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Abstract

The complexity of parsing English sentences can be reduced by decomposing the prob-
lem into three subtasks. Declarative sentences can almost always be segmented into three
concatenated sections: pre-subject - subject - predicate. Other constituents, such as clauses,
phrases, noun groups, are contained within these segments, but do not normally cross the
boundaries between them. Though a constituent in one section may have dependent links
to elements in other sections, such as agreement between the head of the subject and the
main verb, once the three sections have been located, they can then be partially processed
separately, in parallel.

An information theoretic analysis is used to support this approach. If sentences are
represented as sequences of part-of-speech tags, then modelling them with the tripartite
segmentation reduces the entropy. This indicates that some of the structure of the sentence
has been captured.

The tripartite segmentation can be produced automatically, using the ALPINE parser,
which is then described. This is a hybrid processor in which neural networks operate within
a rule based framework. It has been developed using corpora from technical manuals.
Performance on unseen data from the manuals on which the processor was trained are over
90%. On data from other technical manuals performance is over 85%.

1 Introduction

Now that it is technically feasible to locate the subject of a sentence automatically, we may
be able to take advantage of this to reduce the complexity of parsing English text. Declarat-
ive sentences can almost always be segmented into three concatenated sections: pre-subject -
subject - predicate. The pre-subject segment may be empty. This analysis can also be used for
imperative sentences, in which case the subject section is empty. Other constituents, such as
clauses, phrases, noun groups, are contained within these segments, but do not normally cross
the boundaries between them. Though a constituent in one section may have dependent links
to elements in other sections, such as agreement between the head of the subject and the main
verb, once the three sections have been located, they can then be partially processed separately,
in parallel.

This paper first demonstrates how the tripartite segmentation works in practice, drawing
on examples from corpora of technical manuals. The next section (section 3) supports the
argument that this decomposotion captures some of the structure of sentences by applying an
information theoretic analysis. We discuss the representation that has been used: this enables
us to model sequences higher than regular grammars in the Chomsky hierarchy, though not
fully context free.



We then (section 4) give an outline of the ALPINE parser, which automatically locates the
subject of declarative sentences [1]. Readers are invited to access a prototype via telnet, and
try it on their own text !. Finally, we discuss the scope and limitations of this approach.

1.1 Corpora

This work has principally been developed on text of technical manuals from Perkins Engines
Ltd. [2], and the ALPINE prototype was trained on 351 sentences from these manuals. Table 1
and Figure 1 show some of the statistics of the corpus.

Number of sentences 351
Average length 17.98 words
No. of subordinate clauses

In pre-subject 65

In subject 19

In predicate 136
Co-ordinated clauses 50

Punctuation marks are counted as words, formulae as 1 word.

Table 1: Corpus statistics
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Figure 1: The frequency of constituent length for 351 sentences. 121 sentences have no pre-subject.

The prototype has been run on sentences from two other corpora of text from technical
manuals, described in [3]. They are taken from the Dynix Automated Library Systems Searching
Manual, and the Trados Translators Workbench for Windows User’s Guide. 248 declarative
sentences were extracted manually.

Quirk and Greenbaum’s “A University Grammar of English” is used as a grammatical
reference [4].

2 The Tripartite Segmentation of English Sentences

Figure 2 shows in diagrammatic form how declarative sentences are decomposed. Taking as
examples two sentences from the Dynix set, the segmentation would appear like this:

[ There ] are two methods of accelerated searching. (1)

IFor details contact the author at C.M.LyonCherts.ac.uk
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Figure 2: Decomposition of the sentence into syntactic constituents

[ Your ability to use either search method ] is determined by your familiarity with searching
on your system. (2)

To use the first type of accelerated search, [ you ] must know the search menu line number
for the type of search you want to perform. (3)

Sentence (1) is short, and locating the subject will not facilitate the parsing process. In
sentences (2) and (3), however, we have divided the longer sentences into partially independent
segments. Within each segment there can be finite and non-finite clauses, phrases, noun groups.
However, these linguistic constituents are typically confined to their segment, which can thus
be processed separately. Parsing complexity is reduced as longer sequences are replaced by a
set, of shorter sequences.

In the ALPINE prototype the next step that is taken is to find the head of the subject. At
the same time that this is done the structure of the pre-subject can be analysed; simultaneously
the main verb phrase in the predicate can be located, and then the structure of the rest of the
predicate determined.

Though the segments are partially independent, there are of course dependencies between
some of their elements. Consider a sentence from the Perkins set, with the subject and its head
located.

If a cooler is fitted to the gearbox, [ the pipe [ connections | of the cooler | must be regularly
checked for corrosion. (4)

The modal verb “must” has the same form in the singular and plural in English. If it is to be
translated it is necessary to find the syntactic head of the subject to ensure number agreement.
In this case, the head is the plural “connections”, though the noun adjacent to “must” is the
singular “cooler”.

The tripartite segmentation that is described can be extended to imperatives by having
an empty subject segment. Technical manuals have a prescriptive style, and imperatives are
common. An example from the Dynix corpus is:

To perform an accelerated search, [ ] follow these instructions. (5)

Note that this prescriptive style is not well represented in some corpora such as Brown
and LOB. Thus automatic taggers that are trained on them may have difficulty in handling
imperatives - for example, sentences that open with an imperative verb that could also be
tagged as a noun..

2.1 Exceptions

Declarative and imperative sentences can almost always be segmented in this way in English,
but there are exceptions. Certain constructions invert word order, such as the Dynix sentence:

Only when you select an item does the system tell you who owns it. (6)



There are some idiomatic usages such as
The more you have, the more you want. (7)
And certain unusual usages could occur, such as

The student arrived who had been late before. (8)

3 Evaluating Parsing Schemes with Entropy Indicators

The decomposition of sentences as described above is not only in accordance with linguistic
intuition, but can be supported by an argument from information theory. We can determ-
ine whether a representation captures some of the language structure [5]. This approach is
introduced by analogy.

3.1 Analogy from Letter Sequences

The principle on which the evaluator is based is derived from Shannon’s original work with
letter sequences [6]. His ideas can be extended to other linguistic entities. The metric used is
based on the entropy of a sequence, which is a measure, in a certain sense, of the degree of
unpredictability. If the grammar captures some of the structure of language, then the relative
entropy of the text should decline after parsing.

We describe a method of representation that enables the entropy of sentences to be measured
under different parsing schemes. We can thus objectively assess whether parsers that accord
with linguistic intuition do indeed capture some regularity in natural language.

Shannon examined the entropy of letter sequences, and produced a series of approximations
to the entropy H of written English, which successively take more of the statistics of the
language into account. A sequence can be represented as a series of single letters, or a series
of letters taken n at a time, an n-gram representation. If the sequence is represented by an
n-gram, then information over the preceding n — 1 letters is taken into account, and the entropy
is represented as H,,, as shown in Table 2 2.

Hy | entropy with no information on letter frequencies
H, | entropy with information on single letter frequencies
H, | entropy with information on bigram frequencies

Hj; | entropy with information on trigram frequencies

Table 2: Notation for representing the entropy of a sequence

As n increases the entropy declines: the degree of predictability is increased as information
from more adjacent letters is taken into account. A formal explanation can be found in [5].

Now, the entropy can also be reduced if an extra character representing a space between
words is introduced, producing a 27 letter alphabet, with associated entropies H'. By introdu-
cing an extra element, the number of choices has increased, so H) > Hy. But for higher order
entropies, H) < H,. This is partly because the space will be more common than other char-
acters, but also because “a word is a cohesive group of letters with strong internal statistical
influences” [6]. The introduction of the space has captured some of the structure of the letter
sequence.

3.2 Representing the entropy of a sentence

In order to assess the entropy of text we have to address the problem that there are an indefinite
number of words. However, we can partition the vocabulary into a limited number of part-of-
speech tag classes, and map sentences onto tag sequences. By taking this step we lose much

2This notation is derived from that used by Shannon, but differs from that used by Bell et al. [7]



information: the process is not reversible. However, we aim to retain the information that is
needed for one stage of processing, and return to the actual words at a later stage.

Now, language can be represented at a primary level as a regular grammar, and we can
apply Shannon’s analysis to tag sequences. However, this is an inadequate representation. Its
shortcomings are apparent as the the statistical patterns of tag sequences may be disrupted at
clause and phrase boundaries. Consider the probability of part-of-speech tags following each
other: some combinations are “unlikely”, such as noun - pronoun and verb - auziliary verb but
they may occur at constituent boundaries in sentences like

The shirt he wants is in the wash. 9)

The tag string representation can be extended to accommodate this. In a similar manner to
the insertion of a space between words, the embedded clause is delimited by inserting boundary
markers, or hypertags, like virtual punctuation marks. The sentence is represented as

The shirt [ he wants ] is in the wash. (9a)

The part-of-speech tags have probabilistic relationships with the hypertags in the same way that
they do with each other. The pairs generated by this string would exclude noun - pronoun, but
include, for instance, noun - hypertag.left. Using this representation, one level of embedding
has been modelled. We can thus represent sequences higher in the Chomsky hierarchy than
regular grammars, though not fully context free.

Since the boundaries of clauses and phrases often coincide with the boundary of the subject,
we expect that the insertion of hypertags to demarcate the subject will lower the entropy. If
their insertion has captured some of the structure of language the bipos and tripos entropy
should be reduced. This is indeed what was found on the data from the Perkins corpus. A
tagset of 32 was used, including the hypertags.

Entropy measures have been used to determine the most effective representation for a formal
language [8]. We suggest that they can also be used to evaluate representations for natural
language.

4 Automatic subject location

In this section we give an overview of the ALPINE parser, designed to locate the subject of a
declarative sentence automatically. For more details see [1, 9, 10, 11]. The principle on which
this hybrid system is based is to generate all possible parses, prune them, then pick the right
one out of the remainder with a neural network. Currently there are arbitrary limits on the
length of the subject (12 words) and the length of the pre-subject (15 words).

The processor is trained in supervised mode on correctly marked up data. Then the para-
meters are frozen for use on unseen data. The initial processes are the same in both training
and testing mode.

First, words are mapped onto one or more possible part-of-speech (POS) tags. Many words
have more than one tag. It was found that for the first task of locating the subject the tagset
could be reduced from 32 to 22. This was mainly achieved by omitting number information,
which contributed very little. At later processing stages, number information is needed.

Then the boundary markers of the subject, the hypertags, are placed in all possible positions,
with all possible tag combinations. Tag disambiguation is currently an integral part of this first

Hy Hy Hy Hj
26 letter 4.70 4.14 3.56 3.3
27 letter 4.76 4.03 3.32 3.1

Table 3: Comparison of entropy for different n-grams, with and without representing the space
between words



Hy H H, Hj
plain tag string 5.0 3.962 2.659 2.132
tags + subject markers | 5.0 4.135 2.472 1.997

Table 4: Entropy measures for text with and without subject boundary markers

stage. This produces for each sentence one correct and many incorrect strings. However, the
generation of strings is limited by (i) the grammatical framework and (ii) local and semi-local
constraints.

The grammatical framework first asserts that the sentence can be decomposed into consec-
utive segments. It then expands each segment in a very shallow analysis, based on an EBNF
formalism [11].

The local and semi-local constraints are derived from the ideas of Barton et al. [12]. Apply-
ing these constraints the generation of any string is zapped if a prohibited feature is produced.
An example of a local prohibition is that the adjacent pair (verd, verb) is not allowed. Of course
(auziliary verb, verb) is permissible, as is (verb, | , verb).

An example of a semi-local constraint is that, if you enter into a subordinate clause, (a) you
cannot exit until a verb has occurred (b) you must exit before entering the next segment.

The pruning process leaves a set of candidate strings for each sentence. With the Perkins’
data, the upper limit was about 25, average about 4. With other test data much larger sets
may be generated.

Each of these candidate strings will be presented to the neural net, which will be trained to
give a positive score to the desired string, a negative score to the wrong strings. In testing mode,
the string with the highest grammaticality score I' is taken as the correct one. The placement
of the hypertags and the disambiguated ordinary tags in the winning string are accepted.

To code the input for the neural network, create a binary vector, whose elements are POS
pairs and triples, bipos and tripos. If a pair or triple occurs in a string, that element is flagged
to 1.

4.1 Coding the Input
As an example of input coding consider a short sentence:
All papers published in this journal are protected by copyright. (10)

(A) Map each word onto 1 or more tags:

all  predeterminer
papers  noun or verb
published  past-part-verb
in  preposition or adverb
this  pronomial determiner
journal  noun
are  auxiliary-verb
protected  past-part-verb
by  preposition
copyright ~ noun
. endpoint

(B) Generate strings with possible placement of subject boundary markers, and possible tag
allocations (pruned).

string no. 1
strt [ pred ] verb pastp prep prod noun aux pastp prep noun end



string no. 4
strt [ pred noun ] pastp adv prod noun aux pastp prep noun end

string no. 5
strt [ pred noun pastp ] adv prod noun aux pastp prep noun end

string no. 6 *** target ***
strt [ pred noun pastp prep prod noun ] aux pastp prep noun end

string no. 7
strt [ pred noun pastp adv prod noun | aux pastp prep noun end

(C) Transform strings into sets of tuples

string no. 1

(strt, [) ([ pred ) (pred, ) «oveveeerivveaniennnn (noun, end)
(strt, [, pred) ([, pred, ]) (pred, ], verb)............. (prep, noun, end)

and similarly for other strings.
(D) The elements of the binary input vector represent all tuples, initialized to 0. If a tuple is
present in a string the element that represents it is changed from 0 to 1.

4.2 Data Representation and Neural Network Design

The method of higher order representation, taking the input data as pairs and triples, has two
advantages.

1. It partially captures the sequential nature of language, with a set of bipos and tripos
sequences. Alternative methods of capturing the sequential character of the data are to
use a moving window technique, or else to use recurrent networks.

2. The higher order transformation produces data that is (almost) linearly separable, so we
can use single layer networks. These have the advantage of functional transparency and
operational speed.

It is always theoretically possible to solve supervised learning problems with a single layer,
feed forward network, providing the input data is enhanced in an appropriate way. A good
explanation is given by Pao [13, chapter 8] or Widrow [14, page 1420]. Whether this is desirable
in any particular case must be investigated. The enhancement, a non-linear transformation,
will map the input data onto a space, usually of higher dimensionality, where it will be linearly
separable. In our processor this function is an ordered ‘AND’. A similar function is used in the
grammatical inference work of Giles et al. [15]; it is also used in DNA sequence analysis [16].

The function can be arithmetic: for instance, for polynomial discriminant functions the
elements of the input vectors are combined as products [17, page 135]. Successful uses of
this approach include the discrimination of different vowel sounds [18] and the automated
interpretation of telephone company data in tabular form [19].

Radial basis function (RBF) networks also come into the class of Generalized Single Layer
Networks (GSLNs) [20, 21]. In their two stage training procedure the parameters governing
the basis functions are determined first. Then a single layer net is used for the second stage of
processing.

4.3 Performance

In analysing the performance we will consider whether the subject boundary markers are cor-
rectly placed. Other metrics include an analysis of tag disambiguation, and measures of whether
other constituents are correctly found.



Ratio test set / Hodyne Hodyne
training set % tags + hypertags | % hypertags
correct correct
0.10 92.9 100
0.20 91.4 100
0.23 89.2 100
0.26 84.4 95.5

Table 5: Best results on Perkins data, after 2% sentences had been edited. This used both
bipos and tripos representation together

Text Number of | % hypertags
sentences | correctly placed

Dynix 114 92.1

Trados 134 85.1

Total 248 88.3
Table 6:

All declarative sentences were extracted from some of the Perkins manuals. 2% were ed-
ited so that they they fell within the restrictions on subject and pre-subject length. The 351
sentences that made up the Perkins data was divided into four parts. The neural networks
were trained on three of the parts and tested on the fourth. The performance of three different
neural networks were compared, and the results are given below in Table 5 for the best of them.
This was developed from the Hodyne higher order, single layer neural net, which originated at
British Telecom Research Laboratories [22].

The Hodyne network was then trained on all the Perkins data, augmented with a small
amount of other straightforward English sentences. This is the prototype, on which users can
try their own text.

Using this network, the data from the other technical manuals was processed. The de-
clarative sentences were extracted, and we only looked to see if the hypertags were correctly
placed. Results are in Table 6, and an example of the output is in the Appendix. Before we
could run this data through ALPINE, we had to write a short pre-editing program, so that
the system would accommodate printing styles not previously encountered. Examples are: all
capital acronyms, or sentences ending a full stop inside quote marks, such as “Asimov.”.

5 Scope and Limitations

We suggest that this type of system could be used as a pre-processor to facilitate the processing
of longer sentences by other NLP methods. Though there are arbitrary limits on the length of
constituents that can be processed by this method (15 words in the pre-subject, 12 words in
the subject), these bounds are comparatively wide, and of course we plan to extend them. In
the Trados data 9 sentences out of 134 fell outside these limits.

We have only tested this system on declarative sentences, but can see no problem in extend-
ing it to imperatives. We will examine ways in which it can be used for questions. The problem
of handling non-sentential data is more difficult. In the first instance titles, lists, captions must
be identified as such. We expect to do this using other sorts of information, such as change of
font and formatting.

The Perkins manuals were written in a deliberately careful way, so that they would be as
clear as possible. The authors were expected (not always successfully) to follow certain rules.
For instance, sentences were not meant to be more than 23 words long, and the use of present
participles was discouraged. Considering the narrowness of this domain, it is surprising how



the characteristics of the language are captured. This is demonstrated by ad hoc use of the
prototype on other text.

One of the advantages of this approach to parsing is that it lends itself to the extraction of
predicate/argument structure. After the subject has been located the main verb will be found
in the predicate, and then the object or complement. With the head of the subject found,
we then have the raw material from which we can begin to extract the predicate/argument
structure.



Appendix

Examples from the Trados corpus processed by ALPINE
The prototype locates both the subject and its head.

In Word, { [ you ] } have several possibilities to view non-textual data, such as carriage returns
or tabs .

{ Another important [ category | of non-textual data } is what is referred to as “hidden text.”
{ The [ Workbench ] } makes massive use of hidden text in order to perform several tasks .

After opening a new translation unit with the TWB1 or TWB2 buttons,
{ the [ Workbench ] } inserts hidden tags into the Word document .

{ These [ tags ] } delimit the current translation segments, that is, the source segment in the
blue source field, and the target segment in the yellow target field as follows .

Later on, { these delimiting [ tags | } play a crucial role for recognizing “Source Matches”
which will be described further down .

After translating, { the source [ segment ] } is kept in your document as “hidden text”, together
with all delimiting tags .

{ The target [ text ] , that is, the translation you enter, } is of course formatted as normal
text, with all formattings intact .

{ A quick [ way ] to toggle between visualizing and hiding nonprinting characters } is again the
button in WinWord's standard toolbar .

Examples on which the system will fail include the following.
(i) Test data not well enough modelled by training data

{ A 100% match [ means ] that exactly this sentence } was already translated, and the suggested
translation can therefore be accepted as is .

(ii) Idiomatic usage not recognized
{ [ That] } is, these words make the source sentence longer or shorter than the TM sentence .
(iii) Subject or pre-subject too long

For instance, if a different product name is used in the source sentence than in the fuzzy-match
equivalent from TM, both product names will be shown in yellow .
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