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Abstract: The view that a mathematical proof is a sketch of or recipe for a formal derivation 

requires the proof to function as an argument that there is a suitable derivation.  This is a 

mathematical conclusion, and to avoid a regress we require some other account of how the 

proof can establish it. 
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It is a common observation that the proofs that mathematicians write on blackboards and publish in 

journals are not like the derivations that appear as objects in proof theory.  Mathematicians’ proofs 

may make extensive use of specialist notation, but they do not employ explicitly defined logical 

languages; they use a mixture of algebraic notation and natural language, they leave gaps for the 

reader to fill, they make inferences that use implicit rules and may depend on the particular topic, 

and they may appeal to mathematical insight.  How do such proofs satisfy mathematical standards 

of rigour?   

There is a stock answer1 to this, which we will call it the ‘Derivation Recipe’ model.2  It depends on 

the idea that the derivations that appear as objects in proof theory are real proofs, because they 

                                                           
1 Michael Detlefsen calls it the ‘common view’ (2008: 17), Jeremy Avigad calls it ‘the logician’s claim’ (2008: 

306); neither Detlefsen nor Avigad endorses it.   

2 This name owes something to Azzouni’s ‘Derivation-Indicator’ view (2004).  As he makes clear in his (2013), 

Azzouni does not subscribe to the Derivation Recipe model, and he has argued against it in other publications.   



have no logical gaps, are expressed in a formal language, the well-formed formulae of which are 

recursively defined, and rely on wholly general and explicitly given rules of inference that make no 

reference to any particular subject matter.  The Derivation Recipe model claims that 

mathematicians’ proofs (as written on blackboards and published in journals) are rigorous because 

they show mathematicians how a derivation of the theorem in question might be constructed.  That 

is to say, mathematicians’ proofs are (on this model) either rough drafts of derivations, or recipes for 

making suitable derivations.  Note (again, this is common ground) that the derivations are almost 

never written out.  In almost all cases, the function of the mathematicians’ proof (on the Derivation 

Recipe model) is not to provide the mathematician with a practical guide to writing out a derivation.  

Rather, it is to give the mathematician compelling reason for thinking that a derivation could in 

principle be written.   

The Derivation Recipe model has prestigious backers among mathematicians.  It arose in the 

nineteenth century, and found clear expression in the work of Moritz Pasch (see Schlimm 2010).  The 

locus classicus for more recent discussions is probably this passage in Saunders Mac Lane’s 

Mathematics: Form and Function (1986): 

A mathematical proof is rigorous when it is (or could be) written out in the first order 

predicate language L(Є) as a sequence of inferences from the axioms ZFC, each inference 

made according to one of the stated rules… practically no one actually bothers to write out… 

formal proofs.  In practice, a proof is a sketch, in sufficient detail to make possible a routine 

translation of this sketch into a formal proof.  ...the test for the correctness of a proposed 

proof is by formal criteria and not by reference to the subject matter at issue.  (Mac Lane 

1986: 377-8) 

This view is the target of the present note; it is the naïve Derivation Recipe model.  On this view, the 

rigour of ordinary mathematical proofs consists entirely in their being translatable (in principle) into 

derivations.  From the point of view of logic, there is nothing more to say.  Of course, there is a great 



deal for psychologists and sociologists to say about how human mathematicians individually and 

collectively come to understand and confirm proofs, but this is not a matter for logic.  One 

consequence of this view, as Mac Lane notes, is that there is no relation between the rigour of a 

proof and its subject matter, because formal logic is topic-neutral.  

Some philosophers and mathematicians have argued against the Derivation Recipe model.3  These 

arguments appeal to facts about mathematical practice and the finitude of mathematicians.  

However, the relevance of such facts to logic and epistemology is disputed within philosophy of 

mathematics.  It would, therefore, be advantageous to offer an argument against the Derivation 

Recipe model that is independent of questions about human cognitive and social functioning.   

The argument starts from the observation that the conclusion of a mathematician’s reading of an 

informal proof according to the Derivation Recipe model—that a suitable derivation could be 

written—is itself a mathematical claim.  Let P be a mathematician’s proof for a theorem C.  Then it 

follows from the Derivation Recipe model that P is not as it stands (before any translation) a proof of 

C, but is rather an argument to convince the reader that:  

Cʹ: there is a suitable formal system S such that ⱵS γ where γ is the formula in S corresponding to C 

For the sake of clarity: this is not what proponents of the Derivation Recipe model say; rather it is 

what the Derivation Recipe model amounts to once we recognise that the existence of a suitable 

derivation is itself a mathematical claim.  The Derivation Recipe model requires that P must be, as it 

stands, before any translation, a compelling, rigorous argument (epistemically equivalent to a proof) 

of a mathematical conclusion, namely, Cʹ.  Notice that Cʹ is not, as it stands, fully formalised because 

it includes metamathematical elements and natural language.   

                                                           
3 We have already seen Avigad and Detlefsen, to whom we can add Azzouni, Goethe, Friend, Hersh, Lakatos, 

Nickel, Pelc, Rav, Robinson, Tanswell, Thurston, Van Bendegem and others 



How can P work as a proof of C'?  If it is just a recipe for a derivation, this would initiate an obvious 

regress.  So, the Derivation Recipe picture must be that P, gappy, informal and intuitive as it may be, 

is an adequate proof of the mathematical claim C', whereas it is not an adequate proof of the 

mathematical claim C.  Compare this with the more straightforward view that P is as it stands, before 

any translation into a formal language, an adequate proof of C.  Both of these views require P in its 

native, untranslated state to prove a mathematical result—they just differ over whether that result 

is C or C'. These two views are not quite equivalent, because (when formalised) Cʹ is a Σ1 sentence, 

regardless of the complexity of C.  It may be possible to exploit this fact to develop a more nuanced 

version of the Derivation Recipe model than is currently available.4  Perhaps defenders of the 

Derivation Recipe model will be satisfied to claim that a rigorous proof must be either a derivation or 

a proof by construction of a Σ1 sentence.  Perhaps there is a modified or hybrid version of the 

Derivation Recipe model that might escape the argument of this paper, which is after all directed 

only at the simple version that Mac Lane expressed in the quotation above.   
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