where

b ¼ 1� l
l

lognm ; ð21Þ

k ¼ 1P
e�bcðsjÞ : ð22Þ

In addition, we require

cðsiÞ ¼ lnmi ð23Þ

for some integermi such that ∑mi =m. The last condition ensures that the minimal solutions p
(si) correspond to functions p(si, rj) (i.e., minimizer matrices without synonyms). In other
words, the marginal probability (20) without the condition (23) may not concur with the prob-
ability p(si, rj) that represents a minimizer matrix under the uniformity constraint pðrjÞ ¼ 1

m
.

Under the condition (23), we have pðsiÞ ¼ km�b
i , while k ¼ 1=

P
m�b

i . In general, one may
relax the condition (23), specifying instead an upper-bounded error of approximating the min-
imal solution by any p(si) = κe−βc(si) which would then allow for arbitrary cost functions c(s).

Interestingly, the optimal marginal probability distribution (20) is the Gibbs measure with
the energy c(si), while the parameter β is, thermodynamically, the inverse temperature. It is
well-known that the Gibbs measure is the unique measure maximizing the entropy for a given
expected energy, and appears in many solutions outside of thermodynamics [23–25].

Let us now consider some special cases. For the case of equal effort, i.e. λ = 0.5, and n =m,
the solution simplifies to β = 1 and pðsiÞ ¼ km�1

i , where k ¼ 1=
P

m�1
i .

Another important special case is given by the cost function c(si) = ln ρi/N, where ρi is the

rank of symbol si, and N is a normalization constant equal to nðnþ1Þ
2m

(so that ∑ρi/N =m). In this

case, the optimal solution is attained when

pðsiÞ ¼
kNb

rb
i

ð24Þ
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with

k ¼ 1

Nb
P

r�b
j

: ð25Þ

This means that a power law with the exponent β, specified by Eq (21), is the optimal solution
in regard to our cost function (11) if the signal usage cost increases logarithmically. In this case,
the exponent β depends on the system’s size (n andm) and the efforts’ trade-off λ. Importantly,
this derivation shows a connection between scaling in languages and thermodynamics: if the
signal usage cost increases logarithmically, then the scaling exponent of the resulting power
law is given by the corresponding inverse temperature.

Zipf’s law (a power law with exponent β = 1) is then nothing but a special case for systems
that satisfy logn m ¼ l

1�l. For instance, for square matrices, Zipf’s law results from the optimal

languages which satisfy equal efforts, i.e., λ = 0.5. The importance of equal cost was emphasized
in earlier works [4, 26]. The exponent defined by Eq (21) changes with the system size (n or
m), and so the resulting power law “adapts” to linguistic dynamics and language evolution in
general.

The assumption that the cost function is precisely logarithmic results in an exact power law.
If, on the other hand, the cost function deviates from being precisely logarithmic, then the
resulting dependency would only approximate a power law—this imprecision may in fact
account for different degrees of success in fitting power laws to real data.

In summary, the derived relationship expresses the optimal probability p(s) in terms of the
usage cost c(s), yielding Zipf’s law when this cost is logarithmically distributed over the
symbols.

3 Discussion
To explain the emergence of power laws for signal selection, we need to explain why the cost
function of the signals would increase logarithmically, if the signals are ordered by their cost
rank. This can be motivated, across a number of languages, by assuming that signals are in fact
words, which are made up of letters from a finite alphabet; or in regard to spoken language, are
made of from a finite set of phonemes. Compare [27], in which Nowak and Krakauer demon-
strate how the error limits of communication with a finite list of phonemes can be overcome by
combining phonemes into words.

Lets assume that each letter (or phoneme) has an inherent cost which is approximate to a
unit letter cost. Furthermore, assume that the cost of a word roughly equals the sum of its letter
costs. A language with an alphabet of size a then has a unique one letter words which the
approximate cost of one, a2 two letter words with an approximate cost of two, a3 three letter
words with a cost of three, etcetera. If we rank these words by their cost, then their cost will
increase approximately logarithmically with their cost rank. To illustrate, Fig 1 is a plot of the
1000 cheapest unique words formed with a ten letter alphabet (with no word length restric-
tion), where each letter has a random cost between 1.0 and 2.0. The first few words deviate
from the logarithmic cost function, as their cost only depends on the letter cost itself, but the
latter words closely follow a logarithmic function. A similar derivation of the logarithmic cost
function from first principles can be found in the model of Mandelbrot [9].

This signal usage cost can be interpreted in different ways. In spoken language it might sim-
ply be the time needed to utter a word, which makes it a cost both for the listener and the
speaker. In written language it might be the effort to write a word, or the bandwidth needed to
transmit it, in which case it is a speaker cost. On the other hand, if one is reading a written text,
then the length of the words might translate into “listener” cost again. In general, the average
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signal usage cost corresponds to the effort of using a specific language to communicate for all
involved parties. This differs from the original least effort idea, which balances listener and
speaker effort [1]. In our model we balance the general effort of using the language with the
communication efficiency, which creates a similar tension, as described in [12], between using
a language that only uses one signal, and a language that references every object with its own
signal. If only communication efficiency was relevant, then each object would have its own sig-
nal. Conversely, if only cost mattered, then all objects would be referenced by the same cheap-
est signal. Balancing these two components with a weighting factor λ yields power laws, where
β varies with changes in the weighting factor. This is in contrast to the model in [12], where
power laws were only found in a phase transition along the weighting factor. Also, in [3] Can-
cho discusses how some variants of language (military, children) have β values that deviate
from the β value of their base language, which could indicate that the effort of language produc-
tion or communication efficiency is weighted differently in these cases, resulting in different
optimal solutions, which are power laws with other values for β.

We noted earlier that there are other options to produce power laws, which are insensitive
to the relationship between objects and signals. Baek et al. [14] obtain a power law by minimiz-
ing the cost function Icost = −HS + hlog si + log N, where hlog si = ∑p(si)log(si), and log(si) is
interpreted as the logarithm of the index of si (specifically, its rank). Their argument that this
cost function follows from a more general cost functionHRjS = −I(S;R) +HR, whereHR is

Fig 1. A log-plot of the 1000 cheapest words created from a 10 letter alphabet, ordered by their cost
rank.Word cost is a sum of individual letter cost, and letter cost is between 1.0 and 2.0 units.

doi:10.1371/journal.pone.0139475.g001
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constant, is undermined by their unconventional definition of conditional probability (cf.

Appendix A [14]). Specifically, this probability is defined as pðr j sÞ ¼ ds0 ðrÞ;s
sNðsÞ , where N(s) is the

number of objects to which signal s refers. This definition not only requires some additional
assumptions in order to make p(rjs) a conditional probability, but also implicitly embeds the
“cost” of symbol s within the conditional probability p(rjs), by dividing it by s. Thus, we are left
with the cost function Icost per se, not rigorously derived from a generic principle, and this cost
function ignores joint probabilities and the communication efficiency in particular.

A very similar cost function was offered by Visser [10], who suggested to maximizeHS sub-
ject to a constraint hlog si = χ, for some constant χ. Again, this maximization produces a power
law, and again we may note that the cost function and the constraint used in the derivation do
not capture communication efficiency or trade-offs between speaker and listener, omitting
joint probabilities as well.

Finally, we would like to point out that the cost function −HS + hlog si is equivalent to the
cost function HRjS −HSjR + hlog si, under constant HR. This expression reveals another impor-
tant drawback of minimizing −HS + hlog si directly: while minimizing HRjS reduces the ambi-
guity of polysemy, minimizing −HSjR explicitly “rewards” the ambiguity of synonyms. In other
words, languages obtained by minimizing such a cost directly do exhibit a power law, but
mostly at the expense of potentially unnecessary synonyms.

There may be a number of reasons for the avoidance of synonyms in real languages. While
an analysis of synonymy dynamics in child languages or aphasiacs is outside of scope of this
paper, it is worth pointing out that some studies have suggested that the learning of new words
by children is driven by synonymy avoidance [28]. As the vocabulary and the word use are
growing in children (with meaning overextensions decreasing over time), reducing the effort
for the listener becomes more important [29]. Several principles underlying lexicon acquisition
by children, identified by Clark [30], emphasize the dynamics of synonymy reduction. For
example, the principle of conventionality and contrast (“speakers take every difference in form
to mark a difference in meaning”) combine in providing some precedence to semantic over-
laps, leading children to eventually accept the parents’ (more conventional) word for a seman-
tically overlapping concept. The principle of transparency explains how a preference to use a
more transparent word helps to reduce ambiguity in the lexicon. It has also been recently
shown that the exponent of Zipf’s law (when rank is the random variable) tends to decrease
over time in children [31]. The study correlated this evolution of the exponent with the reduc-
tion of a simple indicator of syntactic complexity given by the mean length of utterances
(MLU), and concluded that this supports the hypothesis that the inter-related exponent of
Zipf’s law and linguistic complexity tend to decrease in parallel.

Regarding synonyms it should also be noted, that while they exist, their number is usually
comparatively low. If we are looking at a natural language, which might have ca. 100.000
words, we will not find a concept that has 95.000 synonyms. Most concepts have synonyms in
the single digits, if they have any. The models that look at just the output distribution could
produce languages with such an excessive number of synonyms. In our model the ideal solu-
tion has no synonyms, but the existing languages, which are constantly adapting, could be seen
as close approximations, where out of 100.000 possible synonyms, most concepts have only
very few synonyms, if any. As noted earlier, while precise logarithmic cost functions would
produce perfect power-law distributions, natural languages do not fit Zipf’s law exactly but
only approximately.

These observations support our conjecture that, as languages mature, the communicative
efficiency and the balance between speaker’s and listener’s efforts become a more significant
driver, and so the simplistic cost function −HS + hlog si can no longer be justified.
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In contrast, the cost function proposed in this paper HRjS +HSjR + hlog si reduces to −HS +
hlog si only afterminimizing over the joint probabilities p(s, r). Importantly, it captures com-
munication (in)efficiency and average signal usage explicitly, balancing out different aspects of
the communication trade-offs and representing the concept of least effort in a principled way.
The resulting solutions do not contain synonyms, which disappear at the step of minimizing
over p(s, r), and so correspond to “perfect”, maximally efficient and balanced, languages. The
fact that even these languages exhibit power (Zipf’s) laws is a manifestation of the continuity of
scale-freedom in structuring of languages, along the refinement of cost functions representing
the least effort principle: as long as the language develops closely to the optima of the prevailing
cost function, power laws will be adaptively maintained.

In conclusion, our paper addresses the long-held conjecture that the principle of least effort
provides a plausible mechanism for generating power laws. In deriving such a formalization,
we interpret the effort in suitable information-theoretic terms and prove that its global mini-
mum produces Zipf’s law. Our formalization enables a derivation of languages which are opti-
mal with respect to both the communication inefficiency and direct signal cost. The proposed
combination of these two factors within a generic cost function is an intuitive and powerful
method to capture the trade-offs intrinsic to least-effort communication.

4 Appendix
Theorem 1. Each local minimizer of the function

C ! R; p 7! Oc
lðpÞ;

where

C :¼ fp 2 P S� Rð Þ : pðrjÞ ¼ P
ipðsi; rjÞ ¼

1

m
for all jg ;

and Oc
lðpÞ is specified by the Eq (11), 0< λ� 1, can be represented as a function f : R! S such

that

pðsi; rjÞ ¼
(
1=m if si ¼ f ðrjÞ;

0 otherwise:
ð26Þ

In order to prove this theorem, we establish a few preliminary propositions (these results
are obtained by Nihat Ay).

4.1 Extreme points
The extreme points of C are specified by the following proposition.

Proposition 2. The set C has the extreme points

ExtðCÞ ¼ fp 2 P S� Rð Þ : pðsi; rjÞ ¼
1

m
df ðrjÞðsiÞ g ;

where f is a function R! S.
Proof. Consider the convex set

T ¼ fA ¼ ðaijjÞi;j 2 R
m�n : aijj 	 0 for all i; j;

and
P

i aijj ¼ 1 for all jg

of transition matrices. The extreme points of T are given by functions f : j 7! i. More precisely,
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each extreme point has the structure

aijj ¼ df ðjÞðiÞ :

Now consider the map φ : T! C that maps each matrix A = (aijj)i,j to the probability vector

pðsi; rjÞ :¼ 1

m
aijj; for all i; j:

This map is bijective and satisfies φ((1 − t) A + t B) = (1 − t) φ(A) + t φ(B). Therefore, the
extreme points of C can be identified with the extreme points of T.

4.2 Concavity
Consider the set S = {s1, . . ., sn} of signals with n elements and the set R = {r1, . . ., rm} ofm
objects, and denote with P(S × R) the set of all probability vectors p(si, rj), 1� i� n, 1� j�m.
We define the following functions on P(S × R):

HSjRðpÞ :¼ �
X

j

pðrjÞ
X

i

pðsijrjÞlogn pðsijrjÞ ;

and

HRjSðpÞ :¼ �
X

i

pðsiÞ
X

j

pðrjjsiÞlogm pðrjjsiÞ :

Proposition 3. All three functions HRjS, HSjR, and

hci : p 7!
X

i

pðsiÞ cðsiÞ

that are involved in the definition of Oc
l are concave in p. Furthermore, the restriction of HSjR to

the set C is strictly concave.
Proof. The statements follow from well-known convexity properties of the entropy and the

relative entropy.
(1) Concavity ofHRjS: We rewrite the function HRjS as

HRjSðpÞ ¼ �
X

i

pðsiÞ
X

j

pðrjjsiÞlogmpðrjjsiÞ

¼ �
X
i;j

pðsi; rjÞlogm
pðsi; rjÞX
j
pðsi; rjÞ

¼ �
X
i;j

pðsi; rjÞlogm
pðsi; rjÞ

m 1
m

P
j pðsi; rjÞ

¼ �
X
i;j

pðsi; rjÞlogm
pðsi; rjÞ

1
m

P
j pðsi; rjÞ

þ 1:

The concavity ofHRjS now follows from the joint convexity of the relative entropy

ðp; qÞ7!DðpkqÞ ¼ P
i;j pðsi; rjÞ logm pðsi;rjÞ

qðsi;rjÞ.
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(2) Concavity of HSjR: The concavity of HSjR follows by the same arguments as in (1). We
now prove the strict concavity of its restriction to C.

HSjRðpÞ ¼ �
X

j

pðrjÞ
X

i

pðsijrjÞlogn pðsijrjÞ

¼ �
X
i;j

pðsi; rjÞlogn
pðsi; rjÞ
pðrjÞ

¼ �
X
i;j

pðsi; rjÞlogn
pðsi; rjÞ

1
m

¼ �
X
i;j

pðsi; rjÞlogn pðsi; rjÞ � logn m:

The strict concavity of HRjS now follows from the strict concavity of the Shannon entropy.
(2) Concavity of hci: This simply follows from the fact that hci is an affine function and

therefore concave and convex at the same time.
With a number 0< λ� 1, we now consider the function

Oc
lðpÞ ¼ lðHRjSðpÞ þ HSjRðpÞÞ þ ð1� lÞ

X
i

pðsiÞ cðsiÞ :

From Proposition 3, it immediately follows that Oc
l also has corresponding concavity

properties.
Corollary 4. For 0� λ� 1, the function Oc

l is concave in p, and, if λ> 0, its restriction to the
convex set C is strictly concave.

4.3 Minimizers
We have the following direct implication of Corollary 4.

Corollary 5. Let 0< λ� 1 and let p be a local minimizer of the map

C ! R; p 7! Oc
lðpÞ:

Then p is an extreme point of C.
Proof. This directly follows from the strict concavity of this function.
Together with Proposition 2, this implies Theorem 1, our main result on minimizers of the

restriction of Oc
l to the convex set C.

We finish this analysis by addressing the problem of minimizing Oc
l on a discrete set. In

order to do so, consider the set of 0/1-matrices that have at least one “1”-entry in each column:

S :¼ ðai;jÞ 2 f0; 1gn�m
:
X

i

ai;j 	 1 for all j

( )
:

This set can naturally be embedded into the set T, which we have considered in the proof of
Proposition 2:

ı : S ,! T ; ðai;jÞi;j 7! aijj :¼ ai;jX
i
ai;j

:

Together with the map φ : T! C we have the injective composition φ 
 ı. From Proposition 2
it follows that the extreme points of C are in the image of φ 
 ı. Furthermore, Corollary 5
implies that all local, and therefore also all global, minimizers of Oc

l are in the image of φ 
 ı.
The previous work of Ferrer i Cancho and Sole [12] refers to the minimization of a function on
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the discrete set S:

~Oc
l :¼ Oc

l 
 φ 
 ı : S ! R:

It is not obvious how to relate local minimizers of this function, with an appropriate notion of
locality in S, to local minimizers of Oc

l. However, we have the following obvious relation
between global minimizers.

Corollary 6. A point p 2 C is a global minimizer of Oc
l if and only if it is in the image of φ 
 ı

and (φ 
 ı)−1(p) globally minimizes ~Oc
l.
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