Citation for published version:

DOI:
https://doi.org/10.1177/1359105314529681

Document Version:
This is the Accepted Manuscript version. The version in the University of Hertfordshire Research Archive may differ from the final published version.

Copyright and Reuse:
© 2014 The Author(s).
This manuscript version is made available under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Enquiries
If you believe this document infringes copyright, please contact the Research & Scholarly Communications Team at rsc@herts.ac.uk
Mood changes following social dance sessions in people with Parkinson's Disease

Corresponding author:

Dr Peter Lovatt
Dance Psychology Lab
Department of Psychology
University of Hertfordshire
College Lane
Hatfield
Herts
AL10 9AB

P.J.Lovatt@herts.ac.uk
Abstract

Dance interventions have physical benefits for the elderly, especially those with Parkinson’s disease. This study assessed the psychological benefits of dance. Thirty-seven participants with Parkinson’s ($n=22$) or age-matched controls ($n=15$) completed mood questionnaires before and after a ten-week dance intervention. An overall reduction in total mood disturbance, and a specific reduction in anger were observed. In addition, less fatigue was found for those initially scoring higher in depression. This suggests dance can provide psychological benefits for both people with Parkinson’s and the elderly with findings suggesting that this is an avenue to be explored further.
1.0 Introduction

Parkinson’s Disease (PD), a neurodegenerative disease, typically developing in people above the age of 50, is associated with the motor signs of tremor, bradykinesia, rigidity and postural instability. Although PD is predominantly identified by these motor symptoms, non-motor features are also shown to be associated with the condition, including sleep disturbances (Menza, Dobkin, Marin & Bienfait, 2010), deficits in tasks of executive functioning (Rodriguez-Ferreiro, Cuetos, Herrera, Menéndez & Ribacoba, 2010) and altered mood (Brown et al., 2011). Although clarity is needed concerning which non-motor symptoms are linked directly to the pathology, it is important not to neglect these factors affecting those living with PD.

It has been said that “depression is the most common neuropsychiatric disturbance in Parkinson’s Disease”[p.465, Papapetropoulos, Ellul, Argyriou, Chroni & Lekka, 2006]. Research has consistently shown there is a high prevalence of depression in people with PD, such that up to 60% of scores in relation to quality of life can be explained by depression (Global Parkinson’s Disease Survey, 2002) and perhaps even more than the severity of the motor symptoms of the disease (Suzukamo, Ohbu, Kondo, Kohmoto & Fukuhara, 2006). Furthermore, Starkstein, Mayberg, Leiguarda, Preziosi and Robinson (1992) found that depression in PD was strongly associated with a greater decline in cognition and severity of disease. It is thought that early intervention in the treatment of depression in PD could be essential in aiding cognitive function (Kuzis, Sabe, Tiberti, Leiguarda & Starkstein, 1997; Starkstein, Bolduc, Mayberg, Preziosi & Robinson, 1990). Despite this and the
consistent identification of an association between depression and PD (Brown et al., 2011; Schindler, Brown, Welburn & Parkes, 1993; Tandberg, Larsen, Aarsland & Cummings, 1996), the implications of mood disturbance are often neglected both by patients and by neurologists failing to identify depression in up to potentially 75% of people with PD (Schindler et al., 1993; Schulman, Taback, Rabinstein & Weiner, 2002).

It is well known that exercise can have positive benefits on mood in adults who do not have PD (McDonald & Hodgdon, 1991; Smith, 2013), including those with other chronic illnesses (Graham, Kremer & Wheeler, 2008). Conversely mood can regulate the quality of the exercise performance (Lane, Beedle, Jones, Uphill & Devonport, 2012). In a review by Yeung (1996) of 23 exercise studies, 18 showed significant benefits of mood with the remaining five being inconclusive. Dance has also been shown to regulate mood such that positive mood is increased and negative mood is decreased following dance exercise interventions over a short-term, progressive periods of up to 50 minutes (Hansen, Stevens & Coast, 2001; Kennedy & Newton, 1997) and over a longer period of seven weeks (Steinberg et al., 1998). Furthermore, improvements in mood, including those measured by the Profile of Mood States (POMS) have been observed after just ten minutes of exercise, including dance, resulting in higher vigor and less confusion (Lane, Hewston, Redding & White, 2003; Maroulakis & Zervas, 1993; Rokka, Mavridis & Kouli, 2010) and an improvement in total mood score, vigor and fatigue (Abrantes et al., 2012; Hansen et al., 2001).
Exercise is proposed to be particularly beneficial for anxiety and depression (Steinberg et al., 1998), the two most common psychological disorders in PD and the elderly (Carod-Artal, Ziomkowski, Mesquite & Martinez-Martin, 2008). In a qualitative study interviewing elderly dancers, the main themes to emerge were feelings of psychological wellbeing, as well as a sense of belonging (Paulson, 2011). In addition to this, Lima and Viera (2007) followed dance classes over the period of one year in the elderly, where participants reported “being transported to a world of happiness” and being able to “forget their problems” (Lima & Vieira, 2007; p.136). This lead the authors to conclude that dance classes could potentially be beneficial for well-being and social relationships. It should however be noted that although dance increases mood in all individuals, it is suggested there is a greater benefit for those with initially low depression scores (Goodwin, Richards, Taylor, Taylor & Campbell, 2008).

Recent evidence has suggested that exercise, especially dance, can help the motor symptoms of PD (Hackney, & Earhart, 2009; Hackney, Kantorovich, Levin & Earhart, 2007). In a meta-analysis carried out by Goodwin, Richards, Taylor, Taylor and Campbell (2008), it was concluded that exercise resulted in improvements to physical functioning, balance, strength and health related quality of life. Physical benefits in flexibility, balance and coordination were also reported by Alpert et al., (2009) following 15 weeks of jazz dance classes.

However, not all studies have shown improvements in mood following dance classes in the elderly (Alpert et al., 2009; Eyigor, Karapolat, Durmaz, Ibisoglu & Cakir, 2009; Maroulakis & Zervas, 1993; McInman & Berger, 1993) and moreover,
research focusing on the benefits of dance for PD often fails to assess the potential mood benefits that dance could provide. This is particularly surprising given that mood has been shown to relate to both cognition and physical health (Berger & Motl, 2000; Cohen & Rodriguez, 1995). Goodwin et al. (2008) concluded that there was insufficient evidence of the impact of exercise on depression in PD. In addition, no research has been identified to date that investigates whether dance classes can improve mood in PD over both a short and longer time period.

The objective of this study was therefore to examine the moderating effect of dance on mood in the elderly and more specifically in a group of people with Parkinson’s disease across a long cycle of 12 weeks and a short cycle of one hour.

2.0 Method

2.1 Participants

Thirty-seven participants, aged between 50-80 ($M=65.5$) took part in the study. Of these, 22 participants (12 males, 10 females) had been diagnosed with PD and were all rated as having mild to moderate PD (Hoehn & Yahr I-III) by trained physiotherapists. The remaining 15 participants (7 males, 8 females) acted as age-matched controls. Participants were recruited though local advertisements and through contact with local PD support groups. Eight of the controls were partners of those in the PD group. This study was ethically approved at an institution in the United Kingdom.

2.2 Design

This study formed part of a larger study investigating dance as an intervention for
PD. A mixed design was used with two Independent Variables. IV1: Group, with two levels (PD vs. Control). IV2: Long Cycle Time, with two levels (week 1 vs. week 12) or Short Cycle Time, with two levels (before class vs. after class). The Dependent Variables were participant’s mood scores.

2.3 Materials

Profile of Mood States (POMS)

The Profile of Mood States (POMS; McNair, Lorr & Droppleman, 1971) was used to measure mood changes across Long Cycle Time. The POMS is a 64-item mood scale and is scored on six subcategories; Tension-Anxiety, Vigor-Activity, Depression-Dejection, Fatigue-Inertia, Anger-Hostility & Confusion-Bewilderment). The POMS also produces a Total Mood Disturbance (TMD) score, calculated by adding all responses and subtracting vigor from the rest of the subscales. Responses to mood are indicated on a 5-point Likert scale, (0- not at all – 4 Extremely). Lower scores indicate a more positive mood state, in all subscales other than Vigor, where a higher score suggests higher energy and elevated mood.

Originally developed for a clinical setting, this measure was chosen as it has since been developed to show good reliability for the elderly (Nyenhuis, Yamamoto, Luchetta, Terrien & Parmentier, 1999) along with its excellent levels of internal consistency.

Brunel University Mood Scale (BRUMS)

The Brunel University Mood Scale (BRUMS; Terry, Lane & Heohane, 1999) was used to measure mood changes across Short Cycle Time. The BRUMS is a short-form
version of the POMS, verified by Terry et al. (1999) to be suitable for adults in a normal population. The BRUMS is scored according to the same dimensions as the POMS but on a 24-item scale.

2.4 Procedure

Following informed consent, participants were asked to fill out a demographics questionnaire and the POMS according to how they felt in the past month. As well as this, all participants were administered the Mini Mental State Examination (MMSE) at baseline, in a meeting prior to the first dance class (week 1). Participants then attended a weekly dance class, run by a qualified dance instructor, for a period of ten weeks (weeks 2 – 11). Dance classes lasted for 50 minutes and consisted of a 10-minute warm-up, 30 minutes of dancing and ended with a 5-minute cool-down. A 5-minute break was given midway. Each class was based on rhythmic dancing to a strong beat, designed to be appropriate for the age, mobility and constraints of people with mild to moderate PD. Participants were taught in two separate, yet identical, dance classes. They completed the classes standing, with the option to sit down if desired. The style of dancing changed every two weeks and consisted of Bollywood, Tango, Cheerleading, Old Time Music Hall and Party dancing based on the Charleston and Saturday Night Fever. In the ninth week, participants were asked to complete the BRUMS, according to how they felt ‘right now’, before and after the dance class (short cycle). Following completion of the dance classes, participants were asked to complete the POMS for a second time a few days later in week 12 (long cycle).
3.0 Results

Two participants (Parkinson’s = 1, Control = 1) dropped out of the study during the intervention due to an unrelated medical issue and because they did not wish to continue respectively. Five participants (Parkinson’s = 3, Control = 2) were unable to attend the final testing session due to either a holiday (n = 2), other commitments (n = 2) or illness (n = 1) and therefore failed to submit final POMS questionnaires. One further person from the control group was excluded due to scoring below the cut-off point on the MMSE.

3.1 Demographic and normative data comparisons

<table>
<thead>
<tr>
<th>Table 1 about here</th>
</tr>
</thead>
</table>

Initial comparisons using independent samples t-tests between mean scores of the PD and control groups revealed no significant differences between the two groups for age, MMSE scores or baseline mood scores (p > .05 in all cases).

One sample t-tests were carried out comparing normative to baseline POMS scores for PD and control participants. Tension, Vigor, Confusion and TMD were found to be significantly different from the norms in the PD group, in all cases showing a higher mood disturbance to the norms. No significant differences (p > .05) from the norms were found for the control group.
Correlations between baseline POMS subscales revealed variables that were highly correlated with one another. However, most correlations were .7 or below and therefore acceptable for multivariate analysis (Maxwell, 2001).

3.2 Long Cycle Time

Total Mood Disturbance data for long cycle time was subjected to a 2x2 mixed ANOVA, Factor 1: Group (PD vs. Control), Factor 2: Time (pre and post intervention).

Total Mood Disturbance (TMD) scores showed a significant main effect of time $F(1, 26)=5.75, p=.024$, partial $\eta^2=.18$ such that total disturbance in mood was lower post intervention. There was no significant main effect of group and no interaction between time and group ($p>0.05$).

In order to determine whether the change in overall mood was due to a particular subscale, a 2x2 MANOVA was conducted, where each subscale served as a dependent variable. One participant’s data was automatically excluded from the MANOVA, due to two incomplete subscales.

A mixed MANOVA showed no significant differences between group or time on the combined dependent variables ($p>0.05$). The interaction between time and group however, reached borderline significance, $F(6, 21)=2.57, p=.05$; Wilks’ Lambda=.58.
When the results for the dependent variables were considered separately, a significant difference for time was found in Tension $F(1, 26)=4.76$, $p=.038$, partial $\eta^2=.16$; Anger $F(1, 26)=9.6$, $p=.005$, partial $\eta^2=.27$ and Vigor approached significance $F(1, 26)=3.56$, $p=.072$ such that all participants reported less tension, anger and greater vigor. Bonferroni post-hoc corrections were carried out in order to allow for the chance of a type I error occurring due to multiple testing and correlated DVs. Using a Bonferroni adjusted p-value of .008, Anger was the only subscale to remain significant.

There were no significant differences for group ($p>.05$ in all cases). The only subscale to show a significant interaction between time and group was Anger, $F(1, 26)=7.53$, $p=.011$, partial $\eta^2=.23$.

Figure 1A displays the interaction in POMS Anger scores such that those in the control group had reduced scores in anger ($M = 3.40$) compared to those with PD ($M = 5.17$). Pre anger scores were higher for POMS in the control group ($M = 8.90$) than the PD group ($M = 5.50$). However, an independent samples t-test confirmed that these scores were not significantly different from pre scores in the PD group ($p>.05$).

Further analyses comparing improvements in mood to initial POMS depression scores were carried out. Scores of POMS depression from both PD and controls were...
collapsed into two groups; low and high depression scores, with a cut-off point of 7 (Wilkins et al., 1995) used to determine low depression scores.

A 2x2 mixed MANOVA, Factor 1: Depression group (Low vs. High), Factor 2: Time (pre and post intervention) revealed a significant main effect of group, \(F(6, 21) = 17.92, p < .001 \) but no significant main effect of time and no interaction (\(p > .05 \) in all cases) on the combined dependent variables. When the analysis for dependent variables were carried out separately, main effects of time were found for Tension \(F(1,26) = 7.14, p = .013 \), partial \(\eta^2 = .22 \) and Anger \(F(1,26) = 5.1, p = .033 \), partial \(\eta^2 = .18 \) such that lower feelings of tension and anger were present post intervention. Fatigue also showed a significant effect of time, \(F(1,26) = 5.55, p = .026 \), partial \(\eta^2 = .16 \), such that lower levels of fatigue were reported post intervention. Using a Bonferroni adjusted \(p \)-value of .01 Tension reached borderline significance. However, anger and fatigue were no longer significant. There were significant main effects of depression for all POMS subscales (\(p < .01 \) in all cases) such that higher levels of mood disturbance were present in the depressed group. Fatigue was the only subscale to show a significant interaction between time and group, \(F(1,26) = 5.62, p = .025 \), partial \(\eta^2 = .18 \).

Figure 1B displays the mean scores and explains the interaction effect of POMS Fatigue scores. Participants in the higher depression group reported less fatigue after the dance intervention (\(M = 13.00 \)) in comparison to before (\(M = 15.3 \)), while people with lower depression remained equal in levels of fatigue (\(M = 5.1 \)). Initial
levels of fatigue however were higher in those reporting higher levels of depression, confirmed by an independent samples t-test $t(17.74)=-5.94, p<.001$.

3.3 Short Cycle Time

Due to varying sample sizes across POMS subscales, short cycle time was subjected to mixed ANOVAs, Factor 1: Group (PD vs. Control), Factor 2: Time (pre and post intervention).

Total Mood Disturbance scores showed a significant effect of time, $F(1, 19)=5.26$, $p=.033$, partial $\eta^2=.22$ such that TMD scores improved over time. There was no significant effect of group and no interaction between time and group ($p>.05$).

Mixed ANOVAs on BRUMS short cycle scores showed a significant main effect of time for Tension, $F(1, 24)=4.47$, $p=.045$, partial $\eta^2=.16$; Vigor, $F(1, 22)=6.75$, $p=.016$, partial $\eta^2=.24$. Depression scores of time approached significance, $F(1, 24)=3.9$, $p=.06$, partial $\eta^2=.14$. In all cases, there was no significant main effect of group and no interaction between time and group ($p>.05$). All participants showed positive improvements in feelings of tension, vigor and depression. However, when a Bonferroni adjustment with a p-value of .008 was used, no significant effects remained, suggesting there were no improvements in the short-cycle time.

Further analyses taking depression levels into account revealed no further significant effects.
4.0 Discussion

The aim of this study was to investigate whether a dance intervention could improve mood in the elderly and more specifically, within PD. The results showed that specific mood changes occurred in elderly people with and without PD over a short and long cycle time. Participants overall mood disturbance was significantly reduced, as measured by the POMS. Further analysis revealed that anger in particular was significantly reduced over a period of twelve weeks. Further analysis on POMS scores revealed people with higher depression reported less fatigue following the dance classes. A reduction in total mood disturbance was also observed over a short cycle time, pre and post one dance class, as measured by BRUMS.

Previous research (Brown et al., 2011; Schindler et al., 1993; Tandberg et al., 1996) suggests that people with PD tend to have higher depression, fatigue and anxiety than people without PD. No such differences were observed in the present study. There were no differences between the PD and Control participants in baseline scores of either Long Cycle Time or Short Cycle Time on the POMS and BRUMS subscales. However, those people with higher depression scores may be less likely to volunteer due to the self-selecting sample employed. Differences were observed, however between baseline POMS scores of PD and geriatric normative data for the POMS in the subscales Tension, Vigor, Confusion and TMD such that those with PD showed a higher mood disturbance score throughout. It should be noted here that many participants in the control group were carers for the people taking part with Parkinson's. It may be possible that mean scores were not different
in baseline scores of those with PD due to carer burden, where levels of depression are higher (Schrag, Hovris, Moreley, Quinn & Jahanshahi, 2006). Moreover, with partners in consistent close proximity, it is possible that mood differences experienced by one person could impact the mood of the other, as opposed to the dance intervention improving the mood of both groups (Joiner and Katz, 2006).

As the results show, people who score higher in depression can benefit more from these dance interventions (Lane & Lovejoy, 1999), suggesting the benefits observed here, could be underestimated in real-terms. Larger samples should therefore be used in future in order to increase statistical power and post-hoc tests should be interpreted with caution. Although Bonferroni post-hoc comparisons were necessary to control for type I error, there is a risk of the test being highly conservative and missing significant effects, due to both the number of tests and highly correlated variables. Highly correlated variables (above .7) could also have implications for the robustness of the MANOVA tests applied due to the loss of degrees of freedom. However, a MANOVA was deemed suitable for this analysis due to subscales being investigated (Foster, Barkus & Yavorsky, 2006). Furthermore, a series of mixed ANOVAs were carried out as an alternative method to MANOVA and showed no significant changes to results.

The positive increase in POMS mood scores supports previous research looking at dance and exercise in relation to mood (Rokka et al., 2010; Steinberg et al., 1998). The decrease in TMD scores and the trend to increased vigor resembles the pattern of results found by Maraulakis and Zerras (1993) and Lane et al. (2003) who, in a sample of non PD participants, found an increase in scores of vigor straight after
dance classes. Furthermore, Hansen et al. (2001) showed that exercise, including
dance aerobics, improved scores of vigor, TMD and fatigue. Scores of fatigue were
only found to improve over a long cycle time when participants were grouped
according to their depression scores, supporting Lane and Lovejoy (1999) that
greater benefits in mood can results when mood is depressed pre-exercise. Fatigue
itself is a symptom well-known to be associated with depression. Exercise has been
found to improve both fatigue and depression with a recent Cochrane review
confirming this overall effect (Rimer, Dwan, Lawlor et al., 2012). Although a number
of different explanations have been put forward, the improvement in fatigue as well
as mood is thought to be due to exercise releasing endorphins or the hormone
cortisol (Chen, 2013), subsequently altering the brain chemistry.

These results suggest that taking part in weekly dance classes can
subsequently improve mood in the elderly, with and without PD. Exactly why
positive affect is observed following exercise remains unclear with a number of
variables and/or mechanisms likely to influence the magnitude of the effect (Berger
& Motl, 2000). What remains to be seen is whether this is a result of the dance
exercise or whether the social aspect of the dance classes resulted in the mood
changes (Harvey, Hotopf, Overland et al., 2010). Benefits of psychological wellbeing
have recently been found in other forms of moderate exercise (Kassavou, French &
Chamberlain, 2013) where a ‘healing balm’ effect has been proposed suggesting that
mood changes occur as a result of the combination of exercise with other conditions
such as a safe and social environment (Priest, 2007). Furthermore, the control group
in the present study consisted of people who did not present with symptoms of
Parkinson’s. Further studies including a no dance PD control group are required to investigate whether time per se or taking part in social events contribute to these changes in mood.

A number of additional elements that moderate the positive effects of mood on exercise have also been identified which should be taken into account in future studies. As well as a social control, the role of the music should be explored in more depth, including a no music exercise condition. The dual-mode model of exercise and affect (Ekkekakis, Parfitt & Petruzzello, 2011) suggests that intensity of exercise is key to positive affect both when taking part in exercise and after. Mixed findings between low and high intensity exercise have been found in relation to what type of exercise promotes a greater increase in mood. A meta-analysis by Ekkekakis et al. (2011) concludes that the intensity of the exercise needs to be self-selected in order for it to promote greater positive affect.

It is thought that dance may be particularly beneficial psychologically, due to the mental challenges that dance steps and timing can provide, such as memory, learning and spatial awareness (Lima & Vieira, 2007). In addition, dance is a sociable form of exercise. Lack of sociability is linked to depression in elderly (Anderson, 2001), thus potentially explaining positive benefits of mood from dance. Future research therefore needs to address intensity, fitness and sociability as well as depression levels in both the elderly and PD using an appropriate depression inventory. While mood scores can indicate depression, they are not designed to identify clinical depression. In addition to this, the longitudinal impact of mood, as well as tailoring dance interventions towards the specific needs of Parkinson’s
(Abrantes et al., 2012) should be investigated further due to the prevalence of depression in this neurodegenerative disease.

In conclusion, these findings suggest that dance can provide positive benefits over both a long and short cycle time for the elderly, including those with Parkinson’s disease. However, further investigation is warranted in order to improve the design, including a longitudinal study, a no exercise social control and control participants who are not related to those with Parkinson’s. In addition, the role of music and other potential mediating variables need to be explored in order to try and pinpoint the underlying mechanisms involved.

Acknowledgements: Removed due to avoid author identification.

Declaration of conflicting interests

There are no competing interests in this research.
References

Carod-Artal FJ, Ziomkowski, S, Mesquita HM et al. (2008) Anxiety and depression: main determinants of health-related quality of life in Brazilian patients with

McDonald DG and Hodgdon JA (1991) *Psychological effects of aerobic fitness training: research and theory*. Heidelberg: Springer-Verlag

Table 1: Comparison of baseline Means (SD) between PD and Control groups, and POMS Geriatric statistical norms.

<table>
<thead>
<tr>
<th></th>
<th>PD (n=18)</th>
<th>Control (n=10)</th>
<th>POMS norms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Age</td>
<td>65.94 (9.33)</td>
<td>64.5 (9.86)</td>
<td>68</td>
</tr>
<tr>
<td>MMSE</td>
<td>28.44 (2.01)</td>
<td>29.00 (1.25)</td>
<td>-</td>
</tr>
<tr>
<td>POMS: Tension-Anxiety</td>
<td>9.33 (5.92)</td>
<td>8.30 (4.52)</td>
<td>5.9 (5.2)</td>
</tr>
<tr>
<td>POMS: Depression-Dejection</td>
<td>7.44 (9.31)</td>
<td>7.10 (9.32)</td>
<td>5.8 (6.7)</td>
</tr>
<tr>
<td>POMS: Anger-Hostility</td>
<td>5.50 (5.79)</td>
<td>8.90 (7.36)</td>
<td>4.4 (4.7)</td>
</tr>
<tr>
<td>POMS: Vigor-Activity</td>
<td>15.78 (7.0)</td>
<td>17.20 (6.39)</td>
<td>21.3 (6.0)</td>
</tr>
<tr>
<td>POMS: Fatigue-Inertia</td>
<td>9.33 (7.26)</td>
<td>7.70 (4.92)</td>
<td>6.1 (5.4)</td>
</tr>
<tr>
<td>POMS: Confusion-Bewilderment</td>
<td>6.72 (4.0)</td>
<td>4.00 (3.97)</td>
<td>4.5 (3.5)</td>
</tr>
<tr>
<td>POMS: Total Mood Disturbance</td>
<td>22.56 (33.3)</td>
<td>18.8 (29.59)</td>
<td>5.3 (25.9)</td>
</tr>
</tbody>
</table>

*= POMS norms significantly different to Parkinson’s at p<.05
Figures 1A: The interaction between and group for POMS Anger scores.

Figure 1B: Interaction between time and time depression for POMS Fatigue scores.