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Chapter 1

Introduction

“Anyone who is not shocked by Quantum Theory has not understood it”
Niels Bohr

“I think I can safely say that nobody understands Quantum Mechanics”
Richard P Feynman

“Electrons behave in this respect in exactly the same way as photons; they are both
screwy...”
Richard P Feynman

The author is motivated to find some way of conceptualising the mathematical model of
the Quantum World as it relates to Quantum Computing; in particular as it is presented
in Nielsen and Chuang’s seminal work “Quantum Computation and Quantum
Information” where a single Quantum State is described as a single vector in a Complex
Vector Space. The infinite range of positions that this vector may assume, referred to as
the Quantum Superposition together form the abstract mathematical object known as
the Qubit [3]. The author’s personal interest in Ancient Greek Geometry is brought to
bear on what is in effect an attempt to paint a picture of this Qubit Space; a General
Quantum State will be taken simply to refer to an arbitrary vector in a Qubit Space.

1.1 Objectives

This Thesis investigates the geometry of the Spaces in which Quantum Computation
takes place, with regard to 2-Dimensional Cubit Space. We focus on presenting an
overview of the geometries involved: Euclidean, Elliptic and Hyperbolic. In particular,
our purpose is to present an intuitive understanding of the geometric framework in
which the single 2-State is defined. To this end we investigate certain key aspects of
Universal Geometry, a system proposed by Professor Norman J Wildberger of the
University of New South Wales wherein a constructible, geometric explanation is given
for both Elliptic and Hyperbolic Geometry; one that is founded on techniques first
developed by the Ancient Greeks and was in existence long before 19th Century
Mathematicians such as Bolyai, Lobachevski, Beltrami, Klein, Riemann and Minkowski
started formal investigations of what we now refer to collectively as Non-Euclidean
geometries. [30][33][34][35] We will show that Wildberger’s Universal Geometry may be
used to present a clear, intuitive and concise method for conceptualising both Elliptic
and Hyperbolic 2-Dimensional Planes.
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Comparisons will be drawn between Wildberger’s approach and the more traditional
ones found in the wider literature. This will be done by focusing on the equivalence of
the Metrics implicit in each Space. Further, since the Density Matrix is considered by
many to be the most versatile and complete description of the single Quantum State, we
have chosen an increasingly widely accepted model of ρ to contrast Universal Geometry
with; the Gyrovector Space Method is an entirely algebraic portrait of a Hyperbolic
Space proposed by Professor Abraham A Ungar of North Dakota State University.
Whilst contemporary, Ungar’s method is founded on the work of Bolyai, Lobachevski,
Möbius and Einstein and stresses the inherently Relativistic nature of the Hyperbolic
State Space. [1][24][25]

1.2 Quantum Considerations

The main motivation for this Thesis is to present geometric interpretations of 2-D Qubit
Space; itself being a representation of the Space of possible states of a closed quantum
system [3]. Representations of the Quantum State must satisfy the postulates of
Quantum Mechanics and since we are concerned solely with modelling a single State in
a single moment of time, it is the First Postulate that is of particular relevance: “The
State of a closed Quantum System is described by a Vector in a Hilbert Space”[3].

In the wider literature, the Pure State is diagrammatically represented as a point on the
surface of the Bloch Sphere; the Complex surface of a unit sphere in a 3-dimensional
Real Vector Space. We will show that the Bloch Sphere is mathematically equivalent to
the Elliptic Riemann Surface C∞.

Quantum States may also be represented in Density Operator form, in which case a
distinction may be made between the Pure and the Mixed State of a closed quantum
system [3]; for Pure States, the Eigenvalues of the Density Matrix must be Real. Ungar
tells us that the Mixed State Density Operator Space is a 2-dimensional Hyperbolic
Space in terms of the metric extant upon it [1]. We will show that this is consistent with
the view that a 3-dimensional Complex Vector Space is the underlying structure of the
Hyperbolic Plane. Since the z -component of the Complex Vector Space is conceived of
as being purely Imaginary, Real Vectors may only be represented on the Hyperbolic
Plane in the limit as a Point at Infinity.

1.3 The Structure of the Thesis

Chapter 2
We start by presenting the work done in investigating and defining the various
mathematical structures encountered throughout the Thesis before going on to discuss
the nature of the relationships that exist between them. A certain amount of
inconsistency exists in the exact formalisms and notations used in the wider literature
and we take this opportunity to attempt to set out a consistent notation. Whilst it is
assumed that the reader will be familiar with most of the definitions given, they are
presented, at least in part to document the journey undertaken by the author. More
importantly the process has served to clarify the issues at stake and has been
instrumental in fulfilling the objectives of the research as a whole.
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Chapter 3
We present the traditional model applied to representations of a single 2-level Quantum
State and introduce the standard definitions of the State as described by the Vector |ψ〉
within the context of the Bloch Sphere.
We then investigate the derivation of the Density Matrix ρ as a representation of the
Pure or Mixed Quantum State and present the Pauli Operators as being the standard
method for so doing.
We also present the relevant aspects of the work of AA Ungar as it relates to the
contemporary modelling of the Quantum State. In order to explain Ungar’s method, an
investigation of the work of WR Hamilton is presented together with a discussion on
Spinor Matrices; this generates an alternative explanation of the Gyrovector Method to
that given by Ungar himself. We conclude the chapter with a summary of findings so far.

Chapter 4
NJ Wildberger’s basic approach to what he refers to as Rational Trigonometry and
Universal Geometry is introduced for the first time. We start with the Rational
parametrisation of the unit circle since this method is adopted and developed by
Wildberger throughout. We include a brief discussion of Rational Trigonometry as a
means of outlining the concepts of Quadrance and Spread that Wildberger uses to
replace the more familiar notions of Distance and Angle. The use of Quadrance and
Spread allows for definition of Euclidean, Spherical, Elliptic and Hyperbolic Geometry
over a Rational, and therefore General Field. This Chapter is a prelude to the
introduction of Universal Elliptic and Universal Hyperbolic Geometry.

Chapter 5
We now present the key aspects of Universal Elliptic Geometry as it pertains to
representations of the Pure Quantum State, together with a detailed explanation and
proofs of Wildberger’s alternative Elliptic Distance Function. We go on to describe a
more traditional view of the Elliptic Surface, also related to the derivations of the
Riemann Sphere, and prove the equivalence between the traditional and Universal
Elliptic Metric.

Chapter 6
We now present the key aspects of Universal Hyperbolic Geometry as it pertains to
representations of the Mixed Quantum State, together with a detailed explanation of
Wildberger’s alternative Hyperbolic Distance Function. We go on to describe a more
traditional view of Hyperbolic Space and compare the traditional to the Universal
Metric. We see that the question of whether the underlying structure is Real or
Complex becomes interesting with regard to the differentiation of the Pure and the
Mixed Quantum State; it is this that is the overall deciding factor as to whether the
State is modelled in Elliptic or Hyperbolic Space.

Chapter 7
We now present the main conclusions of the research. We find that Universal Elliptic
and Hyperbolic Geometries may be employed as a means of conceiving 2-D Quantum
State Space. We suggest that the use of such constructive geometric methods may
provide an understanding of the basics of mathematical models of Quantum Mechanics
to a wider audience.
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Although we are exclusively concerned with Non-Euclidean geometries, we provide an
overview of Hilbert’s Axioms for Euclidean Geometry as Appendix A since the study
was a necessary part of the research for the author.
As a point of interest, in Appendix B we present a geometric interpretation of Group
Structures; in particular that of the group structure on a circle.

1.3.1 Notation

v Bold, Lower Case signifies a vector
u · v The Inner Product
v · v The Inner Product equates to |v|2
M Bold, Upper Case signifies a matrix
MT The Transpose Matrix of M
M−1 The Inverse Matrix of M
M† The Transpose Conjugate of M
|M| The Magnitude of M
DetM The Determinant of M
I The Identity Matrix
ρ A Hermitian Matrix known as the Density Operator
|ψ〉 A Column Vector associated to a Quantum State
〈ψ| The Transpose Conjugate of |ψ〉
〈ψ|φ〉 The Inner Product
〈ψ|ψ〉 The Inner Product equates to ||ψ〉|2
|ψ〉〈ψ| The Outer Product is a Square Matrix
z∗ The Complex Conjugate of z
a ∗ b A general and unspecified Binary Operation between elements a and b
=⇒ Implies
⇐⇒ Implies and is Implied by
7−→ Maps to: Homomorphic, Injective
←→ Maps to and from: Isomorphic, Bijective, one-to-one
∼ Identifies with
: Such That
F A general and unspecified Field
Fn An n-dimensional Space (n-Space) defined over a general Field F
Rn A Real n-Space or Real n-dimensional Vector Space
Rn A Real n-dimensional Subspace
Cn A Complex n-Space or Complex Vector Space
Cn A Complex n-dimensional Subspace
En A Euclidean n-Space
En(R) A Real Euclidean n-Space; etc.
Sn An Elliptic n-Space
Hn A Hyperbolic n-Space
H A Hilbert Space
P A Projection
n Always signifies a non-negative Integer: n ∈ N+

λ Always signifies a Scalar Quantity: λ ∈ F
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Chapter 2

Preliminaries

The purpose of this Chapter is to review and standardise the definitions of the various
mathematical constructs encountered throughout the Thesis. Although it is to be
assumed that the reader will be familiar with these definitions, the act of summarising
and gathering them together in this way has made up a reasonably sized percentage of
the research and has played no small part in the understanding of the subject under
consideration.

For example, we have the First Postulate of Quantum Mechanics which asserts that the
state of a closed quantum system is described by a vector in a Hilbert Space [3][18]; there
is an obvious requirement to describe exactly what is meant by this. Since the vectors in
question are generally to be thought of as Complex vectors we should go further and
elaborate on what is meant by defining a vector, within a Space, over a Field.

The Preliminaries are by no means an exhaustive study, rather an account of the
preconditions required for this research. With regard to the reference material used
throughout this Chapter, it is obviously the case that many and varied sources exist.
Rather than pepper the document with repeated reference notes which make the overall
content difficult to read, each section begins with a statement as to the specific source
used for the particular definitions that follow. We have attempted to introduce a
standardised approach to the notation at this point.

2.1 Fields

Since we will later introduce a geometric treatment of Euclidean, Elliptic and
Hyperbolic Spaces that may be defined over a general Field, we start with a definition of
Field taken from pages 8 & 9 of John M Howie’s Real Analysis [11].

We assume the existence of the following Identities:

1) The Identity for Addition : ∃ 0 ∈ F such that ∀a ∈ F we have a+ 0 = a
2) The Identity for Multiplication : ∃ 1 ∈ F such that ∀a ∈ F we have a× 1 = a

Fields may also possess what is referred to as the Archimedean Property:

∀a ∈ F ∃ n ∈ N such that n > a

This is also referred to as the Axiom of Archimedes.

Definition 1. A Field F is a Set, of which the elements a, b, c ∈ F obey the following
Axioms for the Binary Operations of Addition and Multiplication.
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(F1) The Law of Closure: (a+ b) ∈ F and (a · b) ∈ F
(F2) The Law of Associativity: a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c
(F3) The Law of Commutativity: a+ b = b+ a and a · b = b · a
(F4) The Existence of Inverse: ∃ b ∈ F : a+ b = 0 and ∀a ∈ F, a 6= 0,∃ c ∈ F : a · c = 1
(F5) The Distributive Law: a · (b+ c) = ab+ ac

2.1.1 Ordered Fields

In addition to Axioms (F1)-(F5) Fields may possess a natural order relation and are
therefore known as Ordered Fields [11].

Definition 2. An Ordered Field is a Field satisfying the Axioms relating to Order in
addition to (F1)-(F5):

(O1) The Transitive Law: a < b and b < c implies a < c
(O2) The Trichotomy Law: Either a < b, a > b or a = b
(O3) The Law of Additive Compatibility: a < b =⇒ (a+ c) < (b+ c)
(O4) The Law of Multiplicative Compatibility: If a < b and c > 0 then (a · c) < (b · c)

Commentary on Fields

We see from the existence of Identity and from (F4) that we have b = (−a) and c = a−1

that generate the Inverse Operations of Subtraction and Division from the same set of
Axioms. The inclusion of the Multiplicative Inverse (Division) carries with it the coda
that a

0
is generally considered to be undefinable.

Example 1. It can be seen from the definitions given here that both the Rational
Numbers Q and the Real Numbers R form Ordered Archimedean Fields.

2.2 Spaces

Spaces may be 1-dimensional, 2 or 3-dimensional, n-dimensional or have infinite
dimensions. Spaces may be Euclidean or Non-Euclidean, they may be Real or Complex.
The motivation for this discussion on mathematical Space is twofold: firstly to define a
Hilbert Space, secondly to lay down definitions required for the different geometries
encountered. We begin with a definition of a general Space taken from page 1 of Erwin
Kreyszig’s Introductory Functional Analysis [14]

Definition 3. A Space is a Set X with some added structure which defines the
relationship between the elements of X

The Set X may, for example, be a Scalar Field such as R. The structure applied to X
may take the form of a set of Axioms; in the case of Metric Spaces for example, the
structure is a defined notion of distance.

Example 2. The Real Number Line is the 1-dimensional Space denoted R1 (or just R)
where the applied structure is the set of Field Axioms (F1) to (O4).

Example 3. R× R forms a Real 2-dimensional Space denoted R2

where R× R is the Cartesian Product of two Real Number Lines [11]. More will be said
with regard to what is meant by dimension in Section 2.3
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Definition 4. The Cartesian Product of sets X and Y is the Set given by:

X× Y = {(x, y) : x ∈ X, y ∈ Y} (2.1)

This Thesis focuses on geometric interpretations as far as possible; we would like to
know for example if a Space supports a Euclidean or Non-Euclidean geometry. We
cannot know whether R2 is a 2-dimensional Euclidean Space denoted E2 from the
information given so far. Since Vector Spaces form an intrinsic part of further
discussions we will first define a Vector Space.

2.2.1 Vector Spaces

The following definition is taken from page 1 of Paul Halmos’s Finite Dimensional
Vector Spaces [9] see also page 13 of [19] for notation.

Definition 5. A Vector Space Fn is a Set of elements x,y,z,..., called Vectors defined
over a Field F where for every x,y,z ∈ Fn there exists z ∈ Fn such that:

(V1) Addition is commutative: x + y = y + x = z
(V2) Addition is associative: x + (y + z) = (x + y) + z
(V3) Additive Identity: There exists a vector 0 ∈ Fn such that ∀ x ∈ Fn, x + 0 = x
(V4) Additive Inverse: For all x ∈ Fn there exists y ∈ Fn such that x + y = 0

For every pair α (a scalar F) and x (a vector in Fn) there exists a vector z ∈ Fn called
the Product z = αx such that:

(V5) Multiplication is distributive wrt vector addition: α(x + y) = αx + αy = z
(V6) Multiplication is distributive wrt scalar addition: (α1 + α2)x = α1x + α2x = z
(V7) Multiplication is associative: α1(α2x) = (α1α2)x = z
(V8) Multiplicative Identity: There exists e ∈ F such that ex = x

Example 4. R3 is the 3-dimensional Real Vector Space consisting of ordered triples
x = (x1, x2, x3) of Real Numbers

Example 5. C2 is the 2-dimensional Complex Vector Space consisting of ordered pairs
z = (z1, z2) of Complex Numbers

Next, we would like to know whether our Vector Space is Euclidean or otherwise. See
Section 2.2.1 together with Appendix A for a fuller description of Euclidean Spaces.

2.2.2 Euclidean n-Space En

A general model of En given on page 13 of John Ratcliffe’s Foundations of Hyperbolic
Manifolds [19] is the n-dimensional Vector Space Fn that supports the following
Euclidean Inner Product:

Definition 6. Let x and y be vectors in Rn, then the Euclidean Inner Product of x and
y is the Real Number:

x · y = x1y1 + x2y2 + ...+ xnyn (2.2)

The Euclidean Inner Product is used to define the Euclidean Norm (length) of x :

Definition 7. Let x be a vector in Rn, then the Euclidean Norm is the Real Number:

|x| = √x · y (2.3)
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2.2.3 Spherical n-Space Sn

The following definition is taken from page 35 of John Ratcliffe’s Foundations of
Hyperbolic Manifolds [19]

Definition 8. The Spherical Space Sn is the surface of a unit sphere parametrised by a
Vector Space supporting the Euclidean Norm:

Sn = {x ∈ Rn+1 : |x| = 1} (2.4)

Example 6. The unit sphere x2 + y2 + z2 = 1 is a sphere in the Vector Space R3, the
surface of which is the Space S2

For Euclidean Geometry, there is a unique Line passing through two distinct Points; see
Appendix A. If we wish to retain this property for the Surface S2 we have a problem;
since any sphere is antipodally symmetric, a certain amount of geometric information is
duplicated, see page 41 of [19]. To see the consequence of duplication, imagine two
Great Circles on a sphere; they meet in two places at points antipodal to each other.
Therefore no unique Line exists between them; there would be infinitely many such
Lines. We should stress that we refer here to straight lines which on a sphere correspond
to Great Circles. This duplication is eradicated by treating the vectors x and -x both
∈ R3 as a single entity ±x . In this case we refer to the Space generated as an Elliptic
Space. Elliptic Geometry retains the Euclidean property of there existing a unique Line
through any two distinct Points [19]. From this point on we will refer to S2 as being a
2-D Elliptic Surface, which we will discuss in further detail in Sections 2.2.6 and 2.4 and
in Chapter 5

2.2.4 Lorentzian n-Space Ln

Pages 54 & 55 of John Ratcliffe’s Foundations of Hyperbolic Manifolds [19] defines a
Lorentzian Space as the n-dimensional Vector Space Fn that supports the following
Lorentzian Inner Product:

Definition 9. Let x and y be vectors in Rn, then the Lorentzian Inner Product of x and
y is the Real Number:

x ◦ y = x1y1 + x2y2 + ...− xnyn (2.5)

The Lorentzian Inner Product is used to define the Lorentzian Norm (length) of x :

Definition 10. Let x be a vector in Rn, then the Lorentzian Norm is the Complex
Number:

||x|| = √x ◦ y (2.6)

2.2.5 Hyperbolic n-Space Hn

The following definition is taken from page 61 of John Ratcliffe’s Foundations of
Hyperbolic Manifolds [19]

Definition 11. The Hyperbolic Space Hn is the surface of a unit sphere of Imaginary
radius parametrised by a Vector Space supporting the Lorentzian Norm:

Hn = {x ∈ Rn+1 : ||x||2 = −1} (2.7)
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Example 7. The surface of the sphere x2 + y2 − z2 = −1 is a Hyperbolic Surface.

Note the similarity between Spherical and Hyperbolic Spaces; the further classification
of Space requires the definition of a Distance Function and leads to the development of
a Metric Space.

2.2.6 Metric Spaces

The following axioms for a general Metric Space are taken from page 3 of Erwin
Kreyszig’s Introductory Functional Analysis [14] and from MM & E Deza’s
Encyclopaedia of Distances [16]

Definition 12. A Metric Space is a pairing of a Set X with a distance function d such
that for all x, y, z ∈ X the following Axioms are satisfied:

(M1) d is Real, Finite and non-negative
(M2) d(x, y) = 0 ⇐⇒ x = y
(M3) d(x, y) = d(y, x)
(M4) d(x, y) ≤ d(x, z) + d(z, y)

The phrase Euclidean Metric Space is a general term referring to a Space supporting a
Euclidean Distance Function. Non-Euclidean Metric Spaces are then primarily defined
by Non-Euclidean distance functions. The three key Metrics encountered in this Thesis
are the Euclidean, the Elliptic and the Hyperbolic distance functions.

2.2.7 Euclidean Metric Spaces

Example 8. The Real Number Line is the Real Euclidean Metric Space R1 defined over
the Field R together with the Euclidean Distance Function between Points a and b given
by the equation:

d1(a, b) = |b− a| (2.8)

This gives the shortest distance, along the Line R1 from the Point a ∈ R to the Point
b ∈ R

Example 9. The Real 2-dimensional Euclidean Plane is the Metric Space R2 where the
set of ordered pairs of Real Numbers a = (x1, y1) and b = (x2, y2) is considered, together
with the Euclidean Metric:

d2(a, b) =
√

(x1 − x2)2 + (y1 − y2)2 (2.9)

This gives the shortest distance, across the plane R2 from the Point a ∈ (R× R) to the
Point b ∈ (R× R)

2.2.8 Elliptic Metric Spaces

For the Elliptic case, taken from page 159 of [16] we have the Fubini-Study Metric ξ also
referred to as the Elliptic Distance Function dell and the Hermitian Elliptic Metric.
Chapter 5 of this Thesis looks at the underlying nature of Elliptic Geometry and
provides further context for the definition of the distance given as:
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Definition 13. The Elliptic Distance dell between ψ and φ is:

dell(ψ, φ) = ξ(ψ, φ) = arccos

√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

(2.10)

where |ψ〉 is the Dirac Notation for the unit vector tied to the origin of a Real
3-dimensional Euclidean Space that parametrises a unit sphere and ψ is a Point on the
surface; so that dell gives the shortest distance across the 2-dimensional Elliptic Surface
S2, between Points ψ and φ both on the Surface. Note that |ψ〉 does not refer to a
Quantum State in this case. Inner Products and Norms are Euclidean.

2.2.9 Hyperbolic Metric Spaces

For the Hyperbolic case, from page 114 of [16] we have Hyperbolic Metric dhyp. Chapter
6 of this Thesis looks at the underlying nature of Hyperbolic Geometry and provides
further context for the definition of distance given as:

Definition 14. The Hyperbolic Distance dhyp between ψ and φ is:

dhyp(ψ, φ) = arccosh

√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

(2.11)

where |ψ〉 is the Dirac Notation for the unit vector tied to the origin of a 3-dimensional
Euclidean Space that parametrises an Imaginary unit sphere [19] and ψ is a Point on the
surface; so that dhyp gives the shortest distance across the 2-dimensional Hyperbolic
Surface H2, between Points ψ and φ both on the Surface. Note that |ψ〉 does not refer
to a Quantum State in this case. Inner Products and Norms are Lorentzian.

2.2.10 Complete Metric Spaces

Section 1.4 (pages 24-28) of [14] deals with the Completeness of a Metric Space;
Kreyszig states that a Metric Space M is complete if every Cauchy Sequence in M
converges to a limit that is also in M.

Definition 15. A Cauchy Sequence xn is a sequence for which the following statement
is true:

∀ ε > 0 ∃ N dependent on ε : |xm − xn| < ε ∀ m,n > N

Where ε is any arbitrarily small positive value and N is an arbitrary point in the
sequence that makes the statement true; if such an N cannot be found, the sequence is
not Cauchy. Cauchy Sequences in any Metric Space M that is defined over R or C
clearly converge to a limit also in M. We should stress however that there are Cauchy
Sequences defined over more general Fields F that do not converge to a limit in F.
Kreyszig’s Theorem 1.4-4 on page 28 of [14] sums up the criteria relevant to this Thesis:

The Real Number Line and the Complex Plane are Complete Metric Spaces.
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2.2.11 Hilbert Space H
On page 128 of Kreyszig’s Functional Analysis of [14] we are told that a Hilbert Space is
a Complete Inner Product Space. An Inner Product Space is a Subspace that sustains
an Inner Product:

Definition 16. Let Fn be a subset of Fn: Then Fn is a Subspace of Fn if and only if:

(S1) There exists a vector 0 ∈ Fn so that the Subspace is non-empty
(S2) For all u,v ∈ Fn we have (u + v) ∈ Fn hence closure under vector addition
(S3) For all u ∈ Fn and α ∈ F we have αu ∈ Fn hence closure under scalar multiplication

The following definition is taken from page 129 of Erwin Kreyszig [14]

Definition 17. An Inner Product Space, is a Subspace Fn defined over a field F that
sustains the following Map, where x and y are vectors in Fn and α is a scalar in the
Field F:

(x,y) 7−→ 〈x|y〉 = α (2.12)

where 〈x|y〉 ≡ x · y is the Inner Product of x and y and the following Axioms are met:

(IP1) x · y = y · x = α ∈ R hence Commutative
(IP2) (αx + βy) · z = (αx · z) + (βy · z) hence Distributive
(IP3) x · x ≥ 0
(IP4) x · x = 0⇐⇒ x = 0

Example 10. Let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors in the Real Subspace R3

then the Euclidean Inner Product is given by: x · y = (x1y1 + x2y2 + x3y3) = α ∈ R

On Page 129 of [14] Kreyszig states that Inner Product Spaces pre-Hilbert Spaces and
that:

Definition 18. A Hilbert Space is a Complete Inner Product Space denoted H

However, Appendix III of Paul Halmos’s Finite Dimensional Vector Spaces [9] we have
the following statement:

The definition of Hilbert Space is easy: it is an infinite dimensional unitary space
satisfying one extra condition - namely completeness.

This thesis is primarily concerned with the projection of a 3-Space onto a 2-D Surface;
an in-depth enquiry as to the distinction between Kreyszig and Halmos on the matter of
infinite dimensionality is a matter for further research; we will use Definition 18.

2.3 Groups

Group Structures play an important part in the formalism of Quantum Mechanics due
to the use of Vectors and Matrices as well as the rotational properties of the Complex
numbers. The reader may be interested to refer at this stage to Section B.1 for a
completely geometric interpretation of a Group Structure.

The following definitions relating to a general Group G are taken from page 622 of
Erwin Kreyszig’s Introductory Functional Analysis [14] where * is an arbitrary Binary
Operation.

14



Definition 19. A Group G = (G, ∗) is a Set of elements: G = {x, y, z, ...} such that
G ∗G 7−→ G, and for all x, y, z ∈ G we have the following:

(G1) The Law of Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z)
(G2) The Existence of Identity: x ∗ I = I ∗ x = x
(G3) The Existence of Inverse: ∃ y ∈ G : x ∗ y = y ∗ x = I

Definition 20. G is an Abelian Group if we also have:

(G4) The Commutative Law: ∀ x, y ∈ G x ∗ y = y ∗ x

2.3.1 Orthogonal Groups

Orthogonal Matrices are important elements of Linear Algebra and hence Quantum
Mechanics; the following definitions are taken from page 18 of John Ratcliffe’s
Foundations of Hyperbolic Manifolds [19]

Definition 21. The General Orthogonal Group O(nF) is the set of all n× n Orthogonal
Matrices denoted O such that detO = ±1, with elements defined over a Real Field F

A Subgroup of O(nF) is the Special Orthogonal Group:

Definition 22. The Special Orthogonal Group SO(nF) is the set of all n× n Orthogonal
Matrices denoted O such that detO = 1, with elements defined over a Field F

The Columns or the Rows of O form an Orthonormal Basis for Rn This is a useful way
of establishing the dimension of a Real Space denoted Rn since the number of Basis
Vectors in a Space is the Dimension of the Space [9].

Definition 23. An Orthogonal Matrix O has the property:

OT = O−1 ⇐⇒ OOT = OTO = I (2.13)

2.3.2 Unitary Groups

With the introduction of the Complex Field C we move from Orthogonal Matrices to
Unitary Matrices. The following definitions are taken from page 147 of John Ratcliffe’s
Foundations of Hyperbolic Manifolds [19]

Definition 24. The General Unitary Group U(nC) is the set of all n× n Unitary
Matrices denoted U such that detU = ±1, with elements in C

A Subgroup of U(nC) is the Special Unitary Group:

Definition 25. The Special Unitary Group SU(nC) is the set of all n× n unitary
matrices denoted U such that detU = 1, with elements in C

The Columns or the Rows of U form an Orthonormal Basis for Cn This is a useful way
of establishing the dimension of a Complex Space denoted Cn since the number of Basis
Vectors in a Space is the Dimension of the Space [9].

Definition 26. A Unitary Matrix U has the property:

U† = U−1 ⇐⇒ UU† = U†U = I (2.14)
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2.3.3 Matrices

Important matrices exist other than those cited as Group elements; we present the
matrix types discussed in the Thesis next with definitions from [9], [14] and [19]. We are
exclusively concerned with 2× 2 matrices.

Definition 27. The Trace of the matrix A =

[
a b
c d

]
is given as: Trace(A) = (a+ d)

Definition 28. The Transpose of the matrix A =

[
a b
c d

]
is AT =

[
a c
b d

]
Definition 29. The Complex Transpose of the matrix A

(also referred to as the Hermitian Conjugate) is the matrix A† =

[
a∗ c∗

b∗ d∗

]
Definition 30. The Inverse of matrix A is the matrix A−1 : AA−1 = A−1A = I

Note that the Inverse of Matrix A is defined only where DetA 6= 0

From Section 2.3.2 we see that if AT = A−1 then A is Orthogonal.

From Section 2.3.2 we see that if A† = A−1 then A is Unitary.

Note that for matrices with Real-valued entries, AT = A†

Definition 31. A Hermitian matrix H has the property: H = H†

Example 11. The matrix 1
2
I = 1

2

[
1 0
0 1

]
= 1

2
I† is a Hermitian matrix

We will introduce the Dirac Notation for matrices at this point:

A = |A〉 and A† = 〈A|

Definition 32. The Inner Product of matrices A and B is given as the Hilbert-Schmidt
Inner Product [3]:

〈B|A〉 = Trace(B†A) (2.15)

Definition 33. The Magnitude of matrix A is given as:

〈A|A〉 = Trace(A†A) (2.16)

Since, for Hermitian matrices we have: H † = H it is clear that 〈H |H 〉 = Trace(H 2)

On page 250 of Steven Roman’s Advanced Linear Algebra [20] we have the following:

Definition 34. A Positive Definite Hermitian matrix H has the property:

〈Hv, v〉 > 0 ∀ v 6= 0

Definition 35. The Density Matrix, also known as the Density Operator, denoted ρ is a
Positive Definite, Hermitian matrix with a Trace equal to 1:

ρ = H =⇒ 〈H|H〉 = 1 (2.17)
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2.3.4 The Spinor Matrix

The Spinor is specified by the 4 parameters shown in Figure 2.1: (r, θ, φ, α) where the
first 3 are ordinary Polar Coordinates that correspond to the 3-dimensional Cartesian
Coordinates (x,y,z) [22]. The angle α will not be investigated here so that for our
purposes the Spinor is the vector v = x̂+ ŷ + ẑ.

Figure 2.1: The Spinor [22]

Definition 36. A Spinor Matrix X for a vector in a 3-dimensional Subspace is a 2× 2
matrix generated in the following way:

v(x,y,z) 7−→ X =

[
z (x− iy)

(x+ iy) −z

]
= X† =⇒ z ∈ {C}\{R}

XX† = X†X =

[
x2 + y2 + z2 0

0 x2 + y2 + z2

]
= |v|2I (2.18)

The Spinor Matrix X is therefore Unitary if |v| = 1 since:

XX† = X†X = |v|2I = I (2.19)

Considering the Determinant of X we also see that:

DetX = −(z2)− (x2 + y2) = −(x2 + y2 + z2) = −|v|2 = −1 (2.20)

Therefore we have: X ∈ U(2C) by Definition 24

The Spinor Matrix X has the following property if |v| = i:

Since now we have Det(X) = −|v|2 = 1 then: X ∈ SU(2C) by Definition 25

The Imaginary nature of v becomes important for all further discussions related to
Hyperbolic Geometry and the work of Abraham A Ungar.
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2.4 Projective Geometry

This section is intended to provide a brief overview of the two examples of Projective
Geometry that we are concerned with: Elliptic (Spherical) and Hyperbolic. On page 53
of Marcel Berger’s Geometry Revealed [2] we have the following definition of Projective
Space:

Definition 37. The n-dimensional Projective Space Pn(F) defined over the Field F is
the Set of 1-dimensional Subspaces of the Vector Space Fn+1

The 1-D Subspaces mentioned here may be thought of as vectors through the Origin.
Although Projective Geometry was known to Greek philosophers such as Archimedes
and Apollonius, its nature and properties were not formally studied until the
Renaissance Period when Mathematicians such as Girard Desargues (1591-1661) were
called upon to formalise the increasingly sophisticated use of perspective in
contemporary art [13]. In perspective drawings, whilst both distance and angle are
distorted by the projection of the 3-dimensional world onto the 2-dimensional page,
crucially, the ratio of distances and angles are retained [31]. Projective Geometry also
enables the idea of a Point or Line infinitely far away to be brought into the viewing
plane [31]. The 2-D Euclidean Plane may be thought of as being akin to a chess board
with parallel lines stretching away to Infinity; their meeting point never being attained.
Compare this to a perspective drawing of the same Plane where parallel lines do indeed
“meet”at a vanishing point that represents a place infinitely far away.

The Stereographic Projection

With reference to Figure 2.2, the Stereographic Projection identifies a Point laying in
the Equatorial Plane (shown shaded and referred to as E2 on page 107 of [19]) with a
unique Point on the sphere, referred to as S2. For the sake of clarity, the shaded area E2

would in fact extend to Infinity in all directions so that Points on the Southern
hemisphere of S2 identify with Points in the Plane outside of the sphere. The South Pole
itself would then be identified with points at Infinity on E2 and vice versa. Riemann
refers to this sphere as: Ĉ = C ∪∞ where he imagined E2 to be the entire Complex
Plane and where points at Infinity on C correspond to the point S ∈ S2

Figure 2.2: The Stereographic Projection [28]

18



The Gnomonic Projection

The Gnomonic Projection shown in Figure 2.3 identifies the Point A on the surface of
the sphere with the Point P in the plane tangent to the North Pole O The Tangent
Plane will be referred to as the Hyperbolic Plane H2 with its Origin at O The
Gnomonic Projection is a Bijective Map between the Northern hemisphere of S2 and H2

[19]. By contrast to the Stereographic Projection, we now have Points on the Equator
that are the Projective Points at Infinity with respect to the Tangent Plane. For
derivations of Hyperbolic Geometry we adopt the convention that the Equatorial Plane
of the sphere is the Cartesian xy-Plane, whilst the Polar Axis is the z-Axis; for the
algebraic structure of Hyperbolic Geometry to work, the z-Axis is deemed to be purely
Imaginary [19]. See Chapter 6

Figure 2.3: The Gnomonic Projection [17]

2.4.1 Consequences of Stereographic/Gnomonic Projections

For a further insight, refer to Figure 2.4 where the image of the North Polar aspect of
Earth is presented under both Stereographic (left) [29] and Gnomonic (right) [27]
projections. Under the Stereographic Projection (left) the Equator itself plays no special
role; it is the slightly darker Parallel, 3rd in from the edge of the image. Under this
projection, the South Pole is infinitely far away with respect to the implied Metric and
would be represented by the circumference of a circle with an infinitely large radius. An
example of a Stereographic Projection is the Riemann Sphere, which is the projective
Map between the unit sphere and the entire Complex Plane up to and including Infinity.
It is therefore referred to as C∞ [19] Turning now to the Gnomonic Projection (right) it
is the Equator that is infinitely far away (in terms of the Metric across the disk) and
points of the Southern Hemisphere are not present; only the upper half of the sphere is
projected. Notice also that the distortion of distances that occurs under any projection,
is different for each of the methods given here.

Figure 2.4: Stereographic and Gnomonic Projections of the North Polar Aspect of Earth
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Chapter 3

A Quantum Mechanical System

Since the purpose of this Thesis is to investigate different geometric interpretations of
the Quantum Mechanical system, we will now present an overview of the relevant
aspects of the theory. Quantum Mechanics is essentially a mathematical framework that
has been developed over the past 100 years or so for the purpose of modelling the
behaviour of sub-atomic particles. This Thesis makes no attempt to speculate on
whatever the underlying physical reality governing the behaviour of a quantum system
might be. For general referencing purposes we direct the reader to pages 80 and 81 of
[3]; currently the most cited work on Quantum Computation.

In this Chapter we describe the particular quantum system under investigation, known
as the qubit. Then we explore the traditional Bloch Sphere model of the qubit and
conclude with an overview of a contemporary model; Abraham A Ungar’s Gyrovector
Model.

3.1 Introducing the Qubit

Quantum Mechanics is built up from a set of postulates (Axioms), the first of which
tells us that the Space in which Quantum Mechanics plays out must be a Hilbert Space.
From Section 2.2.11 we see that a quantum mechanical system may therefore be
represented within an Inner Product Space that sustains a complete Metric. According
to Nielsen and Chuang in [3], the simplest quantum mechanical system is the qubit,
which may be represented as a 2-dimensional State Space (Hilbert Space). The qubit
will be the only example of a quantum system encountered in this Thesis. An arbitrary
state, denoted |ψ〉 of such a system may be represented as follows:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
=⇒ |ψ〉 = α|0〉+ β|1〉 ⇐⇒ |ψ〉 =

[
α
β

]
: α, β ∈ C (3.1)

Here, |0〉 and |1〉 are the Basis States of the system and are represented by convention
as column vectors. We see that the set of all possible States is infinite; it is the
theoretical possibility of this infinite variety of States that is referred to as the Quantum
Superposition of the State.

It is this property that distinguishes the classical bit (Binary Integer) from its quantum
counterpart, the Quantum Binary Integer or qubit.

The bit is a 2-state system where only 2 possibilities exist; the qubit is also a 2-state
system, but it is a system where there are 2 Real plus infinitely many Complex
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possibilities. We attempt no speculation as to the explanation or physical meaning of
this. The unit circle of the familiar Argand Diagram paints a succinct picture of just
such a situation: z = eiθ is an arbitrary Point on the circle that is Complex-valued apart
from 1 and (-1) Although infinitely many positions exist, only 2 of them can ever be
Realised.

A constraint, known as the normalisation condition applies to the State |ψ〉 such that:

〈ψ|ψ〉 = 1⇐⇒ |α|2 + |β|2 = 1 (3.2)

Here, 〈ψ|ψ〉 is the Euclidean Inner Product of |ψ〉 on itself (square of magnitude) and α
and β are Complex numbers known as Probability Amplitudes. Considering specifically
the magnitude of |ψ〉 we note that:

eiγ|ψ〉 = eiγα|0〉+ eiγβ|1〉 =⇒ ‖eiγ|ψ〉‖ = ‖|ψ〉‖ (3.3)

since, for example, we have:

|eiγα|2 = (eiγα)∗(eiγα) = (e−iγα∗)(eiγα) = α∗α = |α|2 (3.4)

Here, eiγ is referred to as the Global Phase Factor with γ being the Azimuth Angle of a
given sphere; we will encounter the Global Phase Factor in more detail when we look at
the Bloch Sphere in Section 3.2.

In the formalism of Quantum Mechanics, the state of a quantum system is a unit vector
with a Complex structure so that, as has been said, we have:

|ψ〉 = α|0〉+ β|1〉 : α, β ∈ C

Having both α, β ∈ C gives rise to a problem if we look for a geometric interpretation of
the Space in question; as we effectively have 4 dimensions to deal with, 2 Real and 2
Complex. Intuitively though, we still have a Space given by the Cartesian Product
C× C = C2 as the ambient space in which |ψ〉 resides and we may specifically refer to
this space as a 2-dimensional Complex Hilbert Space which we will denote H2(C).

The normalisation condition applies, so that |ψ〉 is a unit vector from the origin of
C× C to a Point on the unit circle of C× C. We will refer to this unit circle as S1 and
the unit vector |ψ〉 as being representative of the Pure Quantum State due to its unitary
magnitude.

Definition 38. Let the Set S1 be:

S1 = {|ψ〉 ∈ C2 : ‖|ψ〉‖ = 1} (3.5)

Proposition 1. The elements of S1 may be used to generate the Special Orthogonal
Group SO(2R)

Proof. To every element |ψ〉 of the Set S1 associate a 2× 2 matrix called Ψ in the
following way:

|ψ〉 7→ Ψ =

[
cos θ − sin θ
sin θ cos θ

]
(3.6)

Here, θ is an angle measured from some arbitrary, and we must assume, Real-axis; we
see that Ψ has the following properties:

ΨT =

[
cos θ sin θ
− sin θ cos θ

]
=⇒ ΨΨT =

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]
= I⇐⇒ ΨT = Ψ−1
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So that, by Section 2.3 we have Ψ as an Orthogonal Matrix. Further, we have:

Det(Ψ) = cos2 θ + sin2 θ = 1 (3.7)

Hence Ψ is an element of SO(2R).

The Second Postulate of Quantum Mechanics refers to the time evolution of a closed
quantum system and asserts that this is described by a unitary transformation [3] so
that we have:

U |ψ〉 = |ψ′〉 (3.8)

where |ψ〉 is the State of the system at time t1 and |ψ′〉 is the State at time t2. We know
therefore that U must be a 2× 2 Unitary Matrix.

A Unitary Matrix generated by |ψ〉 would then be very useful, from which we see the
motivation for Ψ; however, Ψ is Real-valued. To arrive at the proper definition of the
Quantum State as a 2× 2 Complex (Unitary) Matrix we will first investigate the Bloch
Sphere representation of |ψ〉.

22



3.2 Introducing The Bloch Sphere

Figure 3.1: The Bloch Sphere

Referring to Figure 3.1 we see that the Bloch Sphere is the surface of a unit sphere in a
Real 3-dimensional ambient Space with equation:

x2 + y2 + z2 = 1 (3.9)

We know that the Cartesian Coordinates are related to Polar Coordinates as follows:

x = r sin θ cosϕ (3.10)

y = r sin θ sinϕ (3.11)

z = r cos θ (3.12)

The task is to demonstrate that the representation previously given for the Quantum
Superposition of States also describes the surface of the Bloch Sphere, where the surface
itself has a Complex algebraic structure. Recall that we have:

|ψ〉 = α|0〉+ β|1〉 : α, β ∈ C⇐⇒ |ψ〉 = rαe
iφα|0〉+ rβe

iφβ |1〉 (3.13)

Multiplying by a Global Phase Factor e−iφα gives:

e−iφα|ψ〉 = rα|0〉+ rβe
i(φβ−φα)|1〉 (3.14)
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We have the coefficient rβe
i(φβ−φα) which is the exponential form of an arbitrary

Complex Number; the rectangular form of which is (x+ iy). Using this form and
applying the normalisation condition to Equation 3.14 gives:

|rα|2 + |x+ iy|2 = r2α + (x− iy)(x+ iy) = r2α + x2 + y2 = 1 (3.15)

This is the equation of the Bloch Sphere shown in Figure 3.1 with z defined as being rα.
Hence, switching once again to the Polar form of x,y,z and recalling that r = 1 we now
have:

e−iθα|ψ〉 = z|0〉+ (x+ iy)|1〉 = cos θ|0〉+ sin θ(cosφ+ i sinφ)|1〉

Which may be written as:

e−iθα|ψ〉 = |ψ〉 = cos θ|0〉+ eiφ sin θ|1〉 (3.16)

Referring again to Figure 3.1 with the angle θ as shown, we note the following:

θ = 0 =⇒ |ψ〉 = |0〉 (3.17)

θ =
π

2
=⇒ |ψ〉 = eiφ|1〉 (3.18)

We see that φ is indeed the Azimuth Angle marked ϕ in Figure 3.1.

Proposition 2. The Bloch Sphere may be described in its entirety by Zenith and
Azimuth Angles in the range 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π

Proof. Let |ψ〉 = cos(θ)|0〉+ ei(ϕ+π) sin(θ)|1〉

then |ψ′〉 = cos(π − θ)|0〉+ ei(ϕ+π) sin(π − θ)|1〉 is antipodal to |ψ〉

|ψ′〉 = cos(π − θ)|0〉+ ei(ϕ+π) sin(π − θ)|1〉 (3.19)

= − cos θ|0〉+ eiϕeiπ sin θ|1〉 (3.20)

= − cos θ|0〉 − eiϕ sin θ|1〉 (3.21)

= −|ψ〉 (3.22)

We see that allowing the full revolution of θ from 0 to 2π is unnecessary. We may
therefore define the Pure State on the Bloch Sphere as:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π (3.23)

3.2.1 From the Bloch Sphere to Operator Space

Referring still to Figure 3.1 we now introduce the Bloch Vector, which will be denoted v
and is a vector in a Real 3-dimensional Subspace:

v = αx̂ + βŷ + γẑ : |v| ≤ 1 (3.24)

For the Pure State we have the following condition:

|v| = 1⇐⇒ v←→ ±|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (3.25)
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Note that no such mapping can exist for the case:

|v| < 1 (3.26)

By Definition 36 we can see that the Bloch Vector may be used to generate a Spinor
Matrix X such that:

v = αx̂ + βŷ + γẑ←→ X =

[
γ α− iβ

α + iβ −γ

]
(3.27)

and from this, a Density Matrix may be generated as follows:

1

2

[
I + X

]
=

1

2

[
1 + γ α− iβ
α + iβ 1− γ

]
(3.28)

3.3 Introducing the Density Matrix

An alternative representation of the Quantum State is that of the Density Operator or
Density Matrix denoted ρ. The Hilbert-Schmidt Function defines the Inner Product of ρ
to be the Trace of ρ2

〈ρ|ρ〉 = Tr(ρ2) ≤ 1 (3.29)

The case where the normalisation condition 〈ρ|ρ〉 = 1 is met is called the Pure State.
When considering |ψ〉 ∈ S1 we have the Pure State Density Matrix as:

ρ = |ψ〉〈ψ| (3.30)

Proposition 3. Every |ψ〉 ∈ S1 generates a Density Operator ρψ

Proof. Take ρψ as being the Outer Product of |ψ〉 = α|0〉+ β|1〉

ρψ = |ψ〉〈ψ| =
[
|α|2 αβ∗

α∗β |β|2
]

: ρψ = ρ†ψ : (3.31)

We see that ρψ has the following Properties:

ρψ = ρ†ψ and Trace(ρψ) = |α|2 + |β|2 = 〈ψ|ψ〉 = 1

Proposition 4. Every |ψ〉 ∈ S2 generates a Density Operator ρψ

Proof. Take ρψ as being the Outer Product of |ψ〉 = cos θ
2
|0〉+ eiφ sin θ

2
|1〉

ρψ = |ψ〉〈ψ| =
[

cos2 θ
2

e−iφ cos θ
2

sin θ
2

eiφ cos θ
2

sin θ
2

sin2 θ
2

]
: ρψ = ρ†ψ : (3.32)

We see that ρψ has the following Properties:

ρψ = ρ†ψ and Trace(ρψ) = cos2 θ
2

+ sin2 θ
2

= 〈ψ|ψ〉 = 1

Proposition 5. The Map from |ψ〉 ∈ S1 7→ ρ is not unique.
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Proof. It is enough to demonstrate that:

|−ψ〉〈−ψ| = |ψ〉〈ψ| =
[
|α|2 αβ∗

α∗β |β|2
]

= ρ (3.33)

Proposition 6. The Map from |ψ〉 ∈ S1 7→ ρ is not Bijective.

Proof. We know that every |ψ〉 ∈ S1 7→ ρ but does every ρ 7→ |ψ〉..? Choose ρ such that:

ρ =

[
cos2 θ 0

0 sin2 θ

]
(3.34)

Clearly ρ is a Hermitian Matrix yet ρ 6= |ψ〉〈ψ|. That is to say that there is no |ψ〉 ∈ S1

or S2 whose Outer Product is ρ as described in Equation 3.34

3.3.1 From The Pauli Operators to the Density Matrix

The Basis States for S1 and S2 are the 1× 2 column vectors |0〉 and |1〉 as previously
mentioned. The Basis States for the Bloch Sphere, when seen as a 3-dimensional object
with both a Surface and an interior Space, are the Pauli Operators; see page 174 of [3].
We now present a different derivation of ρ using the 4 Pauli Operators I, X, Y, Z:

σ0 = I =

[
1 0
0 1

]
, σ1 = X =

[
0 1
1 0

]
, σ2 = Y =

[
0 −i
i 0

]
, σ3 = Z =

[
1 0
0 −1

]
Making use of this Basis Set, Abraham Ungar defines ρ as follows [1]:

ρ =
1

2
(I + σ · v) (3.35)

Here, v is the Bloch Vector described in Equation 3.24 and σ denotes the set of Pauli
Operators X, Y, Z.

Equation 3.35 may then be restated as follows:

ρ =
1

2

[ [1 0
0 1

]
+

αβ
γ

XY
Z

] (3.36)

where α, β, γ are the coefficients of the Basis Vectors. Expanding this gives:

ρ =
1

2

[ [1 0
0 1

]
+ α

[
0 1
1 0

]
+ β

[
0 −i
i 0

]
+ γ

[
1 0
0 −1

] ]
(3.37)

which in turn simplifies to give:

ρ =
1

2

[ [1 0
0 1

]
+

[
γ α− βi

α + βi −γ

] ]
(3.38)

⇐⇒ ρ =
1

2

[
1 + γ α− βi
α + βi 1− γ

]
(3.39)
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This derivation is presented as the “standard” form given in the main texts such as [3]
and [18] as well as being referred to throughout by Ungar [1],[24]. However, we also note
here the equivalence between this and the Spinor Matrix version given in Equation 3.28

We have now presented the traditional and widely accepted view of the various
representations of the single Quantum State as they appear in the wider literature in
relation to Quantum Computing. The Pauli Operator derivation of ρ dates back to the
work of Von Neumann and has many applications in physics [1].

We are now ready to present, in outline, an alternative treatment of the Bloch Vector
approach to ρ.

3.4 Introducing Gyrovector Space

We look now at the work of Professor Abraham A Ungar with respect to representations
of the Quantum State as a Density Operator.

Our investigation of Ungar’s method hinges on the his observation that the appropriate
Distance Function to apply to Density Operators is the Bures Fidelity Metric; and that
this is Hyperbolic in nature [1],[24],[26]

Recall that so far we have seen representations of |ψ〉 for Euclidean and Elliptic Spaces
only. We will study Hyperbolic Spaces in detail in Chapter 6 but for now the salient
point is that the Hyperbolic 2-Space H2 may be seen as a projection of a Sphere of
Imaginary radius [19] (see pages 54 and 61 in particular)

H2 = {v ∈ R3 : |v|2 = −1} (3.40)

This would imply that the vector v is not the Real-valued Bloch Vector as it has so far
been defined for Elliptic Space. Indeed, this is the basis for Ungar’s assertion that the
Bloch Vector should more accurately be treated as a Gyrovector [1]

In this respect, we believe that the work of Sir William R Hamilton (1805-1865) is the
correct starting point from which to view Gyrovector Space. We will therefore
commence the discussion on Hyperbolic Operator Spaces with a presentation of
Hamilton’s 19th Century work on Quaternions. An in depth enquiry into the finer
detail of Quaternions would fall outside of the scope of this Thesis; here we look simply
at those aspects that imply a Complex Vector Space.

3.4.1 Quaternions

A geometric interpretation of Complex numbers was first introduced by Jean-Robert
Argand (1768-1822) as being the Vector Space of the 2-dimensional Argand Plane. For
example, it may be seen that the binary operation of “addition” for Complex numbers is
exactly vector addition in the Plane:

z1 + z2 = (α1 + iβ1) + (α2 + iβ2) = (α1 + α2) + i(β1 + β2) = z3 (3.41)

Similarly, multiplication of two Complex numbers of unit length may be viewed as a
vector rotation about the origin of a 2-dimensional Plane.

z1z2 = eiθeiφ = ei(θ+φ) = z3 : |z| = 1 (3.42)
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Hamilton was motivated by wondering whether such a geometric interpretation
extended for 3-dimensions; his investigations culminated in his own development of the
Quaternion and to the closely related Spinor Matrix [21]

Hamilton defined a quaternion Q to be a vector in a Real 4-dimensional Space in the
following way [10][21]:

Definition 39. Let Q = ai+ bj + ck + w such that a, b, c, w ∈ R and where
i2 = j2 = k2 = ijk = −1

Where the element (ai+ bj + ck) is the rotational aspect of Q and w is the scalar
aspect. It turns out that there is an alternative and already familiar way of defining
Quaternions: they are the Pauli Operators multiplied by -i [36]

q0 = I =

[
1 0
0 1

]
, q1 = I =

[
0 −i
−i 0

]
, q2 = J =

[
0 −1
1 0

]
, q3 = K =

[
−i 0
0 i

]
Recall from Section 3.2 that the Pauli Operators form a Basis for a Real 3-dimensional
Inner Product Space:

σ0 = I =

[
1 0
0 1

]
, σ1 = X =

[
0 1
1 0

]
, σ2 = Y =

[
0 −i
i 0

]
, σ3 = Z =

[
1 0
0 −1

]
where we have:

X2 = Y 2 = Z2 = iXY Z = I (3.43)

displaying the following similarity to the properties of Hamilton’s Quaternions:

I2 = J2 = K2 = IJK = −I (3.44)

We may say therefore that Hamilton’s Quaternion acting on a vector v(α, β, γ) may be
expressed as “Imaginary” Pauli Operators acting on v:

Q =
[ [1 0

0 1

]
+ α

[
0 −i
−i 0

]
+ β

[
0 −1
1 0

]
+ γ

[
−i 0
0 i

] ]
(3.45)

which simplifies as:

Q =
[ [1 0

0 1

]
+

[
−iγ −β − iα
β − iα iγ

] ]
=

[
1− iγ −β − iα
β − iα 1 + iγ

]
(3.46)

Recall that from Equation 3.27 we have the Spinor Matrix for v as:

X =

[
γ α− iβ

α + iβ −γ

]
Multiplying X by -i gives:

−iX =

[
−iγ −β − iα
β − iα iγ

]
(3.47)

This means that we can also describe Q as:

Q = [I− iX] (3.48)
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Although it is clearly the case, it is important to note that Q acting on v has exactly
the same effect as the standard Pauli Operators acting on −iv

[ [1 0
0 1

]
+

αβ
γ

 IJ
K

] =
[ [1 0

0 1

]
+

−iα−iβ
−iγ

XY
Z

] (3.49)

In other words, conceptually, we are free to do either of the following:

1) View the 3-dimensional Vector Space in which the Bloch Sphere resides as being a
purely Imaginary Space, in which our Basis States may still be seen as being the Pauli
Operators. Or;
2) View the Space as Real-valued, in which case we replace the Pauli Operators with
Quaternions.

The consequence of either standpoint is that the Projected 2-Space has become a
Hyperbolic Space [19]; the geometry of which will be discussed in Chapter 6

This is of particular relevance since it is Ungar’s observation that the Metric for Density
Operator Spaces is a Hyperbolic Metric; indeed Ungar states in many of his papers that
“Gyrovector Spaces provide the setting for Hyperbolic Geometry just as Vector Spaces
provide the setting for Euclidean Geometry” [26]

3.4.2 Hyperbolic and Relativistic Aspects of Gyrovectors

Ungar cites the work of Llewellyn H Thomas (1903-1992) throughout his discussions of
Gyrovector Spaces [23] as further evidence of the Hyperbolic and therefore Relativistic
properties of the Density Operator. The Thomas Rotation and more particularly the
sequence of Rotations referred to as the Thomas Precession introduces Relativistic
considerations into the modelling of the quantum state, the consequence which is to
create a non-Euclidean Metric; specifically a Hyperbolic Metric [12]. An analysis of the
Thomas Rotation is outside the scope of this Thesis; we mention it here as a possible
avenue for further research. See also Ungar [23].

As an example of the Relativistic nature of the Gyrovector, we include a brief discussion
from [24] on Möbius Addition, an intrinsic part of Gyrovector formalism:

Definition 40. Möbius Addition ⊕: Let D = {z ∈ C : |z| < 1}

z ⊕ z =
z + z

1 + z∗z
=

2z

1 + |z|2
=

2

1 + |z|2
× z = λz (3.50)

This implies that z ⊕ z sends z = reiθ to z = λreiθ; in other words the argument of z is
unchanged and no rotation results. It is also of interest to note:

lim
|z|→1

z ⊕ z → z (3.51)

And further that for |z| � 1, z ⊕ z ≈ 2z which, together with Equation 3.51 is entirely
in accordance the Relativistic nature of Möbius Addition. Given that Complex Numbers
may be viewed as vectors and that velocity is also a vector quantity, ⊕ reflects the
different treatment required for velocities both close to and far from the Relativistic
limit. However, in general it is the case:

|z| < |z ⊕ z| < |2z| (3.52)
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3.4.3 The Gyrometric

Ungar states that the Density Operator ρ is the complete description of the Quantum
State and that Density Operators are the elements of what he refers to as a Gyrovector
Space [25]. Ungar defines ρ as follows:

ρ =
1

2

[
1 + γ α− βi
α + βi 1− γ

]
(3.53)

From page 61 of [24] we have:

Definition 41. The Gyrodistance d⊕ from point a to point b is given by:

d⊕(a,b) = ‖	a⊕ b‖ = ‖b	 a‖ (3.54)

where a and b are elements of a Gyrovector Space.

The notation ⊕ and 	 here stands for Gyroaddition and Gyrosubtraction respectively;
both Relativistic operations that have the following properties ∀ a,b,c ∈ G [24]:

d⊕(a,b) ≥ 0 (3.55)

d⊕(a,b) = 0⇐⇒ a = b (3.56)

d⊕(a,b) = d⊕(b,a) (3.57)

d⊕(a,c) ≤ d⊕(a,b)⊕ d⊕(b,c) (3.58)

This set of Axioms are identical to those pertaining to a Metric Space (See Section
2.2.6); Ungar refers to the Bures Fidelity Metric as being the correct distance function
across the Hyperbolic Plane.

Definition 42. The Bures Fidelity Metric F between Density Matrices ρu and ρv:

F(ρu, ρv) =
1

2

[
1 + u · v +

√
1− ‖u‖2

√
1− ‖v‖2

]
(3.59)

To demonstrate the Complex nature of the underlying Vector Space, consider the Bures
distance between ρu and ρu; which we have every right to expect should be zero:

F(ρu, ρu) =
1

2

[
1 + u · u +

√
1− ‖u‖2

√
1− ‖u‖2

]
= 0⇐⇒ u · u = −1⇒ ‖u‖2 = 1

Note that the condition that u · u = −1 suggests that u has an Imaginary magnitude.
This point will be further analysed in Chapters 6 and 7
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3.5 Summary of Findings for Quantum State Spaces

The long established use of the Bloch Sphere model motivates our investigation of
Universal Elliptic Geometry as a possible alternative; whereas, it has been Ungar’s
Gyrovector model that has motivated our investigations into Universal Hyperbolic
Geometry.

3.5.1 The Use of the Spinor Matrix

There is an alternative to the traditional use of the Pauli Operators as a means of
deriving ρ since the Spinor Matrix X of the Bloch Vector v can be employed to the
same effect:

ρ =
1

2

[
I + X

]
=

1

2

[
1 + γ α− iβ
α + iβ 1− γ

]
=

1

2
(I + σ · v)

Quaternions

Hamilton’s Quaternions may also be generated by the Spinor Matrix, since we have:

ρ =
1

2

[ [1 0
0 1

]
+

αβ
γ

 IJ
K

] =
1

2

[ [1 0
0 1

]
+

−iα−iβ
−iγ

XY
Z

] =
1

2

[
I− iX

]

3.5.2 The Nature of the Gyrovector

Ungar’s observation that the Gyrovector should be seen as an inherently Hyperbolic
entity is confirmed:

F(ρu, ρu) = 0⇐⇒ u · u = −1 (3.60)

since we have the following definition of Hyperbolic 2 -Space from Definition 11

H2 = {u ∈ R3 : |u|2 = −1} (3.61)

For a more detailed explanation see Chapter 6
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Chapter 4

Universal Geometry

We now come to the main topic of this Thesis; the work of Professor Norman J
Wildberger and the question of whether this system can be applied to representations of
the Quantum State. Wildberger’s approach is essentially to go back to the work of the
Ancient Greeks; most notably to that Apollonius of Perga (circa 262-190 BCE) and
Pappus of Alexandria (circa 290-350 AD).

Wildberger’s motivation in doing this appears to be twofold: firstly, it is the case that
these ancient techniques provide very visual derivations for what are otherwise abstract
algebraic expressions, and secondly since they can be adequately defined using Integer
or Rational values, the system does not require any analysis of infinite sums or other
definitions of Irrational and non-computable values [31, 32, 35].

Indeed, a striking feature of Universal Geometry is the fact that Irrational functions
such as Sine, Cosine etc., are not required. We make no particular use of this fact in the
Thesis, although we highlight it here as an avenue for possible further research.

We begin by presenting a method for parametrising a unit circle over an arbitrary Field;
one that forms the basis for the Universal distance functions encountered in this Thesis.

4.1 The Rational Parametrisation of the Unit Circle

The following formula would have been known to Euclid and may be used to generate
Integer values for side lengths of right triangles; otherwise known as Pythagorean
Triples, where m,n ∈ N:

(m2 − n2)2 + (2mn)2 = (m2 + n2)2 (4.1)

By dividing through by the RHS, this can be restated so as to generate Rational values
for right triangles with the hypotenuse of unit length:

(m2 − n2)2

(m2 + n2)2
+

(2mn)2

(m2 + n2)2
= 1 (4.2)

This is a rather unwieldy expression; by dividing through by m2 and substituting n
m

= t
we may achieve an expression of only one variable:

(1− t2)2

(1 + t2)2
+

(2t)2

(1 + t2)2
= 1 (4.3)
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Figure 4.1: The Rational Unit Circle

Figure 4.1 shows a Stereographic Projection (see Section 2.4) between Points on the unit
circle and Points on the vertical y-axis, with respect to the point [−1, 0]

Referring back to Equation 4.3 we see now the significance of t ; it is the Point t ∈ Q
which generates the traditional Cartesian Coordinates of the unit circle centred at [0,0]
Given in fact that we have t ∈ Q then all points generated lying on the unit circle will
also consist on Rational values.

Note that the point [-1,0] is a special case that represents t at infinity.

Note also the following Trigonometric Identities:

tan
θ

2
= t⇐⇒ cos θ =

(1− t2)
(1 + t2)

⇐⇒ sin θ =
(2t)

(1 + t2)
(4.4)

A recurring feature of Wildberger’s work is the achievement of a geometric
interpretation of familiar algebraic structures. Here we recall the fact that the angle
subtended at the Point [-1,0] between the x -axis and the blue line is half that subtended
at the [0,0] between the x -axis and the red line.

This Planar construction is developed to 3-dimensions for Elliptic and Hyperbolic
Universal Geometry in subsequent chapters. Another recurring mechanism is the
replacement of traditional linear distance measure with the quadratic area measure;
together with a rational treatment of the notion of angle. This gives rise to a completely
different view of Trigonometry which we will now briefly introduce.
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4.2 Rational Trigonometry

As opposed to traditional trigonometry, Wildberger’s approach does not involve the use
of irrational or transcendental quantities such as square-roots or cos θ and so no prior
development of the Continuum is necessary [33, 35]. Traditional notions of Distance and
Angle are replaced by the quadratic quantity called Quadrance and the proportional
quantity called Spread ; the claim being that the latter are both more general and more
powerful [32].

Definition 43. If A is the Point A = [xa, ya] and B is the Point B = [xb, yb] with
reference to a fixed pair of rectangular axes, then the Quadrance Q(A,B) is given by the
Equation:

Q(A,B) = (xb − xa)2 + (yb − ya)2 (4.5)

Using this definition we see that Quadrance is really the square of Euclidean Distance,
in which case Pythagoras’ Theorem can be stated thus:

The triangle ABC in Figure 4.2 has a right vertex at C precisely when:

Q(AC) +Q(BC) = Q(AB) (4.6)

Figure 4.2: Rational Trigonometry

Definition 44. Given that the Line BC in Figure 4.2 is perpendicular to l2 then the
Spread S(l1,l2) between Lines l1 and l2 is given by the Equation:

S(l1, l2) =
Q(B,C)

Q(A,B)
(4.7)

For the notion of Perpendicularity we introduce the notation: BC ⊥ l2

Wildberger’s proofs to these definitions rest on the following observations related to the
equations of Lines:

In terms of the Cartesian Coordinate system a line in the 2-D Euclidean Plane has the
equation y = mx+ c or more generally ax+ by + c = 0. However, this equation is not
unique to the line it defines as λ(ax+ by + c = 0) is the same line for any non-zero λ.
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It is the proportion of the coefficients a : b : c that uniquely specifies the line and this
proportion is used throughout Wildberger’s Universal Geometries and forms the basis of
his observation that Quadrance and Spread are equivalent [33]. Wildberger further notes
that the proportion can always be simplified thus:

a : b : c ≡ a

c
:
b

c
: 1 (4.8)

Two important concepts in any geometric or algebraic system are Parallel and
Perpendicular. Consider the Lines:

l1 = a1x+ b1y + c1 = 0 and l2 = a2x+ b2y + c2 = 0

Definition 45. The Lines l1 and l2 are Parallel precisely when:

a1b2 − a2b1 = 0⇐⇒ S(l1, l2) = 0 (4.9)

As a means of relating this back to the more familiar notion from Linear Algebra,
consider the determinant of the matrix A:

A =

[
a1 a2
b1 b2

]
(4.10)

where Det A = 0 implies either infinitely many or no solutions; meaning that the
column vectors of A represent either the same Line or two parallel Lines; so parallel in
either case.

Definition 46. The Lines l1 and l2 are Perpendicular precisely when:

a1a2 + b1b2 = 0⇐⇒ S(l1, l2) = 1 (4.11)

Referring now to Figure 4.3 we present (without proof) three Laws from Rational
Trigonometry purely as a point of interest:

A,B,C are Collinear precisely when (Q1 +Q2 +Q3)
2 = 2(Q2

1 +Q2
2 +Q2

3)

For any triangle ABC with non-zero Quadrances we have
S1

Q1

=
S2

Q2

=
S3

Q3

For any triangle ABC (S1 + S2 + S3)
2 = 2(S2

1 + S2
2 + S2

3) + 4S1S2S3

Figure 4.3: Rational Trigonometric Laws
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Chapter 5

Spherical and Elliptic Geometry

Both Spherical and Elliptic Geometry are forms of Projective Geometry and may be
seen as that geometry resulting from the Stereographic Projection of a Real
3-dimensional Subspace onto a 2-dimensional Plane. See Section 2.4

In Section 3.2 we saw that 2-dimensional Qubit Space may be described as a
2-dimensional Complex Surface referred to as S2 with an arbitrary State being:

cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 = ±|ψ〉 ∈ S2 (5.1)

This would imply that S2 is an Elliptic 2-Space. We also know that the Bloch Vector v
may be used to generate an alternative representation of the Quantum State as follows:

v = αx̂ + βŷ + γẑ←→ ρ =
1

2

[
1 + γ α− iβ
α + iβ 1− γ

]
(5.2)

Where the condition: (α, β, γ) ∈ R implies the existence of the Real 3-Space required to
begin this part of the investigation of Wildberger’s method’s as they apply to the
modelling of Quantum State Space.

5.1 Universal Elliptic Geometry

The Rational parametrisation on the unit circle in the Plane started with an equation
for generating Pythagorean Triples and ended with requiring the single parameter t.
Wildberger now asks us to consider the fact that a unit sphere in a Real 3-dimensional
Euclidean Space may be parametrised in a similar fashion so that we may parametrise
the sphere with Points in a Real 2-dimensional Plane. The following formula, which
holds for all a, b, c, d ∈ Z would have been known to Euclid and may be used to generate
Pythagorean Quadruples [35]:

(2abd2)2 + (2b2cd)2 + (b2d2 − a2d2 − b2c2)2 = (b2d2 + a2d2 + b2c2)2 (5.3)

This equation can in fact be extended to produce Pythagorean n-Tuplets [33]. Its
relevance here is the fact that it may be visualised as parametrising a parallelepiped
with Integer values on all sides plus the internal space diagonal. If we further imagine
this parallelepiped to have one vertex situated at the Origin of a 3-dimensional
Cartesian Coordinate System then we may parametrise a sphere with a radius:

r = (b2d2 + a2d2 + b2c2) (5.4)
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The expression given in Equation 5.3 is rather unwieldy; to simplify let (b, d) 6= 0 and
divide through by b2d2 giving:(2a

b

)2
+
(2c

d

)2
+
(

1− a2

b2
− c2

d2

)2
=
(

1 +
a2

b2
+
c2

d2

)2
(5.5)

Now make the following substitution:

Let X =
a

b
and let Y =

c

d

Hence:

(2X)2 + (2Y )2 + (1−X2 − Y 2)2 = (1 +X2 + Y 2)2 (5.6)

Now divide through by the RHS:( 2X

1 +X2 + Y 2

)2
+
( 2Y

1 +X2 + Y 2

)2
+
(1−X2 − Y 2

1 +X2 + Y 2

)2
= 1 (5.7)

So far we have done nothing more than present an interesting way of pinpointing exact
points on a sphere of unit radius. We need to look at the significance of the values X
and Y but first we draw attention to the fact that we may define a Bloch Vector as:

v =
( 2X

1 +X2 + Y 2

)
x̂+

( 2Y

1 +X2 + Y 2

)
ŷ +

(1−X2 − Y 2

1 +X2 + Y 2

)
ẑ (5.8)

That is to say, the Bloch Vector may be parametrised by a single Point in the
Equatorial Plane.

Wildberger Shows us that given the standard 3-dimensional Cartesian Coordinates
x,y,z ; any Point [X, Y ] in the 2-dimensional Equatorial Plane maps uniquely and exactly
to the Point V on the 2-dimensional Surface of the unit sphere S2 as described by
Equation 5.8 [35] Refer to Figure 5.1 and recall that the Equatorial Plane extends to
Infinity in all directions.

Figure 5.1: The Stereographic Projection [28]
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Let us now identify the vector v in Equation 5.8 with the Bloch Vector v; the sphere
depicted in Figure 5.1 is then the Bloch Sphere and will be denoted S2 as previously.
This Surface is analogous to the Riemann Sphere, otherwise known as the Elliptic
Riemann Surface C∞
In order to show that Wildberger’s derivations are consistent with more traditional
views of Elliptic Geometry, we will focus on the Metric or Distance Function given by
Wildberger and show that this is related to Metrics given for other Spherical Surfaces.

5.2 The Elliptic Distance Function

Proposition 7. The Fubini-Study Metric for the Bloch Sphere S2 and the Elliptic
Riemann Surface C∞ is related to Wildberger’s Elliptic Distance Function Q for a
general unit sphere via the Sine Function.

Proof. From Section 2.2.6 we have the following definition for the Fubini-Study Metric
ξ, also known as the Elliptic Distance Function dell [16] between Points φ and ψ on the
Surface S2:

dell(ψ, φ) = ξ(ψ, φ) = arccos

√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

(5.9)

Where |ψ〉 and |φ〉 are to be thought of as unit Bloch Vectors in R3 defining their
respective Points. For the sake of clarity; |ψ〉 and |φ〉 are NOT Quantum State Vectors
here.

Referring to Figure 5.1 we have Wildberger’s Universal Elliptic Distance Function Q :

Definition 47. Wildberger’s Elliptic Distance Function Q between Points V and V’ of
the Surface S2 is given as:

Q(V, V ′) = 1− (XX ′ + Y Y ′ + 1)2

(X2 + Y 2 + 1)(X ′2 + Y ′2 + 1)
(5.10)

where [X,Y] and [X’,Y’] are Points in the Equatorial Plane corresponding to V and V’
on the Sphere.

Required to Prove: ξ ∼ Q; firstly, we see that:

ξ(ψ, φ) = arccos

√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

=⇒ cos2(ξ) =
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

=⇒ sin2(ξ) = 1− 〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

Now looking at Q, recall that:

V = [X, Y ] =
[α
γ
,
β

γ

]
and V ′ = [X ′, Y ′] =

[a
c
,
b

c

]
Then Equation 5.10 becomes:

Q(V, V ′) = 1−

[α
γ

a

c
+
β

γ

b

c
+ 1
]2

[α2

γ2
+
β2

γ2
+ 1
][a2
c2

+
b2

c2
+ 1
] (5.11)
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Make single fractions where possible by multiplying through by the common
denominators:

Q(V, V ′) = 1−

[aα + bβ + cγ

cγ

]2
[α2 + β2 + γ2

γ2

][a2 + b2 + c2

c2

] (5.12)

Inverting the denominator and multiplying gives:

Q(V, V ′) = 1−
[aα + bβ + cγ

cγ

]2[ γ2

α2 + β2 + γ2

][ c2

a2 + b2 + c2

]
(5.13)

Cancel and combine as a single fraction:

Q(V, V ′) = 1− (aα + bβ + cγ)(aα + bβ + cγ)

(α2 + β2 + γ2)(a2 + b2 + c2)
(5.14)

Now if |ψ〉 is a Bloch Vector then |ψ〉 = αx̂+ βŷ + γẑ

and if |φ〉 is a Bloch Vector then |φ〉 = ax̂+ bŷ + cẑ in which case we have:

〈ψ|φ〉 = aα + bβ + cγ (5.15)

and, without loss of generality:

〈ψ|ψ〉 = α2 + β2 + γ2 (5.16)

Therefore:

Q(V, V ′) = 1− (aα + bβ + cγ)(aα + bβ + cγ)

(α2 + β2 + γ2)(a2 + b2 + c2)
= 1− 〈ψ|φ〉〈φ|ψ〉

〈ψ|ψ〉〈φ|φ〉
(5.17)

Hence:
Q(V, V ′) = sin2 ξ(ψ, φ) = sin2 dell(ψ, φ) (5.18)

Wildberger makes clear reference to this relationship between the Universal Distance
Function and the traditional versions but we have not been able to find an explicit proof
in his published material. Now that we have provided this we can conclude that the
Universal Elliptic Metric is consistent with traditional Elliptic Metrics. Next we will
look at a more traditional derivation of Elliptic Geometry in respect of the Riemann
Sphere denoted C∞ and referred to elsewhere in this Thesis as S2.
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5.3 Traditional Elliptic Geometry

In this section we present a more traditional derivation of Elliptic Geometry specifically
in relation to the Riemann Sphere. Again, we are specifically referring to the surface of
the sphere; this being a 2-dimensional Surface of Complex Structure that we denote S2

and Riemann referred to as C∞.

We will ascertain the nature of the mappings that exist between the elements of S2; this
time with reference to Richard Earl’s 2007 Trinity College lecture notes [4], which have
been an invaluable aid in formulating this Section. We present this Section to further
demonstrate the authenticity of Wildberger’s work.

Figure 5.2: The Riemann Sphere [28]

Definition 48. The Stereographic Projection is the Map P : C↔ C∞\{S} : P↔ Q

P[x, y] ∈ C = Q =
[ 2x

(1 + x2 + y2)
,

2y

(1 + x2 + y2)
,
(1− x2 − y2)
(1 + x2 + y2)

]
(5.19)

Proof. Let S be the point S = [0, 0,−1] called the South Pole of S2 then for all points
Q 6= S ∈ S2 the line through S and Q intersects the Equatorial Plane at P so that we
have P = [x, y, 0] ∈ C and the Point Q = [α, β, γ] ∈ S2

We know that Q lies on the line SP and that the vector
−→
SP =

xy
0

−
 0

0
−1

 =

xy
1


40



Hence:

Q = [0, 0,−1] + λ

xy
1

 = [(λx), (λy), (λ− 1)] (5.20)

Substituting these values of Q into the equation of the sphere gives:

(λx)2 + (λy)2 + (λ− 1)2 = 1 (5.21)

Expanding and simplifying gives:

(λx)2 + (λy)2 + λ2 − 2λ+ 1 = 1⇐⇒ λ2(x2 + y2 + 1)− 2λ = 0 (5.22)

Factorising gives:

λ[λ(x2 + y2 + 1)− 2] = 0⇐⇒ λ =
2

(x2 + y2 + 1)
(5.23)

Substitute the non-trivial value of λ into Equation 5.20 gives Q in terms of the x, y
coordinates of the Equatorial Plane:

(λ− 1) =
2

(x2 + y2 + 1)
− 1 =

2

(x2 + y2 + 1)
− (x2 + y2 + 1)

(x2 + y2 + 1)
=

2− (x2 + y2 + 1)

(x2 + y2 + 1)

Hence:

P(x, y) = Q =
[ 2x

(1 + x2 + y2)
,

2y

(1 + x2 + y2)
,
(1− x2 − y2)
(1 + x2 + y2)

]
Which we see is exactly equivalent to Wildberger’s method.

For the sake of completeness we present the inverse Map P−1 from the Surface S2 to the
Plane C without proof:

Definition 49. The Inverse Stereographic Projection is the Map
P−1 : C∞\{S} ↔ C : Q↔ P

P−1[α, β, γ] ∈ S2 = P =
α + iβ

1− |γ|
∈ C (5.24)

With regard to the uniqueness of P we have the following statement from page 88 of
Marcel Berger’s Geometry Revealed [2]:

“...the Stereographic Projection... puts the Euclidean Plane in a one-to-one
correspondence with the points on the sphere minus the [South] Pole. Thus if we identify
the Euclidean Plane with the Complex Plane C there is a Bijection between points on the

sphere in its entirety and C ∪∞... [with] the [South] Pole now corresponding to the
point at infinity...”

and from [4]:

So as to make P a Bijection, we adopt the Identification P(∞) ' S and P−1(S) ' ∞

Wildberger makes no particular mention of Quantum Mechanics as an application for
the methods presented here; in order to address this possibility, we turn now to the
question of what happens when we apply these projections to a Complex Vector Space.
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Chapter 6

Hyperbolic Geometry

Since, according to the First Postulate of Quantum Mechanics, a general Quantum State
is described by a Complex Vector in a Hilbert Space, we will now investigate the
implication that such spaces possess a geometry that is essentially Hyperbolic in nature.

We will see that Hyperbolic Geometry may be seen as a form of Projective Geometry
resulting from the Gnomonic Projection of a 3-dimensional Real Subspace onto a
2-dimensional Plane [see Section 2.4] or alternatively as the Complex counterpart of
Spherical Geometry [19].

We will look first at the method of deriving Hyperbolic Geometry put forward by NJ
Wildberger in [33][34] before comparing the Universal approach to that given in
traditional texts such as [19] and finally to the more contemporary Gyrovector Method
proposed by AA Ungar in [1][24][25].

As in Chapter 5 we will focus on the implied Metric as a means of comparing different
models.

Figure 6.1: MC Esher’s Circle Limit III
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6.1 Universal Hyperbolic Geometry

Wildberger’s approach is to project a 3-dimensional Euclidean Subspace onto a
2-dimensional viewing plane and claims that through the incorporation of the Dual Line
of Apollonius of Perga, together with the Cross Ratio of Pappus of Alexandria, he
derives a Metric, and hence a geometry that is essentially Hyperbolic in nature.

The method is to consider the intersection between lines through the origin of E3 and
the Plane z = 1 which is a Tangent Plane to the North Pole O ; referring to Figure 6.2.
The first thing to notice about the Gnomonic Projection is the duplication of the
Northern and Southern hemispheres under this projection.

Figure 6.2: The Gnomonic Projection of a Sphere [17]

Referring to Figure 6.2 we see that the line extending through RA intersects the
Tangent Plane at the point P ; this is the Gnomonic Projection of the Point A.

We see also that the Line l is the Gnomonic Projection of the angled Plane shown
shaded. Wildberger Refers to this tangent plane as a 2-dimensional Hyperbolic Plane,
which we will denote H2.

Henceforth, we will call the Point P the Hyperbolic Point P and the Line l the
Hyperbolic Line L

We now look at Wildberger’s derivation of the Hyperbolic Plane H2 taken from [33] and
[34]
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Recall from Chapter 4 the observation that a Line x+ y = z can be uniquely defined by
the proportion [x : y : z] which is equivalently stated:

x+ y = z ∼ [x : y : z] ∼
[x
z

:
y

z
: 1
]

(6.1)

Definition 50. A Hyperbolic Point P is defined as the proportion [x : y : z] where
x+ y = z is a Line through the Origin of the 3-dimensional Subspace E3:

P ≡ [X, Y ] =
[x
z
,
y

z

]
(6.2)

Definition 51. A Hyperbolic Line L is defined as the proportion (l : m : n) where
lx+my + nz = 0 is the equation of a Plane through the Origin of the 3-dimensional
Subspace E3:

L ≡ lX +mY = n (6.3)

Definition 52. A Null Point occurs when a Point lies on the unit circle of H2

x2 + y2 − z2 = 0⇐⇒ l2 +m2 − n2 = 0 (6.4)

This refers to the situation where the original Line or Plane in the 3-dimensional
Subspace is parallel to the x,y Plane of E3

Definition 53. A Duality exists between Hyperbolic Points and Lines such that:

P = L⊥ ⇐⇒ L = P⊥ ⇐⇒ x : y : z = l : m : n (6.5)

Where the notation P = L⊥ means that P is the Pole of L whilst L is the Polar of P .
This is a reference to the Pole/Polar relationship given in the work of Apollonius of
Perga which we will look at shortly. Perpendicularity has a particular meaning in the
Hyperbolic Plane and is defined thus:

Definition 54. Lines L1 and L2 are Perpendicular when L1 passes through L⊥2 . This
happens exactly when L2 passes through L⊥1 giving:

l1l2 +m1m2 − n1n2 = 0⇐⇒ x1x2 + y1y2 − z1z2 = 0 (6.6)

The consequence of Equation 6.6 is that for Universal Hyperbolic Geometry it is
perfectly logical to refer to Points as well as Lines as being perpendicular to one
another. See pages 5 and 6 of NJ Wildberger’s Universal Hyperbolic Geometry I [33] for
the source material presented in Section 6.1.
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6.1.1 Apollonius of Perga

Since the Metric or Distance Function for H2 is derived from the Pole/Polar Duality
mentioned above, we will now look at this construction in more detail. First devised by
Apollonius as a means of exactly locating the Tangent Points on a given circle using
only a straight edge [33], the method is as follows:

Figure 6.3: The Pole/Polar Duality of Apollonius

Refer to Figure 6.3:

1) Start with the arbitrary Point a and a given circle.
2) Construct 2 arbitrary Lines from a through the Points α, β and γ, δ
3) Connect α− γ and β − δ and mark the resulting intersection at c
4) Construct the Lines αδ and βγ and mark the resulting intersection at b
5) Construct the Line C=ab

Definition 55. The Line C is the Polar Line of the Point c

Definition 56. The Point c is the Pole of the Line C

Wildberger adopts the following notation to describe this relationship (duality):

A = a⊥ ⇐⇒ A⊥ = a (6.7)

B = b⊥ ⇐⇒ B⊥ = b (6.8)

C = c⊥ ⇐⇒ C⊥ = c (6.9)

A property of this construction is that for any point a lying outside the circle, the Polar
Line A intersects the circle at the tangent points on the circle to the Point a
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6.1.2 Pappus of Alexandria

Now that we have defined the duality of Points and Lines, we develop further the
method of defining distance for Wildberger’s Universal Hyperbolic Geometry. We start
by presenting 2 facts known from antiquity:

Definition 57. Pappus’ Cross Ratio Theorem: if a,b,c,d are 4 collinear Points in any
order, then the Cross Ratio R is given by:

R(ab : cd) =
|ac|
|ad|
÷ |bc|
|bd|

(6.10)

Corollary 58. a,b,c,d are a Harmonic Range if and only if:

|ac|
|ad|
÷ |bc|
|bd|

= 1 (6.11)

We refer to this as the work of Pappus due to the fact that it was Pappus that observed
the invariance of this ratio under a projection.

Figure 6.4: Pappus’ Harmonic Range

It is Apollonius’ observation that the Pole/Polar duality creates a Harmonic Range as
illustrated in Figure 6.4 where we see that, for example R(ab : αβ) = 1 for any arbitrary
Point a

Wildberger uses these facts to define the Hyperbolic Distance between Points P and P ′
in H2 as the Cross Ratio of the intersections between these Points and their respective
Polar Lines. See page 18 of [33]

An elegant algebraic form exists for this ratio due to the fact that the equation of a
general Hyperbolic Point P and the equation of its Polar Line L = P⊥ share the same
coefficients in the Projective Plane z = 1 also denoted H2. See Definitions 53 and 59

Definition 59. Let the Projective Plane have coordinate axes [X, Y ], then if P is the
Point [a : b] then the Line L = P⊥ has the equation aX + bY = 1.

Example 12. In Figure 6.4 we have a ≈ [1.8 : 0] and A = a⊥ is the Line
1.8X + 0Y = 1 =⇒ X ≈ 0.55
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6.1.3 Universal Hyperbolic Distance

To arrive at Wildberger’s final definition of distance, we repeat the process described in
Section 6.1.1 to produce the two Points and two Dual Lines shown in Figure 6.5. The
Cross Ratio of the 4 Points P,Q,R,S is used to generate the Universal Hyperbolic
Distance between P and Q ; where we recall that the Hyperbolic Points P ,Q,R,S
would themselves be Lines in an underlying 3-Space, so that:

The Point P = [a
c

: b
c
] = [a : b : c] ∈ H2 is the Line (ax+ by − cz) ∈ E3

The Line P⊥ = (a
c
X + b

c
Y = 1) = (a : b : c) ∈ H2 is the Plane ax+ by − cz = 0 ∈ E3

We see that the Point R lies on P⊥ just as S lies on Q⊥ so that the coefficients of the
Points are also solutions to the Lines. After Cartesian Coordinates are applied to the
intersections P ,Q,R,S we arrive at the definition given on page 17 of [33] where
Wildberger states the distance between Hyperbolic Points to be:

Definition 60. The Universal Hyperbolic Distance Function between points
P = [a : b : c] and Q = [α : β : γ] is given as:

q(P ,Q) = 1− (aα + bβ − cγ)2

(a2 + b2 − c2)(α2 + β2 − γ2)
(6.12)

Figure 6.5: The Hyperbolic Distance Function

Figure 6.5 is drawn with a vertical symmetry such that the distance PQ must equal
AB by any measure.
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6.2 Traditional Hyperbolic Geometry

Before we compare Wildberger’s Universal Hyperbolic Distance with the more
traditional definitions we will present the description of Hyperbolic Geometry given in
John Ratcliffe’s Foundations of Hyperbolic Manifolds [19]. On page 61 Ratcliffe states
that:

“... the Hyperbolic n-Space F n should be a sphere of Imaginary radius...”

with the formal definition given as:

F n = {x ∈ Rn+1 : |x|2 = −1} (6.13)

We note that it was consideration of the case for n = 3 that led Hamilton to develop the
Quaternion methods discussed in Section 3.4.1:

F 3 = {x ∈ R4 : |x|2 = −1 : x = x+ y + z + t} (6.14)

We are considering the projection of a 3-Space onto a 2-dimensional Plane denoted H2

so that our definition becomes:

H2 = {x ∈ E3 : |x|2 = −1} (6.15)

Proposition 8. A Line L through the Origin of E3 describes a Unique Point P ∈ H2

Proof. Any Line L passing through [0, 0, 0] is uniquely described by the proportion of
the coefficients of L:

L = (a : b : c) (6.16)

In the 3-dimensional Subspace E3, the coordinates of any Point P that lies in the plane
z = 1 will be of the form [x : y : 1] so that L can be defined thus:

L =
(a
c

:
b

c
: 1
)

=⇒ c 6= 0 (6.17)

The case where c = 0 refers to a Line lying in the x, y Plane of E3 which does not
intersect Projective Plane z = 1. For all cases where c 6= 0 the Line L projects onto H2

at the unique point:

P =
[a
c
X,

b

c
Y
]

(6.18)

where [X,Y] are the orthogonal coordinate axes of H2 so that we have
L = (a : b : c) = P = [X, Y ] and we can say that, clearly L and P are in a one-to-one
relationship. We should make clear that we are talking about a Line in E3 and NOT a
Vector.

Definition 61. The Gnomonic Projection P is the Map: P : E3 ←→ H2 : L↔ P

On page 3 of [31] Wildberger defines a bilinear form between two vectors of a
3-dimensional Subspace which turns out to be the Lorentzian Inner Product given on
page 54 of [19]; from both sources, we have:

[a, b, c] ◦ [α, β, γ] = aα + bβ − cγ (6.19)
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which suggests that the z -axis of the underlying 3-space should indeed be thought of as
being a purely Imaginary axis. If we consider a general vector x in E3 then we have:

xx,y,z : x ◦ x = x2 + y2 − z2 (6.20)

Where x ◦ x is the Lorentzian Inner Product of x with itself:

x ◦ x = |x|2hyp (6.21)

Ratcliffe provides the following two definitions on pages 58 and 59 of [19] which would
be useful to include here:

Definition 62. Two vectors x and y in E3 are Lorentz-Orthogonal ⇐⇒ x ◦ y = 0

Definition 63. The Lorentzian angle between x and y is the Real number η(x,y):

x ◦ y = |x||y| cosh η(x,y) ⇐⇒ cosh η(x,y) =
x ◦ y
|x||y|

(6.22)

Having noted that Wildberger’s bilinear form is just the Lorentzian Inner Product, we
look now at the cross product. Again we see that Wildberger’s definition of the
Hyperbolic Cross Product given on page 7 of [33] is the Lorentzian Cross Product
defined by Ratcliffe on page 62 of [19]:

Definition 64. The Lorentzian Cross Product of vectors x and y in E3 is:

x⊗ y = J(x× y) : J =

−1 0 0
0 1 0
0 0 1

 (6.23)

Wildberger’s notation reads equivalently:

J(x1, y1, z1 : x2, y2, z2) = (y1z2 − y2z1, z1x2 − z2x1, x2y1 − x1y2) (6.24)

We are now ready to compare the Universal distance with the traditional definitions.

6.3 The Hyperbolic Distance Function

It is the method by which measurement in the Hyperbolic Plane is calculated that most
clearly demonstrates the difference between Universal Hyperbolic Geometry and the
more traditional models. The Hyperbolic Distance Function dhyp given in Equation 2.11
involves calculating the coordinates of the 4 points A,B,C,D shown in red in Figure 6.5
where the circle ABDC is centred at the intersection of the Tangent Lines from C and
D. On page 121 of Deza and Deza’s Encyclopaedia of Distances [16], the Hyperbolic
Distance Function is given also in term of a Cross Ratio as:

dhyp(A,B) =
1

2
ln

(C − A)(D −B)

(C −B)(D − A)
(6.25)

which has been slightly re-stated here so as to be read with reference to Figure 6.5.

On page 17 of [33] and again on page 14 of [34] Wildberger gives the relationship
between q and dhyp as:

q(P ,Q) = − sinh2 dhyp(A,B) (6.26)
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Before we look closer at the differences in these definitions of distance we highlight a
major difference in the geometry implied in Figure 6.5; the traditional approach shown
in red is contained within the bounding circle, whereas the Universal method extends
beyond it.

From page 61 of John Ratcliffes’s Foundations of Hyperbolic Manifolds [19] we have the
Hyperbolic Distance Function dH(A,B) ∈ H2 given as the Real Number η(x,y) such
that:

dH(A,B) = η(x,y) (6.27)

for vectors x and y in E3

By Definition 63 this would imply that:

dH(A,B) = cosh−1
x ◦ y

|x||y|
(6.28)

⇐⇒ cosh dH(A,B) =
x ◦ y

|x||y|
(6.29)

⇐⇒ cosh2 dH(A,B) =
(x ◦ y)2

|x|2|y|2
(6.30)

Using Osborne’s Rule: cosh2 x− sinh2 x = 1 we have:

1 + sinh2 dH(A,B) =
(x ◦ y)2

|x|2|y|2
(6.31)

⇐⇒ − sinh2 dH(A,B) = 1− (x ◦ y)2

|x|2|y|2
(6.32)

By Equation 6.19 this becomes:

⇐⇒ − sinh2 dH(A,B) = 1− (aα + bβ − cγ)2

(a2 + b2 − c2)(α2 + β2 − γ2)
= q(A,B) (6.33)

Ratcliffe notes that η(x,y) = 0 if and only if x and y are positive scalar multiples of each
other. This means that any two vectors that lie on the same ray emanating at the origin
of E3 have a Hyperbolic Distance between them of zero. For distances between points
inside the unit circle (the Poincaré Disk) of H2 the following Identity is now shown:

q(P ,Q) = − sinh2 dhyp(A,B) (6.34)

which is equivalent to the form given in Section 2.2.6:

Definition 65. The Hyperbolic Distance dhyp between ψ and φ is:

dhyp(ψ, φ) = arccosh

√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

(6.35)

where |ψ〉 is the Dirac Notation for the unit vector tied to the origin of a 3-dimensional
Euclidean Space that parametrises an Imaginary unit sphere [19] and ψ is a Point on the
surface.
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Chapter 7

Conclusions and Further Research

The original aim of the Thesis was to question the extent to which Quantum 2-States
can be realised by Wildberger’s Universal Hyperbolic Geometry and highlight the
advantages or disadvantages of so doing. We have seen in Chapter 3 that the standard
definition of a 2-D Cubit Space is:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (7.1)

Where |ψ〉 describes a Point on the 2-dimensional Elliptic Surface S2 and can only be
used to represent the Pure State. Further to this, a General Quantum State may be
represented as a Density Operator:

ρ =
1

2

[
1 + γ α− iβ
α + iβ 1− γ

]
(7.2)

Where both |ψ〉 and ρ are derived from the Bloch Vector:

v = αx̂+ βŷ + γẑ (7.3)

7.1 2-Dimensional Universal Qubit Space

What justification is there for employing NJ Wildberger’s Universal Geometry for
Quantum Computation? In QC in general, the geometric concept of a vector-length is
considered analogous to a probability. We have seen that for the Unit Vector, the
Universal Elliptic distance function is appropriate and generates a model equivalent to
the Bloch Sphere from an underlying Real 3-Space. Whereas, where the underlying
3-Space is Imaginary we would turn to Universal Hyperbolic distance. It is worth
putting these distance functions side by side:

Q(ρ1, ρ2) = 1− (aα + bβ + cγ)2

(α2 + β2 + γ2)(a2 + b2 + c2)

q(ρ1, ρ2) = 1− (aα + bβ − cγ)2

(a2 + b2 − c2)(α2 + β2 − γ2)

It is really rather remarkable that the Stereographic Projection of a Real Space as
compared to the Gnomonic Projection of a Complex Space can produce expressions
defining respective distances in such a concise and similar fashion. We have seen that
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this is indeed a key feature of Wildberger’s Universal approach [33, 34] from which the
author has gained a level of familiarity with the relative Spaces encountered that would
not have been possible via the traditional algebraic route. We submit that for the
purposes of introducing quantum spaces to new students, Wildberger’s model and
method of derivation has merit.

7.2 Universal Elliptic Qubit Space

We have seen that by employing Universal Elliptic Geometry we can generate a vector
of unit length from any Point [X,Y] in the Real 2-dimensional Euclidean Plane E2 and
that the set of all such vectors generates the unit Sphere, across the surface of which we
have the following distance function:

Q(V, V ′) = 1− (XX ′ + Y Y ′ + 1)2

(X2 + Y 2 + 1)(X ′2 + Y ′2 + 1)
(7.4)

Where [X,Y] and [X’,Y’] are Points in the Equatorial Plane corresponding to V and V’
on the Sphere. See Definition 47 for the proof of the equivalence of this distance function
with both the Fubini-Study Metric ξ and the traditional Elliptic distance function dell

7.3 Universal Hyperbolic Qubit Space

Turning now to the main topic under investigation; 2-D Cubit Space and the possible
Universal Hyperbolic representation thereof. We have:

ρ =
1

2

[
1 + γ α− iβ
α + iβ 1− γ

]
←→ v = αx̂+ βŷ + γẑ (7.5)

From Chapter 6 we have a Hyperbolic Point P defined as the proportion [x : y : z] where
x+ y = z is a Line through the Origin of the 3-dimensional Subspace E3:

P ≡ [X, Y ] =
[x
z
,
y

z

]
(7.6)

We can say therefore that we have the following map:

ρ =
1

2

[
1 + γ α− iβ
α + iβ 1− γ

]
←→ v = αx̂+ βŷ + γẑ ←→ P =

[α
γ
,
β

γ

]
∈ H2 (7.7)

Apart from the ability to picture the system, what can we say about the “Universal”
analysis of the system. If we take 2 arbitrary Points P and P ′ then the Universal
Hyperbolic distance between them is:

q(P ,P ′) = 1− (x ◦ y)2

|x|2|y|2
= 1− (aα + bβ − cγ)2

(a2 + b2 − c2)(α2 + β2 − γ2)
(7.8)

Here, x and y are the vectors of E3 for P and P ′ respectively and x ◦ y is the Lorentzian
Inner Product; similarly |x| is the Lorentzian Magnitude so that we have an Inner
Product Space.
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7.4 The Universal Hyperbolic Plane

Wildberger’s observation that Universal Hyperbolic Geometry creates a more complete
picture of the Hyperbolic Plane than that seen in the Poincaré Disk model is also
worthy of further research. What, for example is the significance of a Point P lying
outside of the unit circle of H2, since any vector v in E3 will by necessity project to a
point inside it? On page 126 of Exploring the Infinite [6] C Esher puts this question
rather well, with reference to Circle Limit III:

Figure 7.1: MC Esher’s Circle Limit III

“...All these series arise at a ninety-degree angle from infinitely far away... and again
loose themselves there. Not a single component of these series ever reaches the boundary

line. Outside it, however, is absolute nothingness. Yet the round world cannot exist
without that emptiness around it... because in the nothingness are located the immaterial

and rigidly geometrically ordered centers of the circle arcs out of which the skeleton is
made up...”

To elaborate, we refer to the diagram of the Universal Hyperbolic Plane where the black
circular line is Esher’s bounding line and the Line at Infinity of the Poincaré Disk.

Figure 7.2: The Universal Hyperbolic Plane

Hyperbolic Distances to Points on this line are infinitely large and are generated by
projecting vectors in the xy-Plane of the underlying 3-Space; in other words, they would
have no Imaginary element. The black line represents the outer boundary for all
traditional views of the Hyperbolic Plane. Wildberger’s approach allows us to consider
H2 in its entirety. Every solid line (red, blue and black) represents Points equidistant
from the Point marked O ; hence every solid line is a Hyperbolic Circle centred at O .
The red dotted line crosses every circle orthogonally. It is a Hyperbolic straight Line as
it represents the shortest distance between Points along it. The red dotted line is the
circle arc whose centre is in Esher’s “nothingness outside”. The blue dotted line is the
second Line at Infinity and we draw attention to the fact that this Line and the Point O
are in the dual relationship described by Apollonius.
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Appendix A

Euclidean Geometry

This Thesis investigates various forms of Non-Euclidean Geometry; which as the name
suggests are geometric systems defined primarily by what they are not. Euclid
formulated his geometry in approximately 300BCE in one of the most influential books
in the whole of Mathematical history; The Elements is an encyclopaedia of the
Mathematical knowledge of the day. Euclid’s geometry has one very useful property in
that it is the geometry of the Universe as we experience it in our day-to-day lives; for
this reason it is the geometry of Newtonian Mechanics which we now know to be an
approximation of universal Mechanics. The geometry most appropriate to Einstein’s
Relativity for example is of a quite different nature. As one would expect, the rules
defining Euclidean Geometry have been much improved in the 2300 years since The
Elements and we present now a breakdown of Hilbert’s Axioms as a more modern and
rigorous set of rules and definitions. The complete picture of Euclidean Geometry is a
summation of the various sub-geometries which will now be defined. Main sources:
[5][8][13]

A.0.1 Incidence Geometry

Definition 66. The following three axioms formulate a geometry consisting of points
and lines plus a relationship called Incidence:

1st Axiom of Incidence: For every point P and for every point Q not P there exists
a unique line l that is incident with P and Q
hence P and Q are called Collinear

2nd Axiom of Incidence: For every line l there exists at least two distinct points
incident with l

3rd Axiom of Incidence: There exist three distinct points with the property that no line
is incident with all of them

Although this relationship is undefined it may be interpreted as “lies on” or “passes
through”.

A.0.2 Betweenness

Definition 67. The notation A ∗B ∗ C is interpreted to mean that point B is between
points A and C and all three are Collinear
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1st Axiom of Betweenness: A ∗B ∗ C ⇐⇒ C ∗B ∗ A and points A, B and C are collinear
2nd Axiom of Betweenness: Given any two distinct points B and D on l

there exist points A, C and E where A,B,C,D,E are collinear
such that A ∗B ∗D, B ∗ C ∗D and B ∗D ∗ E

3rd Axiom of Betweenness: If A, B and C are three distinct collinear points
then one and only one of the points is between the other two

4th Axiom of Betweenness: For every line l and for any A, B and C not on l, then:

4.1 If A and B are on the same side of l and if B and C are on the same side of l
=⇒ A and C are on the same side of l

4.2 If A and B are on opposite sides of l and if B and C are on opposite sides of l
=⇒ A and C are on the same side of l

4.3 If A and B are on opposite sides of l and if B and C are on the same side of l
=⇒ A and C are on opposite sides of l

A.0.3 Congruence

Definition 68. The relation known as Congruence (∼=), between line segments and
angles has the following properties:

1st Axiom of Congruence: If A and B are distinct points, and if A′ is any point,
then for each Ray r emanating from A′ there is a unique
point B′ on r such that B′ 6= A′ and AB ∼= A′B′

2nd Axiom of Congruence: If AB ∼= CD and AB ∼= EF then CD ∼= EF
3rd Axiom of Congruence: If A ∗B ∗ C, A′ ∗B′ ∗ C ′, AB ∼= A′B′, BC ∼= B′C ′

then AC ∼= A′C ′

4th Axiom of Congruence: Given any angle between Rays AB and BC
and given a Ray A′B′ then there exists a unique Ray B′C ′

such that ∠ABC ∼= ∠A′B′C ′

5th Axiom of Congruence: If ∠A ∼= ∠B and ∠A ∼= ∠C then ∠B ∼= ∠C
6th Axiom of Congruence: If 2 sides and the included angle of 4A are congruent

respectively to 4B then 4A ∼= 4B

A.0.4 Continuity

Definition 69. The notion of Continuity requires the assumption of the following
Principles of Continuity

Lemma 1. The Circular Continuity Principle: If a circle has one point inside and one
point outside another circle, then the two circles intersect at two points.

Lemma 2. The Elementary Continuity Principle: If one endpoint of a segment is inside
a circle and one end is outside the same circle, then the segment intersects the circle.

Archimedes’ Axiom: Given any segment AB then there exists a segment CD
such that n · AB ∼= CD

Aristotle’s Axiom: Given any Right Triangle ABC with Right angle at B, then
as BC is extended AC extends indefinitely.

Dedekind’s Axiom: Is the geometric analogue of the continuous nature of the
Real Number Line.
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Archimedes’ Axiom is not purely a geometric axiom as it asserts the existence of
number. For a fuller description of Continuity see [8]

A.0.5 Neutral Geometry

The Axioms defined so far formulate a geometry that was dubbed Absolute Geometry by
Janus Bolyai and later in 1965 the term Neutral Geometry was applied. This geometry
is neutral in the sense that it leaves out the final and most controversial of all the
Axioms [8]

A.0.6 Axioms of Parallelism

Hilbert’s Parallel Axiom for Euclidean Geometry

The Axiom of Parallelism completes the list of Axioms that define Euclidean Geometry
[8]. It is exactly this Axiom that differentiates Euclidean, Spherical (Elliptic) and
Hyperbolic geometries. For centuries it was believed that this Axiom, known as Euclid’s
Fifth Postulate was redundant in that it could be deduced from Euclid’s first four
postulates:

Euclid’s First Postulate: That there exists a straight line segment from any point to any
point.
Euclid’s Second Postulate: That any straight line segment can be extended indefinitely in
either direction.
Euclid’s Third Postulate: That it is possible to describe a circle with any centre and any
radius.
Euclid’s Fourth Postulate: That all right-angles are equal.

Compared to these four seemingly self-evident postulates, the fifth has proved to be a
rather slippery subject and has had a profound influence on the development of
Mathematics.

Definition 70. For every line l and every point P not on l there exists at most one line
m through P such that m is parallel to l

Throughout the 19th Century, variations on Euclid’s postulates lead to the independent
discovery of alternative geometric realities; most notably by Carl Friedrich Gauss, János
Bolyai, Nikolai Ivanovich Lobachevsky and later developed by Bernhard Riemann. In
each case, it was the negating of the need for the Parallel Postulate that gave rise to the
new insights.

For the Euclidean case as stated in Definition 70, also known in this form as Playfair’s
Axiom, there is one and only one line m through P so that the notion of Parallelism is
well defined and seemingly obvious; although all attempts to deduce the Parallel
Postulate from the others given here have failed!

For the Elliptic case, where every point on the surface of a sphere is distinct there are no
lines m; as each Great Circle intersects twice at antipodal points. For the Hyperbolic
case, there are infinitely many lines m; as hyperbolic straight lines intersect only at the
limiting boundary which is infinitely far away. It is, in the author’s opinion a rather
wonderful fact that the Hyperbolic reality of Parallel lines meeting at infinity chimes
exactly with the observed Euclidean reality of perspective.
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Appendix B

The Geometry of Group Structures

In Chapters 5 and 6 we present our findings on the work of Norman J Wildberger as it
might apply to representations of a single Quantum State. Since, as we have seen, Group
Structures play an important role in the formalism we present here a fully constructable,
geometric understanding of an Abelian Group purely for the reader’s interest.

B.1 Group Structure on the Circle

Figure B.1: The Group Structure on the Circle

In order to demonstrate that the Abelian Group Axioms given in Section 2.3 exist in a
completely geometric form we consider an arbitrary binary operation denoted (∗) for
Points A and B on a general circle. Refer to Figure B.1

We define A ∗B as being the intersection resulting from taking a line parallel to AB
through an arbitrary but fixed point called O also on the circle. This is referenced to
the the work of Franz Lemmermeyer [15] and S. Shirali [7]. We see that if A and B are
on the circle then so is A ∗B so that we have Closure and that:

(G1) A ∗ (B ∗ C) = (A ∗B) ∗ C
(G4) A ∗B = B ∗ A
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The special case A ∗ A is the intersection of the line parallel to the Tangent Line at A
taken through O so that A ∗ A ∼ A2 has an interpretation. See Figure B.2

Figure B.2: The Special Case A ∗ A ∗ A ∗ ... ∼ An

Staying with Figure B.2, if after n-repetitions the point An is Incident (see Section
A.0.1) with the point O, then the points {A,A1, ...An} form a Regular n-sided Polygon.

Proof. Let A = z ∈ C : |z| = 1 where z = ei2π then z
1
n = e

i2π
n is called the Primary Root

of z which has exactly n-roots in total, equally spaced around the unit circle of the
Argand Diagram.

Referring now to Figure B.3 we see that the point O acts as an Identity:

(G2) A ∗O = O ∗ A = A

since the line through O parallel to AO is the line AO. If we then define A−1 as the
intersection resulting from taking a line through A parallel to the Tangent Line at O
then we also have the existence of an Inverse:

(G3) A ∗ A−1 = A−1 ∗ A = O

Figure B.3: Existence of Inverse and Identity for the Group Structure
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