Interaction Histories:
From Experience to Action and Back Again *

Naeem Assif Mirza, Chrystopher L. Nehaniv, Kerstin Dautenhahn, René te Boekhorst
Adaptive Systems Research Group, School of Computer Science
University of Hertfordshire, College Lane, Hatfield, AL10 9AB. United Kingdom
{N.A.Mirza,C.L.Nehaniv,K.Dautenhahn,R.teBoekhorst}@herts.ac.uk

Abstract—We describe an enactive, situated model of interaction history based around a growing, informationally self-structured metric space of experience that is constructed and reconstructed as the robot engages in sensorimotor interactions with objects and people in its environment. The model shows aspects of development and learning through modification of the cognitive structure that forms the basis for action selection as a result of acting in the world. We describe robotic experiments showing prediction of the path of a ball and an interaction game “peekaboo”.

Index Terms—Interaction History, Information Theory, Robotic Control Architectures

I. INTRODUCTION

A challenge of research into situated, enactive cognition in robots is to reach beyond reactive architectures to architectures that can reflect the time-extended behaviour characteristic of humans and many animals. We are interested in how cognitive structures in natural and artificial systems can arise that capture the history of interactions and behaviours of an agent actively engaged in its environment, without resorting to symbolic representations of past events.

We introduce an architecture that has at its heart a changing dynamic structure describing the space of experience of the agent or robot. The robot chooses how to behave in the world based on what it has experienced, and this results in further experience and modification of previous experience establishing a tight coupling of experience and action.

This paper proceeds by presents our concept of an interaction history and then describes the model and architecture that we use. Finally we describe experiments conducted on a robot platform that investigate the capabilities of the model.

II. INTERACTION HISTORY

We use a working definition of an interaction history as the temporally extended, dynamically constructed and reconstructed, individual sensorimotor history of an agent situated and acting in its environment including the social environment. The first key part of the definition is that the agent is situated and actively acting within its environment, that is the history is not a disembodied memory, but an active part of the interaction of the agent and its environment. This follows the idea of structural coupling and enactive cognition of Maturana and Varela [1] and the concept of situated cognition [2]. Remembering is then the effect of historical interactions on the actions of an agent in response to a particular situations [3]. This brings in the next key part of the definition, that the history is dynamically constructed and reconstructed. In other words, interactions with the environment construct the structures that are used for remembering how to act. Thus, memory consists not of static representations of the past that can be recalled with perfect clarity, but rather is the result of an accumulation of interaction with the environment manifesting as current action.

An important aspect of the interaction history is that it is constructed from the perspective of the individual, that is, it is autobiographical in nature. In terms of the accepted separation of memory types due to Endel Tulving [4], this would be episodic memory as opposed to semantic memory. That is, it is the memory of events (with a temporal aspect and, usually, a personal aspect), rather than the memory of knowledge and categories. However this apparently clear dichotomy is not applicable to a description of interaction history as, through the process of reconstruction, categories and knowledge may emerge from many overlapping experiences, while certain unique events may still stand out and give memory its episodic nature. While we do not claim that an interaction history can describe all aspects of (human) memory, we believe that exploring the features of an interaction history may give insights into the nature of memory as a whole. The final part of the definition that we would highlight is that it need not be representational but must be grounded in the sensorimotor experience of the agent.

A. Extended Temporal Horizon

A robotic agent with an interaction history has the potential to act on an extended temporal horizon [5] resulting in behaviour that goes beyond that of a reactive agent or an affective agent. The distinction is that behaviour will be

*The work described in this paper was conducted within the EU Integrated Project RobotCub (“Robotic Open-architecture Technology for Cognition, Understanding, and Behaviours”) and was funded by the European Commission through the E5 Unit (Cognition) of FP6-IST under Contract FP6-004370.
modulated by temporally extended past experience as well as by internal state (affect) and immediately by environmental stimuli (reactivity).

B. Development and Learning

A further aspect of an interaction history which manifests itself as modification of behaviour based on a history of previous interactions is that it can serve to scaffold learning and development of a situated agent. The key here is how previous experience is used to affect current and future behaviour. For example, classical conditioning or a two-process reinforcement learning based on positive and negative reinforcers [6] are potential mechanisms for connecting previous experience with choice of action. Development can be seen as the increasing richness of the connections of experience with action, again mediated by a suitable mechanisms.

III. ENACTIVE ROBOT MODEL OF INTERACTION HISTORY USING SENSORIMOTOR EXPERIENCE

We describe a computational robotic model (Fig. 1) that illustrates how an interaction history can be integrated into the control of a robot using the concepts described in the previous section.

The basic architecture consists of processes to acquire sensory and motor values from the robot as it acts in the environment, from this a metric space of past interaction experiences is constructed. A further process continuously examines current experience in the context of the space of previous experience and selects actions to execute.

![Fig. 1. Interaction history based control architecture.](image)

A. Sensory and Internal Variables

The sensory information available to the robot falls into three broad categories: proprioceptive, exteroceptive and internal. Proprioceptive variables are constructed by sampling motor position and exteroceptive variables are those from sensors such as buttons, infra-red distance, vision1 and audition2. In addition to these, sensory input can also be built from internal variables that might, for instance, indicate drives and motivations, or be the result of processing of raw sensory data e.g. ball position. Sampling is done at regular intervals (between 100-120ms in the experiments presented).

B. Experience Space

The experience space is constructed from overlapping experiences of a particular horizon size with relative positions in the space determined by the informational distance between them (see section IV). Many potential experience spaces of different horizon length can be built and co-exist [7]3. As the metric landscape of experience is built, each experience is further enhanced with value attributes of the experience. These are the instantaneous values of any sensor or internal variable, for example variables indicating “satiation”, “battery-level”, “contentment” and so forth. Experiences are also annotated with the actions that the robot takes at any timestep (see section III-C).

C. Action Selection, Development and Learning

While an experience space can be built without much difficulty, the challenge is how to have experience modulate future action in a meaningful way and to be further shaped by that action. To achieve this goal, a simple mechanism is adopted whereby the robot can execute one of a number of “atomic” actions (or no action) at any timestep4. At any timestep the robot can choose an action based on past experience or, if an appropriate one is not found, can choose a random one. The ability to choose a random action has the advantage of emulating body-babbling, i.e. apparently random body movements that have the (hypothesized) purpose of learning the capabilities of the body in an environment [8]. Early in development, there are few experiences on which to draw, so random actions would be chosen more often, and later in development, it is more likely that an appropriate experience (and thus action) can be found. Additionally, with a small probability, the robot may still choose a random action as this may help move out of “local minima”, and potentially discover new, more salient experiences. To choose an action based on experience, the robot first examines the experience landscape for similar experiences near the current one. That is it finds a candidate experience with the shortest information distance to the current one. The next action that was executed following that experience is a candidate action to be executed next. The candidate experience is chosen with a probability proportional to that experience’s perceived value in terms of the stored value attributes (see section III-B above). The

1Note that sensor data is not being stored to build the interaction history, only the time-evolving probability distributions from which joint entropy can be estimated are stored.

2While this is probably not the most sophisticated model for acting, it is at least tractable.
exact nature of the calculation of value is dependent on the
time. We use the measure to compare sensorimotor
variables. We assume approximate local stationarity of the joint distribution of
X
and Y
was stored with the experience as a value attribute, and
future events based on its recent history of experi-
ence?In this experiment the architecture was simplified, removing
the head stayed still while the ball was moved, and in the second
reactive process allowed the head to follow the ball.

The position of the ball at the end of each experience
was stored with the experience as a value attribute, and
predicted future position of the ball was given by the

B. Time-Horizon
Consider any sensor variable \(X \), beginning from a parti-
cular moment in time \(t_0 \) until a later moment \(t_0 + h \) (\(h > 0 \)),
we regard the sequence of values \(x(t_0), x(t_0 + 1), \ldots, x(t_0 + h - 1) \) taken by an information source \(X \) as time-series data from a new random variable \(X_{t_0,h} \), the sensorimotor variable with temporal horizon \(h \) starting at time \(t_0 \)

With this definition and that of information distance, we can
can then compare any sensorimotor variables over the same sized
time-horizons, whether from the same sensor at different
times, different sensors at the same time or, indeed, different
sensors at different times.

C. Experience Metric
We formalize an agent’s experience from time \(t \) over a
temporal horizon \(h \) as \(E(t,h) = (X^1_{t,h}, \ldots, X^N_{t,h}) \) where \(X^1, \ldots, X^N \) is the set of all sensorimotor variables available
to the agent. We can then define a metric on experiences of
temporal horizon \(h \) as

\[
D(E, E') = \sum_{k=1}^{N} d(X^k_{t,h}, X^k_{t',h}),
\]

where \(E = E(t,h) \) and \(E' = E(t',h) \) are two experiences of an agent and \(d \) is the information distance (see [7], [10]).

V. EXPERIMENTS
We describe two experiments that explore the possibilities of the model of interaction history discussed. The first evaluates the veracity of the experience space by examining the ability of the model to predict future states of the world with reference only to the metric space of experience. The second shows early steps in using the model to play an interaction game, “peekaboo”, with a human partner.

A. Experiment 1: History-based Prediction
Given a robot\(^7\) acting in an environment, how well can it predict future events based on its recent history of experience?
In this experiment the architecture was simplified, removing the developmental feedback loop, to examine the efficacy of using the metric space of experience to locate similar experiences. Two conditions were examined: in the first, the head stayed still while the ball was moved, and in the second a reactive process allowed the head to follow the ball.\(^8\)

The position of the ball at the end of each experience
was stored with the experience as a value attribute, and the predicted future position of the ball was given by the
attributes stored with the experiences following the candidate (most similar previous) experience.

It is important to note that, the robot is not matching current ball position with previous ball position, rather we use all sensory and motor variables as information sources to detect similarity between experiences, and then use the tagged ball position to give the experimenter an indication as to how well the experience was chosen. For verification purposes a path is drawn on the display of the robot’s visual field during operation, indicating the predicted future path.

B. Experiment 1: Results and Discussion

In Fig. 3, we show a sequence of images from one trial from the first condition where the robot was passive while the ball was moved. The sequence lasts just over 4 seconds and consists of approximately 40 timesteps (1 timestep~100ms) and 8 experiences (experience granularity of 5)\(^9\).\(^{10}\)

In the sequence shown and others, the robot required very few examples of a sequence (usually one) before the appropriate experience could be located. This demonstrates that the information distance measure is capable of placing subjectively similar experiences (to an external observer) near to each other in the experience space. However, it was found that while the path of the ball could be predicted fairly well early on in the sequence, later on, as the choice of experiences grew, the candidate experience chosen was not always the most appropriate.

As an illustration of the problem, consider the eighth image in Fig. 3, here the predicted path from the candidate experience corresponds to the half circle that the ball has just been through (rather than the half-circle it is just about to go through, as in the other images). The candidate experience chosen is informationally close to another experience half a cycle back in time that may have been more appropriate, and the fact that the two possible experiences correspond to motions of the ball from opposite sides of a circle contributes to their being “recoding equivalents”\(^{11}\), only differing in phase. Clearly, one solution to the issue is to provide the mechanism with more information, for instance from proprioception, with which to distinguish experience. The experiment is artificially hampered due there being no motor, active, component to the interaction.

Fig. 4 shows a series of images showing the path prediction in the second condition, where the robot was actively following at the ball with its head. The ball path is generally a small loop starting at and finishing near the centre of the image. To better assess the result of the experiment, we would need to have the predicted position of the head rather than the ball. Further work, will look into the predictive capabilities of the method with regard to the robot acting as a whole.

C. Experiment 2: Sensorimotor contingencies in an interaction game - Peekaboo

The purpose of this experiment was to investigate whether the development of an enactive interaction history in a...
Fig. 4. Series of consecutive images (left to right, top to bottom) from the Aibo camera showing ball path prediction using a sensorimotor interaction history. The robot’s head reactively follows the ball in this sequence. Images are sequential left to right and top to bottom and the sequence is approximately 3 seconds long. (See text and Fig. 3 for further notes). Horizon=20, Number of Bins=2, Experience granularity=4 timesteps.

robot could be used for the robot to act appropriately in an interaction that required following a spatio-temporally structured set of “rules”, that when followed result in high motivational value. The full architecture was used, with the action feedback loop modifying potential future interaction.

The simple interaction game of peekaboo played between adults and babies or young children was taken as a model. The game consists of a repeated cycle of an initial contact, disappearance, reappearance, and acknowledgment of renewed contact [16]. Bruner and Sherwood suggest that the peekaboo game may provide scaffolding for further interaction and learning [16] and as such is useful in studying the development of interaction capabilities in a robot in a social environment.

Bruner and Sherwood also suggest that the peekaboo game itself may emerge from the exploitation of innate tendencies or motivations in the child and we model important aspects of potential precursors to this game as actions, drives and motivations of the cognitive model of the robot. Specifically, the robot gains “pleasure” (increase in internal variable 1) in seeing a face, however if the face is lost, it has a rising “expectation” (internal variable 2) of seeing the face again, and the “pleasure” in seeing the face at a later time is increased by the value of that expectation. The atomic actions implemented for the selection mechanism were: 1) move head up, 2) down, 3) left, 4) right and 5) hide/reveal head. The robot is preprogrammed with abilities to recognize a generalized face and this yields sensory variables indicating the position of the face in the visual field.

D. Experiment 2: Results and Discussion

Thus far we have completed a basic feasibility study with one of the authors interacting with the robot. The results tend to show that the robot, after a period of random movement does start to engage in repeated cycles of behaviour, Fig. 5. If the robot were not to hide its face, it would have long periods of seeing the face which do not result in high motivational value (internal variable 1), instead the robot generates intermittency in seeing the face by hiding its own face resulting in high motivational value when the face is next seen. This often includes cycles of hiding and revealing the face, as shown in Fig. 5.

Fig. 5. Time series of motor and sensor values showing engagement of robot in peekaboo game. The bottom part of the graph shows when the face is seen and the two internal variables are shown varying in response to this. The peaks in the leg motor trace indicate when the robot is hiding its head with its foreleg.

Fig. 6 shows the value assigned to experiences and how these change over time. It is clear that only a few experiences are regularly selected and thus modified over time, increasing and decreasing in value. The final metric space of experiences is depicted in Fig. 7, and indicates that the experience space has a consistent (non-random) structure with definite peaks that correspond to those few experiences that become present candidate experiences.

VI. DISCUSSION AND FUTURE DIRECTIONS

The positive results from the experiments using the experience space to predict future experiences indicate that the method of information distance has the potential of forming the basis of an interaction history, particularly if the whole embodied experience of the robot is taken into account. However, mechanisms may be needed to disambiguate the experience in the space when there are many experiences to select from. Steps towards this are made in using “value” to test candidate experiences against each other, however, other mechanisms might be considered, e.g. finding exemplary experiences by grouping near experiences. Further, it is also
clear that experiences of different time horizon sizes will be needed to anticipate experience on different timescales.

There are also good indications that the method of choosing action based on “value” can be useful in choosing between many potentially similar experiences, however, how this value is assigned and modified will need to be made more sophisticated in order to better assign credit to appropriate action, and to handle multiple, potentially conflicting, goals. Similar comments apply to the simple method of action selection. In a more complex environment an action selection mechanism that can deal with appropriate action in a particular context, and that can deal with parallel and temporally extended actions and behaviours would be needed.

Future directions for the research will include investigating more generic approaches to ascribing motivation to artificial agents in order to select experience and action, for example sensorimotor contingencies, drives for comfort (predictability of environment) or novelty (see for example [18]). Further work will be conducted on the peekaboo game as a testbed in which to study the development of interactive behaviour.

REFERENCES