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Abstract

While exact methods, such as DDA or T-matrix, can be applied to particles with
sizes comparable to the wavelength, computational demands mean that they are
size limited. For particles much larger than the wavelength, the Geometric Optics
approximation can be employed, but in doing so wave effects, such as interference
and diffraction, are ignored. In between these two size extremes there exists a need
for computational techniques which are capable of handling the wide array of ice
crystal shapes and sizes that are observed in cirrus clouds. The Beam Tracing model
developed within this project meets these criteria. It combines aspects of geometric
optics and physical optics. Beam propagation is handled by Snell’s law and the
law of reflection. A beam is divided into reflected and transmitted components
each time a crystal facet is illuminated. If the incident beam illuminates multiple
facets it is split, with a new beam being formed for each illuminated facet. The
phase-dependent electric field amplitude of the beams is known from their ampli-
tude (Jones) matrices. These are modified by transmission and reflection matrices,
whose elements are Fresnel amplitude coefficients, each time a beam intersects a
crystal facet. Phase tracing is carried out for each beam by considering the path
that its ‘centre ray’ would have taken. The local near-field is then mapped, via a
surface integral formulation of a vector Kirchhoff diffraction approximation, to the
far-field. Once in the far-field the four elements of the amplitude matrix are trans-
formed into the sixteen elements of the scattering matrix via known relations.

The model is discussed in depth, with details given on its implementation. The
physical basis of the model is given through a discussion of Ray Tracing and how
this leads to the notion of Beam Tracing. The beam splitting algorithm is described
for convex particles followed by the necessary adaptations for concave and/or ab-
sorbing particles. Once geometric aspects have been established details are given
as to how physical properties of beams are traced including: amplitude, phase and
power. How diffraction is implemented in the model is given along with a review of
existing diffraction implementations.

Comparisons are given, first against a modified Ray Tracing code to validate the
geometric optics aspects of the model. Then, specific examples are given for the
cases of transparent, pristine, smooth hexagonal columns of four different sizes and
orientations; a highly absorbing, pristine, smooth hexagonal column and a highly
absorbing, indented, smooth hexagonal column. Analysis of two-dimensional and
one-dimensional intensity distributions and degree of linear polarisation results are
given for each case and compared with results acquired through use of the Amster-
dam Discrete-Dipole Approximation (ADDA) code; with good agreement observed.
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To the author’s best knowledge, the Beam Tracer developed here is unique in its
ability to handle concave particles; particles with complex structures and the man-
ner in which beams are divided into sub-beams of quasi-constant intensity when
propagating in an absorbing medium.

One of the model’s potential applications is to create a database of known particle
scattering patterns, for use in aiding particle classification from images taken by the
Small Ice Detector (SID) in-situ probe. An example of creating such a database for
hexagonal columns is given.
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P Phase matrix; polarisation field vector.
x Size parameter.
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Chapter 1

Introduction

Go on till you come to the end;
then stop.

Lewis Carroll,
in Alice’s Adventures in

Wonderland

The actions of humans on the Earth’s climate has almost certainly had a warming
effect since the industrial revolution. The increased use of fossil-fuels, in conjunc-
tion with deforestation, has led to an increase in greenhouse gases and particulate
matter in the atmosphere. This disruption to the Earth’s radiation budget is still
poorly understood and attempts to quantify it have come with the caveat of large
uncertainties.

The role of clouds in the Earth’s radiation balance has been the focus of intense
research over the past few decades. A rich variety of clouds exist in nature, from
the towering cumulonimbus to the saucer like lenticular, but for our purposes we
restrict our attention to cirrus. Despite their somewhat innocuous appearance, due
to their large global coverage (which is, on average, 70% in the tropics [1] and 30%
at mid-latitudes [2]) their potential to alter the net radiative forcing could be signif-
icant. Indeed, the 2013 meeting of the Intergovernmental Panel on Climate Change
(IPCC) [3] highlighted that “the role of thin cirrus clouds for cloud feedback is not
known and remains a source of possible systematic bias”. Therefore, if we are to
better understand the Earth’s climate system, we need to work to reduce these un-
certainties.

Cirrus, see Figure 1.1, are high altitude clouds forming at altitudes above 6km.
Due to their high altitude, water vapour freezes forming ice crystals which are in
general nonspherical. While ice crystals can adopt complex structures their basic
shapes are polyhedral, e.g. hexagonal prisms. The ambient environment in cirrus
has a dominating effect on the type of ice crystal formed. The shape, size and ori-
entation of ice crystals all affect their interaction with electromagnetic radiation, a
process known as scattering . At some wavelengths, electromagnetic energy can be
converted into heat in a process known as absorption. The combined effects of scat-
tering and absorption is called extinction. The nonsphericity of ice crystals makes
modelling their scattering properties problematic as exact solutions to Maxwell’s
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Chapter 1. Introduction

equations can either not be found, or are restricted to certain shapes and sizes. This
has led to the development of numerical methods which seek to find approximate
solutions.

Figure 1.1: Cirrus clouds over the Bay of Gibraltar

Investigatory methods into ice crystal habit have included: ground based capture of
snow-flakes; ground based radar [4] and space based Lidar [5]; laboratory studies of
ice crystal growth under a Scanning Electron Microscope [6, 7] and in cloud cham-
bers; and ice analogue growth [8, 9] as well as in-situ measurements via direct [10]
and indirect imaging [11]. Each of these methods has associated advantages and dis-
advantages, but combined they help to develop a somewhat comprehensive picture
of ice crystal habits. Possible shapes include the simple hexagonal plate/ column
and more complicated structures such as aggregates and rosettes. To further com-
plicate matters, recent observations [11] have suggested that pristine structures are
often distorted through surface roughness or deviations from their regular form. De-
spite this, on days where there is plentiful cirrus coverage we can often be treated to
optical displays such as the 22◦ halo (Figure 1.2) or sun-dogs which are indicative
of ice clouds comprised of effectively pristine hexagonal columns and plates.

Figure 1.2: A section of a 22◦ halo taken in Albufeira, Portugal
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The Small Ice Detector (SID) in-situ probes employ an indirect technique, capturing
the two-dimensional light scattering distribution over the angular range 6◦ − 25◦.
This removes issues such as constrained depth of field which restrict the use of direct
imaging probes to particles with sizes greater than 100µm. However they introduce
the inverse scattering problem, i.e. the need to identify the particle through analysis
of its scattering pattern. For this to be achieved, the use of large scattering pattern
databases derived from known particle geometries and properties is required. In
order for such databases to be made, versatile computational models are required
which can determine the intensity of scattered light from a given particle over a
given angular range. Unfortunately, the most accurate numerical methods are size-
restricted to small particle sizes due to computational demands. The Ray-Tracing
with Diffraction on Facets (RTDF) [12] model developed at the University of Hert-
fordshire has been used to generate such a database. The RTDF model marked a
significant improvement on conventional ray tracing giving very good results when
the particles modelled are in random orientation. However the rays used only have
their intensity tracked, not their amplitude and phase, meaning that interference
is neglected. It has been the endeavour of this project to develop a Beam Tracing
model, where plane parallel beams and not rays will be traced. These beams will
have their amplitude and phase traced allowing for interference to be modelled. This
report will outline the theoretical aspects of Beam Tracing and how it is implemented
within a hybrid light scattering model.
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Chapter 2

Fundamentals of
Electromagnetism and Light
Scattering

And God said, “Let there be
light,” and there was light.

Genesis 1:3,
The Bible

Modelling electromagnetic (EM) scattering requires an understanding of the under-
lying principles of electromagnetic theory. In this section we will briefly discuss all
the necessary prerequisites, starting with Maxwell’s equations and how these lead
to the notion of a propagating, transverse wave; this naturally leads to polarisation.
We finish the discussion on electromagnetism by examining the behaviour of an
electromagnetic wave at a boundary.

Once the electromagnetic principles have been outlined we turn our attention to
the topic of electromagnetic scattering. An overview is given and key concepts such
as the amplitude scattering matrix, Stokes parameters and optical cross sections are
defined. A short review of computational methods is also given with emphasis on
Ray Tracing and we close the discussion by introducing Beam Tracing.

2.1 Maxwell’s Equations

Classical electromagnetism is described by the four Maxwell equations and the
Lorentz force. The Maxwell equations in differential form describe the nature of
the electric field E and the magnetic flux density B in terms of spatial and temporal
derivatives along with two fundamental constants. These constants ε0 and µ0 are
called the permittivity and permeability of free space respectively. In the presence
of charges one also needs to define the charge density ρ and the current density J.
While the Maxwell equations can also be described in integral form, this restricts
their use to localised regions (i.e. regions bound by a surface). The microscopic
Maxwell equations in differential form are:

∇ · E =
ρ

ε0
, (2.1a)
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2.1. Maxwell’s Equations

∇ ·B = 0, (2.1b)

∇× E = −∂B

∂t
, (2.1c)

∇×B = µ0J + ε0µ0
∂E

∂t
. (2.1d)

These four equations are commonly known as Gauss’s law for the electric field;
Gauss’s law for the magnetic field; Faraday’s law and the Ampère-Maxwell law. An
electromagnetic field will induce an effect in the medium with which it is interacting.
The electric displacement D and magnetic field H are defined as:

D = ε0E + P, (2.2a)

H =
1

µ0

B−M, (2.2b)

where P and M are the electric and magnetic polarisation fields, i.e. the sum of
all the microscopic induced moments within the medium. The macroscopic fields
D and H include induced effects and allow one to write the Maxwell equations in
macroscopic form:

∇ ·D = ρf , (2.3a)

∇ ·B = 0, (2.3b)

∇× E +
∂B

∂t
= 0, (2.3c)

∇×H− ∂D

∂t
= Jf . (2.3d)

Here the subscript f denotes the current and charge densities that are not bound
by the medium. Ice crystals are electrically neutral (ρf = 0) and non-conducting
(Jf = 0) and as such the macroscopic Maxwell equations reduce to four linear, ho-
mogeneous partial differential equations. Solving the reduced equations is possible
through numerical methods such as the Finite Difference Time Domain (FDTD)
and the Discrete Dipole Approximation (DDA), which are discussed in Section 2.7.

Taking the curl of Equation 2.1c, making use of the vector identity ∇× (∇×E) =
∇(∇ · E) −∇2E and invoking the free space approximation (∇ · E = 0) yields the
following vector wave equation:

∇2E = ε0µ0
∂2E

∂t2
. (2.4)

This wave equation pertains to a transverse propagating wave with velocity

c =
1

√
ε0µ0

= 2.998× 108 ms−1, (2.5)

known as the speed of light . The electric and magnetic fields are perpendicular to
each other and both are perpendicular to the direction of propagation. Furthermore,
the magnitude of the E field is proportional to the magnitude of the B field with the
proportionality constant being c. We note the following relation for plane waves:

B =
1

c
k× E, (2.6)
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where k is the wave-vector , which points in the direction of propagation for homo-
geneous waves. Equation 2.6 allows us to model only the electric or magnetic field.
It is customary to choose the electric field and this convention is maintained in this
piece of work.

2.2 The Electric Field and Polarisation

Assuming a time harmonic incident electromagnetic wave, the amplitude of the
electric field at some point x at a time t is given by

E(x, t) = Re{E0 exp[i(k · x− ωt)]}, (2.7)

where i =
√
−1 is the imaginary unit, E0 is the complex electric field amplitude

and Re{·} denotes the real part of the bracketed quantity. The angular frequency
in time is given by ω and the angular frequency in space is given by the wave-
number |k| = k = 2π/λ with λ being the wavelength. As the wave is transverse,
the wave vector is not a sufficient means of describing the wave. Since the electric
field oscillates in time we can describe an additional property of the wave known as
polarisation by the locus of the tip drawn out over time by the electric vector on
an arbitrary fixed plane, known as the polarisation plane. Decomposing the electric
field into components parallel and perpendicular to the incidence plane provides the
mechanism for determining the polarisation state. Consider the case where the two
components are in phase, but their amplitudes vary in time. The resulting electric
field vector would sweep out a straight line of varying length, hence yielding linearly
(or plane) polarised light. Alternatively, if the two components are out of phase by
π/2 but have equal amplitude then the electric field vector will trace out a circle
thus giving rise to circular polarisation. Such situations are special cases and in
general the two components have different amplitudes and phases resulting in ellip-
tical polarisation. Natural light from the sun is unpolarised which means that there
is no preference in the polarisation state of the wave.

A detector recording the properties of incident radiation may detect both circu-
larly and linearly polarised light within a majority of unpolarised light. This leads
to the idea of partially polarised light which, when quantified, can be thought of as
being the proportion of the detected light which is polarised in a particular way. The
amount, or degree, of polarisation is an important quantity that can be calculated
in some light scattering models. A property of dielectrics is that they can alter the
polarisation state of a wave through scattering and as such the scattering process
undergone by light with an ice crystal can be considered a polarising mechanism.
The fact that scattering by ice crystals can affect the polarisation state of an incident
wave means that measuring the change in polarisation can be used as a technique
for identifying ice crystals, see e.g. [13].

To close this discussion we note that within electromagnetic scattering the time
dependence is suppressed by removing the time harmonic factor exp(−iωt). The
negative in the exponential ensures that the imaginary part of the refractive in-
dex is positive. With the time dependence removed we have an expression for the
amplitude of the electric field:

E(x) = Re{E0 exp(ik · x)}, (2.8)
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2.3. Electromagnetic Waves at a Boundary

which is assumed throughout this report.

2.3 Electromagnetic Waves at a Boundary

When an electromagnetic wave encounters a boundary between two media it is split
(assuming no total reflection) into reflected and transmitted components. Denoting
the wave vectors of these components as ki, kr and kt respectively and the out-
ward surface normal as τ̂ , we can construct a diagram such as the one shown in
Figure 2.1. The angles ϑi, ϑr and ϑt are called the angles of incidence, reflection
and transmission. The laws of reflection and refraction can both be derived from
Fermat’s principle of least time and can be found in most optics texts, e.g. [14]. The
law of reflection states that the angle of reflection is equal to the angle of incidence,
that is ϑi = ϑr. For transmission one uses Snell’s law,

m1 sinϑi = m2 sinϑt, (2.9)

with m1 and m2 being the refractive indices, which for now are considered real.
Complex refractive indices, which describe an absorbing medium, are discussed later.
For cases where m1 > m2 such as light travelling from ice into air one can encounter
the phenomenon of total internal reflection where no transmitted component arises.
This occurs when the angle of incidence is greater than the so-called critical angle,
which for the ice-air situation discussed so far is:

ϑc = arcsin

(
m2

m1

)
→ ϑc,ice ' 49.8◦. (2.10)

ki

τ̂

ϑi

ktϑt

m1

m2

ϑr

kr

Figure 2.1: The direction vectors associated with incidence, reflection and trans-
mission at a boundary.

At the interface there are certain boundary conditions which have to be satisfied,
given in Equations 2.11a - 2.11d for the case where there are no surface charges or
currents. These pertain to the continuity of the tangential component of E and H
as well as the normal component of D and B to the surface [15]:

τ̂ × (E1 − E2) = 0, (2.11a)

τ̂ × (H1 −H2) = 0, (2.11b)
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τ̂ · (D1 −D2) = 0, (2.11c)

τ̂ · (B1 −B2) = 0, (2.11d)

where the subscripts denote the amplitude of the field in the first and second
medium. We define the plane of incidence as the plane containing the three wave
vectors and the boundary surface normal. Polarised light can be split into compo-
nents parallel and perpendicular to the incidence plane. Considering the two cases
where the electric field is entirely polarised parallel and perpendicular to it while in-
voking the above boundary conditions one arrives at the four Fresnel equations [14].

r⊥ =

(
Er
Ei

)
⊥

=
m1 cosϑi −m2 cosϑt
m1 cosϑi +m2 cosϑt

, (2.12a)

r‖ =

(
Er
Ei

)
‖

=
m2 cosϑi −m1 cosϑt
m2 cosϑi +m1 cosϑt

, (2.12b)

t⊥ =

(
Et
Ei

)
⊥

=
2m1 cosϑi

m1 cosϑi +m2 cosϑt
, (2.12c)

t‖ =

(
Et
Ei

)
‖

=
2m1 cosϑi

m2 cosϑi +m1 cosϑt
. (2.12d)

The two reflection terms, r‖ and r⊥ are known as the reflection amplitude coefficients
and describe the ratio of the reflected field polarised parallel and perpendicular to the
incident field respectively. Likewise, the two transmission terms, t‖ and t⊥ are called
the transmission amplitude coefficients and quantify the ratio of the transmitted field
to the incident field. A plot of the four amplitude coefficients for an air-ice interface
with refractive indices of m1 = 1 and m2 = 1.31 is given in Figure 2.2.
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2.4. Electromagnetic Scattering

Figure 2.2: Amplitude coefficients for light incident on an air-ice interface. The
incident light has a wavelength of λ = 0.532µm leading to refractive indices of
m1 = 1 and m2 = 1.31 + 0.0i (the imaginary part has been ignored here).

2.4 Electromagnetic Scattering

Electromagnetic scattering and absorption, is the umbrella term covering the mod-
ification of an electromagnetic wave by an obstacle. That obstacle may be a single
particle, an aggregate or a collection of particles. Electromagnetic scattering as a
technique has been utilised in several fields including medicine, astronomy and at-
mospheric science among many others.

When considering electromagnetic scattering, it is sufficient to only consider the
modification of the electric field, since the magnetic field follows directly from it,
see Equation 2.6. It has become tradition almost to view scattering as a three stage
process. A wave is incident on an obstacle, this wave then interacts with the particle
and is changed in some way. The emerging wave (formed through excitation and
reradiation) is then viewed as the scattered wave. This interpretation of scattering
is shown in Figure 2.3.
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Incident wave

Scattered wave

Figure 2.3: The ‘traditional’ view of electromagnetic scattering, the incident wave
is changed by the presence of an obstacle into the scattered wave.

This view of scattering is somewhat artificial and in actuality one measures a modifi-
cation of the field. In other words, one first takes a recording without the scattering
particle being present (Einc) and then a measurement with it present (Etot). The
difference between the measurements gives an indication of the scattered field (Esca)
and we write:

Esca = Etot − Einc. (2.13)

Note how this differs from the ‘traditional’ view of scattering where there was a
propagating scattered wave. In this version the scattered field only exists as a mod-
ification of the entire electric field, rather than a separate entity. The merits of this
view are discussed in the literature, see [16].

2.5 Amplitude Scattering Matrices

Maxwell’s equations imply a linearity between the incident and scattered fields al-
lowing the use of matrices in describing the transformation. The use of amplitude
matrices to describe the change in electric field amplitude can be attributed to
Jones [17]. If the waves under consideration are completely polarised with coherent
orthogonal components then one can use the so-called Jones calculus [18]. It is
therefore necessary to decompose the fields parallel and perpendicular to the scat-
tering plane which contains the direction vectors corresponding to incidence and
scattering.

Ei = Ei
‖ê
i
‖ + Ei

⊥êi⊥, (2.14)

where êi‖, êi⊥ are orthogonal unit vectors parallel and perpendicular to the scattering

plane; Ei
‖, E

i
⊥ are the amplitudes of the incident electric field in these directions.

An analogous expression for the wave which emerges is:

Es = Es
‖ê

s
‖ + Es

⊥ês⊥. (2.15)
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The two unit vectors ê‖ and ê⊥ are related to the direction of propagation via:

k̂ =
ê⊥ × ê‖
||ê⊥ × ê‖||2

, (2.16)

where || · || denotes the inner product. For a fixed plane of observation it follows
that a matrix relating Equations 2.14 and 2.15 is given by:(

Es
‖

Es
⊥

)
=

(
S11 S12

S21 S22

)(
Ei
‖

Ei
⊥

)
, (2.17)

where the elements in the matrix are in general non-zero and complex. In its original
form described by Jones the matrix would be the product of several matrices relating
to polarisers and retarders within an optical system. For applications in atmospheric
scattering we pre-multiply the above matrix by a factor pertaining to an outgoing
spherical wave since this is the form of the scattered wave. The amplitude scattering
matrix is given by [19]:(

Es
‖

Es
⊥

)
=

exp(ikR)

−ikR

(
S2(θ, φ) S3(θ, φ)
S4(θ, φ) S1(θ, φ)

)(
Ei
‖

Ei
⊥

)
, (2.18)

where R is the distance from the centre of the scattering object to the point of
observation, θ and φ are the scattering (zenith) angle and azimuthal angle respec-
tively. The division by the wavenumber serves to make the transformation matrix
dimensionless. Equation 2.18 relates the incident electric field amplitudes paral-
lel and perpendicular to the scattering plane to the corresponding field amplitudes
of the scattered wave. In this work the direction of external incidence is fixed as
k̂i0 = [0, 0,−1]T and as such the scattering plane is only determined by the azimuthal
angle φ.

An advantage of using the scattering plane is that there exist relationships be-
tween the elements of the amplitude scattering matrix and the phase matrix which
provides an analogous transformation for the Stokes parameters.

2.6 Stokes Parameters, the Scattering Matrix and

Scattering Cross Sections.

The 4× 4 phase matrix , P(θ, φ) transforms the incident Stokes parameters to those
associated with the scattered field. The advantage of using this approach is that
unpolarised light can be modelled but at a cost of losing phase information. The
Stokes parameters I,Q, U, V are usually written as a column vector I. The phase
matrix is therefore the Mueller matrix that transforms the incident Stokes vector to
the scattered Stokes vector [19]:

Is

Qs

U s

V s

 =
1

k2R2


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44



I i

Qi

U i

V i

 . (2.19)

25



Chapter 2. Fundamentals of Electromagnetism and Light Scattering

The first Stokes parameter I gives the intensity of the light and the remaining
three all contain information regarding the polarisation state. Each parameter can
be related to the time averaged electric field amplitude given with respect to the
scattering plane [19]:

I = 〈E‖E∗‖ + E⊥E
∗
⊥〉, (2.20a)

Q = 〈E‖E∗‖ − E⊥E∗⊥〉, (2.20b)

U = 〈E‖E∗⊥ + E⊥E
∗
‖〉, (2.20c)

V = i〈E‖E∗⊥ − E⊥E∗‖〉. (2.20d)

Unpolarised light of unit intensity has the form (1, 0, 0, 0)T corresponding to Q =
U = V = 0. The degree of elliptical polarisation is given by:

p =
(Q2 + U2 + V 2)

1
2

I
(2.21)

which by definition must be less than or equal to one (corresponding to light which
is fully polarised). For natural light, p = 0.

The elements of the phase matrix can be calculated from the amplitude scatter-
ing matrix through sixteen equations, two of which are given in Equations 2.22a
and 2.22b. The full list is given in Appendix B.2.

P11 =
1

2
(|S2|2 + |S3|2 + |S4|2 + |S1|2), (2.22a)

P12 =
1

2
(|S2|2 − |S3|2 + |S4|2 − |S1|2), (2.22b)

where the product |Si|2 = Si · S∗i with the asterisk denoting the complex conjugate.
The P11 element will be discussed frequently in this work as it describes the angular
intensity distribution of the scattered light. It is normalised so that the integral over
all solid angles is unity, that is:

1

4π

∫ φ=2π

φ=0

∫ θ=π

θ=0

P11(θ, φ) sin θdθdφ = 1. (2.23)

This normalisation permits the interpretation of P11 as a probability distribution
describing the probability of light being scattered into a given direction. When a
large number of different, fixed orientations are used P11 is orientationally averaged
to model scattering by a randomly oriented particle. This removes the φ dependency
leaving only a dependency on the scattering angle θ. This distribution is known as
the phase function.

Due to the large number of variables which are inputted into climate models, it
is necessary to use parameterisations. For example, it would be computationally
demanding to give the phase function for a range of ice crystal shapes found in
cirrus. Instead one uses the asymmetry parameter g which is the weighted average
of the P11 element:

g =

∫ θ=π

θ=0

P11(θ) cos θdθ. (2.24)
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The asymmetry parameter takes values in the range −1 ≤ g ≤ 1 and describes
whether more light is scattered in the forward (g > 0) than in the backward (g < 0)
direction. For atmospheric ice crystals their transparency combined with the effects
of external diffraction mean that the asymmetry parameter is always positive.

The degree of linear polarisation (dlp) is a special case of Equation 2.21 with V = 0.
It describes how the scattered light is polarised with respect to the scattering plane
and is given by:

dlp = −P12

P11

. (2.25)

It has values in the range [−1, 1] with negative values implying horizontal polarisa-
tion and positive values implying vertical polarisation.

There are three cross sections corresponding to absorption, scattering and extinc-
tion, each with units of area. They are imaginary areas such that if multiplied by
the incident wave’s irradiance one would retrieve the power absorbed, scattered and
the combined effect. The relation,

Cext = Csca + Cabs (2.26)

is therefore an expression of energy conservation. For non absorbing particles Csca =
Cext and Equation 2.26 becomes

Cext = Csca. (2.27)

Dividing the scattering cross sections by the particle’s projected area G yields the
scattering efficiencies Qabs, Qsca, Qext. As in Equation 2.26 we have:

Qext = Qsca +Qabs (2.28)

which has the interesting property that:

lim
x→∞

Qext = 2, (2.29)

where x is the size parameter (see Appendix B.2). This result is known as the
extinction paradox and is usually written in terms of the extinction cross section,

lim
x→∞

Cext = 2G. (2.30)

Physically this states that as the particle size becomes sufficiently large, twice as
much energy is removed by the particle as is incident upon it [20]. From the physical
optics point of view we interpret this as external diffraction removing an amount G
from the incoming wave and an additional amount G being removed by transmis-
sion/ reflection.

The extinction cross section can be found through direct application of the opti-
cal theorem which states that the particle extinction cross section is related to the
imaginary part of the scattering amplitude f in the forward direction [21],

Cext =
4π

k
Im{f(0)}. (2.31)
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While this is the traditional form of the optical theorem, it assumes that the scat-
tering amplitude function has units of [L−1] which is not the case for the scattering
amplitude matrix. We therefore note the following form of the optical theorem [22]

Cext =
4π

k2
Re{S2(0)}, (2.32)

where S2(0) is the upper left element of the amplitude scattering matrix given in
Equation 2.18 in the direction θ = 0◦. Note that for direct forward and backward
scattering there is no azimuthal angle φ.

The ratio between the scattering cross section and the extinction cross section defines
the single scattering albedo:

ω̄ =
Csca

Cext

. (2.33)

By definition ω̄ ≤ 1. In essence it is a statistical measurement of the probability
that a given interaction will lead to scattering rather than absorption. Much like
the asymmetry parameter it is of great interest in radiative transfer investigations.
Calculation of the single scattering albedo is not the only use of the optical cross
sections, in their own right they are of much use in remote sensing observations. As
lidar records backscattered light, an additional cross section is used known as the
backscatter cross section CΠ which has units of area per solid angle. It can be used
to determine the backscattered power per steradian. Defining the backscattered
efficiency as QΠ, in the same way as with the other efficiencies, we can define the
backscatter-to-extinction ratio as:

k̄ =
QΠ

Qext

. (2.34)

The reciprocal of k̄ is commonly found in the literature and is known as the lidar
ratio. By taking measurements of k̄ at different wavelengths one is able to estimate
the particle size distribution within the volume of atmosphere being investigated [23].

2.7 An Overview of Computational Techniques

The nonsphericity of atmospheric ice crystals has led to the development of various
computational techniques to evaluate their light scattering properties. No single
method is capable of being applied across the entire range of particle sizes and
shapes observed in cirrus, and it is likely that this will always be the case. In this
section we briefly review some methods available to the community such as T-Matrix
and the Discrete Dipole Approximation.

2.7.1 Separation of Variables Method and Lorenz-Mie The-
ory

The Separation of Variables Method (SVM) is a general method of solving par-
tial differential equations. Specifically applied to light scattering it provides exact
analytical solutions for particles where the surfaces can be made to coincide with
coordinate surfaces. The need to match coordinate surfaces with crystal surfaces
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limits the applicability to spheroidal particles, which have been used as proxies
for non-spherical particles, but have been shown to be an inaccurate approxima-
tion [24–26]. The electric and magnetic fields are represented by Vector Spheroidal
Wave Functions (VSWFs) which are given by infinite series. In order to be applied
computationally these series must be truncated meaning that accuracy is dependent
on the number of terms used. Parameters such as size, frequency and the refractive
index of the medium being investigated must all be considered when determining
the summation cut off index.

The method can be applied to multiple scattering systems. Each particle is assigned
its own local coordinate system and rotation and translation addition theorems for
VSWFs are applied. Note that due to SVM giving exact analytical solutions it is
ideal for benchmarking.

Scattering by a dielectric sphere was solved independently by Mie [27] and Lorenz.
The solution has become known as Lorenz-Mie Theory . In effect it is a special case
of the SVM where the particle is spherical, rather than spheroidal. Vector Spheri-
cal Harmonic Functions (VSHFs) are used instead of their spheroidal counterparts.
The relative simplicity of implementing the Lorenz-Mie solution computationally
has led to it being applied across a wide range of applications from biological [28]
to astronomical [29].

2.7.2 T-Matrix

Waterman [30] devised the T-matrix method, which is in essence an extension of
the SVM to non-spherical particles. Much like in SVM, the incident and scattered
waves are expressed as VSHFs and the relationship between them is the T-matrix.
Because of the expression of fields as infinite series, one can encounter truncation
errors if not enough terms are used, which is complicated further by each term in
the T-matrix requiring a different number of terms in order to achieve good accu-
racy. The T-matrix method can be considered numerically exact, its accuracy being
affected only by computational factors and not because of inherent assumptions.
It is the summations which consume most of the CPU time and therefore limit its
applicability.

The T-matrix method depends only on the physical and geometric properties of
the particle, e.g. its shape, orientation, refractive index and size. It is completely
independent of the incident and scattered fields. As such, a particle’s T-matrix need
only be calculated once and then it can be used for any polarisation and incidence
direction. This property means that it has been used in the creation of extensive
databases of non-spherical particles in random orientation [31, 32]. However, the
T-matrix method does suffer from poor numerical stability when the particle is
much larger than the wavelength, if the particle has extreme geometries (such as for
spheroids) or if the particle has a large real or imaginary part of the refractive index.

Recently, the invariant imbedding T-matrix [33] method was used by Bi et al. [34,35]
to model light scattering by non-spherical particles and aggregates of columns. This
method discretizes the scattering volume as a series of inhomogeneous spherical lay-
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ers, in the sense that a given layer has regions of differing refractive index. The total
T-matrix for the system is derived from the individual layers’ T-matrices.

2.7.3 Discrete Dipole Approximation

The Discrete Dipole Approximation (DDA) was devised by Purcell and Penny-
packer [36] and developed by Draine [37] who applied it to non-spherical astro-
nomical dust grains using the DDSCAT code. The particle volume is discretised as
a grid of polarisable dipoles, each of which has an associated complex polarisability
tensor. An incident harmonic wave drives these dipoles and the field at each grid
point is evaluated, taking into consideration the radiated field from all the other
dipoles. This leads to a system of linear equations that are solved numerically to
find the value of the dipole moment at each grid point. Once known, further pa-
rameters can be derived from other relations. Convergence is not always guaranteed
and the technique is notoriously computationally demanding, becoming more de-
manding as the number of dipoles is increased. A rule of thumb for choosing the
number of dipoles is ten per wavelength [38]. As with T-matrix, the DDA method
is size limited.

The Amsterdam-DDA (ADDA) code developed by Hoekstra and Sloot [39] and
improved by Yurkin et al. [40] is a modernised DDA implementation. It has been
widely applied by researchers in the atmospheric community, see e.g. [40–42]. Com-
parisons between DDSCAT and ADDA (among others) were performed by Penttilä
et al. [43] where it was found that while DDSCAT is slightly more accurate, it offers
far less versatility than ADDA. Reviews of DDA and ADDA can be found in [38,40].

2.7.4 Finite Difference Time Domain

The discretisation in the Finite Difference Time Domain (FDTD) method is a grid
mesh, as opposed to a dipole discretisation used in DDA. At each grid point material
properties are assigned. The solutions to the scattering problem are given in the
time domain, these are then transformed into the frequency domain before being
mapped to the far-field via either a surface integral or a volume integral. By working
in the time domain, rather than the frequency domain, the problem is transformed
from a boundary value problem to an initial value problem. The method was pi-
oneered by Yee [44] and sees the Maxwell curl equations discretised using a finite
difference scheme. A time marching iteration is used and a convergent scattered
field is achieved when a steady state field is established at each grid point (assuming
a sinusoidal incident field).

Like in the DDA method the accuracy of FDTD is affected by the mesh resolution.
Errors of less than 3% (compared to exact solutions for spheres) have been achieved
when the grid spacing was (1/20)λ; this reduces to less than 1% when the spacing
is reduced by a factor of two [45, 46]. These errors are partly due to a stair-casing
effect which stems from modelling a sphere with a rectangular mesh (an issue which
also arises in DDA computations). Further errors in FDTD implementations arise
from incorrect artificial boundary conditions which serve to truncate the scattered
wave at the edge of the computational domain. This absorbing boundary condition
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must not reflect the scattered wave as this reflected wave would then interfere with
the scattered near field leading to errors.

2.7.5 Boundary Element Method

The Boundary Element Method (BEM) reformulates the electromagnetic transmis-
sion problems into a set of Boundary Integral Equations [47, 48]. The technique is
most easily applied to scattering problems where the surrounding medium is homo-
geneous as this leads to a finite computational domain, i.e. the interface between
the two regions. To formulate the problem two domains are defined, one within the
scatterer, and one outside of it. Then, the incident and scattered fields are written
in terms of their unknown values on the boundary by means of a single-layer po-
tential operator and the Dirichlet and Neumann traces are applied leading to four
boundary integral equations. Solutions to these equations can in turn be used to
derive an amplitude scattering matrix [49]. Common techniques for solving such
equations include the collocation method and Galerkin’s method.

Direct application of BEM to electromagnetic scattering has been largely overlooked,
and where it has been applied it has been to small particle size parameters of the
order x ≤ 15, this is due to its high computational demand. Groth et al. [22] used a
particular formulation of BEM called BEM++ on a range of small particle shapes
including spheres, hexagonal columns and rosettes.

2.8 Geometric Optics Approximation and Hybrid

Methods

The Geometric Optics approximation (GO) represents wave propagation using rays,
mathematical constructs perpendicular to the wavefront which point in the direc-
tion of propagation. It can be applied to objects which are much larger than the
wavelength of the incident light (a ‘rule of thumb’ is that GO can only really be
applied to particles with size parameters of x ≥ 100). The basic idea is that rays
encounter the interface between two media such as air and ice. At this boundary
surface, the rays are reflected and refracted according to the law of reflection and
Snell’s law; the change in amplitude being determined by Fresnel’s equations, see
Section 2.3. One then assumes that the total field at a point is equal to the sum of
the electric fields linked to all rays which have passed through that point.

In this section the key principles behind geometric optics will be outlined along
with some nomenclature. We will also discuss certain hybrid methods that have
been developed, before finishing with a brief introduction to the idea of Beam Trac-
ing.

2.8.1 Ray Tracing

Ray Tracing’s strength lies in its simplicity. In a ray tracing program like [50], a
user defined number of parallel rays, simulating a plane wave, are ‘launched’ at a
particle from a pre-defined plane at random coordinates within this plane. Each
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ray is assigned a pair of polarisation direction vectors, a propagation direction and
its initial physical properties using either a Stokes or amplitude vector. The change
in these properties, due to the particle, as the ray propagates is described by ei-
ther the Mueller or Jones matrix (see Equations 2.19 and 2.18 respectively). The
matrix describing the effect the particle has on the incident light is therefore found
by calculating the respective reflection and refraction matrices for each ray-surface
interaction event. For each interaction (assuming no total internal reflection) two
new rays are spawned, one for the transmitted ray and one for the reflected ray.
Externally reflected rays and outward refracted rays are removed from the process.
Their respective amplitude or phase matrices are rotated into the scattering plane
and added to the existing matrix for the scattering angle. This process of division is
repeated until a pre-determined cut-off is reached, which can take the form of an en-
ergy cut-off or a maximum ray-recursion cut-off. In keeping with Van de Hulst [51]
the number of ray-recursions is denoted by p, where p = 1 would correspond to
external reflection only; p = 2 would be allowing for one transmission and p = 3
would include a single internal reflection etc., see Figure 2.4.

m1

m2

m1

k̂i0

p = 1

p = 2

p = 3

k̂r1
k̂t3

k̂t1

k̂t2

k̂r2

Figure 2.4: Rays at a boundary between two media with real refractive indexes m1

and m2 with m2 > m1. At each reflection / refraction event, two rays are spawned,
those rays which leave the medium carry energy away with them. The dashed lines
represent the local, outward facing surface normals.

A typical ray-surface interaction is shown in Figure 2.1. In accordance with the law
of reflection the angle of incidence ϑi is the same as the angle of reflection ϑr. As

32



2.8. Geometric Optics Approximation and Hybrid Methods

such, the unit vector in the direction of the reflected ray is [52]:

k̂r = k̂i − 2(k̂i · τ̂)τ̂ . (2.35)

The transmitted ray is bent towards the surface normal due to the change in medium
(here, m2 > m1). The direction of transmission is given by [52]:

kt =
m1

m2

(k̂i − cos θiτ̂)± cos θtτ̂ . (2.36)

The plus-minus ensures that the equation holds when the transmitted ray is going
from the crystal back into the surrounding medium. In cases of total internal reflec-
tion no transmitted ray is formed.

The main advantage of Ray Tracing is that it is computationally cheap and can
be readily applied to complex particle shapes. However, it neglects phase and so
interference effects are ignored.

2.8.2 Hybrid Geometric Optics Methods

Using Ray Tracing alone will lead to a series of discrete scattering directions instead
of a continuous intensity distribution for a given orientation. Often, an additional
modification of the incident wave takes place due to external diffraction, by which
we mean diffraction around the crystal. It has become common to use diffraction
at the projected cross section, i.e. over an aperture with dimensions equal to the
particle shadow.

By incorporating diffraction a Ray Tracing model becomes a physical - geomet-
ric optics hybrid method. There have been many of these created over the past
three decades such as the Modified Kirchhoff Approximation (MKA), the Improved
Geometric Optics Method (IGOM) and the Ray Tracing with Diffraction of Facets
(RTDF), all of which will be discussed later in this report.

A more recent development in physical-geometric optics models has been to model
ray bundles (i.e. beams) instead of rays. Beams have finite transverse size and their
shape and size can be determined at any point in their propagation. An early beam
tracing model was developed by Borovoi and Grishin [53] and recent ones by Bi et
al. [54,55] and Konoshonkin [56]. In Beam Tracing, the intersection of plane parallel
beams with crystal facets are traced rather than rays, beams are divided when they
illuminate multiple facets. Due to the difficulties associated with beam splitting
algorithms, these existing methods have only been applied to convex crystals where
beam re-entry is not possible. Tracing beams rather than rays is computationally
cheaper as one need not track the path of millions of rays, just a few hundred beams.
Much like in Ray Tracing, a beam is assigned a Stokes or Jones vector which is al-
tered by its interaction with the crystal.

The focus of this work is to develop a Beam Tracing model that can be applied
to ice crystals such as those found in cirrus, including spheroidal particles and con-
cave particles. The phase of beams will be traced throughout their interaction with
the crystal and the angularly resolved far-field amplitude post scattering will be de-
termined through application of a diffraction integral over a beam’s cross section.
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Ice Crystals and Cirrus Clouds

Three glorious suns, each one a
perfect sun; Not separated with
the racking clouds, But sever’d
in a pale clear-shining sky.

William Shakespeare,
in Henry VI

Cirrus clouds derive their name from their wispy appearance, with the word cirrus
having its origins in Latin, meaning “curl-like fringe or tuft”. They form at altitudes
greater than six kilometres and consist of ice crystals of varying shapes and sizes. It
was stated in the introduction that due to their large global coverage their impact
on the Earth’s radiation budget could be substantial. It has been reported that
cirrus represent around 25% of all high clouds [57], their coverage is around 30% at
mid-latitudes [1] and around 70% in the tropics [2].

The interaction of cirrus with incident shortwave radiation from the sun, and long-
wave radiation from the earth’s surface and lower altitude clouds affects the Earth’s
climate. Reflection of shortwave radiation, and transmission of longwave radiation
into space leads to cooling. Trapping thermal radiation leads to a greenhouse effect
and therefore warming. In this way cirrus can make positive (warming) or negative
(cooling) contributions to radiative forcing. In order to determine this contribution,
the scattering properties of the constituent ice crystals needs to be understood. This
task has proved troublesome due to the range of shapes and sizes that are found in
cirrus ice. For example, in mid-latitude cirrus, a lower size limit of 10µm has been
reported [58], with an upper size limit of 4000µm given in [59]. For the smaller sizes
it is difficult for traditional in-situ measurement techniques to distinguish shape
features, an issue which can be partly addressed through indirect techniques as em-
ployed by the Small Ice Detector (SID) probes discussed in Section 3.1.3.

The formation of ice crystals in cirrus is described by two mechanisms. Homoge-
neous nucleation takes place in the absence of Ice Nuclei (IN) and therefore requires
lower temperatures and higher supersaturation. If ice nuclei, such as, aerosol are
present heterogeneous nucleation can arise. Cooled water vapour (or super-cooled
droplets) can freeze on to the surface in a process called vapour deposition leading to
the formation of ice crystals. In order to better understand the bulk optical proper-
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ties of cirrus, a good understanding of the underlying cloud microphysics is needed.
This is because the optical properties are linked to the particle size distribution, ice
crystal habit and complexity within the cloud. Heterogeneous nucleation tends to
lead to fewer, but larger, ice crystals since it removes water vapour from the cloud.
On the other hand, homogeneous nucleation tends to lead to smaller particles.

3.1 Ice Crystals

Ice crystal shape depends on a range of environmental factors. Ice crystals will
naturally form hexagonal structures exhibiting six-fold symmetry. However in na-
ture one encounters a range of crystal structures, known as ice crystal habits or
morphologies . A habit diagram [60, 61] displays crystal type as a function of ice
supersaturation and temperature (but does not contain any information regarding
size or complexity). Figure 3.1 is the recent habit diagram taken from [61] where it
is reported that columnar type crystals (i.e. those with an aspect ratio greater than
unity) form at temperatures less than −40◦ and plate like structures are observed in
the temperature range between −20◦ and −40◦. This report will focus on columnar
type structures only.

Figure 3.1: An ice crystal habit diagram, taken from [61].

3.1.1 Scattering by Ice Crystals

Modelling scattering by atmospheric ice crystals has been the subject of research for
the last forty years and detailed reviews have been given by Baran [62,63]. Approx-
imating nonspherical particles by ellipsoidal and circular cylinders was investigated
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by Macke and Mishchenko [24]. In this study while side-scattering properties were
similar, the forward and backscattering regions differed greatly from a hexagonal
column. The halo feature, characteristic of hexagonal columns, was not observed in
most cases. Furthermore, the asymmetry parameter was found to be lower for the
simplified shapes meaning that they are not suitable as proxies. It should be noted
though that the circular cylinder did yield comparable results when the particle was
absorbing.

Approximating hexagonal columns as volume equivalent spheres or surface area
equivalent spheres has been shown to be unsatisfactory [25, 64, 65]. In the former
case this is due to there being too little surface area from which to scatter. In the
second case there is too much volume and subsequently too much absorption. Both
lead to large asymmetry parameters which are not representative of measured data.
A more involved approach modelling an infinite circular cylinder as a collection of
independent spheres was shown to be promising by Grenfell and Warren [66] with
generally good agreement in the extinction efficiency and single scattering albedo
across a range of wavelengths. Agreement was less good for the asymmetry param-
eter.

For small particles, spheres have previously been assumed, however even small ice
crystals are nonspherical. Deviations from spheres to more nonspherical shapes has
been investigated using Chebyshev particles [67], Gaussian random spheres [68] and
droxtals [69]. While these are interesting, it is widely accepted that approximating
complex geometries by simpler ones does not lead to representative results. As such,
the emphasis is now on modelling scattering by accurate computational particle ge-
ometries, reflecting those observed in-situ.

3.1.2 Laboratory Studies

Controlled studies of ice growth and morphology in laboratories is troublesome for
a range of reasons. For one, recreating the conditions found in the atmosphere is
non-trivial although complex cloud chambers do exist where it is possible to control
environmental factors such as temperature and humidity. The advantage of using
cloud chambers is that they allow for free growth of ice crystals but it is not possible
to track the development of a single ice crystal.

Ice growth at the end of fibres does allow for investigations of single ice crystal
growth, but it is impossible to say whether the presence of the fibre affects the pro-
cess, this effect is known as nucleation bias . One can bypass the use of a fibre and
grow the crystals directly on a substrate. Here the substrate is kept at a low tem-
perature and water vapour is supplied to facilitate ice growth. This technique has
been applied to study growth within the confines of a Scanning Electron Microscope
(SEM) [6, 7]. The problem of nucleation bias persists with this type of growth and
in addition new issues arise such as electron impact on the surface.

While both of these techniques are useful for studying the growth and morphol-
ogy of ice they do not provide a means to investigate the scattering properties of
individual ice crystals in a controlled manner. Ulanowski et al. [8,9] created ice crys-
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tal analogues which have the same optical properties of ice but are stable at room
temperature. Complex structures were made from fluorosilicates, the adjustment of
growth parameters used allowed for the formation of a wide variety of crystal shapes
and sizes. Simple cylindrical analogues can be made by heating, and subsequently
stretching, glass tubes. Alternatively one can use optical fibres (an example of op-
tical fibre scattering is shown in Figure 3.2). Because analogues are stable at room
temperature it is possible to make measurements of size under an optical microscope
and then place them within the detection mechanism of a laboratory version of the
SID-3 probe, discussed in Section 3.1.3, or an electrodynamic balance [8,9], allowing
for the study of scattering by individual crystals, see Figure 3.4.

Figure 3.2: A bunch of optical fibres (bottom panel) are illuminated by a green
laser. The resulting scattering pattern is seen on the wall. Notice the three distinct
rings corresponding to the two fibre bundles. Interference fringes are also visible.

3.1.3 Remote Sensing and In-Situ Measurements

Remote sensing involves using ground or satellite instruments. Lidar, the shorter
wavelength range analogue to radar, is a powerful technique that can be used to
determine cloud optical depth, as well as properties of the ice crystals in cirrus (as
well as other cloud types). Multi-wavelength lidar can use a quantity known as the
colour ratio to estimate particle size distribution by recording the intensity of the
backscattered light at two different wavelengths. Lidar instruments which use po-
larised light can measure the depolarisation to investigate particle properties such
as thermodynamic phase, orientation and habit [64,70,71]. Furthermore, combining
observations performed in both the radar and lidar regimes can reduce the uncer-
tainty in retrieved microphysical properties of ice clouds [72].

Investigating ice crystals in-situ has evolved from collection from an open cock-
pit by Weickmann to direct imaging using instruments. A variety of optical array
probes exist such as the Cloud Particle Imager (CPI) which captures the shadow
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cast by a passing ice crystal. Direct imaging is size limited (issues arise when the
particle is smaller than 100µm) and suffers from optical effects such as constrained
depth of field at small sizes and aberrations. Detecting crystal habit from direct
imaging requires high resolution, correctly focussed images. Otherwise errors can
arise when trying to size particles [73]. In addition to this, diffraction fringes will
often be seen in the images, further hampering efforts to determine habit, although
this can be overcome by using an incoherent light source, as is done in the Particle
Habit Imaging and Polar Scattering (PHIPS) probe [74]. Given that ice crystals
display sizes over a large range (from micron scale to centimetre scale) the existence
of sizing issues at the smaller end of the scale does not impose to much of a restric-
tion in their use.

The SID probes [75] (the latest manifestation of which is SID-3) are in-situ probes
that use an indirect technique to measure and size small ice crystals, see Figure
3.3. Particles enter the probe and pass through a 532nm laser beam, the resulting
scattered light travels through a beam splitter dividing it into two parts (in a ratio
of 92:8). The smaller proportion is used to trigger the recording of the scattering
pattern as well as estimate the size. The larger proportion is detected in the angular
range 6◦− 25◦ which contains the 22◦ halo. The peak intensity of this halo is useful
since it suggests that the particle which passed the laser was a large and smooth
hexagonal prism. The absence or weakening of the halo is indicative of rough, small,
or complex ice [9, 11].

Figure 3.3: The SID-2 and SID-3 probes (both encased in white canisters), attached
to the wing of the FAAM BAE-146 aircraft, over Greenland. Within the gold box
is a CPI. (Photograph courtesy of Jenna Thornton).

Most probes relate the intensity of the scattered light to the diameter of the particle
by using its scattering cross section Csca. However, this is a function of size, shape
and refractive index, all of which have to be assumed if one is to derive a diameter
from the intensity, adding to the uncertainties with the measurement. This is further
complicated by using Mie scattering profiles as the reference intensity for deriving
particle diameter, since this assumes that the illuminated particle was spherical,
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which is not the case with ice. Not only that, but the scattering cross section
is not linearly related to particle size, meaning that particles of different size can
have the same scattering cross section. All of this means that using intensity for
particle sizing can be unreliable. As such, SID-3 also records a two-dimensional
scattering pattern through the use of a Charged Coupled Device (CCD), see Figure
3.4. These patterns are affected by particle shape, complexity and roughness so can
reveal a lot more information than traditional image capture techniques. However,
one is then presented with the inverse problem of trying to identify an ice crystal
by its scattering pattern. To aid in this, particle scattering databases have been
created [76]. One of the principal aims of this project is to be able to aid in the
creation of such databases, by having a model which can work over a large size
range, and accurately model scattering in the SID detection range of 6◦ − 25◦.

Figure 3.4: A variety of ice crystal analogues (optical microscope image on the left,
Scanning Electron Microscope (SEM) on the right) and their scattering patterns
(centre). Notice how crystal complexity leads to a speckly scattering pattern. The
presence of such speckle can be used to infer crystal size [77] (images provided by
Jenna Thornton).

Due to the high speed of aircraft during in-situ measurement ice crystals can shatter
on instruments leading to an increase in the recorded number of small crystals [78].
While modern probes are designed with anti-shatter tips, older data will show a
bias. Attempts to correct for the over-recording of small ice crystals have been
investigated, including the creation of algorithms [79] which alter the measured
particle size distributions retrospectively.

3.1.4 Crystal Complexity

Deviations from pristine polyhedra and spheres is common. Crystal complexity is
the umbrella term that covers features such as roughness, inclusions, indentations
and protrusions. Examples of complex pristine particles include rosettes and capped
columns, which are thought to form when hexagonal ice crystals are transported to
regions which favour plate growth [61]. The effect of crystal complexity on light
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scattering depends on the particle size. For smaller particles, external diffraction
dominates the forward scattering region and so complexity has little effect. Small
quasi-spherical particles have been observed in mid-latitude cirrus. However, as par-
ticle size increases compared to the wavelength a smoothing of the phase function
is observed [9, 80] leading to a decrease in the asymmetry parameter for complex
crystals compared to smooth hexagonal prisms.

Recent satellite observations [81] revealed that a significant proportion of ice crystal
in cirrus display evidence of surface roughness; similar observations have been made
by in-situ measurements [11]. Modelling the scattering properties of rough particles
has been performed with Ray Tracing [50] by changing the local surface normal when
a ray intersects, which alters the ray’s propagation direction. While this technique
does result in a smoothing of the phase function (indicative of a rough particle) it is
non-repeatable and does not allow for ray re-entry. Due to the random surface mod-
ifications, the surface of the ‘model crystal’ is not closed. Modelling scattering by
roughened hexagonal columns with roughness properties derived from dust particles
was presented in [82] (provided in Appendix G) where we showed that a two-scale
roughness mechanism does indeed lead to a decrease in the asymmetry parameter for
large enough size parameters (apart from the one exception at x = 100, single scale
roughness has a similar, but smaller effect) through the use of ADDA computations.

Hollow hexagonal columns were shown to increase the asymmetry parameter [83] due
to the cavities reducing backscattering. Smith et al. [84], using the Manchester cloud
chamber and ray tracing computations, showed that the type of hollow column af-
fects the asymmetry parameter. In particular, hollow columns with stepped indents
in the basal facet were found to decrease the asymmetry parameter, while those with
regular indents increased it. Hexagonal crystals with inclusions were investigated
by Macke et al. [85]. It was seen that when the inclusions were non-absorbing the
phase function was smoothed and the asymmetry parameter was reduced. However,
when the particles contained absorbing inclusions, e.g. soot, it was shown that the
asymmetry parameter was increased due to the decrease in internal reflection.

3.2 Optical Phenomena

Despite the range of crystal habits combined with forms of complexity, the existence
of the 22◦ atmospheric halo is evidence of the presence of pristine hexagonal prisms
in the atmosphere. The 22◦ halo is caused by incident light passing through two
prism facets on a hexagonal column. The rarer 46◦ halo requires light to be incident
on a prism facet and to leave through a basal facet. Hexagonal plate crystals which
are sufficiently large that drag forces align their basal facets parallel to the hori-
zon can be attributed as the cause of the parhelia, commonly known as sun dogs.
More exotic halos, such as the 28◦ Scheiner’s halo have been explained through light
scattering from cubic ice crystals. Such ice crystals form at very low temperatures
(T < −100◦) and are thought to arise because of stacking faults in the hexagonal
lattice structure of ice [86] which itself is hypothesised to occur when rapid homo-
geneous nucleation takes place.

The presence of pristine hexagonal ice in the atmosphere is not sufficient to lead
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to halos, it has been reported in the literature that the crystals must have a size
parameter of at least x = 100 [87]. This minimum size is due to diffraction; if the
crystal becomes too small then diffraction becomes sufficiently strong to spread out
the halo peak to such an extent that it no longer becomes distinguishable. Even with
this minimum size requirement, the relative rarity of the atmospheric halo further
adds evidence to the suggestion that atmospheric ice displays sufficient complexities
as to smooth out the resultant phase functions [88,89]. The proportion of complex-
ities due to surface roughness, inclusions, indents or complex geometries remains to
be determined and will likely continue as an active area of research.
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Beam Tracing

Night had fallen, but the moon
was so bright that it could
compete with the orb whose
light it reflected...

Miguel de Cervantes,
in Don Quixote

In Section 2.8.2 the idea of beam tracing was introduced as a physical optics method
for modelling electromagnetic scattering. The creation of such a model has been the
main research goal of this project. This chapter will outline in detail how the model
works and how it is able to calculate various light scattering parameters.

4.1 From Ray-Tracing to Beam-Tracing

In the Monte Carlo ray tracing code written by Macke [50] random points are chosen
in the plane z = constant above the crystal from which rays are spawned propagating
in the −z direction. A given ray may not intersect the crystal as the x, y dimensions
of the ‘start plane’ are determined by the maximum x, y dimensions of the crystal,
as is shown in Figure 4.1.
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Figure 4.1: The scanning area in Macke’s code is almost always larger than the
crystal’s projected area. As such, there are regions where propagating rays (here,
the rays are propagating into the page) miss the crystal entirely (the shaded regions
in the figure).

If a sufficiently large number of rays were used, then it is conceivable that every possi-
ble ray-crystal surface intersection would occur, leaving the entire surface ‘scanned’,
with some intersections occurring multiple times. If identical hit points are removed
then the contour of the crystal surface would then serve as a boundary for these
rays, defining a ray bundle. In the limit of each of these rays having an infinitesimal
area, one would arrive at a beam, see Figure 4.2.

A beam is a three dimensional entity in space but for beam tracing one need only
consider the area defined by the intersection of a crystal facet and a beam, giving
rise to polygonal beam cross sections. The corners of the cross section are referred
to as beam vertices , these combined with a beam’s propagation vector provide all
the necessary tools to begin beam tracing. However, since this technique is to be
applied to electromagnetic scattering, other properties of the beams will be needed
which will be introduced towards the end of this chapter.
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Figure 4.2: The rays scan out a region on the crystal surface, given enough rays
the entire region would be scanned and one would have a well defined ray-bundle,
or beam.

4.2 Particle Input Files

The model is written in Fortran and requires four input files: one for the scattering
particle geometry; one involving electromagnetic properties; one for the rotation
angles and one defining the scattering angle bins. Each input file can be written in
Notepad.

4.2.1 Crystal Files

Scattering particle geometries are saved as a ‘.crystal’ file. Particles must be facetted
which requires curved surfaces to be approximated by a large number of polygonal
facets. Crystal files contain (in order):

1. Number of facets on the first line.

2. Number of vertices on each facet, with each facet beginning on a new line.

3. Comma delimited (x, y, z) coordinates of each vertex, with each vertex going
on its own line.

In order for the code to correctly calculate the surface normals, it is important that
the vertices be given in a clockwise order when the facet is viewed from the outside
of the crystal. This means, for example, that the vertices of the two basal facets of
a hexagonal prism will not be given in the same order.

4.2.2 Electromagnetic Properties

Files with the extension ‘.file’ contain the majority of user determined parameters
that the code is to use. These quantities are listed below, in the order in which they
are given.
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1. The name of the particle geometry file (the .crystal file).

2. The wavelength of the incident light, the real part of the refractive index and
the imaginary part, each quantity separated by a comma.

3. The number of crystal orientations.

4. The maximum number of beam recursions to be considered.

5. The maximum number of total internal reflections allowed.

The number of beam recursions, or order , p (see Section 2.8.1 and Figure 2.4), is
one of the methods used by the model to determine at what point to stop tracing a
given beam. It is possible for a beam with a small cross section to find itself totally
internally reflected many times. As such, a user defined cut off is used to prevent
the code from running indefinitely, the default being ten. However, since no energy
is lost when a beam is totally internally reflected (so long as there is no absorption)
the code could cut off an energetic beam which has been totally internally reflected
if it exceeded the number of beam recursions set. For this reason, if a beam is totally
internally reflected the beam recursion counter is not increased.

4.2.3 Euler Angles

The particle is situated at the centre of a ‘laboratory coordinate system’ with its
‘particle coordinate system’ overlapping this (z-axis along the cylinder axis of the
prism). The direction of propagation of the incident wave is always considered to
be in the −z while the particle itself with its coordinate system is rotated. The
rotation is described by the three Euler angles:

1. A rotation of α about the z-axis creating two new axes x′ and y′.

2. A rotation of β about the x′-axis creating two new axes y′′ and z′.

3. A rotation of γ about the z′′ = Z axis creating two new axes X and Y of the
particle coordinate system.

Positive angles represent clockwise rotations when looking in the positive direction
of the axis. These rotations, applied to a hexagonal column, are shown in Figure
4.3. While one can allow the code to randomly choose the particle orientation, if
investigating scattering by ice crystals in fixed orientation, e.g. for comparison with
in-situ data, then manual angle input is required. Likewise, if comparing results
from two separate light scattering models, averaged over multiple orientations (as
is done in this work between a Ray Tracing code and the Beam Tracer) it is useful
to use the same set of Euler angles for both models. For this reason it is possible
to save the Euler angles in a separate, comma delimited, text file to be read in by
the code. The Euler angle rotation matrix is applied to each of the crystal vertex
coordinates to yield their rotated positions with respect to the original (x, y, z)
laboratory coordinate system. To that end, if a crystal vertex has position vector
xold = (xo, yo, zo)

T then its new position is given by [90]:

xnew = Exold, (4.1)
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where E is the Euler angle rotation matrix,

E =

− cos β sinα sin γ + cosα cos γ − cos β sinα cos γ − cosα sin γ sin β sinα
cos β cosα sin γ + sinα cos γ cos β cosα cos γ − sinα sin γ − sin β cosα

sin β sin γ sin β cos γ cos β

 .

(4.2)
While Euler angles are the default rotation mechanism for the crystal geometry in
the beam tracing code, they are not the only way of performing a rotation. For
example, later when discussing comparison between results from the beam tracer
and ADDA, a two stage rotation was used instead of Euler angles.
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Figure 4.3: Rotation of a hexagonal column using the Euler angles. (A) is the
original crystal orientation, (B) shows the first rotation by α about the z axis, (C)
shows the second rotation by β about the x′ axis, (D) shows the third rotation by
γ about the z′′ = Z axis. The rotated axes are denoted by X, Y, Z.

4.2.4 Scattering Angle Bins

While the azimuthal bin size is set constant at 1◦ across the range 0◦ ≤ φ ≤ 360◦

the scattering angle size is variable. This is because certain regions may require
greater resolution than others. For example, in its current form the bin sizes are set
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to equal that used in ADDA computations to ensure fair comparisons. The input
file requires the complete list of scattering angles.

4.3 The Division of Beams

The propagation of a beam is described entirely by its propagation unit vector k̂.
Changes to its direction due to reflection and refraction are described by Equations
2.35 and 2.36 introduced in section 2.8.1. A propagating beam, when incident on the
surface of the crystal, may illuminate a region which extends over multiple facets.
Since a beam cannot propagate in two directions simultaneously, it follows that the
incident beam will have to be split before reflection and transmission can take place.
An algorithm was written to take an incident beam and split it into N new beams,
where N denotes the number of illuminated facets. The algorithm will be outlined
in this section.

4.3.1 A Note on Terminology

An incident beam is equally well referred to as being the parent beam, when it
intersects the crystal its child beams are referred to as beamlets . Child beams will
consist of the reflected and transmitted beamlets. We refrain from using the term
sub-beams until further division due to absorption is discussed.

4.3.2 Determination of the Illuminated Region

It was stated earlier that existing beam tracing models that have been presented
in the literature have been restricted to convex, facetted polyhedra. It was desired
that this beam tracer should be capable of handling particles such as cylinders,
spheroidals and indented particles. In this section we will discuss how beam trac-
ing is performed, first on a hexagonal column with flat basal facets, and then on a
hexagonal column with an indented basal facet; both columns will be smooth.

The surface normals of the crystal facets are all pointing out of the crystal vol-
ume. For external illumination a facet with surface normal τ̂ will be illuminated if
arccos(k̂i0 · τ̂) > 90◦, that is if the surface normal points towards the beam source.
In practice, the incident wave is propagating in the direction k̂i0 = (0, 0,−1)T which
means that any surface normal with a positive z component is considered illumi-
nated.
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Figure 4.4: The red region indicates a beam cross section illuminated by the inci-
dent wave, which is propagating into the page. This beam would undergo reflection
and transmission, the latter will require beam splitting.

We will investigate how the beam formed by illuminating the facet shown in red in
Figure 4.4 would be split. The externally reflected beam would not interact with
the crystal again and therefore can be considered scattered. The transmitted beam
however, would intersect the crystal and as such we wish to determine the region it
would illuminate. In order to do this, we introduce the set Bi of position vectors of
the beam vertices b, for the ith beam,

Bi = {bi,1,bi,2, ...,bi,n}, (4.3)

with the number of beam vertices being denoted by n. One can envisage rays passing
through each of these beam vertices in the direction of transmission, the intersection
of these rays with the crystal would then define the vertices of the newly illuminated
region, which may be across several facets meaning that the beam has to be split.
There are six stages to beam splitting:

1. Determine all candidate facets, i.e. those facets which could be illuminated by
the incoming beam.

2. Project the beam, and all candidate facets, on to the beam splitting plane.

3. Find the intersection between each projected beam edge with each edge of
each projected facet.

4. Check to see if any projected crystal vertex is bound by the projected beam
cross section.

5. Check to see if any projected beam vertex is bound by each projected facet.

6. Project each new point back on to the crystal.

Step 1: Determining candidate facets.

Candidate facets are again determined through use of surface normals. However,
unlike external incidence, a facet will be illuminated if arccos(k̂ · τ̂) < 90◦. This is
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because the surface normals point out of the crystal volume, therefore to be illumi-
nated the angle between the propagation vector and the surface normal has to be
acute.

Step 2: Projection on to the beam splitting plane.

Beam splitting is performed by projecting the beam, and all candidate facets on
to the beam splitting plane, which is the plane perpendicular to the direction of
propagation of the beam. The general expression to project a point with position
vector x on to a plane through the origin of the coordinate system and perpendicular
to k̂ is:

x′ = x− (k̂ · x)k̂. (4.4)

Throughout the rest of this chapter, primed quantities will be in reference to position
vectors of points given in this beam splitting plane. Projecting a beam vertex bi
in to the beam splitting plane is therefore achieved by replacing x in Equation 4.4;
likewise for crystal vertices v. Figure 4.5 shows the incident beam, in red, being
projected on to the beam splitting plane, along with the candidate facets, which
are coloured individually. Blue dashed lines are shown passing through each beam
vertex in the direction of propagation k̂t. The left panel illustrates that the beam
splitting plane is perpendicular to the direction of propagation (the beam splitting
plane has been translated in the direction of k̂t for better visualisation). The black
circles in the right panel are the points of intersection between a ray passing through
the beam vertex and the crystal, the position vector of such points is found through
Steps 3-6.

k̂t

Figure 4.5: A beam cross section being projected on to the beam splitting plane,
which is perpendicular to the direction of propagation (the blue dashed lines). The
thick red lines are the projection of the beam edges and the black lines are the
projections of the candidate facets. An additional translation of the plane in the
direction of propagation has been made to aid visualisation.

Step 3: Intersections of projected beam edges with projected crystal edges.

Once in the beam splitting plane, we seek the intersections (if they exist) between
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the projections of the beam edges, and the projections of the edges of the candidate
facets. To that end, let the edge of a beam cross section be denoted by

l′ = bi + µ(b′i+1 − b′i) = b′i + µa′ µ ∈ R. (4.5)

Likewise, let the edge joining two crystal vertices be given by:

e′ = v′j + ν(v′j+1 − v′j) = v′j + νc′ ν ∈ R. (4.6)

Equating these two equations and rearranging we have:

µa′ − νc′ = v′ − b′i = r̃. (4.7)

The system of equations given by Equation 4.7 is overloaded and so can be solved
using matrices, ax cx

ay cy
az cz


︸ ︷︷ ︸

A

(
µ
ν

)
︸︷︷︸

B

=

r̃xr̃y
r̃z


︸ ︷︷ ︸

C

. (4.8)

In order to solve this system using matrices it is necessary to reduce the size of A
so that it is square. To do this, we choose to use only the xy components, calling
the reduced matrix Ā. The values of µ and ν are then given by:

B = Ā−1C. (4.9)

If no solution is found using the xy components then the xz components are used,
likewise if these yield no solution we try the yz. If still no solution is found, then
the lines do not intersect meaning that the beam does not illuminate any portion of
the crystal edge. Of course, it is possible that the lines may intersect outside of the
projection of the crystal. Therefore a check is made to ensure that

µ ≤ ||b′i+1 − b′i||2,
ν ≤ ||v′j+1 − v′j||2.

If satisfied, the intersection between the beam edge and the crystal edge in the
beam splitting plane can then be found by substitution of µ into Equation 4.5 (or
ν into Equation 4.6). This process is repeated for all beam edges and all candidate
facet edges, every time a successful intersection is found the facet and the point of
intersection are stored. Figure 4.6 denotes these points of intersection with blue
crosses.
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b′1

b′2

v′3

v′4

l′

e′

Figure 4.6: Projection plane: Points found through the three stages of beam split-
ting (the crystal orientation is the same as Figure 4.4, but the viewing angle has
been changed for ease of viewing). Two beam vertices b′1 and b′2 are labelled, as
are two facet vertex projections v′3 and v′4. The markers indicate at which stage a
given point will be found by the algorithm; blue crosses mark points found through
considering line intersections; red filled circles are facet vertices bound by the beam
(red lines) and green triangles are beam vertices bound by a crystal facet.

Step 4: Projected crystal vertex check.

The next stage is to determine whether any of the projected candidate facet ver-
tices are within the beam’s cross sectional area. Tests to determine whether a given
point is bounded by some area defined by vertices r1, ..., rn, n being the number of
vertices, are common throughout the beam tracing algorithm. The technique makes
use of vectors which are perpendicular to the boundary. These so-called edge vectors
are in the same plane as the bounded area and as such will be perpendicular to the
normal of the plane n̂. It follows that a vector perpendicular to the edge joining the
vertices r′i and r′i+1, i = 1, ..., n would be given by:

qi = n̂× (ri+1 − ri), (4.10)

note that when i = n, i+ 1 = 1. Next, let the vector p be the vector from a vertex
to the point being investigated x, that is:

pi = x− ri. (4.11)

If x is within the area, then p̂i · q̂i ≤ 0 for all pairs of vectors p̂i, q̂i. This condition
states that the angle ϕ between the two vectors will be greater than or equal to 90◦

when x is within the area, see Figure 4.7.
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ϕ1
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ϕ2
ϕ1
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p1

q1

r1 r2
r1

r2

Figure 4.7: A test to determine if a point is within a bounded region. If x is within
the shaded area, the angle ϕl between each pair of vectors pl,ql will be larger than
90◦. For clarity, only one pair of vectors has been labelled.

Applying the above test with n̂ = k̂t and ri = b′i in Equation 4.10, and x = v′j in
Equation 4.11 (i.e. is the crystal vertex v′j within the region define by the projection
of the beam vertices?) yields, in this instance, three additional points indicated by
red circles in Figure 4.6.

Step 5: Projected beam vertex check.

Next consider the converse situation, beam vertices bounded by crystal facets. The
process for doing this is in essence the same as described for step 4, but the test
point is now a beam vertex, not a crystal vertex. Therefore Equations 4.10 and 4.11
use n̂ = k̂t, rj = v′j and x = b′i. The points revealed by this process are denoted in
Figure 4.6 by the green triangles.

Step 6: Projecting points back on to the crystal.

Once steps 1-5 have been carried out a set of points, and the corresponding facets,
will have been found. These position vectors have to be projected back on to the
crystal. Let the position vector of a stored point in the projection plane be x′, its
corresponding point on the crystal is given by:

x = x′ +
(v′ − x′)

k̂ · τ̂
k̂, (4.12)

where τ̂ is the surface normal of the facet associated with the point x′. Repeating
this for all points and grouping by facet then gives the coordinates of the new beams’
vertices. There is one final adjustment that may need to be made, the beam splitting
process may duplicate points. In order to avoid errors when calculating phase it is
important that duplicated points are removed from the beam vertex coordinate
arrays (the error in calculating phase arises because duplicated points will affect the
location of the midpoint of the beam cross section). The resulting beams are shown
in Figure 4.8.
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Figure 4.8: Three new beams formed as a consequence of beam splitting.

4.3.3 Vertex Order

The arrangement of the beam vertices in an array can have a profound effect on the
shape of the beam as shown in Figure 4.9. For the beam to be a closed polygon we
require the points to be in clockwise order when viewed in the direction of propaga-
tion, i.e. from the ‘source’ of the beam. While the second part of this criterion does
not affect the shape of the beam, it does affect the sign of the line integral used in
calculating the amplitude of the diffracted field (see Section 5.4.2).

b2

b1 b4

b3

b2b1

b4 b3

m m

Figure 4.9: The order of beam vertices can drastically affect the shape resulting
beam cross section.

The position vector of the midpoint m of a beam cross section is the average of the
beam vertex position vectors,

m =
1

n

n∑
j=1

bj. (4.13)

To sort the points into clockwise order, let uj = bj −m be a vector from the centre
of a beam’s cross section to the ith beam vertex, then cos Θj = û1 · ûj+1 is the angle
between two vectors in the plane.

This scalar product will only return an angle Θ ∈ [0, π], to extend this range to
Θ ∈ [0, 2π] one can use the cross product. The product ûj+1 × û1 will give a vector
perpendicular to the beam’s cross section on the facet, as such (ûj+1 × û1) · τ̂ will
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either be equal to 1 or -1 leading to the following condition:

Θj =

{
cos−1(û1 · ûj+1) if (ûj+1 × û1) · τ̂ = 1

2π − cos−1(û1 · ûj+1) if (ûj+1 × û1) · τ̂ = −1
(4.14)

b2

b1

b4

b3

m

u1

Θ3

u4Θ2

Θ1

u3 u2

Figure 4.10: Angles used for sorting beam vertices.

Sorting these angles into ascending order will give the points in such an order as
to ensure the beam cross section is a closed polygon. The next stage is to ensure
that the points have been sorted into clockwise order as viewed from the ‘source’.
To do this let p = b2 − b1 and q = b3 − b2. If the points are in clockwise order as
viewed in the direction of propagation k̂, then n̂ · k̂ will be greater than zero, where
n = p× q, see Figure 4.11. If this result is negative, then the order of the points in
the array is reversed. The special case of n̂ · k̂ = 1 occurs when the surface normal
to the facet is parallel to the direction of beam propagation.

k̂

p

q
n̂

Figure 4.11: If the beam vertices are arranged in the clockwise direction when
viewed from the source, then the test vector n̂ should point away from the beam
source

4.4 Adapting the Beam Splitting Algorithm to

Handle Concavities

Concave particles, such as the one shown in Figure 4.12, present a number of chal-
lenges for beam tracing models and as such existing codes have dealt explicitly with
convex particles [54, 56]. The two most obvious problems being shadowing by the
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indent and beam re-entry. The beam tracer has been adapted to deal with both of
these problems, this section outlines how it handles them.

Figure 4.12: An example of an indented column which can be used in the beam
tracer

4.4.1 Partial Blocking of the Incident Wave

It was stated in the previous section that the initial beam cross sections were equal
to those crystal facets whose surface normals had a positive z coordinate as the
incident wave propagates in the direction k̂ = (0, 0,−1)T . However, for indented
particles some facets may be partially, or totally, blocked by other upward facing
facets, see Figure 4.13.

Figure 4.13: An indented column seen from two different viewing angles. In the
left configuration the incident wave is into the page, a portion of the indent would
be blocked by one of the prism facets. The right configuration shows the initial
beams found using the old “upward facing facet” criterion.

Finding the shadow region is a four step process.

1. Test each candidate crystal vertex to see if it is blocked by any other candidate
facet.

2. Project each blocked facet and the blocking facet into the beam splitting plane.

3. Seek intersection between the projections of the crystal edges.

4. Project points, along with intersections, back on to the blocked facet. Sort
into clockwise order.
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As step one of this procedure is the only new step to be discussed the other three
will be omitted. Steps 2-4 were outlined in Section 4.3.2.

Step 1: Determining if any crystal vertices are overshadowed.

To determine the shadow region each illuminated candidate facet is considered in
turn and compared with all other candidate facets. For comparison we see if a ray
passing through each vertex of a given candidate facet intersects with any other
candidate facet when the ray is travelling back towards the beam source (i.e. its
propagation direction is −k̂i0). A ray can be written as a vector line equation, pass-
ing through a beam vertex b parallel to the reverse direction. A point on this line
is given by:

x = b− µk̂io. (4.15)

In a similar manner, a crystal facet can be considered a bound region in R3. The
position vector of a point on the facet will therefore satisfy

(x · τ̂) = 0. (4.16)

Substitution of Equation 4.15 into Equation 4.16 and solving for µ leads to a Equa-
tion for the intersection of the ray with a given crystal facet,

x = b−
(

b · τ̂
k̂i0 · τ̂

)
k̂i0. (4.17)

If this point is bound by the crystal facet it means that the beam vertex b is blocked
by the facet and as such it is removed from the initial beam array. The facet is then
identified as having been blocked, in the same way the other facet is identified as
blocking. A shadow boundary must exist on the blocked facet, to find it all blocked
facets and all blocking facets are projected on to the beam splitting plane, as shown
in Figure 4.14. The line intersections can then be found in the same way as was
done in Step 3 of Section 4.3.2.

Figure 4.14: The three blue facets have been found to be ‘blocked’ by the red prism
facet and as such all are projected into the beam splitting plane (which again has
been translated). The coloured lines reflect the colour of the projected facet. By
finding the line intersections between the red and blue lines the shadow region can
be determined.
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Once the line intersections are known the points are projected back on to the blocked
facet. Each set of beam vertices is then sorted into clockwise order to ensure correct
beam shape. This process yields the shapes of the initial beams on facets which
were partially blocked by other facets. The result is shown in Figure 4.15.

Figure 4.15: The upper prism facet has blocked some of the incident wave and
stopped full illumination of the triangular facets which make up the indent. As a
consequence of this shadowing the beam shapes are deformed. Beams are shown
in red.

4.4.2 Beam Re-entry

The next stage to consider is beam re-entry, to do this, we will consider external
reflection from an indented column in a slightly different orientation as the one given
above (in this case, there was no shadowing). In Figure 4.16 the red beam is to be
reflected, the direction of reflection is shown by a blue arrow and it can be seen that
the arrow intersects again with the crystal. We wish to determine the shape of the
beam that intersects, and the shape of the beam which does not (i.e. is scattered).

k̂r

Figure 4.16: The red beam is externally reflected in the direction of the blue arrow
(incident wave propagates into the page). Some portion of this beam will re-enter
the crystal.

The steps involved in handling beam re-entry are:

1. Identifying candidate facets.

2. Project beam and candidate facets on to the beam splitting plane.
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3. Find line intersections.

4. Check the intersections to see if they are shared by two candidate facets.

5. Check to see if beam vertices are bound by projected candidate facets.

6. Check to see if crystal vertices are bound by the projected beam cross section.

7. Project points back on to the crystal.

Steps 2 and 3 have been discussed in Section 4.3.2 and so are omitted in the follow-
ing discussion.

Step 1: Identifying candidate facets.

Additional criteria are needed to determine which facets could potentially be il-
luminated. A surface normal criterion is used, requiring that arccos(k̂r · τ̂) > 90◦

i.e. the surface normal points towards the beam source. The problem with using
this criterion on its own is that facets ‘behind’ the beam would also be considered.
To get round this issue, let the vector M be the vector from the midpoint of the
currently illuminated facet to the centre of the candidate facet. To be considered as
potentially illuminated the requirement that arccos(M · k̂r) < 90◦ must be satisfied.
If a facet meets both of these criteria then it is projected, along with the beam cross
section, on to the beam splitting plane, see Figure 4.17.

k̂r

Figure 4.17: The same crystal as in Figure 4.16 seen from a different angle. Pro-
jections of the beam (red) and candidate facets (orange, blue and yellow) in the
beam splitting plane (which again has been translated by a constant amount in
the direction of propagation) have been included.

Normal beam splitting then takes place; line intersections between projections of the
beam edges with projections of the facet edges are sought. In this instance, there
are two intersections, marked by blue crosses in Figure 4.18.
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Step 4: Classifying points found through line intersections.

The blue crosses would be shared by both the beam that re-enters, and the beam
that is scattered. As such, they will be projected back on to the crystal in two places,
once on the current facet (i.e. the facet on which the parent was beam reflected)
and also on to the newly illuminated facet. However, if the crystal edge had been
shared by two candidate facets then projecting the point back on to the old facet
would lead to problems. In particular, if more beam vertices are supplied than what
are necessary to define the beam shape, phase issues can arise due to the incorrect
determination of the beam centre. Therefore, for each intersection found a test is
performed to see if the edge the point is on is shared by two projected candidate
facets. If it is, then the point will only be projected on to the newly illuminated
candidate facets. If not, then it is projected on to the old facet, and the candidate
facet. In the case discussed here, the blue crosses are on a crystal edge which is not
shared. They therefore mark the edge which separates the beam that is scattered
from the beam that re-enters.

Step 5: Testing to see if beam vertices are bound by facet projections

A ray passing through a beam vertex which is bound by facet projections would
re-intersect that facet, (green triangle in Figure 4.18). If the vertex is not bound
then a ray would propagate away from the crystal (red circles in Figure 4.18).

Step 6: Testing to see if crystal vertices are bound by beam projection

Any crystal vertex which is bound by the projection of the beam would be illu-
minated by that beam. This point is stored, along with its facet. In this instance,
no such point is found.

Step 7: Projecting back on to the crystal

The mechanism for this has been discussed already. However, in this case the points
associated with the scattered beam have to be projected back on to the parent facet,
so that its cross section is known for modelling diffraction.
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Figure 4.18: Splitting the reflected beam. Beam vertices found through line inter-
sections are marked by blue crosses, these points are shared by the scattered beam
and the beam that intersects. Beam vertices which are not bound by facet projec-
tions will belong to the beam which is scattered (red circles); whereas beam vertices
which are bound would belong to the beam which intersects (green triangle).

In this way the reflected beam has been split as shown in Figure 4.19.

Figure 4.19: The externally reflected beam is split into parts which intersect with
the crystal again (red) and those which are scattered (green). The region illumi-
nated by external reflection off the facet is shown in blue.

4.4.3 Transmission into an Indented Column

For transmission, once candidate facets have been identified, the model divides them
into three sets. The first set contains those facets which could potentially have a
shadow region on them, the second set contains those facets which are blocking
some portion of the transmitted beam and the third set are the facets which neither
block, nor are blocked. For each set, the process is then the same as for reflection,
they are projected on to the beam splitting plane and line intersections are sought.
For each blocked facet, the shadow portion is removed by considering the symmetric
difference between coordinate sets. As before, a list of steps is given.

1. Identifying candidate facets.

2. Identify potential blocking facets and their corresponding overshadowed facets.
Find any unblocked facets
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3. Project beam and the blocked facet on to the beam splitting plane.

4. Find line intersections.

5. Check to see if beam vertices are bound by projected candidate facets.

6. Check to see if crystal vertices are bound by the projected beam cross section.

7. Project beam and corresponding blocking facets on to the beam splitting plane.

8. Repeat steps 4-6.

9. Find the symmetric difference between the resulting coordinate sets.

10. Repeat steps 3-9 until all blocked facets have been considered.

11. Project the beam and any unblocked facets on to the beam splitting plane.

12. Repeat steps 4-6.

13. Project all new beams back on the crystal.

14. Project points back on to the crystal.

Consider the situation shown in Figure 4.20 where a single beam is being transmitted
into the crystal. As with external incidence, the indent will block some of the
transmitted beam from reaching the lower prism facet. Step 1 is the same as for
reflection and so will not be repeated here, we move straight on to Step 2.

Figure 4.20: Two views of an indented crystal and a beam undergoing transmis-
sion. The thick red line is the projection of the beam and the black lines are the
projections of all the candidate facets.

Step 2: Identifying and dividing facet groups.

For external shadowing ‘back-rays’ were used originating from each vertex of each
candidate facet. A similar approach is used here, but instead of back rays normal
rays are used. The intersection between rays passing through a candidate facet, in
the direction k̂t with each other candidate facet are sought. If a successful intersec-
tion is found, i.e. one which is within the confines of the facet, then the facet from
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which the ray originated is classed as being ‘blocking’ and the facet which was inter-
cepted is considered as ‘blocked’. This process is repeated until all candidate facets
have being grouped. At which stage two sets are defined, those which are blocking
the transmitted beam, and those which are blocked, i.e. are overshadowed. It is
important that for each potentially blocked facet, the facets which may block some
of the beam are also stored. Any facet which neither blocks, or is itself blocked, is
stored separately.

Steps 3-6 have been discussed before. The difference now is that the process is
performed on different facet groups. We will consider one such grouping, shown in
Figure 4.21. One of the prism facets has been identified as being potentially blocked,
the facets which could block the transmitted beam are coloured. These two facet
groups, along with the beam (shown in red) are projected on to the beam splitting
plane, Figure 4.22.

Figure 4.21: Two facet groups, the facet shown in green is partially blocked by the
facets shaded in yellow, magenta and blue. The transmitted beam cross section is
shown in red.
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(a) (b)

Figure 4.22: (a) Projection of facets which are potentially blocked by other facets
[given in (b)] along with the beam, shown in red. (b) Blocking facets and beam
in the beam splitting plane. As in Figure 4.6 blue crosses indicate new beam
vertices found by line intersections; red circles are crystal vertex projections bound
by the beam cross section and green triangles are beam vertices bound by facet
projections.

Step 9: Removing the shadow portion

Once Steps 3-8 have been carried out the result is two sets of position vectors.
The first set, denoted by X, contains the position vectors of new beam vertices
(in the beam splitting plane) on the potentially blocked facet. Likewise, the set of
position vectors found through investigating blocking facets is denoted by Y . If the
beam is blocked by any facets then there will be at least one vertex common to both
sets X and Y . If no such vector exists then the beam is not blocked and each set
can be projected back on to the crystal. However, if the beam is blocked then the
position vectors of the illuminated region, on the blocked facet, are given by the
symmetric difference between the sets X and Y , defined as:

X̃ = X ⊕ Y = (X \ Y ) ∪ (Y \X), (4.18)

where \ denotes the set difference and ∪ the set union. This operation yields the
position vectors which are not shared by either set, Figure 4.23 shows the process.
In panel (a) the illuminated region on the prism facet is given, at this stage blocking
has yet to be considered. The vertices, indicated by black circles, are stored in the
set X. Panel (b) gives the same but for the blocking facets, the colours reflecting
those used in Figure 4.21; these vertices are stored in the set Y . In panel (c) the two
sets are overlaid; (d) shows the resulting set found once the symmetric difference has

been taken. The position vectors in X̃ can then be projected back onto the crystal
through use of Equation 4.12. Those position vectors in Y are grouped by facet and
then projected back on to the crystal, giving rise to new beams (in this case three).

This process is repeated for all potentially blocked facets. If the same blocking
facet is investigated more than once, it is not projected back on to the crystal as
this would lead to beam duplication leading to errors.
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For those candidate facets which were not blocked and did not block any others
the process is the same as for previous cases. The transmitted beam thus consid-
ered would illuminated regions on five different facets, leading to five new beams,
which are shown in Figure 4.24. The additional beam, coloured cyan, arises during
Steps 11 and 12.

(a) (b)

(c) (d)

X Y

X̃

Figure 4.23: The process of removing the blocked portion of the transmitted beam.
(a) The illuminated region on the prism facet ignoring blocking. (b) The illumi-
nated region on the blocking facets. (c) Parts (a) and (b) overlaid. (d) the removal
of the blocked region.
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Figure 4.24: Five new beams are spawned in this case from the beam transmitted
through the top prism facet.

The process outlined in this section allows the beam tracing model to be applied to
particles which have concavities or shadow regions; which significantly increases the
range of crystal habits it can be applied to. The discussion so far has focussed on
geometric considerations of the model. In the sections to follow physical properties
of beams will be explained and how they are implemented in the model.

4.5 The Amplitude Scattering Matrix

The amplitude scattering matrix was discussed in Section 2.5 and is repeated below
for convenience in Equation 4.19. In order to determine the amplitude scattering
matrix for the ice-crystal, we associate with each beam an amplitude matrix. This
describes the effect the crystal has had on the incident electric field vector of the
beam. The sum of all the beams’ amplitude matrices then gives rise to the θ and φ
resolved amplitude scattering matrix,(

Es
‖

Es
⊥

)
=

exp(ikR)

−ikR

(
S2 S3

S4 S1

)(
Ei
‖

Ei
⊥

)
. (4.19)

In the trivial case that there is no ice-crystal and hence no scattering, the incident
field would be unchanged and the scattering matrix would be equal to the 2 × 2
identity matrix. This section outlines how a beam’s amplitude matrix is altered as
it interacts with the ice-crystal. In order to do this, it is necessary to first discuss
the various planes used throughout the beam tracing process.

4.5.1 Reference Plane and Incident Field

The incident wave is travelling in the negative z direction and has its electric field
amplitude vectors decomposed with respect to a reference plane, which is chosen to
be the xz plane. The polarisation vectors, along with the direction vector form an
orthogonal trio,

k̂ = ê⊥ × ê‖. (4.20)

Unit vectors parallel and perpendicular are:

ê‖ = [1, 0, 0]T , (4.21a)

ê⊥ = [0, 1, 0]T . (4.21b)
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Which describe the polarisation of the incident beam. New polarisation vectors are
found each time there is a beam-facet interaction.

4.5.2 Plane of Incidence and Fresnel Matrices

The Fresnel amplitude coefficients, discussed in Section 2.3 provide the means to
determine the proportion of a wave’s amplitude which is transmitted or reflected.
By expressing them in matrix form, they can be used in conjunction with the Jones
calculus. The Fresnel transmission matrix , T, and the Fresnel reflection matrix, R
are given by

T =

(
t‖ 0
0 t⊥

)
, (4.22a)

R =

(
r‖ 0
0 r⊥

)
. (4.22b)

Whenever a beam encounters a crystal facet these matrices can be used to determine
the amplitude matrices of the reflected and transmitted beams. However, the Fresnel
coefficients apply to amplitudes expressed with respect to a plane of incidence.
The plane of incidence is the name given to the plane which contains the local
surface normal and the three propagation vectors corresponding to the directions of
incidence, reflection and transmission, as seen in Figure 4.25.

k̂i

τ̂

k̂r

k̂t

Plane of
incidence

Crystal Surface

Figure 4.25: The plane of incidence contains the surface normal and the three
geometric optics propagation vectors.

The incident beam’s amplitude matrix was expressed with respect to the last plane
of incidence (in the case of external incidence, this is the reference plane). To go from
this plane to the new plane we apply a rotation matrix which rotates the polarisation
vectors of the beam into the new plane of incidence. The rotation matrix has the
form:

L =

(
cos Θ sin Θ
− sin Θ cos Θ

)
(4.23)

which describes a counter-clockwise rotation by an angle Θ ∈ [0, π] when looking in
the direction of propagation. In order to perform this rotation, a vector perpendic-
ular to the new plane of incidence is required. Since this plane contains the surface
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normal and the incident propagation vector, the new perpendicular vector can be
found using:

e′⊥ = k̂i × τ̂ . (4.24)

As the rotation serves to rotate the old perpendicular vector and align it with the
new it follows that:

cos Θ = ê′⊥ · ê⊥. (4.25)

Figure 4.26 provides a schematic of the rotation discussed. Since the rotation angle
is restricted in its range between 0 and π, the sense of the rotation has to be
properly considered. The intersection between the old and new planes of incidence
defines a line on which lies the vector in the direction of incidence, k̂i. As the new
perpendicular electric field vectors are both perpendicular to this vector, their cross
product will either be parallel or anti-parallel to it. If the cross product is parallel,
then the rotation is clockwise and the negative sign in Equation 4.23 goes with the
upper right sine. The inverse statement is true for the anti-parallel case in which
the rotation is considered anti-clockwise and as such Equation 4.23 is unchanged.
Incorporating this criterion gives a modified form of Equation 4.23 namely:

L =

(
cos Θ ξ sin Θ
−ξ sin Θ cos Θ

)
(4.26)

where,

ξ =

{
1 if (ê⊥ × ê′⊥) · k̂i = −1

−1 if (ê⊥ × ê′⊥) · k̂i = 1.
(4.27)

ê⊥
ê′⊥

k̂i

Θ

Figure 4.26: The angle Θ is the angle between the two planes of incidence. Here,
the blue and green planes are the old and new planes of incidence respectively.

It follows immediately from Equation 4.20 that the new parallel polarisation vector
is given by:

e′‖ = k̂r × ê′⊥. (4.28)
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With the rotation matrix determined, it is now possible to apply the Fresnel matrices
given in Equations 4.22a and 4.22b to determine the amplitude matrix M of the
transmitted and reflected beams,

Mt = T · L · I =

(
t‖ 0
0 t⊥

)(
cos Θ ξ sin Θ
−ξ sin Θ cos Θ

)(
1 0
0 1

)
, (4.29a)

Mr = R · L · I =

(
r‖ 0
0 r⊥

)(
cos Θ ξ sin Θ
−ξ sin Θ cos Θ

)(
1 0
0 1

)
. (4.29b)

The elegance of this is that the process of rotations followed by application of Fresnel
matrices can be applied for every new beam-crystal facet interaction while a beam is
propagating through the crystal, i.e. as many times as given in the input file. When
the beam leaves the crystal a final rotation is needed into the scattering plane.

4.5.3 Scattering Plane

The scattering plane is defined as the plane which contains the initial incident prop-
agation vector k̂0 (which for this work is always k̂0 = [0, 0,−1]) and the direction of
scattering k̂s, see Figure 4.27. Rotating into the scattering plane is a two-stage pro-
cedure and here the formalism laid out by Hovenier and van der Mee [91] is followed.

The first stage is to rotate from the last plane of incidence to the scattering plane.
The rotation angle is found using a similar approach to that used to determine
Θ in Equation 4.25; namely that a vector perpendicular to the scattering plane is
found first which is then used to determine the rotation angle. The scattering plane
contains both k̂0 and k̂s which means that their cross product will yield such a
vector,

es⊥ = k̂0 × k̂s. (4.30)

This can then be used to calculate the rotation angle in precisely the same way as
in Equation 4.25 to rotate the polarisation vectors into the scattering plane.

A second rotation is required to take the reference plane into the scattering plane.
The perpendicular vectors needed for this are already known from Equations 4.21b
and 4.30. Taking the scalar product between these provides the rotation angle
needed to get from the reference plane to the scattering plane.
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π − θ

z

y

x φ

k̂0 k̂s

Figure 4.27: The scattering plane, shown in blue, is the plane that contains the
incident (k̂0 and scattered k̂s propagation vectors). Also shown are the scattering
angle θ and azimuthal angle φ.

Let the rotation matrix which rotates the plane of incidence to the scattering plane
be denoted by Ls. Similarly, let the rotation from the reference plane to the scatter-
ing plane be denoted by Lp. Then, the amplitude matrix of the externally reflected
beam is

Mr = Ls ·R · L · I · Lp. (4.31)

Note that the rotation Lp has to be pre-multiplied since its purpose is to align the
reference plane to the scattering plane.

4.5.4 Higher Order Events

At the end of Section 4.5.2 it was alluded to that the process of applying the Fresnel
matrices in conjunction with rotations allows the amplitude matrix of a beam to be
traced as it propagates through the crystal. Then, in Section 4.5.3 the extra rotations
necessary to place the polarisation vectors of the scattered beam into the scattering
plane were given. Combining these it becomes possible to write the general form
for the amplitude matrix of a beam, propagating away from the crystal, after an
arbitrary number of internal reflections.

M = Ls ·T2 · Ln−1 . . . ·R2 · L2 ·R1 · L1 ·T1 · L0 · I · Lp. (4.32)

4.5.5 The Total Amplitude Scattering Matrix

It can be imagined that surrounding the particle is a sphere whose radius is large
compared to that of the particle. The radius of this sphere is sufficiently large that
we can consider any two beams which propagate away from the crystal in a partic-
ular direction (θ, φ) to hit the sphere at the same point; their combined amplitude
matrices provide the scattering matrix elements for that direction. For now, phase
effects are ignored and it is assumed that the beams undergo no diffraction as they
propagate away from the crystal; both of these will be addressed later on. With this
current restriction in place, the amplitude scattering matrix of the crystal, in the
direction (θ, φ) is:

S(θ, φ) =
N∑
i=1

Ai ·Mi(θ, φ), (4.33)

69



Chapter 4. Beam Tracing

where the summation is performed over all beams. The multiplicative factor Ai is
the cross sectional area of the beam which will be discussed in Section 4.6.1. In
the geometric optics regime, there would be many scattering directions where the
elements of the scattering matrix for that direction would be zero. This is because
geometric optics leads only to discrete scattering directions corresponding to the
directions of scattered beams. Later, it will be seen that diffraction changes this.

While the beam amplitude components are necessary for determining the intensity of
beams, as well as the angular distribution of the scattered light and its polarisation
properties, they on their own do not provide the quantities desired from the beam
tracer. The next section outlines various properties of the beams themselves which
help give rise to a more complete model.

4.6 Beam Properties

Associated with each beam are a number of physical properties which are necessary
for informative modelling of light scattering. This section discusses these along with
their implementation within the model.

4.6.1 Beam Cross-sectional Area

Unlike a ray which has infinitesimal area, the beam has a clearly defined area when
it intersects a plane. For planar surfaces with non-curved edges a beam’s cross sec-
tion can be determined from Stokes’ theorem. Consider a beam cross section with
n vertices with position vectors b1 . . .bn, its centre having position vector m. By
using the centre as a reference point, the cross section can be divided into triangles
as is shown in Figure 4.28.

b1

b2 b3

b4

b5

mr1

r2

Figure 4.28: Division of a beam cross section into triangles.

The vectors from the centre to the beam vertices as are labelled as r1 . . . rn. The
magnitude of the cross product can be geometrically interpreted as the signed area
of the parallelogram formed by the two vectors. However, since the cross section
may not lie in the xy plane, it is necessary to include the normal vector to the surface
which is intersecting the beam as well as taking the absolute (which ensures that
the area is positive). The area of the beam cross section on the facet is therefore
given by

A =
1

2
|

n∑
j=1

(bj × bj+1) · τ̂ |. (4.34)

Note that when j = n, j + 1 = 1. It is necessary to divide by two since it is the
area of the individual triangles that is required, not the parallelograms.
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Knowing the cross sectional area of the beam allows for the beam’s irradiance to be
calculated by using its amplitude matrix.

4.6.2 Irradiance and Energy

The irradiance of an electromagnetic wave is proportional the square of its am-
plitude. In terms of a beam’s amplitude matrix, the following relation (used in
determining the first element of the 4× 4 phase matrix, see Section 2.5) is used to
determine its irradiance:

I =
1

2
(|S2|2 + |S3|2 + |S4|2 + |S1|2). (4.35)

Conservation of energy required for beams at a boundary is that the irradiance of the
incident beam must equal the sum of the irradiances of the reflected and transmitted
beam:

I i = Ir +
m1 cosϑi
m2 cosϑt

I t, (4.36)

where I represents the irradiance of the given beam and the superscripts have their
usual meaning. The quotient next to the transmitted intensity takes into account
the fact that the energy density is less in the transmitted beam. As beams have
a finite cross section their power can be determined; the power of a given beam,
illuminating a facet with surface normal τ̂ , is given by

Pi = Ii × Ai(k̂i · τ̂), (4.37)

where A is the beam cross sectional area on the facet. The term in brackets projects
the area on to a plane perpendicular to the direction of propagation of the beam.
This is of course necessary since a beam illuminating a surface at a grazing angle
may have a large cross section, but low irradiance which would increase as the angle
of incidence decreased. The power of the parent beam is redistributed between its
children giving rise to the following energy conservation requirement:

Pparent =
∑

Pchildren. (4.38)

Equation 4.36 can then be rewritten in terms of beam power,

P i =
∑

P r
children +

m1

m2

∑
P t

children, (4.39)

with the cosines no longer needed since the projected areas are now included im-
plicitly in the power calculations. The summations take place over all child beams
formed through the reflection / transmission. Working under the assumption of
the particles being convex, only one process will lead to the formation of beamlets,
either external transmission or internal reflection.

It is necessary to provide a numerical cut-off; a criterion which determines whether
a beam should continue being traced. In ray tracing, one traditionally uses the ir-
radiance. The temptation would therefore be to use irradiance in the beam tracing
model, or potentially even the beam cross section. However, doing so would cause
the following two problems:
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1. Low intensity, large area beams would be ignored, and

2. High intensity, small area beams would be ignored.

By using the power both of these issues are resolved. When a beam’s power falls
below a threshold value of Pj < 10−5 W the code no longer considers its propagation
and it is traced no further.

4.6.3 Phase

Associated with a beam is its phase which is needed to model interference effects.
The key assumption in modelling the phase of the beams is that they can be treated
as plane waves at all points in their travel. As a direct consequence of this as-
sumption the phase is constant anywhere on the plane perpendicular to the beam’s
propagation direction. The assumption of constant phase across a cross section is ex-
tended to cases where the cross section is formed via intersection with a crystal facet.
For normal incidence, the approximation is exact, however, if the beam is incident
at large, oblique angles to the facet the resulting cross section will have significant
phase variation over the cross section reducing the accuracy of the approximation,
see Figure 4.29.

Plane of constant
phase

Θ

Crystal facet

Figure 4.29: The Beam Tracer assumes constant phase over the cross section.
When the intersecting facet is perpendicular to the beam the approximation is
exact, as shown in the left panel. However, when the beam intersects the facet at
some angle Θ the approximation gets weaker, becoming less valid as the angle Θ
increases, shown in the right panel.

Maintaining this assumption the beam’s phase can be determined by knowing the
beam’s optical path length. To determine this one must find the total path that
a ray striking the centre of the beam, travelling parallel to the beam would have
taken. It is important to stress that this is not the same as finding the distance
from the parent beam’s mid-point to the child beam’s mid-point. If one does this
then the ray which passes through both these mid-points is not necessarily travelling
parallel to the beam. Figure 4.30 visualises this, the incident beam propagates in
the direction k̂i illuminating the region shown. The beam then refracts into the
crystal whereupon it illuminates two regions, defining two new beam cross sections.
The centre of each of the three cross sections are indicated by a filled black circle,
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the two dashed lines join the centres of beams 2 and 3 with the parent beam centre.
These lines are not parallel to the direction of transmission of k̂t and therefore a
ray travelling along them would not be propagating in the direction k̂t. Therefore
one needs to find the location on the parent beam’s cross section where a ray would
have passed to intersect the centre of the new beam. These rays are shown in red
and green. The distance from these points to the reference plane is then found.

k̂t

Beam 2
Beam 3

Reference Plane at z = const.

k̂i

d1,1

d3,1

d2,1

d2,2

d3,2
m2 > m1

m2

m1

Figure 4.30: A parent beam leads to new child beams. To correctly determine
the phase of the new beams it is not sufficient to take the distance between the
centre of each child beam’s cross section (child beam cross sections are shown in
red and green) to the centre of parent beam’s cross section (shown in magenta).
This is because rays travelling along such paths (black dashed lines) would not
be parallel to the propagation vector. Instead one has to find the position on the
parent beam’s cross section where a ray would have passed to intersect the centre
of a given child beam’s cross section. Such rays are shown in red and green.

The optical path length is defined as:

Λ =

∫
m(s)ds (4.40)

Where ds is a path element. However, since we are considering homogenous ice-
crystals we assume that the refractive index is not a function of position while
inside (or outside of) the particle. As such, Equation 4.40 reduces to:

Λ = m · d (4.41)
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with d being the distance travelled in the medium of refractive index m. With this
in mind, the total optical path for the ith beam, of order p, can be approximated as:

m1 · di,1 +m2

p∑
j=2

di,j. (4.42)

Where the summation is performed over all internal beam-facet interactions. Note
that the determination of the central ray path has to be re-evaluated for each new
beamlet formed as a consequence of internal reflection.

In Equation 4.42 the presence of the refractive indices serves to modify the dis-
tance due to the change in the wavelength of the beam. When the beam exits the
crystal its phase delay with respect to a reference ray is calculated and added to the
optical path. This reference ray propagates from the centre of the particle in the
same direction as the outgoing beam, as shown in Figure 4.31.

m1

m2

m2 > m1

d′

O

m
k̂s Reference

ray

Figure 4.31: The phase delay is found through comparison with a reference ray
which originates at the centre of the crystal and propagates in the direction of the
scattered beam k̂s.

With the centre of the crystal at the origin and denoting the position vector of the
centre of the beam cross section as m, the phase delay distance d′ is the length of
the projection of the vector m onto the scattering direction vector k̂s, that is:

d′ = m · k̂s. (4.43)

This is about the difference in the path lengths to infinity between the ray starting at
the crystal surface and the reference ray. In Figure 4.31, the ray from the surface has
to travel a distance d′ = m · k̂s less than the reference ray. Therefore its contribution
is subtracted from the total optical path. As such, for the ith beam the total optical
path is:

Λi = m1(di,1 −m · k̂s) +m2

p∑
j=2

di,j. (4.44)

If the particle has concavities then Equation 4.44 has to be modified to take into
account portions of the beam’s history when it may have been propagating outside
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of the crystal, becoming:

Λi = m1(di,1 −m · k̂s) +

p∑
j=2

Ξjdi,j, (4.45)

where

Ξj =

{
m1 if portion of beam′s journey was outside the crystal.

m2 if portion of beam′s journey was inside the crystal.
(4.46)

The phase of this beam is then:

ψ =
2π

λ
Λi. (4.47)

The beam’s amplitude matrix is adjusted to include this phase information,

M′ = e−iψM. (4.48)

4.7 Modelling Absorption

Absorption is the process of wave energy being transformed in heat, the decrease in
wave energy leads to attenuation of the wave as it propagates through the medium.
While ice is mainly transparent in the optical and the infra-red, depending on wave-
length it does exhibit some weakly absorbing properties. Warren et al. [92] detailed
the real and imaginary parts of the complex refractive index of ice from the ultra-
violet to the microwave region. The beam tracing model does not consider how
the crystal is affected by absorbing electromagnetic energy, i.e. melting of the ice
crystal, it only models the attenuation of the beam. The refractive index of an
absorbing medium is a complex quantity where the imaginary part describes how
strongly it absorbs, e.g.

m̃ = mr + imi. (4.49)

Which is sometimes written as:

m̃ = m(1 + iκ). (4.50)

Note that if we had chosen the time harmonic factor exp(iωt) instead of exp(−iωt)
in Equation 2.7 then the imaginary component in the above equations would have
been negative. Absorption leads to the attenuation of the amplitude of the beam
inside the medium, however it also leads to wave inhomogeneities meaning that the
planes of constant amplitude do not coincide with the planes of constant phase (see
e.g. [15]). The Poynting vector, indicating the direction of propagation of the wave
is perpendicular to the latter. Furthermore, the presence of a complex refractive
index leads to a non-geometrical interpretation of Snell’s law.

This section will give alternative formulas for the transmission angle and the Fresnel
equations. Furthermore, a description of how absorption alters the shapes of inci-
dent beams will be given and the method for further sub-division of beams will be
described.

75



Chapter 4. Beam Tracing

4.7.1 Modified Snell’s Law

At an air-ice interface we can set the refractive index of air to be approximately
unity. Denoting the complex refractive index of ice as m̃, Snell’s law can be written
as:

sinϑt =
sinϑi
m̃2

. (4.51)

Whereupon the geometric interpretation fails, after all a complex angle has no mean-
ing in this context. Macke [50] uses a modified Snell’s law which can be traced to
Born and Wolf [15] which is the same approach taken in the beam tracer. An alter-
native method is the effective refractive index [93], we only use the former as it has
been shown to be the same as the latter [94].

When an electromagnetic wave propagates inside an absorbing medium the planes
of constant amplitude deviate from the planes of constant phase; a property known
as wave inhomogeneity . The planes of constant amplitude will be parallel to the
boundary since amplitude decays with distance. The planes of constant phase how-
ever will not necessarily coincide with these. The angle of transmission we use is
the angle between the normals to these planes, and the normal to the surface. In
this way we write a modified Snell’s law as:

sinϑ′t =
sinϑi√

sin2 ϑi +m2q2(cos γ − κ sin γ)2
=

sinϑi
m′

. (4.52)

Here, q and γ are real constants which are found by considering the direction of
transmission. A full explanation of these, and a derivation of Equation 4.52, is
given in Appendix C. This is the form of Snell’s law that is used in the beam
tracing algorithm. In much the same way as it is possible to arrive at an equation
for the planes of constant phase we can get expressions for the amplitude and phase
of the reflected and transmitted components.

4.7.2 Fresnel’s Generalised Equations

The electromagnetic boundary conditions and the interface separating the two me-
dia are the same as for the non-absorbing case leading to the generalised Fresnel
amplitude coefficients given below:

r⊥ =
m̃1 cosϑi −

√
m̃2

2 − m̃2
1 sin2 ϑi

m̃1 cosϑi +
√
m̃2

2 − m̃2
1 sin2 ϑi

(4.53a)

r‖ =
m̃2

2 cosϑi − m̃1

√
m̃2

2 − m̃2
1 sin2 ϑi

m̃2
2 cosϑi + m̃1

√
m̃2

2 − m̃2
1 sin2 ϑi

(4.53b)

t⊥ =
2m̃1 cosϑi

m̃1 cosϑi +
√
m̃2

2 − m̃2
1 sin2 ϑi

(4.53c)

t‖ =
2m̃1m̃2 cosϑi

m̃2 cosϑi + m̃1

√
m̃2

2 − m̃2
1 sin2 ϑi

(4.53d)

Note that when the refractive indexes are real, these equations reduce back to the
regular forms given in Equations 2.12a-2.12d. The corresponding matrix represen-
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tation remains unchanged, that is:

T =

(
t‖ 0
0 t⊥

)
(4.54a)

R =

(
r‖ 0
0 r⊥

)
. (4.54b)

However, the matrices are now complex quantities. We now have means to calculate
the propagation direction in an absorbing medium as well as amplitudes. It should
be stated that while in this way we model the change in propagation direction we do
not model wave inhomogeneity. It has been reported in the literature though that
the effect of wave inhomogeneity on the scattering properties of a particle are likely
to be small [93]. The justification for this is that inhomogeneity is only significant
when particles are highly absorbing, but for such particles such little light escapes
the particle (i.e. is not absorbed) that any effects will be dwarfed by contributions
from external diffraction and reflection.

4.8 Incorporating Absorption into the Beam Tracer

The most straightforward effect of absorption is the attenuation of the beam as it
propagates through the crystal, its amplitude matrix is adjusted as follows:

M′
j = exp(−kmidj)Mj. (4.55)

Here dj is the distance the beam has travelled inside the crystal, it is taken to be the
same as the phase distance (see Section 4.6.3). The approximation of equal intensity
across a beam’s cross section is no longer valid for an absorbing crystal as can be
seen in Figure 4.32. Denoting the intensity of the incoming beam by I0 the intensity
at some distance d is given by Beer’s law:

I = I0 exp(−2kmid). (4.56)

Note that the argument in the exponent is different in Equations 4.55 and 4.56. This
is because in the former electric field amplitudes are being considered whereas in
the latter it is modelling the change in intensity (I ∝ |E|2). As an approximation,
the beam is sub-divided into regions which have a proportional drop in intensity
∆I = I/I0. The length corresponding to a percentage drop is found by rearranging
Equation 4.56,

d = − 1

2kmi

ln(∆I). (4.57)

Decreasing the size of the allowed change in intensity ∆I will increase the number
of regions which the cross section is to be divided into. One can therefore think of
∆I as a resolution, decreasing ∆I increases the resolution of the beam tracer. As
absorption is an exponential decay, dividing the beam cross section does not results
in strips of equal width.
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k̂t
τ̂ ′

Figure 4.32: The intensity of a beam decreases as the distance it has travelled
through the crystal increases. This leads to an intensity variation over the cross
section of the beam with the surface it is illuminating.

In order to sub-divide the incident beam we make use of two vectors, one in the
direction of constant intensity and one the projection of the propagation vector k̂t

on the intersected facet. Let

ktproj = k̂t − (k̂t · τ̂)τ̂ (4.58)

be the aforementioned projection, whereas before τ̂ is the surface normal. On the
crystal surface there will exist lines of constant distance from the previously illumi-
nated facet, to determine a vector in the direction of constant intensity, project the
previous illuminated facet’s surface normal τ̂ ′ on to the new facet,

u = τ̂ ′ − (τ̂ ′ · τ̂)τ̂ . (4.59)

This vector can then be used to yield a vector in the direction of constant intensity
(see Figure 4.33),

w = û× τ̂ . (4.60)

For a start point the code chooses the beam vertex corresponding to the least dis-
tance travelled v (if there are two such vertices, either one will do). The position
vector of a point on the line through v at which the intensity has dropped by the
factor ∆I is

r = v + d sinϑik̂
t
proj (4.61)

The additional sinϑi, where ϑi is the angle of incidence, term takes into account
that the distance d from Equation 4.57 corresponds to the length of the ray from
the previous facet to the currently illuminated one, see Figure 4.33. From the point
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r we seek the intersection of the line ` = r + ξŵ with the edges of the beam cross
section. In particular two solutions are sought which are within the region bounded
by the beam which is determined using the method described in 4.3.2 (see Figure
4.7).

r

v

k̂tproj

d

d sinϑ
i

ŵ

Figure 4.33: Vectors used in the division of a beam due to absorption. The vector
ŵ points in the direction of constant intensity.

Repeating this process as many times as required to achieve the desired intensity
resolution results in additional beam vertex points. An example result is shown in
Figure 4.34 where blue dots represent the additional beam vertices. In this set up,
the transmitted beam was through the upper basal facet and it illuminated facet
4. The refractive index was set as m̃ = 1.31 + 0.01i which leads to absorption,
represented by the decrease in intensity. The red lines join pairs of points which
have the same intensity and the intensity variation across each strip is set at ∆I =
0.1. The non-linearity of the intensity decay gives rise to strips of varying width.
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τ̂1

τ̂4

w

kproj

Figure 4.34: The beam formed via transmission through facet 1 is further split
after illuminating facet 4.

By associating with each point rj its intensity Ij the code can group the points
according to their intensity. The advantage of performing the grouping this way
is that it can then handle situations where the sub-beams may not necessarily be
rectangular in nature. The original beam, referred to as the master-beam is no
longer traced, its amplitude matrix is passed to each of the sub-beams which is then
altered in accordance to Equation 4.55 where the distance d is found through the
back tracing process described in Subsection 4.6.3. Note that the direction of the
polarisation vectors for each of the sub-beams is the same as for the master-beam.

4.9 Beam Tracing Closing Remarks

So far the beam tracer describes a geometric optics approach to modelling scatter-
ing with some interference effects modelled by summing amplitudes which contain
phase information instead of intensities. To test the idea of beam tracing, the model
was tested with interference turned off, against Macke’s ray tracing code [50] with
diffraction switched off. This test was to determine how the geometric optics prop-
erties of the beam tracer compared, the results are given in Section 6.1. In the next
chapter incorporating external diffraction, and diffraction of the outgoing beams is
discussed. By including beam spreading in this way the model moves away from
geometric optics towards physical optics.
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Diffraction

...ere yet Mr F appeared a misty
shadow on the horizon paying
attentions like the well-known
spectre of some place in
Germany beginning with a B...

Charles Dickens,
in Little Dorrit

Consider a plane wave incident on an aperture in an infinite screen such that the
normal to the aperture is parallel to the direction of incidence. The geometric
optics approximation would predict that a screen placed behind the aperture, at
some distance R, would have an illuminated region the shape and size of which
would be identical to the aperture Σ, see Figure 5.1.

Observation

ΣScreen

Figure 5.1: The geometric optics prediction for aperture illumination.

However, in situations where the wavelength of the incident light is comparable
to the width of the aperture this is not observed. Instead, a diffraction pattern
emerges, the features of which vary depending on the distance from the aperture
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to the screen; the angle between directions of incidence and observation; and the
shape of the aperture itself. If the point of observation is close to the aperture,
then we observe Fresnel or near-field diffraction. Whereas, if the distance from the
aperture to the point of observation is large then we observe Fraunhofer or far-field
diffraction. While there is no clear cut transition from the near-field to the far-field,
a general rule of thumb is to use the Fresnel number F#:

F# =
a2

Lλ
, (5.1)

where a is the characteristic size of the aperture and L is the distance to the obser-
vation point. If F# � 1, then one can use the Fraunhofer approximation, however
if F# ≈ 1 then the Fresnel approach is necessary. In the context of atmospheric
optics, we can make use of the Fraunhofer formulation since the distance from the
scattering objects, i.e. ice crystals in the atmosphere, to the detector is large.

This chapter first presents the key developments in the history of diffraction theory
before discussing the Fraunhofer approximation and the Kirchhoff approximation.
The way in which diffraction has been implemented into light scattering models is
then discussed, followed by the principles behind diffraction in the beam tracing
model.

5.1 Historical Overview

The earliest mention of diffraction is attributed to the Jesuit father Grimaldi, who in
1665, investigated the shadow region formed by an object blocking sunlight which
had passed through a small hole in a shutter. He observed coloured fringes and
noted that the edges of the shadow were larger than expected. Grimaldi named this
phenomenon diffractio [95] from where we get the term diffraction. The popular
corpuscular theory of the time could not explain this effect. Huygens in 1678 made
the first step to explaining diffraction when he postulated that:

Every point on a propagating wavefront serves as the source of spherical,
secondary wavelets, such that the wavefront at some later time is the
envelope of these wavelets .

The argument of Huygens however was incomplete, including no reference to phase
or wavelength. Young, in a demonstration to the Royal Society in 1803, presented
a variation of his now famous double-slit experiment. He showed that although the
shadow itself was divided into parallel fringes, the middle was always white due to
interference. Fresnel added to Young’s interference idea, winning the 1819 French
Academy of Science’s Grand Prix. The wave theory of light was not without its
critics, most notably Poisson who, in an attempt to discredit the argument using
mathematics, predicted the existence of bright spot in the centre of a shadow of
an illuminated disk. The existence of “Poisson’s spot” was confirmed soon after by
Arago. The combination of Huygen’s postulate with Fresnel’s addition led to what
is now known as the Huygens-Fresnel Principle [14]:

Every unobstructed point of a wavefront, at a given instant, serves as a
source of spherical secondary wavelets (with the same frequency as that
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of the primary wave). The amplitude of the optical field at any point is
the superposition of all these wavelets (considering their amplitudes and
relative phases).

The crux of which is to say that diffraction arises due to interference. Kirchhoff in
1882 was the first to start working towards a mathematical theory of diffraction.
He showed that it is possible to calculate the amplitude of some scalar field at a
position within a volume through knowledge of the field and its normal derivative on
the limiting surface. The approach however has certain mathematical inconsistencies
which have to be removed. Further progress on a mathematical theory of diffraction
was made by Sommerfeld, from whom we get our modern definition of diffraction:

Any deviation of light rays from rectilinear paths which cannot be inter-
preted as reflection or refraction.

This definition of diffraction makes clear that geometric optics would not be able
to explain diffraction, and it is therefore a true wave phenomenon. Modern efforts
to solve diffraction problems usually focus on trying to find an analytic expression
for a given geometry. However, due to complexities only a few exact solutions
are known, e.g. for a half plane. Diffraction by electromagnetic waves is further
complicated by the electric and magnetic fields being coupled and therefore being
a vector wave rather than a simple, scalar wave. However, For a large number of
situations, diffraction of light can be treated using the scalar formalism outlined in
Section 5.2.2.

5.2 Near and Far-Field Approximation

5.2.1 Fresnel Diffraction

Fresnel diffraction arises when the plane of observation is near to the diffracting ob-
stacle. Analytical expressions in the Fresnel regime are complicated by the presence
of a quadratically varying phase term. This term arises due to the diffracted wave-
fronts still being spherical when they reach the point of observation. In the beam
tracing model Fresnel diffraction is not considered, neglecting these effects should
only have a minor effect since it can be shown that for modelling light scattering by
atmospheric ice crystals the observations are taking place in the far-field.

Consider ice particles with a characteristic size of the order a ∼ 100µm illumi-
nated by laser light with wavelength λ ∼ 0.5µm. In remote sensing there may be
several kilometres between the scattering object and the observation distance, thus
L ∼ 103m. We have as an approximation

Fremote−sensing ≈
(100 · 10−6)2

0.5 · 10−6 · 103
= 2× 10−5,

which suggests that for simulating the scattered light detected by remote sensing
equipment, the far field approximation is suitable. For in-situ measurements we
consider the SID probes. The distance between the scattering object and the detec-
tor is approximately 2 ·10−2m and the incident light has wavelength λ = 0.532µm ∼
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0.5µm. If we consider an ice particle of characteristic size a = 50µm (which is
roughly in the middle of the sizeable range for the SID probes), then the Fresnel
number is,

Fin−situ ≈
(50 · 10−6)2

0.5 · 10−6 · 2 · 10−2
= 0.0250,

which is still two orders of magnitude away from 1. The beam tracer should there-
fore be able to reproduce scattering patterns similar to those captured by the SID
probes. We have demonstrated that the far-field approximation is valid for our
present investigation. We note that beams propagating inside the crystal would un-
dergo some deflection because of Fresnel diffraction however the beam tracer makes
no attempt to model this.

5.2.2 The Helmholtz-Kirchhoff Integral - Scalar Diffraction
Theory

If one is only interested in the intensity of diffracted light then the scalar approach
of Kirchhoff is a good first approximation. A component of either E or B is assigned
to the scalar function ψ which is assumed to be time harmonic, for example:

ψ(x, t) = Ex exp(−iωt). (5.2)

As is customary throughout the time harmonic factor is not written and ψ(x, t)
is given a function of position only, ψ(x). Kirchhoff’s approximation uses Green’s
theorem, Equation 5.3, to express ψ(x) inside an arbitrary closed volume V in terms
of the field and its normal derivative on the surface. We start with Green’s theorem
for any two scalar fields ψ(x) and φ(x),∮

S′
(φ∇ψ − ψ∇φ)dS =

∮
V

(φ∇2ψ − ψ∇2φ)dV. (5.3)

The surface S ′ consists of two surfaces Sε and S, the surface normals of which point
out of the bounded volume. Both ψ and φ satisfies the scalar Helmholtz equation,

(∇2 + k2)ψ = 0, ψ ∈ V (5.4)

(∇2 + k2)φ = 0, φ ∈ V. (5.5)

We wish to determine the value of ψ(x) at some point inside V , see Figure 5.2.
Derivations are found in many texts, e.g. [15, 21]; for the variable φ we use the
Green’s function corresponding to outgoing spherical waves originating at P0

φ = G =
eikR

R
. (5.6)
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P0

Sε

SV

τ̂

ε τ̂ ′

r

x

Figure 5.2: Geometry considered for deriving the Kirchhoff integral formula.

The singularity which emerges at the source, i.e. when R = 0, causes φ = G to no
longer satisfy Equation 5.5. It is for this reason that the surface integral is evaluated
over a compound surface S ′ = S + Sε, where Sε is a small surface around the point
P0; the volume over which the integration is taking place being the volume between
S and Sε. In this way the requirement that φ satisfies the scalar Helmholtz equation
within the volume is re-established. Since ψ and φ satisfy the scalar Helmholtz
equation the volume integral is equal to zero. Separating the surface integral into
its two components,∮

S

(G∇ψ − ψ∇G)dS = −
∮
Sε

(G∇ψ − ψ∇G)dSε. (5.7)

and noting that in the limit ε → 0 the integral on the right hand side of Equation
5.7 is 4πψ, we get the Kirchhoff integral, Equation 5.8,

ψ(x) =
1

4π

∮
S

(
ψ∇e

ikr

r
− eikr

r
∇ψ
)
· τ̂ds. (5.8)

Kirchhoff’s integral formula provides a means to calculate ψ(x) in terms of a linear
combination of its value and normal derivative on the bounding surface. However
these values are often not known and so one has to use the following boundary
conditions:

1. Both ψ and ∇ψ · n̂ vanish everywhere on S, except in the aperture.

2. In the aperture, ψ and ∇ψ ·n̂ take the same value as they would in the absence
of the surface.

Applying these boundary conditions to Equation 5.8 leads to the Kirchhoff approx-
imation integral formula:
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ψ(x) =
1

4π

∫
apertures

(
ψ∇e

ikr

r
− eikr

r
∇ψ
)
· τ̂ds (5.9)

The only difference between Equations 5.8 and 5.9 is that in the Kirchhoff ap-
proximation the integral takes place only over the aperture, not the entire surface.
Jackson [21] points out that there are mathematical inconsistencies with this approx-
imation. Namely that if any scalar potential which satisfies the scalar Helmholtz
equation has zero values for both itself and its normal derivative on any finite surface
then it is necessarily zero everywhere; this causes the second boundary condition
to become invalid. This inconsistency arises due to the boundary conditions being
over-specified. Therefore changing the Green function and the boundary condition
to either a Dirichlet type (G = 0 on S), or Neumann type (∂G/∂n = 0 on S) will
remove the inconsistency. Alternatively, one can model the diffraction as a saltus
problem and assume the screen is black, i.e. no reflection or transmission, as was
done by Kottler [96,97]. The Kirchhoff Approximation in an altered form has been
used by Muinonen in creating the Modified Kirchhoff Approximation which will be
discussed in Section 5.3.

As a closing comment, if we consider a point source illuminating a single aperture
in an infinite screen we arrive at the following expression,

ψ(x) =
1

λi

∫
S

eik(r+r′)

r · r′

(
(k̂inc · τ̂) + (k̂diff · τ̂)

2

)
dS. (5.10)

Where r and r′ are the distances from the area element in the aperture to the points
of observation and source respectively; k̂inc and k̂diff are vectors in the direction of
incidence and observation. The term in brackets is the obliquity factor. It explains
why the backward propagating wave predicted by the Huygens-Fresnel principle is
not observed.

Fraunhofer Approximation

The so-called Fraunhofer approximation uses the Helmholtz-Kirchhoff integral to
evaluate the amplitude of the diffracted wave at small angles in the far-field. Here,
the phase difference between neighbouring points in the aperture (i.e. spherical wave
point sources) is linear and so one can apply a two-dimensional Fourier transform
of the aperture function, which describes the amplitude of the incident wave over
the aperture [98]. While computationally the Fraunhofer approximation is easily
implemented, its restrictions to small scattering angles means that it is unsuitable
for the beam tracing model where we require knowledge of the diffracted field over
all space.

5.2.3 Vector Diffraction Theory

The polarisation of the diffracted field is not modelled by scalar diffraction theory.
In the beam tracer a vector diffraction formulation was used since in reality the
electric and magnetic fields are coupled and so cannot be treated separately. A
vector analogue to the Kirchhoff integral given in Equation 5.8 for a perfectly thin,
conducting screen with apertures has the form [21]:
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E(x) =
1

2π
∇×

∫
S

(τ̂ × E)
eikR

R
da′, (5.11)

where R is the distance from the point on the surface to the point of observation.
We can expand the kR term so long as r � d, where d is the characteristic size of
the diffracting system as follows:

kR = kr − k · x′ + 1

2r
[kr′2 − (k · x′)2] + ... (5.12)

where k = kk̂ is the wave vector. In the beam tracing model we are only concerned
with the far-field (Fraunhofer) region which means we can neglect third order and
higher terms. Furthermore, diffracting apertures will be planar as the crystal facets
are planar. With these two restriction we can rewrite Equation 5.11 as:

E(x) =
ieikr

2πr
k×

∫
S

τ̂ × E(x′)e−ik·x
′
da′ (5.13)

where the terms are defined according to Figure 5.3.

S

O

Rτ̂

k

P

x′

x

r

Figure 5.3: The set-up for deriving a vector analogue to the scalar Helmholtz-
Kirchhoff integral.

Equation 5.13 serves as the basis for modelling diffraction in the beam tracer, which
is discussed in Section 5.4. The integral is performed over the aperture through
which the incident wave propagates. The presence of the wave-vector k means that
this approach is capable of modelling diffraction at oblique incidence which will be
shown to be important if the model is to be used to aid in the identification of
particles from their 2D light scattering patterns.

5.3 Modelling Diffraction in Light Scattering Mod-

els

The popularity of Geometric Optics for modelling light scattering by larger sized
particles has led to the development of numerous methods to incorporate diffrac-
tion approximations into ray tracing codes. We discuss some of these here, along
with their advantages and limitations. It is customary to separate ray tracing and
external diffraction such that the scattered field in a given direction is the sum of
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the contributions from each component. For example, if we denote the intensity as
a function of angle by P we would have:

P (θ) = P diff(θ) + PGO(θ), (5.14)

where the superscripts relate to contributions from diffraction and geometric optics.
In this way hybrid geometric-physical optics models are created.

The Geometrical Theory of Diffraction proposed by Keller [99] extends the idea
of ray tracing to include diffraction by edges and surfaces. To do this he introduces
diffraction coefficients, the values of which depend on the type of diffraction taking
place, i.e. edge or surface diffraction. A ray which is incident obliquely on an edge
gives rise to a cone of diffracted rays, similarly a ray incident normal to the edge
leads to rays which lie in a plane perpendicular to the edge. It is essentially a scalar
approach and has been used by the engineering community (e.g. [100,101]) but has
been generally overlooked by researchers in atmospheric light scattering.

The Kirchhoff Approximation was used by Muinonen [102] to add a physical op-
tics correction when investigating light scattering by randomly oriented crystalline
structures. Originally, this approach was based on the scalar Kirchhoff integral
(Equation 5.8) and was applied only to the phase function. This technique was
further improved by Muinonen [103] by using a vector form of Kirchhoff’s diffrac-
tion integral (Equation 5.13) and was named the Modified Kirchhoff Approximation
(MKA). It contains three simplifications:

1. The reflected, transmitted and diffracted amplitudes are added without regard
to phase.

2. The diffracted amplitude is calculated in the far field by modelling diffraction
by a circular aperture of equal area to the facet from which the ray leaves.

3. External diffraction is calculated in the far-field by assuming a size distribution
of circular projected areas that is equal to the distribution of the real projected
areas.

The approximation of treating facets as equivalent circular apertures is done for the
mathematical convenience of using Bessel’s functions in calculating diffracted am-
plitudes. However, as facets become increasingly elongated the approximation gets
less and less accurate. In addition, the assumption of random orientations means
that it is not applicable to studying particles which adopt a preferred orientation.

Yang and Liou [45,46] formulated the Improved Geometric Optics Method (IGOM).
Ray tracing is used to determine the electric and magnetic near fields of wavelets
on the surface of the scatterer, taking into account their phase. Then, by invoking
an electromagnetic equivalence theorem the near field can be rewritten in terms of
electric and magnetic current densities before being mapped to the far field. The
method was compared with FDTD and good agreement was found, down to a size
parameter of 20. The method is however, more computationally expensive than
pure geometric optics.
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A ray tracing code developed by Macke modelled external diffraction as diffraction
at normal incidence on an equal area circular aperture [104]. This was improved
by removing the equivalent circular aperture approximation and instead considering
normal incidence diffraction on the projected cross section [50]. However, rays which
left the crystal were not diffracted.

Hesse and Ulanowski [12] built on Macke’s ray tracing code by introducing diffrac-
tion of scattered rays. The time averaged Poynting vector was used to determine the
direction of the far-field energy flow lines. From this a deflection angle was derived
which was used to modify the scattering direction of an outgoing ray. The technique
has become known as the Ray Tracing with Diffraction on Facets (RTDF) model.
Initially, RTDF was only for infinitely long hexagonal columns at normal incidence
which in essence meant it was a 2D problem. It was extended to three dimensions
by Clarke et al. [105] and was further improved by Hesse [106] by changing the
approximation for the deflection angle to incorporate the method of Prosser [107].

Beam tracing models have been developed by Bi et al. [54, 55] where a volume
integral approach was used to determine the far-field diffracted amplitude, as op-
posed to the surface integral methods discussed so far. These integrals have to be
analytically solved for a given beam and are performed over a beam’s volume which
is computationally expensive. The model does however yield very good results when
compared to T-Matrix.

Diffraction by highly absorbing particles was investigated by Hesse et al. [108], ex-
ternal diffraction was modelled by treating the upward facing facets as independent
apertures and combining the diffracted amplitude of beams passing through each
one. To do this, the vector Kirchhoff integral given in Equation 5.11 was transformed
into a line integral by application of Green’s theorem in the plane. It was shown that
modelling diffraction this way led to the formation of curved diffraction arcs as the
incident beams were modelled with oblique incidence, rather than normal incidence
on the projected cross section. The work was further improved [109] by introducing
a diffraction amplitude matrix to better model the degree of linear polarisation in
the scattered field. These techniques will be discussed in the next section as they
provide the basis for modelling diffraction in the beam tracer.

This brief overview of diffraction demonstrates the variety of techniques which have
been employed. Combining ray-tracing with diffraction on the projected cross sec-
tion has become known as Classical Geometric Optics . It this case the incident
light is normal to the aperture, which leads to diffraction arcs perpendicular to each
edge. While some models have incorporated diffraction of outgoing rays/beams, this
is still very much an active research area.

5.4 Diffraction in the Beam Tracing Model

Apart from the time saving capabilities of tracing beams opposed to rays, physi-
cal insights are gained through knowledge of the beam’s cross section, amplitude
and phase. In the model, diffraction of outgoing beams is performed by treating
diffraction at oblique incidence on a planar aperture whose dimensions match those
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of the beam’s cross section on the facet. The Kirchhoff Approximation is used to
model the amplitude of the electric field in the Fraunhofer region through means of
a surface integral which maps the near-field to the far-field. The field amplitude in
the near field is taken to be the phase dependent amplitude which is known from
beam tracing. We build upon the work done by Hesse et al. [108,109], by including
the diffraction of beams which have undergone internal interactions with the crystal;
as opposed to just external diffraction and reflection.

5.4.1 The Aperture Coordinate System

Diffraction in the Beam Tracing model requires the diffracting aperture, i.e. the
beam cross section on the facet, to be parallel to the xy plane. A coordinate system
centred in the middle of the aperture is called aperture system and coordinates given
with respect to it are denoted by (x′, y′, z′). Rotation into the aperture system is
performed in three stages. The first two rotations align the surface normal with
the the z-axis and the third rotates the propagation vector of the incident beam in
to the x′z′ plane. Initially, we perform a rotation about the z-axis about an angle
Θ1 = arctan(τy/τx) using the rotation matrix:

Lc
1 =

cos Θ1 − sin Θ1 0
sin Θ1 cos Θ1 0

0 0 1

 . (5.15)

The superscript c denoting that this is a coordinate transformation. The rotated
surface normal (τ ′ = Lc

1τ̂) can then be aligned parallel to the z-axis by performing
a rotation by Θ2 = arctan(τ ′x/τ

′
z) about the y-axis using the rotation matrix:

Lc
2 =

 cos Θ2 0 sin Θ2

0 1 0
− sin Θ2 0 cos Θ2

 . (5.16)

Finally a second rotation about the z-axis rotates the vector k′ = Lc
2 ·Lc

1 · k̂ into the
x′z′ plane by an angle Θ3 = arctan(k′y/k

′
z):

Lc
3 =

cos Θ3 − sin Θ3 0
sin Θ3 cos Θ3 0

0 0 1

 . (5.17)

The sequence of rotations Lc
3 · Lc

2 · Lc
1 is applied to the beam vertices, the surface

normal, the polarisation vectors and the incident beam’s propagation. An example
set up is shown in Figure 5.4.

5.4.2 Evaluating the Diffraction Integral

We consider a perfectly conducting screen with an aperture in the x′y′ plane, its
surface normal τ̂ being parallel to the z′ axis. The incident beam propagates in the
x′z′ plane with direction vector K̂, drawing an angle α with the surface normal.
This choice of direction removes the negative in the exponential term in Equation
5.13:

E(x) =
ieikr

2πr
k×

∫
S

n× E(x′)eik·x
′
dS ′. (5.18)
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5.4. Diffraction in the Beam Tracing Model

The diffraction setup is shown in Figure 5.4. It has been shown [108] that the surface
integral in 5.18, after bracketing a polarisation dependent factor, can be written as:

F =

∫
S

exp{ik[x′(sinα + cosϕ′ sin θ′) + y′ sinϕ′ sin θ′]}dx′dy′, (5.19)

where θ′ is the angle between the incident and scattered direction vectors and ϕ′ is
the angle from the positive x′ axis to the projection of k̂ on the x′y′ plane.

K̂

z′

x′

y′

k̂
θ′ ϕ′

α

Figure 5.4: The aperture-centred coordinate system used in modelling diffraction.
The aperture is in the x′y′ plane and the plane of incidence is the x′z′ plane.

Green’s theorem in the plane, given in Equation 5.20, relates a given surface integral
to a line integral around the surface’s boundary.∮

∂S

Pdx+Qdy =

∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy. (5.20)

Through the use of Green’s theorem we rewrite Equation 5.19 as:

F = −
∮
∂S

eik[x′(sinα+cosϕ′ sin θ′)+y′ sinϕ′ sin θ′]

2ik sinϕ′ sin θ′
dx′+

∮
∂S

eik[x′(sinα+cosφ′ sin θ′)+y′ sinϕ′ sin θ′]

2ik(sinα + cosϕ′ sin θ′)
dy′.

(5.21)
The advantage of writing the diffraction integral this way is that the line integrals
can be approximated as straight line integrals between adjacent aperture vertices
(i.e. beam vertices). When a beam leaves the crystal we first apply Equations 5.15-
5.17 to move into the aperture system before applying Equation 5.21 for a range of
θ′ and ϕ′ angles (depending on the bin resolution in use in the model). For each
scattering direction k̂ = (θ′, ϕ′) it is also necessary to determine the path difference
as described in Section 4.6.3. The beam’s amplitude matrix is then redistributed
over all scattering angles.
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Chapter 5. Diffraction

5.4.3 Polarisation of the Diffracted Wave

The polarisation treatment in [108] was an approximation valid for small scattering
angles. To model the polarisation components of the diffracted field over the whole
scattering sphere we apply the method of Karczewski and Wolf [110], where a relation
between the incident and diffracted polarisation vectors is given. They showed that
the electric field at some point P in the Fraunhofer region can be written as:

Es(P ) = k̂× (F× Ei) + (F×Bi)− k̂ · (F×Bi)k̂ (5.22)

where Ei and Bi are complex amplitude vectors of the incident electric and magnetic
field respectively. Note that because the incident wave is planar, Bi = K×Ei, where
K is the direction of incidence. The vector F is written as:

F =

(
ik0

4π
exp[ik0r0]/r0

)
τ̂

∫
S

exp[ik0(K̂− k) ·R]dS. (5.23)

Note that Equations 5.19 and 5.23 are the same except for the bracketed, constant
term in Equation 5.23 which shows that the fields in the Fraunhofer region take the
form of outgoing spherical waves propagating away from the aperture.

The relation between the incident and scattered electric field amplitudes is found
by considering the electric and magnetic components of Equation 5.22 separately.
The derivation is lengthy and is provided in Appendix D. However, the resulting
expressions are:

Es
‖ = F (a1E

i
‖ + b1E

i
⊥), (5.24a)

Es
⊥ = F (a2E

i
‖ + b2E

i
⊥), (5.24b)

where the terms a1, a2, b1, b2 are defined as follows:

a1 = −

(
Kz

√
1− k2

y

1−K2
y

+ kz

√
1−K2

y

1− k2
y

)
, (5.25a)

b1 = kxky

√
1−K2

y

1− k2
y

−KxKy

√
1− k2

y

1−K2
y

, (5.25b)

a2 = KxKy

√
1− k2

y

1−K2
y

− kxky

√
1−K2

y

1− k2
y

, (5.25c)

b2 = −

(
Kz

√
1− k2

y

1−K2
y

+ kz

√
1−K2

y

1− k2
y

)
. (5.25d)

We express Equations 5.24a-5.24b as a matrix:(
Es
‖

Es
⊥

)
= F

(
a1 b1

a2 b2

)(
Ei
‖

Ei
⊥

)
(5.26)

The 2× 2 matrix is termed the diffraction amplitude matrix [109] in this work and
is denoted by D. It takes the form of a scattering matrix and relates the amplitude
of the diffracted wave’s electric field vectors to those of the incident wave. The field
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5.5. Modelling Diffraction

amplitudes for the incident wave are expressed in the plane of incidence, in the same
way as necessary to apply the Fresnel amplitude matrices. The factor F takes care of
amplitude variation over the angular range and is evaluated using the line integrals
given in Equation 5.21. To bring this all together the next section illustrates how
diffraction is modelled in the beam tracer.

5.5 Modelling Diffraction

We now show how the diffraction model is implemented in three different scenar-
ios: external diffraction, diffraction after external reflection and diffraction after
transmission. The crystal has a size parameter of x = 100 with refractive index
m = 1.31 + 0.0i, its orientation is shown below in Figure 5.5 and the incident wave
travels into the page.

Figure 5.5: The diffraction results are given for a transparent crystal in this orien-
tation.

5.5.1 External Diffraction

We approximate external diffraction as diffraction on upward facing facets, each of
which is treated independently. In doing this we invoke Babinet’s principle of com-
plementary screens which states that [111]:

The intensity of the diffracted field from an aperture is the same as that from a
complementary screen.

The amplitude of a wave diffracted through an aperture in the far-field would have
the form M(θ, φ). Removing the screen then requires the amplitude to be the unob-
structed value which in turn suggests that an amplitude −M(θ, φ) has been added.
Ergo, if there is no screen and just an obstruction of the same shape and size as the
original aperture (i.e. the complementary screen), its diffracted field would have an
amplitude −M(θ, φ). Since the intensity is proportional to the amplitude squared,
both cases will yield identical diffraction patterns. The change in sign of amplitude
corresponds to a phase shift of π between the two cases which means that in using
Babinet’s principle, we must subtract the external diffraction amplitude from the
beam diffraction amplitudes. Babinet’s principle allows us to model diffraction due
to a crystal facet (obstacle) as diffraction by an aperture of equal shape and size
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Chapter 5. Diffraction

(complementary screen) as shown in Figure 5.6.

(A) (B)

Incident plane wave

Figure 5.6: Babinet’s principle applied to the case of external diffraction on the
upward facing basal facet. (A) is the complementary screen and (B) is the corre-
sponding aperture. There is a phase shift of π between the cases.

The amplitude matrix associated with external diffraction is the identity matrix. We
first rotate the crystal facet, surface normal and incident propagation vector into
the aperture system through application of Equations 5.15-5.17. We then rotate the
amplitude matrix into the plane of incidence. Diffraction is applied by considering a
range of diffraction directions k̂ corresponding to the scattering direction and each
direction is then rotated into the aperture system. For each direction the elements
of the diffraction amplitude matrix are found along with the value for the diffraction
integral. Three additional rotations are performed, the first L0 rotates the reference
plane into the plane of incidence; the second rotates the plane of incidence into the
scattering plane, L1; the final rotation rotates the reference plane into the scattering
plane, Lp (see Section 4.5.3). For a given scattering direction (θ, φ) the contribution
of the diffracted wave’s amplitude to the external diffraction amplitude matrix is:

Sext(θ, φ) = L1 · F (θ, φ) ·D(θ, φ) · L0 · I · Lp (5.27)

In Equation 5.27 the dependence of F and D on the scattering angles has been
written explicitly for understanding, usually these are not given. External diffraction
does not polarise the incident wave in any way and neither is it dependent on the
refractive index of the medium.
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5.5. Modelling Diffraction

Figure 5.7: External diffraction patterns. The first column corresponds to scatter-
ing into the forward hemisphere, the second into the backward hemisphere. The
three rows show the external diffraction patterns arising from facets, in the first
row the illuminated basal facet, and then the two prism facets, see Figure 5.5.

Figure 5.7 shows the external diffraction intensity patterns from the three illumi-
nated facets, see Figure 5.5. As is to be expected, most of the diffracted light is
in the forward hemisphere. The curving of the diffraction arcs due to the oblique
incidence can be seen. Combining the amplitudes of the contributions from the indi-
vidual beam facing facets then gives the total external diffracted field, the diffraction
pattern in Figure 5.8. We see that the curved arcs from the two prism facets both
overlap with arcs from the basal facet; this is due to the shared edges. Note further
how the ring structure is formed from the contributions from the two prism facets
which share one edge.

Figure 5.8: Total external diffraction pattern.
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Chapter 5. Diffraction

5.5.2 Beam Diffraction

We consider beam diffraction in two parts. First we look at the case of diffraction
of the externally reflected beam. We then consider the diffraction of a beam which
has travelled through the crystal.

External Reflection

External reflection is handled in very much the same way as external diffraction,
however we modify Equation 5.27 so that the Fresnel reflection matrix R is included,

S(θ, φ) = Ls · F ·D ·R · L0 · I · Lp. (5.28)

Note the similarity to Equation 4.31, however this new form includes diffraction. The
direction of incidence is now the direction of the reflected wave, that is K̂ = k̂refl. For
a given facet the ‘aperture’ is the same for both external diffraction and reflection.
This would suggest that the form of the externally diffracted beam should resemble
the diffraction post reflection beam.

Diffraction After Transmission

Next we consider the case of a beam which has passed through the crystal with no
internal reflections. The amplitude matrix for such a beam would be:

M = T2 · L1 ·T1 · L0 · I. (5.29)

The rotation matrix L0 expresses the polarisation vectors with respect to the first
plane of incidence during the first beam facet interaction, i.e. inward transmission
into the crystal. The beam then propagates into the crystal before intersecting a
different facet. The rotation L1 then rotates from the old plane of incidence to the
new one. The two transmission matrices T1 and T2 handle the amplitude changes
at the boundaries.

The amplitude matrix for this beam is currently given with respect to the plane
of incidence for the second beam-crystal interaction (i.e. perpendicular to the facet
the beam is exiting from). We rotate into the aperture coordinate system before
applying the diffraction amplitude matrix and the diffraction integral. For each
scattering direction considered we have:

Si(θ, φ) = Ls · F ·D ·T2 · L1 ·T1 · L0 · I · Lp. (5.30)

5.6 Combining Diffracted Amplitudes

As Babinet’s principle was applied to external diffraction a phase shift of π will exist
between the externally diffracted field and the scattered beam fields. As such, the
contribution from external diffraction is subtracted. For a given scattering direction,
the global amplitude matrix (i.e. the crystal’s amplitude matrix) is:

S(θ, φ) =
N∑
i=1

Sbeams
i (θ, φ)−

∑
Sext(θ, φ). (5.31)

96



5.7. Diffraction Closing Remarks

In this way the amplitude scattering matrix of the crystal is determined by using
the beam tracing model.

5.7 Diffraction Closing Remarks

This chapter outlined how diffraction has been incorporated into various light scat-
tering models and justified the use of the Fraunhofer approximation. It also ex-
plained how a diffraction formalism was derived and applied to the beam tracing
model using a vector form of the Kirchhoff integral to evaluate the electric field
amplitude in the far field. The need to subtract the external diffraction amplitude,
determined through an application of Babinet’s principle, was also given.
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Results

The sun is alone, except in thick
weather, when there sometimes
appear to be two, but one is a
mock sun.

Henry David Thoreau,
in Walden

6.1 Validating the Geometric Optics Component

To validate the geometric optics aspects of the Beam Tracing model a compari-
son study was carried out using for reference the Ray Tracing code developed by
Macke [50]. Physical optics features of the Beam Tracer were turned off (e.g. phase
tracing and diffraction) while diffraction was not included in the Ray Tracing calcu-
lations. Calculations using geometric optics on particles in fixed orientation would
lead to discrete scattering events which would not be very insightful, therefore both
codes were averaged over 1000 different orientations. The Euler angles used in both
models were the same.

The Ray Tracing code uses a fixed number of rays per orientation, these rays spawn
at random (x, y) positions in a plane z = const above the crystal. The maximum
(x, y) dimensions are determined from the crystal itself. This means that the ‘scan-
ning area’ considered in the Ray Tracer likely changes with each orientation. Fur-
thermore, the chosen number of rays does not necessarily mean that that number of
rays intersects with the crystal. Consider the two orientations shown in Figure 6.1,
the red lines represent the ‘scanning area’ in Macke’s code where rays can originate
from and black lines are crystal edges.
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6.1. Validating the Geometric Optics Component

(a) The crystal is standing on a basal facet. (b) The crystal laying on a prism facet.

Figure 6.1: Two particular orientations, with the incident light going into the page.

In case (a) some rays would not hit the crystal whereas in case (b) all rays would.
However, in both situations the same number of rays would be used despite the
scanning area being much larger is case (b). This led to errors when comparing
beams to rays since the Beam Tracer can be considered as including every possible
ray trajectory. The Ray Tracing model was altered to keep the ray density constant.
Let ρ be the number of rays per unit area A:

ρ =
Nr

A
, (6.1)

where Nr is the user set number of rays to be used. Upon initialisation, the Ray
Tracer calculates the ray density for each orientation keeping track of the largest
ray density ρmax found. This is then set as the value to be kept constant for each
orientation. Once this has been determined, for each orientation a new number of
rays is calculated for that orientation such that the ray density is constant:

N ′r = ρmax × A. (6.2)

Every time a ray is scattered in the direction (θ, φ) its phase matrix is added to the
global phase matrix for the crystal; in this way the Phase matrix is developed as
more rays are scattered. In Beam Tracing calculations the Amplitude matrix is built
up in the same way before being transformed into the Phase matrix via Equations
A.1a-A.1p. The phase matrix elements are then multiplied by the beam’s projected
area in the direction of scattering. The resulting phase functions calculated from
both methods is given in Figure 6.2 where the agreement is excellent and the 22◦

halo peak is prominent. Computationally speaking, the Beam Tracer was a factor 70
quicker than the ray tracer, although no diffraction was used. This test proved two
aspects of the Beam Tracing model, firstly that it was correctly splitting beams and
determining their propagation distances. Secondly, the Ray Tracing model uses the
Stokes formalism, rather than Jones formalism (although in this test phase effects
were turned off); the P11 elements matching confirmed that the Jones formalism had
been correctly implemented in the Beam Tracing model.
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Chapter 6. Results

Figure 6.2: Comparison of Beam Tracing and Ray Tracing results for a hexagonal
column of size parameter x = 100 over 1000 orientations. For Ray Tracing the
initial number of rays per orientation was set as Nr = 1000.

There are some interesting features in the geometric optics plot. The intensity in
the direct forward direction is very high, this is caused by light propagating through
plane parallel facets and is known as the delta transmission peak [64]. The absence
of diffraction means that there is no broadening of this peak. Furthermore, the
phase function is made of a series of discrete points, and is not continuous as can
be seen near backscattering.

6.2 Comparison to ADDA

Results gained using the ADDA implementation of the Discrete-Dipole Approxima-
tion (see Section 2.7.3) for four fixed orientations at four different size parameters
were compared to Beam Tracing results.

Four orientations of a transparent hexagonal crystal of unity aspect ratio, given
in Figure 6.4, will be considered with four size parameters of 20, 40, 60 and 100.
The ADDA data, provided by Antti Penttilä of the University of Helsinki, contains
the azimuthally resolved P11 and −P12/P11 scattering matrix elements; relating to
the intensity and degree of polarisation of the scattered light. Both two-dimensional
and one-dimensional (azimuthally averaged) results from the Beam Tracer are com-
pared to ADDA. Also calculated is the asymmetry parameter. A limited orientation
average is also carried out, but is not intended to be representative of random ori-
entation.

A detailed discussion will be given for only one case, the hexagonal column of
size parameter 100 in orientation (a) in Figure 6.4. Once the features have been
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established a broader discussion on the effects of size and orientation will be given.
Further comparisons will be made against ADDA results for an absorbing hexagonal
column, and an absorbing indented hexagonal column, both of which will also be in
orientation (a).

6.2.1 ADDA Data

In these simulations, the orientation of the incident beam is changed with the crystal
remaining fixed in its original position, in which the crystal axis is aligned with the
x axis. This differs from the Beam Tracer where the crystal is physically rotated
(through use of the Euler angles, see Section 4.2.3) and the direction of the incident
beam remains constant. Initially, the incident beam propagates in the direction of
positive x. The first rotation is about the z axis in the xy plane. The second rotation
is about the x axis, these rotations are depicted in Figure 6.3. Note that whereas
the complete set of paths swept by the incident vector after the first rotation is a
circle, for the second rotation it is a cone.
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Figure 6.3: The orientation of the incident beam in the DDA simulations is adjusted
by two rotations, as shown.

The four rotations that are considered for the transparent case are given in Figure
6.4. For the absorbing columns only data for orientation (a) was provided.
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(a) off 30◦ × 0◦ (b) off 30◦ × 10◦

(d) off 30◦ × 30◦ (c) off 30◦ × 20◦

Figure 6.4: The four crystal orientations considered for a solid, transparent hexag-
onal column. The angles refer to the rotations of the incident beam about the
z-axis and x-axis respectively, as shown in Figure 6.3.

6.2.2 Output Data

The scattering matrix is normalised so that the first element integrated over the en-
tire scattering sphere is unity. The ADDA data contains differential scattering cross
sections and is therefore not normalised so post processing was necessary, which
ensured fair comparison between the two models. Furthermore, the ADDA com-
putations had variable angular resolution in scattering angle with 205 angular bins
between 0◦ − 180◦ (allowing for higher angular resolution close to direct forward
and backscattering) and constant bin size of 1◦ in azimuthal angle; a list of the
scattering bins used is given in Appendix E. The same angular resolution was used
in the Beam Tracing computations.

Normalising was performed using Equation 2.23 in a discretised form, given in Equa-
tion 6.3.

P ′11(θ, φ) =
4πP11(θ, φ)∑360

j=1

∑205
i=1 P11(θi, φj) sin θi∆θi∆φj

. (6.3)

The degree of linear polarisation is found via:

dlp = −P12

P11

. (6.4)

Both the P11 and dlp were azimuthally averaged to get one-dimensional functions de-
pendent on the scattering angle only. From the one-dimensional P11 the asymmetry
parameter could be directly calculated using:

g =

∫
P ′11(θ) cos θdθ. (6.5)
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Two-dimensional scattering patterns are used to give scattering information over
the entire scattering sphere. Forward (θ ∈ [0◦, 90◦]) and backward (θ ∈ [90◦, 180◦])
scattering patterns are given separately. Figure 6.5 provides a means to aid in
reading the two-dimensional scattering patterns which will be presented.

0◦

90◦

180◦

270◦

0◦
30◦

60◦

90◦

0◦

90◦

180◦

270◦

180◦
150◦

120◦

90◦

(a) (b)

Figure 6.5: The forward and backward scattering hemispheres expressed as polar
plots, with concentric rings denoting constant scattering angle, θ.

Geometric optics cannot be used to study ice crystals in fixed orientation due to
the finite number of scattering directions. Usually, geometric optics is applied to
randomly oriented crystals. The resulting scattering matrix elements do not have
any azimuthal dependency and plots of intensity against scattering angle are com-
monly referred to as phase functions . As the Beam Tracer incorporates far field
diffraction it is not limited to randomly oriented crystals and so can be applied to
fixed orientation, as is done in this thesis. To avoid confusion, we do not refer to
one-dimensional P11 plots as phase functions, instead using the term azimuthally
averaged P11.

In the following sections, plots of intensity (P11) will be presented in a logarith-
mic (base 10) scale; degree of linear polarisation plots will be in a linear scale.
Colourbars for the two-dimensional scattering patterns are reserved only for total
scattering, i.e. scattering patterns resulting from considering all beams. When two-
dimensional patterns are presented without colourbars it should be understood that
these are for qualitative use only, to aid with description.

6.3 Results for Transparent, Smooth, Pristine, Hexag-

onal Columns

We will consider, in detail, scattering from a hexagonal column in orientation (a)
of Figure 6.4 of size parameter 100. Two-dimensional intensity patterns derived
from the Beam Tracer and ADDA are given in Figure 6.6 (top and bottom row
respectively). There is generally good agreement between the two, with common
bright features visible in both. The agreement is worst at side-scattering angles
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around 90◦ where dark patches are present in the Beam Tracing results and not in
the corresponding ADDA pattern.

Figure 6.6: Beam Tracing (top row) and ADDA (bottom row) two-dimensional
intensity distributions.

The incident light undergoes external diffraction which is shown in Figure 6.7. The
external diffraction pattern has an intensely bright centre in the forward scattering
direction. Diffraction fringes are visible in the scattering pattern, especially along
the bright arcs, with very little light scattered in directions away from these.

Figure 6.7: External diffraction of the incident wave around the crystal.

Geometric optics terminology can be used to aid in the interpretation of two-
dimensional scattering patterns, attributing bright regions to reflection and trans-
mission of beams. In the following it will be shown how the overall scattering pattern
develops due to different beams. To aid in this, Figure 6.8 displays an annotated
version of the Beam Tracing 2D intensity pattern originally given in Figure 6.6.
The numbers correspond to the twelve main beams which contribute to the overall
scattering pattern. The origins of these twelve beams will be discussed.
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1
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Figure 6.8: Annotated version of the Beam Tracing results given in Figure 6.6

The incident wave illuminates two prism facets and one basal facet. Due to the
symmetry of the hexagonal column and orientation, the two beams formed by the
two prism facets will lead to symmetric beams throughout their propagation within
the crystal. The three initial beams are shown in Figure 6.9 (the incident light is
into the page). The three blue beams in Figure 6.9 are externally reflected leading
to beams propagating in the directions (120◦, 270◦), (51◦, 124◦) and (51◦, 56◦) which
are labelled 1-3 on Figure 6.8.

Figure 6.9: Transmission leads to nine new beams. Blue denotes the parent beam
in each case, that is, the beam that is transmitted into the crystal.

The reflected beams each undergo diffraction as they scatter. The ‘aperture’ through
which they diffract has the same shape as the beam’s cross section on the facet. The
diffraction patterns of beams 1-3 is given in Figure 6.10. The symmetric nature of
the reflected beams is visible in their respective diffraction patterns (second and
third row). The bright spots are in the geometric optics scattering direction, i.e. in
the direction of reflection.
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Figure 6.10: Individual scattering patterns arising due to the diffraction of beams
1-3. Diffraction of the beam reflected off the basal facet is given in the top row.
The second and third are diffraction of the reflected beams off the two prism facets.

The combined scattering pattern of external diffraction and reflection is found by
combining the associated amplitude matrices and is given in Figure 6.11. The sim-
ilarity to the external diffraction pattern given in Figure 6.7 is due to them both
being formed from the same apertures. However, in the combined scattering pattern
there are additional bright features due to reflection.

Figure 6.11: Resulting scattering pattern when the externally reflected beams are
combined with external diffraction added.

Transmission into the crystal leads to the formation of new beams, shown in red,
green and magenta in Figure 6.9. Due to the crystal being transparent, first order
transmission events carry the majority of the incident energy. The beam shown in
red in the left panel of Figure 6.9 is scattered into the direct forward (θ = 0◦), in
geometric optics terms it is responsible for the delta transmission peak [64]. The
large size of this beam, combined with its zero transmission angle, results in it
carrying approximately 25% of the incident energy, the largest of any single beam.
On Figure 6.8 it is labelled as point 4; its individual diffraction pattern is shown in
Figure 6.12.
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Figure 6.12: Individual scattering patterns arising due to the diffraction of beam
4.

Note that the diffraction arcs seen in Figure 6.12 can also be seen in the previous
figures because of the common facet edges. The combined amplitudes of beams 1-4,
with external diffraction are given in Figure 6.13.

Figure 6.13: Combined scattering pattern of beams 1-4.

The addition of the transmitted beam leads to increased interference in the centre
two arcs, with diffraction minima present in the region around (90◦, 270◦). The ma-
genta and green beams also formed through transmission on the basal facet both
undergo total internal reflection at a prism.

The remaining two cases [middle and right panel of Figure 6.9] corresponding to
transmission through the prism facets are symmetric, leading to symmetric beam
paths. Such beam pairs will have identical scattering angles, but differing azimuthal
angles. In addition when they scatter in either the direct forward or backward di-
rection they will have identical path lengths and so will add constructively. Their
two dimensional features will be symmetric about the plane φ = 90◦ so we will focus
on case (b) only, giving the corresponding scattering directions for case (c) in square
brackets.

The largest beam formed via transmission through the prism facet is the shown
in red. Its subsequent transmission (it also undergoes internal reflection) out of the
basal facet leads to a scattered beam in the direction (51◦, 290◦) [ (51◦, 250◦)]. These
points are labelled 5 and 6 on Figure 6.8, with individual scattering patterns given
in Figure 6.14.
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Figure 6.14: Individual scattering patterns from beams 5 and 6.

Including these beams in the overall scattering pattern we arrive at Figure 6.15.
Most of the notable features from the total scattering pattern are now visible. The
two arcs which pass though the new peaks (marked by a red dotted line) do not
overlap any of the existing arcs in the scattering pattern. This is because two of
the edges of the beam’s cross section on the facet are not along crystal edges (see
red region of centre panel of Figure 6.9). As the number of internal interactions
increases, the cross section of beams gets smaller and so the likelihood of one of a
given beam’s edges running along a crystal edge also decreases. This in turn leads
to more small non-overlapping diffraction arcs, which cause the hazy appearance in
the scattering pattern, as these small beams diffracted fields interfere.

Figure 6.15: Combined scattering pattern of beams 1-6, with external diffraction
added.

The green beam in the middle and right panels in Figure 6.9 is transmitted out of
the crystal in the direct forward direction (points 7 and 8 on Figure 6.8). These
beams are quite low intensity with each carrying about 3% of the incident energy.
Their scattering patterns are given in Figure 6.16.
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Figure 6.16: Individual scattering patterns from beams 7 and 8.

The magenta beam undergoes total internal reflection leading to a new beam inter-
secting with the basal facet (see Figure 6.17). The transmitted part of this beam
leaves in the direction (88◦, 18◦) [(88◦, 162◦)] labelled as point 9 [and 10] in Figure
6.8.

Figure 6.17: Total internal reflection leads to a new beam illuminating a portion
on the basal facet.

The resulting diffraction pattern from these beams is given in Figure 6.18. These
contributions are significant as they cause the blurred features seen in the forward
scattering patterns at φ ≈ 20◦ and φ ≈ 160◦ visible in both the ADDA and Beam
Tracer results. Not only this, but their contribution to the backscattering hemi-
sphere is greater than that of any other beam discussed so far.
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Figure 6.18: Individual scattering patterns from beams 9 and 10.

Combining beams 1-9 with external diffraction forms the pattern shown in Figure
6.19. At this point the majority of the features seen in the total forward scattering
pattern (Figure 6.6) are visible. The backscattering hemisphere has not developed
the complexity observed, but this is due to the analysis outlined so far neglecting
higher order internal reflection events.

Figure 6.19: Combined scattering pattern of beams 1-10, with external diffraction
added.

The strong peaks at (51◦, 56◦) and (51◦, 124◦) seen in the overall pattern cannot be
attributed to external reflection alone. This is because the crystal is non-absorbing
and therefore weakly reflecting. Returning to the left most configuration in Figure
6.8, the magenta and green beams, which were totally internally reflected, form
beams on the basal facet illuminating a region as shown in Figure 6.20. These
then propagate out of the crystal in the directions of (51◦, 56◦) and (51◦, 124◦) each
carrying approximately 15% of the incident energy; these are labelled as points 11
and 12 on Figure 6.8.
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Figure 6.20: Total internal reflection off the prism facets leads to beams which
propagate in the same direction as two of the externally reflected beams.

The diffraction patterns associated with these beams are given in Figure 6.21. The
bright peak corresponds to the direction of transmission (which is also the same
as the direction of external reflection). It is interesting to note how these patterns
differ to those formed by the externally reflected beams (Figure 6.10). Despite there
being no shared crystal edges both pairs of patterns share a common diffraction arc.
This is because part of the transmitted beam cross section is parallel to the edge of
the upper prism facets. Whereas the reflected beam had a ring-like feature in its
scattering pattern the diffraction pattern for this transmitted beam is a larger arc.
This is because the vector in the direction of transmission draws a large angle with
the facet edge than was the case for extenal reflection.

Figure 6.21: Individual scattering patterns from beams 11 and 12. The roughly
square like beam cross section leads to a diffraction pattern similar to that seen for
a square aperture, with curvature being caused by oblique incidence.

Figure 6.22 gives the scattering pattern formed by beams 1-12 with external diffrac-
tion. Internal reflections will lead to the formation of additional features, most of
which will be in the backscattering hemisphere.
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Figure 6.22: Combined scattering pattern of beams 1-12, with external diffraction
added

Higher order internal reflection events, followed by outward refraction, lead to small
contributions in other scattering directions. In terms of energy these twelve beam
paths account for 87% of the incident power. An individual breakdown is given in
Figure 6.23, where the scattering directions associated with a given beam are given
along the upper x-axis.

Figure 6.23: The power carried away from the crystal by the twelve beam paths
discussed. The scattering angles are given along the top of the chart.

Azimuthally averaging the two-dimensional scattering patterns removes the az-
imuthal dependency on scattering, see Figure 6.24. The large peak at 51◦ is formed
predominantly by beams 2,3,5,6 11 and 12 which together carry more energy than
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beams scattered into the direct forward direction. However, direct forward is still
greater because of the contribution of external diffraction. General agreement be-
tween the Beam Tracing model and DDA is good, especially in geometric optics
scattering directions. However, Beam Tracing does not seem to be able to carry
sufficient energy away from the GO scattering direction, highlighting a limitation
of the diffraction approximation used. This is most noticeable towards the direct
backscattering. There are no geometric optics beams associated with this direc-
tion for this particle orientation, the closest being at 151◦. The difference between
Beam Tracing and DDA in the neighbouring region is quite clear, especially at direct
backscattering.

It is also noteworthy that there seems to be a slight shift in the peak at 151◦ between
Beam Tracing and DDA. This is potentially due to the effects of Fresnel diffraction
on deflecting the propagation of beams inside the crystal. The Beam Tracing model
only considers the far-field diffraction of beams as they scatter, there is no modelling
of internal deflection.

Figure 6.24: Azimuthally averaged P11 for the size parameter 100 particle currently
being discussed.

Since the dlp is found through the ratio of the P11 and P12 elements, in regions of
low intensity small errors in P11 will lead to large dlp values. In this way, small (or
low intensity) beams can have a significant effect on the dlp. This all means that
a beam-by-beam analysis is not informative when discussing dlp plots. However,
a general property of beams is that their polarisation patterns form a cone about
the scattering plane. Figure 6.25 gives the two polarisation patterns from the two
beams externally reflected by prism facets.
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Figure 6.25: External reflection leads to the formation of positive degree of linear
polarisation cones about the respective scattering angles.

The degree of linear polarisation derived from both Beam Tracing and ADDA is
presented in Figure 6.26. It is difficult to extract anything meaningful from the plot,
but regions of close to zero polarisation are seen in the forward scattering hemisphere,
while the backward scattering hemisphere is generally negatively polarised with
respect to the scattering plane. The ADDA forward scattering hemisphere shows
a strong negatively polarised region in the azimuthal range 180◦ ≤ φ ≤ 360◦ in
the same fan like structure seen in the intensity plot (bottom row of Figure 6.6).
This fine structure was not present in the corresponding Beam Tracing plot which
is believed to be caused by the Kirchhoff diffraction approximation employed in the
model.
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Figure 6.26: Two-dimensional degree of linear polarisation derived using Beam
Tracing (top row) and ADDA (bottom row)

Azimuthally averaged dlp results are given in Figure 6.27. Both Beam Tracing and
ADDA show near zero polarisation across the entire scattering angle range. There
is quite good agreement, except in the region between 130◦ ≤ θ ≤ 180. This could
be due to the lack of geometric optics scattering directions in this range.
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Figure 6.27: Azimuthally averaged dlp.

6.3.1 Effects of Size and Orientation

We now discuss, in broad terms, the effects of changing size and orientation on the
scattering properties of the hexagonal ice crystals. Figure 6.31 contains azimuthally
averaged P11 for the sixteen cases for which DDA data were available; with corre-
sponding dlp patterns in Figure 6.32. The four rows correspond to the four particle
size parameters (20, 40, 60 and 100) and the four columns correspond to the orien-
tations given in Figure 6.3.

Changing orientation refers to moving from orientation (b) to (d) of Figure 6.4,
exposing more facets to the incident wave. As the direction of incidence is rotated
about the x− axis by 10◦ we see the breakdown of the symmetry about the plane
φ = 90◦ in the scattering pattern, see Figure 6.28. The two peaks associated with
external reflection and transmission also move away from θ = 51◦, one increases in
scattering angle while the other decreases, illustrated by the blue and red dashed
lines respectively. This change is seen in the one-dimensional, azimuthally averaged
intensity pattern (Figure 6.31) by the splitting of the 51◦ peak (2nd column of the
4th row). The splitting of this peak and the shifting of some beams to a higher
scattering angle of roughly 55◦ helps decrease the difference between the DDA and
Beam Tracer in the side scattering region. However, there is a significant differ-
ence between the two models in the direct backscattering. This is an anomalous
result in comparison to all other sizes and orientations where the differences in the
backscattering are not so severe.
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Figure 6.28: Two-dimensional scattering patterns for size parameter 100 in orienta-
tion (b). The top row is data acquired using DDA, the bottom row Beam Tracing.
Columns denote forward and backward scattering respectively.

Continuing to rotate the incident beam about the x−axis, the original 51◦ continues
to move away in the averaged phase function. Notice how the diffraction arc that
runs through the peak in the red circle is straightening out, this is due to the angle
between the incident beam and (inward facing) surface normal decreasing. In addi-
tion to this, a bright spot separates from the direct forward due to reflection from
the now visible third prism facet. This peak travels along the closed arc joining the
two existing reflection peaks, and the direct forward. These peaks are all connected
due to their shared edges between neighbouring facets, which lead to the bright
diffraction arcs.

At the maximum rotation of 30◦ of the incident beam about the x-axis, there are
three prismatic reflection peaks (points 1-3), and three transmission peaks (point
5). This crystal orientation demonstrates strongest retro-reflections. As the beam
paths are symmetric the beams themselves will add in phase leading to the pro-
nounced peak in the direct backscattering (point 7); an in-depth discussion of this
can be found in [112]. Note that the reflection peak from the basal facet (point 8)
lies on a diffraction arc which also passes through point 1. This is again due to the
shared edge between the basal facet and the prism facet. In the Beam Tracing 2D
pattern, the diffraction approximation is recognisable from the presence of the two
diffraction arcs passing through point 1. They are analogous to diffraction from a
rectangular aperture. The effect is not seen in the ADDA pattern, however, only
the arc also passing through the direct forward direction and which is shared with
external diffraction is visible. The non-appearance of the other arc is presumably
due to phase effects smearing it out. Due to the additional transmission peak near
side scattering (points 5), the fan like structure is more pronounced in the Beam
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Tracing model than for the orientation shown in Figure 6.6. This is because the
additional scattering direction is able to compensate for limited angular range of
the diffracted beam.

Figure 6.29: Same as Figure 6.28 but for orientation (c)
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Figure 6.30: Same as Figures 6.28 and 6.29 but for orientation (d)
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This rotation also re-established a plane of symmetry, now at φ = 60◦. In gen-
eral, symmetry properties of the crystal are reflected in symmetry properties of
the scattering pattern. The symmetric reflection peaks are much closer to forward
scattering, at around 25◦. The one dimensional pattern, in the fourth column of
the bottom row of Figure 6.31 shows excellent agreement over most of the scatter-
ing range. For this orientation the number of available beam paths (and related
beam cross sections) are largest. For non-skew rays inverse ray paths should lead to
constructive interference, but as explained in [112], some symmetric ‘skewed’ beam
paths will undergo destructive interference due to phase shifts of π.
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Figure 6.31: Azimuthally averaged P11 elements calculated using the Beam Tracer (blue) and ADDA (red). Rows correspond to particle
size parameters x = 20, 40, 60 and 100. Columns correspond to particle orientations (a) - (d).
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Figure 6.32: Same as Figure 6.31, but for degree of linear polarisation.
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Next, we discuss the effects of size on scattering patterns. The treatment of electro-
magnetic scattering as a process of reflection and transmission of localised beams
breaks down with decreasing size parameter as the geometric optics approximation
becomes invalid. However, the treatment of diffraction (both external, and of scat-
tered beams) should help mitigate this. For all cases, we see good agreement of the
Beam Tracer with ADDA, especially at size parameter 60 (third row of Figure 6.31).
With decreasing size parameter, the strength of the geometric peaks decreases, while
the width of the peaks increases as a consequence of diffraction. At the smallest
size parameter, the geometric optics peaks have all but been removed and washed
out by diffraction. Figure 6.33 gives the two-dimensional intensity patterns for the
crystal in orientation (d). This orientation is chosen since it displays the largest
number of clearly defined geometric optics peaks. The first two columns in Fig-
ure 6.33 are the forward scattering hemisphere results for the Beam Tracer and for
ADDA, respectively; the final two being the backward scattering results. The ex-
pected consequences of size on diffraction are observable, such as the increase in
diffraction fringes with decreasing size and the corresponding increase in diffraction
peak width. The geometric optics scattering peaks become less apparent with de-
creasing size and at size parameter 20 they are all but removed. In the backward
scattering hemispheres this is most pronounced. The broad width of the diffraction
peak associated with reflection off the basal facet is clear by the ‘smudge’ like feature
in the 3rd and 4th columns. Again there is generally good agreement between the
two (as reflected in the fourth column of Figure 6.31).

Figure 6.33: The effect of changing particle size parameter on the two-dimensional
scattering pattern. From left to right the columns are Beam Tracer forward, ADDA
forward, Beam Tracer backward, ADDA backward. From top to bottom we have
x = 20, 40, 60 and 100.
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Asymmetry parameters were calculated for all orientations and sizes and the result-
ing values, together with percentage differences with respect to ADDA, are given
in Table 6.1. From size parameter 40 there is an increase of asymmetry parameter
with size. The smallest percentage difference occurs for size parameter 60; for all
cases the percentage difference between the two is less than 10%.

Off 30× 0 Off 30× 10
gBT gDDA ∆g(%) gBT gDDA ∆g(%)

x = 20 0.775 0.7243 7.00 0.7848 0.7208 8.88
x = 40 0.6974 0.7097 -1.73 0.7396 0.6997 5.70
x = 60 0.7400 0.7105 4.15 0.7221 0.7263 -0.58
x = 100 0.8108 0.7645 6.06 0.8355 0.7611 9.78

Off 30× 20 Off 30× 30
gBT gDDA ∆g(%) gBT gDDA ∆g(%)

x = 20 0.7710 0.7172 7.50 0.7593 0.7147 6.24
x = 40 0.7326 0.6923 5.82 0.7297 0.6877 6.11
x = 60 0.7260 0.7226 0.47 0.7263 0.7101 2.28
x = 100 0.8162 0.7686 6.19 0.8123 0.7471 8.73

Table 6.1: Comparison of asymmetry parameter predictions between DDA and the
Beam Tracer.

We can perform a limited orientation average of these results, but do so with the
caveat that such a limited sample is not representative of a hexagonal column in
random orientation, the resulting azimuthally averaged P11 are given in Figure 6.34;
with dlp given in Figure 6.35.
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Figure 6.34: P11 averaged over the four orientations shown in Figure 6.4. The
agreement between beam tracing and ADDA is clearly improved by orientation
averaging.

The orientation averaged P11 show overall very good agreement, with a fair agree-
ment seen at the smallest size parameter. The anomalous result in backscattering
for one of orientations at size parameter 100 is all but removed because of this av-
eraging. It seems that the negative dlp values close to direct backscattering caused
by skew rays, which are very strong in geometric optics (see [113]) are much weaker
in ADDA. This might indicate that the assumption of the applicability of geometric
optics for beam propagation inside the crystal is not entirely justified. However,
they too are improved by averaging, with both Beam Tracing Results and ADDA
taking near zero values. The values for the asymmetry parameter are also improved
by this averaging, see Table 6.2 with errors below 8% for all. While such small
scale orientation averaging should be treated with a pinch of salt, the results are
encouraging and suggest that the Beam Tracer could be a computationally cheap
way of modelling particles in random orientation; as each orientation took around
one minute to model.
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Figure 6.35: dlp averaged over the four orientations shown in Figure 6.4 and size
parameters x = 20, 40, 60 and 100. For all size parameters there is near zero dlp
across all scattering angles.

ḡBT ḡDDA ∆ḡ(%)
x = 20 0.7725 0.7193 7.41
x = 40 0.7248 0.6974 3.97
x = 60 0.7286 0.7174 1.58
x = 100 0.8187 0.7603 7.69

Table 6.2: Orientation averaged asymmetry parameters

Figure 6.36 is a graphical representation of the data in Table 6.2. The error bars
are found by the standard deviation of the asymmetry parameter over the four
orientations for each size. There is a trend of increasing asymmetry parameter with
size. In general the Beam Tracer predicts higher values than ADDA, most likely
due to the difference in forward scattering. The best agreement between the two
methods can be seen at x = 60.
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Figure 6.36: Comparison between the range of values predicted by the two methods
for the asymmetry parameter averaged over the four orientations. Error bars give
the standard deviation over the four measurements.

6.3.2 Analysis of the Accuracy of the Beam Tracer for Mod-
elling Smooth, Transparent Hexagonal Columns.

From the two-dimensional scattering patterns we see that the Beam Tracer is able
to produce results of qualitative similarity to those acquired through ADDA. Bright
regions due to geometric optics scattered beams, curved bright arcs and diffraction
fringes are clearly visible in these patterns. The one-dimensional, azimuthally aver-
aged plots also show generally good agreement, with differences mainly in the side
scattering region. For the transparent crystals, these were improved by orientation
averaging. In order to better analyse differences in the two methods, Figures 6.37
and 6.38 give the absolute difference and percentage difference for the transparent
cases. the absolute difference is given by:

∆(θ) = |PBT
11 (θ)− PDDA

11 (θ)|. (6.6)

From Figure 6.37 the largest contribution to the error between the two methods is in
the direct forward. In all cases the raw error quickly drops off to very small values.
This error in the forward direction suggests that either (a) forward diffraction is too
strong, potentially caused by the approximation of treating diffraction by the crystal
as diffraction by apertures and so ignoring its three-dimensional nature. Given that
instruments scarcely measure in the direct forward due to saturation of the imaging
system, errors in this region are not of great concern if the Beam Tracer is to be used
for analysis of SID data (which is in the range θ ∈ [6◦, 25◦]). Furthermore, we note
that the structure of the forward scattering lobe predicted by the Beam Tracer is
very good when compared to ADDA. In Lidar multiple scattering investigations this
is an important quantity to measure, indicating a potential application of the model.

Percentage differences can be a more useful way to compare methods. We define
the percentage difference to be:
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∆%(θ) =
PBT

11 (θ)− PDDA
11 (θ)

PDDA
11 (θ)

× 100. (6.7)

Positive percentage differences will denote scattering angles where the Beam Tracer
gives higher values than ADDA. The highest difference between the two methods
occurs at the smallest size parameter due to the breakdown of the geometric optics
approximation. Similar values for percentage differences comparing the Physical-
Geometric Optics Hybrid (PGOH) method of Bi et al. and ADDA have been re-
ported [55].

Phase variations across a beam cross section, discussed in Section 4.6.3, could cause
differences between the methods. For large beam cross sections incident at oblique
angles there would be significant phase variations over the cross section. The Beam
Tracing model assumes that the phase across the beam cross section is constant and
is equal to the phase at the centre on the facet. A consequence of this can be seen
in the contribution of beams 11 and 12 (in Figure 6.21) to the overall scattering
pattern shown in Figure 6.6 where the diffraction arcs extend to larger scattering
angles than is seen in the corresponding ADDA results. Division of this beam into
sub-beams of quasi constant phase may reduce this effect and it is encouraged to
investigate this.
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Figure 6.37: Absolute values of the differences between normalised P11 elements from the Beam Tracer and ADDA for transparent, pristine
hexagonal columns. From top to bottow rows correspond to the four size parameters x = 20, 40, 60 and 100. The columns, from left to
right, correspond to the orientations (a)-(d) given in Figure 6.4).
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Figure 6.38: Percentage difference in P11 values from the Beam Tracer and ADDA for transparent, pristine hexagonal columns. From
top to bottow rows correspond to the four size parameters x = 20, 40, 60 and 100. The columns, from left to right, correspond to the
orientations (a)-(d) given in Figure 6.4).
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6.4 Results for an Absorbing, Smooth, Pristine

Hexagonal Column

The absorbing hexagonal column has a size parameter of 20π and is illuminated
by incident light of wavelength 500nm in orientation (a) of Figure 6.4. It is set
to be highly absorbing, with a refractive of m = 1.31 + i0.1 which means that the
scattering pattern is dominated by external diffraction and reflection. Figure 6.39
gives the two-dimensional P11 from the Beam Tracer and ADDA methods. The
central bright peak in the forward scattering is due to external diffraction, the other
three peaks being due to reflection off the two prism facets and the basal facet.
There is also noticeable absence of the transmission peaks due to absorption. Due
to the lack of transmitted beams there is less interference. The effect this has on
the scattering pattern is that there is noticeably more dark patches, associated with
low light intensity in these scattering directions.

Figure 6.39: Two-dimensional P11 for the highly absorbing hexagonal column of
size parameter100 in orientation (a); Beam Tracing (top row) and ADDA (bottom
row).

In the forward scattering hemisphere there are two fuzzy patches in the diffraction
arcs either size of φ = 270, these can be associated with transmission through the
upper prism facets (earlier, these were called beams 5 and 6). Whereas in the trans-
parent case, this led to spatially extended beams exiting the basal facet, absorption
attenuates this beam leading to its sub-division (see Section 4.7). Only a small pro-
portion of the incident beam is able to propagate out, hence the absence of a bright
transmission peak.

Two dimensional dlp patterns are given in Figure 6.40. In the forward scattering
hemisphere regions of strong positive polarisation associated with external reflection
can be seen around (51◦, 56◦) and (51◦, 124◦) corresponding to external reflection off
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the two prism facets. The strong negative polarisation seen in the lower half of
the ADDA image is not so prominent in the results from the Beam Tracer, which
predicts close to zero polarisation. The side scattering region is positively polarised
due to reflection from the basal facet, with polarisation decreasing towards direct
backscattering. This is seen in both sets of results, although more prominently in
the ADDA case, in the Beam Tracing case the negatively polarised ripples are more
apparent. A left/right asymmetry can be seen in the backscattering hemisphere
(compare for example, the regions either side of the plane φ = 90◦ at θ ≈ 150◦) for
the results from the Beam Tracer which is not seen in the ADDA results.

Figure 6.40: Two-dimensional dlp for the highly absorbing hexagonal column.
Beam Tracing (top row) and ADDA (bottom row).

The azimuthally averaged P11 results in Figure 6.41 include the normalised contri-
bution from external diffraction and diffraction of the reflected beam. We see that
the addition of further beam interactions leads to a deviation in the backscattering
which is not seen when considering just external diffraction and reflection. It must
therefore be associated with transmission. A potential cause is the model’s improper
handling of wave inhomogeneity, leading to improper modelling of beam phase in
absorbing crystals. This could lead to artificial constructive interference, thus giving
rise to the peak at 143◦ (this is likely related to the asymmetry in the two-dimensonal
dlp pattern given in Figure 6.40). The strong decline in the backscattering is due
to the absorption removing internally reflected beams. The side scattering region
displays the largest departure between the two models, with the Beam Tracer being
too large here. The central diffraction arc in Figure 6.39 is much stronger in the
Beam Tracing model, extending to larger scattering angles that the ADDA results
predict. This arc is associated with external diffraction, suggesting that it is too
strong.
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Figure 6.41: Azimuthally averaged P11 for the absorbing hexagonal column. ADDA
results are given in black and two Beam Tracing results corresponding to external
diffraction and reflection only (shown in blue) and including a single transmission
through the crystal (shown in red) are given as comparison.

6.5 Results for an Absorbing, Smooth, Indented

Hexagonal Column

The absorbing indented column, shown in Figure 6.42 has a size parameter of 60, it
is in orientation (a). The indent is 30% of the total length and is present in one basal
facet only, the other being unaffected. The incident light again has a wavelength of
500nm and the refractive index is m = 1.31 + i0.2.

Figure 6.42: The absorbing, smooth, hexagonal column with one indented facet, as
used in the model, incident light propagates into the page.
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Two-dimensional P11 patterns are given in Figure 6.43. As with the pristine column,
forward scattering is dominated by external diffraction and reflection off the prism
facets. As with the transparent and absorbing cases there are two bright peaks at
(51◦, 56◦) and (51◦, 51◦) corresponding to external reflection off two prism facets.
Whereas before there was reflection off a basal facet in the direction (120◦, 270◦),
there is now reflection off six triangular facets. These six facets are best discussed
in three pairs, corresponding to the rows in Figure 6.44. For the pair in the top
row the entire beam (shown in green) re-intersects the crystal illuminating regions
spread over two facets (shown in blue and pink). The two pink beams then undergo
reflection again, scattering in the directions (111◦, 305◦) and (111◦, 235◦) respec-
tively. Likewise for the two blue beams, which go in the directions (130◦, 263◦) and
(130◦, 277◦). The beams shown in the middle row of Figure 6.44 both scatter upon
reflection (with no portion re-intersecting the crystal), propagating in the directions
(147◦, 3◦) and (147◦, 177◦). On the two-dimensional scattering pattern, Figure 6.43
these two points are recognisable by their pristine, i.e. not smeared, appearance.
Those beams shown in the third row of Figure 6.44 do partially intersect the crystal,
leaving a portion to propagate away. The division of the beam into parts which do,
and do not, intersect is represented by the green and red regions on the triangular
facet. The parts which are scattered go in the directions (91◦, 324◦) and (91, 216◦).
The intersected beams, shown in blue, undergo external reflection again and then
propagate away from the crystal in the directions (117◦, 320◦) and (117◦, 220◦).The
presence of four beams in the vicinity of around (115◦, 270◦) leads to widespread in-
terference, which can be seen by the haziness in the backward hemisphere of Figure
6.43.

Figure 6.43: Two-dimensional P11 for the highly absorbing indented hexagonal
column of size parameter100 in orientation (a); Beam Tracing (top row) and ADDA
(bottom row).
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Figure 6.44: Reflection from inside the indent. The top row shows two reflected
beams which are entirely intersected by the indent. The middle row shows two re-
flected beams which do not re-intersect. The bottom row shows two reflected beams
which partially intersect other facets. The green portion of the facet corresponds to
the portion of the beam that does re-intersect, the red indicating scattering away
from the crystal.

Polarisation plots in Figure 6.45 suggest that the indent has little effect on the
polarisation of light scattered into the forward hemisphere. However, there is now
positive polarisation around (91◦, 324◦) and (91, 216◦) due to the small beams which,
after external reflection do not intersect the crystal (green beams in the bottom
row of Figure 6.44. There is a noticeable absence of positive polarisation around
(85◦, 270◦) in the Beam Tracing results, but not in the ADDA results. Regions of
positive polarisation are also present in the backscattering, again due to external
reflection. Interference between scattered beams can be seen in the region around
(115◦, 270◦), as was the case for intensity.
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Figure 6.45: Two-dimensional dlp for the highly absorbing indented hexagonal
column of size parameter100 in orientation (a) Beam Tracing (top row) and ADDA
(bottom row).

The azimuthally averaged P11, given in Figure 6.46 shows very good agreement at
all scattering angles except near to direct backscattering, where oscillations appear.
These can also be seen in the two-dimensional pattern in the upper right panel of
Figure 6.43; where diffraction minima can be seen in the arc joining the two bright
reflection peaks. Similar minima are not observed in the corresponding ADDA case.
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6.5. Results for an Absorbing, Smooth, Indented Hexagonal Column

Figure 6.46: Azimuthally averaged P11 for the highly absorbing, smooth, indented
hexagonal column.
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Chapter 7

Discussion and Future Outlook

“Ah,” said the jailer, “do not
always brood over what is
impossible, or you will be mad
in a fortnight”.

Alexandre Dumas,
in The Count of Monte Cristo

The project sought to address the need for a computationally cheap, accurate and
versatile Beam Tracing model for electromagnetic scattering by atmospheric ice.
This report has detailed the development of the Beam Tracer. Demonstrations of
the model were performed on a range of hexagonal columns of different sizes, orien-
tations and refractive indexes; with results compared to ADDA. While this report
focussed on its application to smooth hexagonal columns (transparent pristine, ab-
sorbing pristine and absorbing with an indented basal facet) the model is able to
handle facetted approximations to shapes like spheroids and cylinders, as well as
more complicated shapes like rosettes. Existing Beam Tracing methods have been
developed for transparent, smooth, pristine hexagonal columns, e.g. [53, 56], and
other models, e.g. [54,55], have included absorption as well as extending the model
to handle smooth, pristine polyhedra. However, in these models, the sub-division
of beams does not take place, i.e. it is assumed that the intensity over the cross
section of an attenuated beam is constant. As such, to the author’s best knowledge,
no other Beam Tracing code in the literature has demonstrated the same versatility
as the one developed here.

The Beam Tracer is computationally cheap, usually taking around one minute for a
typical particle such as a transparent hexagonal prism. In terms of computational
time, the model is independent of size parameter (so long as the particle is scaled
equally) meaning there is, in principal, no upper size limit. The smallest size param-
eter used in comparison studies was 20, where differences in P11 and dlp between
the Beam Tracer and ADDA were apparent. Where differences between the models
were observed, it was found that limited orientation averaging reduced the errors
quite significantly. This suggests that the Beam Tracer could be a useful tool in
modelling light scattering by randomly oriented crystals.

The key feature of the model, the beam splitting process, was discussed in detail,
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including how it can be viewed as an extension of ray tracing. For validation of the
geometric optics component of the Beam Tracer a comparison to a modified Ray
Tracer [50] was carried out. The phase function, averaged over 1000 orientations,
for a hexagonal column was compared with identical agreement seen. The neces-
sity of phase tracing to allow for interference effects to be seen in two-dimensional
scattering patterns was outlined. Finally, the incorporation of a surface integral for-
mulation of a vector Kirchhoff approximation for modelling diffraction enabled the
model to leave the confines of geometric optics, resulting in beams spreading out as
they propagate away from the crystal. Included in the diffraction implementation
was the use of a diffraction amplitude matrix, which enabled the polarisation of
the diffracted wave to be modelled. The combination of all these resulted in good
agreement between ADDA and the Beam Tracer.

While the beam splitting process makes use of similar techniques found in ray trac-
ing models it is important to emphasise some of the differences between them. Ray
tracing requires that the scattering particle be much larger than the wavelength of
the incident light in order for the wave effects to be ignored, which simplifies the
problem significantly but does so at a cost to the overall accuracy. Beam Tracing is
built on wave optics, taking into account phase, interference and diffraction of plane
parallel beams meaning its basis is more physical than geometric optics. Because
wave effects are inherent to the model, there is in principle no lower size limit, which
in addition to there being no upper size limit means that Beam Tracing is poten-
tially a very powerful technique, applicable over all particle size parameters. When
complex particles are considered ray tracing requires that the number of incident
rays increases as particle complexity increases to ensure that all ray paths are traced
and that enough rays traverse them to realistically probe the illuminated regions. If
not enough rays are used then intensity peaks in the resulting intensity patterns may
be missed. Beam Tracing does not suffer this issue since contained within a beam
cross section are all the possible ray paths that would lead to the illuminated region.

Using the Beam Tracer to create scattering databases has been achieved through
utilising cluster computing. An example script to generate a database of scattering
properties of hexagonal columns of varying size parameter is given in Appendix F.
A lower size parameter is decided by the user and the upper size parameter is deter-
mined by the number of nodes used in the execution. The code creates a hexagonal
column for the given size parameter and passes this to the Beam Tracer. The results
are stored in individual directories, the names of which are the size parameter of
the crystal file. Once a database has been created, one can (in the case of compar-
ison with SID images) compare the two-dimensional scattering patterns from the
probe and the Beam Tracer. Performing this task manually would most likely not
be fruitful, so an automated process is preferable, see [76]. The idea behind these
algorithms is that intensity values from a recorded image are compared with those
in the database. If a similar match can be found then the particle can be consid-
ered identified, within a confidence interval. Future developments in this area could
include the use of neural networks, exploiting machine learning, to better perform
analysis of measured scattering patterns in conjunction with scattering databases.
Improved habit retrieval algorithms will in turn lead to more informed choices for
ice crystal geometries used to derive parameters for climate models.
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Chapter 7. Discussion and Future Outlook

The model should provide a means to create an updated scattering database of
two-dimensional patterns that can be used to aid in the retrieval of particle size,
habit and orientation from in-situ probes such as SID-3, or the recently developed
Aerosol Ice Interface Transition Spectrometer (AIITS) in-situ probe. This probe
was attached to a NASA Global Hawk 1 and took part in the Coordinated Air-
borne Studies in the Tropics (CAST) campaign. Like the SID probes it captures
two-dimensional forward scattering patterns, but also measures polarisation. This
additional aspect makes AIITS useful in determining whether the particle is a droplet
or not, as droplets do not depolarise.

It was seen that the approximation of equal phase over a beam cross section re-
sults in the transmitted beams’ diffraction patterns contributing too strongly in
their localised region to the overall scattering pattern. This could potentially be
mitigated through further division of beams, dividing them into regions of quasi-
constant phase in a similar way as was done for absorption. This would hopefully
improve the agreement between Beam Tracing and exact methods. It was seen
that the model showed better agreement when there was an increase in the number
of geometric optics scattering directions. This is likely for the same reason, with
diffraction effects being too tightly confined around the scattering direction of the
beam.

Near to far-field mapping was achieved through the use of a surface integral. The
Vector Kirchhoff approximation used is derived by starting with Green’s Theorem,
from which one can derive an alternative, volume integral diffraction formalism.
It has been shown in the literature [55] that the volume integral method leads to
better agreement in the side scattering region for the P11 element. However, it is
more computationally expensive. An interesting future avenue of research would be
investigating what effect incorporating a volume integral form of diffraction would
have on the beam tracing model.

Increasingly the atmospheric community is exploring the effects of surface rough-
ness on light scattering. The Beam Tracing model has not been tested on particles
with surface roughness, this is an area for further investigation. The large number
of small facets would likely lead to substantial computational demand arising from
the increased number of plane projections and line intersections. The beam tracing
model, in its current form, would likely not be applicable to particles displaying
significant roughness. That said, it is conceivable that a variation of the Beam
Tracing model could be devised in the future to be used on rough particles. While
the computational demands would be greater than for smooth cases, it is likely that
the demands would still be less than more exact methods. A possible technique that
could be used to reduce the computational burden would be to use bounding boxes,
as was done by McCall [114] for the RTDF model.

On a more philosophical note, the Paris summit of December 2015 hopefully saw the
commencement of a global initiative towards tackling climate change. The work of

1http://www.herts.ac.uk/research/centres-and-groups/cair/particle-instruments-and-
diagnostics/aiits
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the atmospheric research community cannot be understated in making this happen
and their role has likely never been as important as it is now. The onus lays with
scientists, of multiple disciplines, to come together and collaborate to help and avoid
what would be, no-doubt, a disaster for mankind if climate change went unchecked.
The study of atmospheric ice, the development of accurate probes, the creation of
computer models and so forth all have a role to play in this. For, while the knowledge
bank is forever growing, there is still much to be learned.
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[1] C. Stubenrauch, A. Chédin, G. Rädel, N. Scott, and S. Serrar, “Cloud prop-
erties and their seasonal and diurnal variability from tovs path-b,” Journal of
climate, vol. 19, no. 21, pp. 5531–5553, 2006.

[2] H. Nazaryan, M. P. McCormick, and W. P. Menzel, “Global characterization
of cirrus clouds using calipso data,” Journal of Geophysical Research: Atmo-
spheres, vol. 113, no. D16, 2008.

[3] Intergovernmental Panel On Climate Change, The Physical Science Basis:
Working Group I Contribution to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change. Cambridge University Press, 2013.

[4] R. J. Hogan, A. J. Illingworth, and H. Sauvageot, “Measuring crystal size
in cirrus using 35-and 94-GHz radars,” Journal of Atmospheric and Oceanic
Technology, vol. 17, no. 1, pp. 27–37, 2000.

[5] B. H. Cole, P. Yang, B. A. Baum, J. Riedi, and L. C. Labonnote, “Ice particle
habit and surface roughness derived from PARASOL polarization measure-
ments,” Atmospheric Chemisty and Physics, vol. 14, pp. 3739–3750, 2014.

[6] W. Pfalzgraff, R. Hulscher, and S. Neshyba, “Scanning electron microscopy
and molecular dynamics of surfaces of growing and ablating hexagonal ice
crystals,” Atmospheric Chemistry and Physics, vol. 10, no. 6, pp. 2927–2935,
2010.

[7] G. Ritter, The growth and morphology of small ice crystals in a diffusion
chamber. PhD thesis, University of Hertfordshire, Hatfield, UK, 2015.

[8] Z. Ulanowski, E. Hesse, P. H. Kaye, A. J. Baran, and R. Chandrasekhar,
“Scattering of light from atmospheric ice analogues,” Journal of Quantitative
Spectroscopy and Radiative Transfer, vol. 79, pp. 1091–1102, 2003.

[9] Z. Ulanowski, E. Hesse, P. H. Kaye, and A. J. Baran, “Light scattering by
complex ice-analogue crystals,” Journal of Quantitative Spectroscopy and Ra-
diative Transfer, vol. 100, no. 1, pp. 382–392, 2006.

[10] A. Korolev and G. Isaac, “Roundness and aspect ratio of particles in ice
clouds,” Journal of the atmospheric sciences, vol. 60, no. 15, pp. 1795–1808,
2003.

142



[11] Z. Ulanowski, P. H. Kaye, E. Hirst, R. Greenaway, R. J. Cotton, E. Hesse,
and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles
from small ice detector 3 measurements,” Atmospheric Chemistry and Physics,
vol. 14, no. 3, pp. 1649–1662, 2014.

[12] E. Hesse and Z. Ulanowski, “Scattering from long prisms computed using ray
tracing combined with diffraction on facets,” Journal of Quantitative Spec-
troscopy and Radiative Transfer, vol. 79, pp. 721–732, 2003.

[13] K. Sassen, “The polarization lidar technique for cloud research: A review and
current assessment,” Bulletin of the American Meteorological Society, vol. 72,
no. 12, pp. 1848–1866, 1991.

[14] E. Hecht, Optics. Addison Wesley, 1998.

[15] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propaga-
tion, interference and diffraction of light. Cambridge University Press Archive,
2000.

[16] M. I. Mishchenko, “Gustav mie and the fundamental concept of electromag-
netic scattering by particles: a perspective,” Journal of Quantitative Spec-
troscopy and Radiative Transfer, vol. 110, no. 14, pp. 1210–1222, 2009.

[17] R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt.
Soc. Am., vol. 31, pp. 488–493, Jul 1941.

[18] D. Clarke and Grainger, Polarized Light and Optical Measurement: Interna-
tional Series of Monographs in Natural Philosophy, vol. 35. Pergamon Press,
1971.

[19] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small
particles. John Wiley & Sons, 2008.

[20] H. Van De Hulst, “On the attenuation of plane waves by obstacles of arbitrary
size and form,” Physica, vol. 15, no. 8, pp. 740–746, 1949.

[21] J. D. Jackson, Classical electrodynamics. Wiley, 1999.

[22] S. Groth, A. Baran, T. Betcke, S. Havemann, and W. Śmigaj, “The boundary
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Appendix A

Scattering Matrix Elements

The equations below relate the elements of the amplitude scattering matrix and the
elements of the phase matrix [19].

P11 =
1

2
(|S1|2 + |S2|2 + |S3|2 + |S4|2) (A.1a)

P12 =
1

2
(|S2|2 − |S1|2 + |S4|2 − |S3|2) (A.1b)

P13 = Re{S2S
∗
3 + S1S

∗
4} (A.1c)

P14 = Im{S2S
∗
3 − S1S

∗
4} (A.1d)

P21 =
1

2
(|S2|2 − |S1|2 − |S4|2 + |S3|2) (A.1e)

P22 =
1

2
(|S2|2 + |S1|2 − |S4|2 − |S3|2) (A.1f)

P23 = Re{S2S
∗
3 − S1S

∗
4} (A.1g)

P24 = Im{S2S
∗
3 + S1S

∗
4} (A.1h)

P31 = Re{S2S
∗
4 + S1S

∗
3} (A.1i)

P32 = Re{S2S
∗
4 − S1S

∗
3} (A.1j)

P33 = Re{S1S
∗
2 + S3S

∗
4} (A.1k)

P34 = Im{S2S
∗
1 + S4S

∗
3} (A.1l)

P41 = Im{S∗2S4 + S∗3S1} (A.1m)

P42 = Im{S∗2S4 − S∗3S1} (A.1n)

P43 = Im{S1S
∗
2 − S3S

∗
4} (A.1o)

P44 = Re{S1S
∗
2 − S3S

∗
4} (A.1p)
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Appendix B

Aspect Ratio and Particle Size
Parameter

B.1 Aspect Ratio

The aspect ratio of a hexagonal column is the ratio of its length L to its diameter
D,

Aspect ratio =
L

D
. (B.1)

For this report, it is kept at a value of unity. When particle size parameters are
changed, both the length and diameter are scaled accordingly.

B.2 Particle Size Parameter

Since there are many ways to describe a particle’s size a commonly used alternative
quantity known as the size parameter is used. It is defined in the following way:

x =
2πr

λ
= kr, (B.2)

where r is the characteristic size and λ is the wavelength. The choice of r can either
be the particle radius, or its length. We use the radius as the particle characteristic
size. The advantages of using the particle size parameter rather than just a pure
size value is that it allows for scaling by either size or wavelength.
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Appendix C

Complex Snell’s Law

We give here a derivation of the modification made to Snell’s law used in the beam
tracer. The derivation below is the same as that found in Principles of Optics [15],
but more detail is given here.

To begin with, we rewrite the complex refractive index as

m̂ = m(1 + iκ). (C.1)

In this form the imaginary part of the refractive index mi becomes mi = mκ.
Maintaining the assumption used throughout that the second medium is air we
wish to express the complex Snell’s law,

sinϑt =
1

m̂
sinϑi, (C.2)

in such a way that all quantities involved are real. To that end we choose the plane
of incidence to be the xz plane, with the air-ice interface being the plane z = 0. The
space dependent part of the phase in the absorbing medium is given by k̂(r · k̂t),
where k̂ is the complex wavenumber, r is the position vector of some point and k̂t

is a unit vector in the direction of transmission. Expressing k̂t in component form
we have:

ktx = sinϑt, kty = 0, ktz = cosϑt. (C.3)

Combining Equations C.3 - C.1 we have:

ktx =
1− iκ

m(1 + κ2)
sinϑi, (C.4)

ktz =

√
1− (1− κ2)

m2(1 + κ2)2
sin2 ϑi + i

2κ

m2(1 + κ2)2
sin2 ϑi. (C.5)

Next, we write ktz in amplitude-phase form

ktz = cosϑt = qeiγ q, γ ∈ R. (C.6)

To gain expressions for q and γ we square Equations C.5 and C.6 and make use of
Eulers relation (Aeiα = A(cosα + i sinα)):

(ktz)
2 = q2ei2γ = q2 cos(2γ) + i sin(2γ) (C.7)
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(ktz)
2 = 1− (1− κ2)

m2(1 + κ2)2
sin2 ϑi + i

2κ

m2(1 + κ2)2
sin2 ϑi. (C.8)

Comparing real and imaginary parts we have:

q2 cos(2γ) = 1− (1− κ2)

m2(1 + κ2)2
sin2 ϑi (C.9)

q2 sin(2γ) =
2κ

m2(1 + κ2)2
sin2 ϑi. (C.10)

These two equations, with two unknowns, can then be solved to gain expressions for
q and γ. To yield q we square both equations and add them:

q4 =

(
1− (1− κ2)

m2(1 + κ2)2
sin2 ϑi

)2

+

(
2κ

m2(1 + κ2)2
sin2 ϑi

)2

. (C.11)

Square rooting this and substituting into Equation C.9 we then get an expression
for γ:

γ =
1

2

 1− (1−κ2)
m2(1+κ2)2

sin2 ϑi√(
1− (1−κ2)

m2(1+κ2)2
sin2 ϑi

)2

+
(

2κ
m2(1+κ2)2

sin2 ϑi

)2

 . (C.12)

Returning to the space dependent part of the phase we require that k̂(r · k̂t) = const
for some point r = (x, 0, z) on the plane of constant phase. Evaluating this product
we get:

k̂(r · k̂t) =
ω

c
m(1 + iκ)(xktx + zktz)

=
ω

c
m(1 + iκ)

[
x(1− iκ)

m(1 + κ2)
sinϑi + z(q cos γ + iq sin γ)

]
=
ω

c
[x sinϑi + zmq(cos γ − κ sin γ) + imzq(κ cos γ + sin γ)]. (C.13)

The planes of real phase are given by setting the real part of Equation C.13 to a
constant value. That is:

x sinϑi + zmq(cos γ − κ sin γ) = const (C.14)
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Appendix C. Complex Snell’s Law

τ̂

k̂t

(x, z)

z = 0

zktz

xktx

ϑ′t

ϑi

k̂i

m̂

m = 1
x

z

Figure C.1: Transmission into an absorbing medium, planes of constant amplitude
(blue) are parallel to the boundary and deviate from the planes of constant phase
(black dashed lines).

Through considering Figure C.1 we can deduce that the angle between the planes
of constant phase and the surface normal is given by:

cosϑ′t =
mq(cos γ − κ sin γ)√

sin2 ϑi +m2q2(cos γ − κ sin γ)2
, (C.15)

sinϑ′t =
sinϑi√

sin2 ϑi +m2q2(cos γ − κ sin γ)2
. (C.16)

If we write the denominator in the above equations as m′ then we arrive at an
expression in a similar form to Snell’s law:

sinϑ′t =
sinϑi
m′

. (C.17)

We see that in this form the transmission angle ϑ′t, which corresponds to the direction
the transmitted ray would need to make to be perpendicular to the planes of constant
phase, depends on the material properties and the incidence angle ϑi. The beam
tracer users the above form of Snell’s law.
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Appendix D

Elements of the Diffraction
Amplitude Matrix

Here a complete derivation of Equation 5.16 from the paper by Karczewski and
Wolf [110] is given. This equation forms the elements of the diffraction amplitude
matrix which is used in the Beam Tracing model to evaluate the polarisation of the
diffracted beam. In this section the notation from the paper is used. As such, note
the following when comparing this section to the rest of the thesis:

• The vectors L̂ and M̂ are equivalent to êi‖ and êi⊥.

• The vectors l̂ and m̂ are equivalent to ês‖ and ês⊥.

• The field vector A is equivalent to E.

An incident plane electromagnetic wave is incident on an aperture. The centre of
the Aperture is at O, we introduce a rectangular coordinate axis at this point with
the direction Oz perpendicular to the screen, pointing into the region in which the
wave is propagating.

We introduce the right handed triad k̂, l̂, m̂ where k̂ is the direction of observa-
tion. we force the vector l̂ to lie in the xz plane such that

l̂ = lxx̂ + lzẑ. (D.1)

Furthermore, since we have defined unit vectors we have

k̂2 = l̂2 = m̂2 = 1. (D.2)

Also, we have the orthogonality relationships

k̂ · l̂ = m̂ · l̂ = k̂ · m̂ = 0, k̂× l̂ = m̂. (D.3)

This is different to the system used in the Beam Tracer k̂ × m̂ = l̂. As such, the l̂
vector is negative for our work. This document has corrected for this

It is convenient to express the components of l̂ & m̂ in terms of k̂. First, we
have k̂ = kxx̂ + kyŷ + kzẑ. Before doing this note that from equation D.1 we have

l̂ · l̂ = l2x + l2z = 1→ lz =
√

1− l2x. (D.4)
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Appendix D. Elements of the Diffraction Amplitude Matrix

Also note that:

k̂ · k̂ = k2
x + k2

y + k2
z = 1→ k2

x + k2
z = 1− k2

y. (D.5)

We can now get expressions for the components of l̂.

k̂ · l̂ = kxlx + kz + lz = 0

kxlx = −kzlz

Substitution into Equation D.4 yields,

kxlx = −kz
√

1− l2x
k2
xl

2
x = k2

z(1− l2x)
k2
xl

2
x + k2

z l
2
x = k2

z

l2x(k
2
x + k2

z) = k2
z .

Substituting this into Equation D.5,

l2x(1− k2
y) = k2

z

lx =
kz√

1− k2
y

.

Which can be used to get lz,

kxlx = −kzlz

lz = −kxlx
kz

lz = − kz√
1− k2

y

× kx
kz

lz = − kx√
1− k2

y

.

At this point we multiply l̂ by -1. This compensates for the formalism discussed in
the paper using k̂× l̂ = m̂, rather than k̂× m̂ = l̂ .

l̂ = − kz√
1− k2

y

x̂ +
kx√

1− k2
y

ẑ.

Next we decompose m̂, to do this we use the fact that k̂× l̂ = m̂

k̂× l̂ =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
kx ky kz

− kz√
1−k2y

0 kx√
1−k2y

∣∣∣∣∣∣∣
Evaluating the cross product we get:

k̂× l̂ =
kykx√
1− k2

y

x̂−

(
k2
x√

1− k2
y

+
k2
z√

1− k2
y

)
ŷ +

kykz√
1− k2

y

ẑ
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=
kykx√
1− k2

y

x̂− (k2
x + k2

z)√
1− k2

y

ŷ +
kykz√
1− k2

y

ẑ.

Then using equation D.5 we get:

=
kykx√
1− k2

y

x̂−
(1− k2

y)√
1− k2

y

ŷ +
kykz√
1− k2

y

ẑ

∴ m̂ =
kxky√
1− k2

y

x̂−
√

1− k2
yŷ +

kykz√
1− k2

y

ẑ

Combining all of this we have

x̂ ŷ ẑ

k̂ : kx ky kz

l̂ : − kz√
1−k2y

0 kx√
1−k2y

m̂ : kxky√
1−k2y

−
√

1− k2
y

kykz√
1−k2y

For the incident field, we introduce another right handed orthogonal system de-
fined in strictly the same manner as the diffracted field vectors. These vectors are
K̂, L̂, M̂, again we have L̂ in the xz plane. By doing this we have analogous expres-
sions for the components (that is, the lower case letters are replaced by their upper
case counterparts).

Next we find the components of the electric and magnetic amplitude vectors of
the incident field with respect to the xyz axes. Let AK , AL, AM be the components
of the electric amplitude vector in the K̂, L̂, M̂ directions. Since A is perpendicular
to the direction of propagation we have AK = 0. The component of A with respect
to the x direction is.

Ax = AKKx + ALLx + AMMx

= 0 +
Kz√

1−K2
y

AL +
KxKy√
1−K2

y

AM

Ax =
Kz√

1−K2
y

AL +
KxKy√
1−K2

y

AM

(D.6)

For Ay we have
Ay = AKKy + ALLy + AMMy

= 0 + 0 + AMMy

Ay = −
√

1−K2
yAM

(D.7)

and for Az
Az = AKKz + ALLz + AMMz

= 0− Kx√
1−K2

y

AL +
KyKz√
1−K2

y

AM

Az = − Kx√
1−K2

y

AL +
KyKz√
1−K2

y

AM

(D.8)
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Appendix D. Elements of the Diffraction Amplitude Matrix

Since B = K̂×A we have:

K̂×A =

∣∣∣∣∣∣
k̂ l̂ m̂
1 0 0
0 AL AM

∣∣∣∣∣∣ = −AM l̂ + ALm̂.

We see that BL = −AM and BM = AL. We then get the corresponding values for
B defined with respect to the xyz axes.

Bx = − Kz√
1−K2

y

AM +
KxKy√
1−K2

y

AL

By = −
√

1−K2
yAL

Bz =
Kx√

1−K2
y

AM +
KyKz√
1−K2

y

AL

(D.9)

With all this done, we can begin to find the components of the electric field with
respect to the coordinate system in the diffracted space (k̂, l̂, m̂ system). From the
so called m-theory we have:

E(m)(P ) = 2k̂× (F×A) (D.10)

Where F is given by:

F = Cn̂

∫∫
a

exp[ik0(K̂− k̂) ·R]dS,

where C = (ik0/4π)[exp(ik0r0)/r0]. Also, the scalar part of F is the classical Fraun-
hofer diffraction pattern (F in the thesis). Note that n̂ =< 0, 0, 1 >T , this means
that F only has a z component.

We now evaluate the product given in equation D.10.

F×A =

∣∣∣∣∣∣
x̂ ŷ ẑ
0 0 F
Ax Ay Az

∣∣∣∣∣∣ = −FAyx̂ + FAxŷ

and the second product

2k̂×(F×A) = 2

∣∣∣∣∣∣
x̂ ŷ ẑ
kx ky kz
−FAy FAx 0

∣∣∣∣∣∣ = 2(−kzFAxx̂−kzFAyŷ+(kxFAx+kyFAy)ẑ).

However, this has been found with respect to the xyz axes and we want it with
respect the diffraction space. Therefore, we set up the following equation

2k̂× (F×A) = αl̂ + βm̂,

where α and β are two scalars to be found. Equating the two

αl̂ + βm̂ = 2(−kzFAxx̂− kzFAyŷ + (kxFAx + kyFAy)ẑ)
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Expressing this in component form gives:

αlx + βmx = −2kzFAx. (D.11)

βmy = −2kzFAy (D.12)

αlz + βmz = 2(kxFAx + kyFAy) (D.13)

From Equation D.12 we have

β = −2Fkz
my

Ay.

Now using equation D.6 and the expression for my we get:

β = − 2Fkz

−(1− k2
y)

1
2

×
[
−(1−K2

y )
1
2

]
AM

∴ β = −2Fkz

(
1−K2

y

1− k2
y

) 1
2

AM (D.14)

Substituting Equation D.14 into Equation D.11,

αlx + βmx = −2kzFAx

αlx − 2Fkz

(
1−K2

y

1− k2
y

) 1
2

AMmx = −2kzF

(
Kz√

1−K2
y

AL +
KxKy√
1−K2

y

AM

)

α
kz

(1− k2
y)

1
2

− 2Fkxkykz

(1− k2
y)

1
2

(
1−K2

y

1− k2
y

) 1
2

AM = − 2FkzKz

(1−K2
y )

1
2

AL −
2FKxKykzAM

(1−K2
y )

1
2

αkz − 2Fkxkykz

(
1−K2

y

1− k2
y

) 1
2

AM = −2FkzKz

(
1− k2

y

1−K2
y

) 1
2

AL−

2FKxKykz

(
1− k2

y

1−K2
y

) 1
2

AM

α− 2Fkxky

(
1−K2

y

1− k2
y

) 1
2

AM = −2FKz

(
1− k2

y

1−K2
y

) 1
2

AL−

− 2FKxKy

(
1− k2

y

1−K2
y

) 1
2

AM

∴ α = 2F

{
−Kz

(
1− k2

y

1−K2
y

) 1
2

AL + AM

[
kxky

(
1−K2

y

1− k2
y

) 1
2

−KxKy

(
1− k2

y

1−K2
y

) 1
2

]}
.

(D.15)
Next we use the result from the e-theory

E(e)(P ) = 2{F×B− [k̂ · (F×B]k̂}. (D.16)
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Since the product F×B appears twice, we first do this:

F×B =

∣∣∣∣∣∣
x̂ ŷ ẑ
0 0 F
Bx By Bz

∣∣∣∣∣∣ = −FByx̂ + FBxŷ

[k̂ · (F×B)]k̂ = [−FBykx + FBxky]k̂

= (−FByk
2
x + FBxkxky)x̂ + (−FBykxky + FBxk

2
y)ŷ+

(−FBykxkz + FBxkykz)ẑ

{F×B− [k̂ · (F×B)]k̂} = 2{−FByx̂ + FBxŷ + (FByk
2
x − FBxkxky)x̂+

(FBykxky − FBxk
2
y)ŷ + (FBykxkz − FBxkykz)ẑ}.

As before, we set up a corresponding vector equation, with two unknown coefficients,
γ, δ that we seek to find. We have

2k̂× (F×A) = γ l̂ + δm̂.

Written in component form

γlx + δmx = 2F (−By +Byk
2
x −Bxkykx) (D.17)

δmy = 2F (Bx +Bykxky −Bxk
2
y) (D.18)

γlz + δmz = 2F (Bykxkz −Bxkykz), (D.19)

where once again we have made use of the fact that ly = 0. From Equation D.18,

δ =
2F

my

[
Bx(1− k2
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Using Equation D.9 for expressions of Bx, By
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(D.20)
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Next we use Equation D.19 to get,

γ =
2F

lz
(Bykxkz −Bxkykz)−

δmz

lz

=
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Again, using Equation D.9 for expressions of Bx, By:
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For ease, consider each component separately, starting with AM :
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(D.21)

It is possible to convert from the e and m theories to a more complete (e,m)-theory
through the following formulae:

E(e,m) =
1

2
[E(m) + E(e)],

H(e,m) =
1

2
[H(m) + H(e)].

(D.22)
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Appendix D. Elements of the Diffraction Amplitude Matrix

From Equations D.14 and D.15 we have the components on the electric field accord-
ing the m-theory . That is, E

(m)
l = α and E

(m)
m = β. Similarly, we have the same field

components found through the e-theory from Equations D.20 and D.21; E
(e)
l = γ

and E
(e)
m = δ. For ease, the equations are repeated below:
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Introducing some new variables to allow us to write the above in shorthand, let:

a
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and

a
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(D.24)

Using Equations D.23 and D.24 we have:

E
(m)
l = 2F (a

(m)
1 AL + b

(m)
1 AM)

E(m)
m = 2Fb

(m)
2 AM

(D.25)

E
(e)
l = 2Fa

(e)
1 AL,

E(e)
m = 2F (a

(e)
2 AL + b

(e)
2 AM).

(D.26)

Using Equations D.25 and D.26 along with equation D.22 we get,

E
(e,m)
l =

2F

2
(a

(m)
1 AL + b

(m)
1 AM + a

(e)
1 AL),
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= 2F
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Similarly we have for the component with respect to m̂
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These two results can be written as:

E
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(D.27)

where

a
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which is equation 5.16 in the paper [110].
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Appendix E

Scattering Angle Bins

The scattering angle bins used in the Beam Tracing and ADDA models are given in
Table E.1 along with the corresponding ∆θ used in normalising the data, both in
degrees. For azimuthal angles, angular bins of 1◦ were given leading to ∆φ = 1◦.
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i θ ∆θ i θ ∆θ i θ ∆θ i θ ∆θ i θ ∆θ
1 0.05 0.1 42 25 1 83 66 1 124 107 1 165 148 1
2 0.2 0.2 43 26 1 84 67 1 125 108 1 166 149 1
3 0.4 0.2 44 27 1 85 68 1 126 109 1 167 150 1
4 0.6 0.2 45 28 1 86 69 1 127 110 1 168 151 1
5 0.8 0.2 46 29 1 87 70 1 128 111 1 169 152 1
6 1 0.2 47 30 1 88 71 1 129 112 1 170 153 1
7 1.2 0.2 48 31 1 89 72 1 130 113 1 171 154 1
8 1.4 0.2 49 32 1 90 73 1 131 114 1 172 155 1
9 1.6 0.2 50 33 1 91 74 1 132 115 1 173 156 1
10 1.8 0.2 51 34 1 92 75 1 133 116 1 174 157 1
11 2 0.2 52 35 1 93 76 1 134 117 1 175 158 1
12 2.2 0.2 53 36 1 94 77 1 135 118 1 176 159 1
13 2.4 0.2 54 37 1 95 78 1 136 119 1 177 160 1
14 2.6 0.2 55 38 1 96 79 1 137 120 1 178 161 1
15 2.8 0.2 56 39 1 97 80 1 138 121 1 179 162 1
16 3 0.2 57 40 1 98 81 1 139 122 1 180 163 1
17 3.2 0.2 58 41 1 99 82 1 140 123 1 181 164 1
18 3.4 0.2 59 42 1 100 83 1 141 124 1 182 165 1
19 3.6 0.2 60 43 1 101 84 1 142 125 1 183 166 1
20 3.8 0.2 61 44 1 102 85 1 143 126 1 184 167 1
21 4 0.6 62 45 1 103 86 1 144 127 1 185 168 1
22 5 1 63 46 1 104 87 1 145 128 1 186 169 1
23 6 1 64 47 1 105 88 1 146 129 1 187 170 1
24 7 1 65 48 1 106 89 1 147 130 1 188 171 1
25 8 1 66 49 1 107 90 1 148 131 1 189 172 1
26 9 1 67 50 1 108 91 1 149 132 1 190 173 1
27 10 1 68 51 1 109 92 1 150 133 1 191 174 1
28 11 1 69 52 1 110 93 1 151 134 1 192 175 0.75
29 12 1 70 53 1 111 94 1 152 135 1 193 175.5 0.5
30 13 1 71 54 1 112 95 1 153 136 1 194 176 0.5
31 14 1 72 55 1 113 96 1 154 137 1 195 176.5 0.5
32 15 1 73 56 1 114 97 1 155 138 1 196 177 0.5
33 16 1 74 57 1 115 98 1 156 139 1 197 177.5 0.5
34 17 1 75 58 1 116 99 1 157 140 1 198 178 0.5
35 18 1 76 59 1 117 100 1 158 141 1 199 178.5 0.5
36 19 1 77 60 1 118 101 1 159 142 1 200 179 0.35
37 20 1 78 61 1 119 102 1 160 143 1 201 179.2 0.2
38 21 1 79 62 1 120 103 1 161 144 1 202 179.4 0.2
39 22 1 80 63 1 121 104 1 162 145 1 203 179.6 0.2
40 23 1 81 64 1 122 105 1 163 146 1 204 179.8 0.2
41 24 1 82 65 1 123 106 1 164 147 1 205 179.95 0.1

Table E.1: Scattering angles used in computations
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Appendix F

Example Bash Code for
Generating a Scattering Database

The following BASH code is an example of how a scattering database can be cre-
ated using the Beam Tracing model. In this example hexagonal prisms are made of
varying size, the smallest of which is x = 50. The code works by taking the node
ID and multiplying it by 10. This is then incremented from 1-9 before being added
to the base size of 50. For example, if the code was on node 2, it would lead to the
creation of hexagonal prisms of size parameter 50 + (2 × 10 + (i = 1, ..., 10)). The
corresponding radius and length of the prism are then found and saved in a text file
called “column details.txt”.

Creation of crystal files for the given size parameters:

For a given size parameter a directory is made. The script copies in Fortran code
(Makehex) and the required data files “allcolumns.points” and “column details.txt”.
The crystal file is then made by running Makehex. Other files are copied into the
directory including the file “eulerangles.txt” containing the Euler angles used for the
prism, the executable of the Beam Tracer itself and a file called “prehexagon” which
has default parameters stored in it. The input file ‘hexagon’ for the Beam Tracer is
updated with the new crystal input file name, wavelength and real and imaginary
part of the refractive index and the Beam Tracing code is executed. Once done, the
script moves back into the former directory and the loop continues.

In this way a particle scattering database can be created and used.

#=============== CREATE SCATTERING DATABASE ==============

#!/bin/sh

#PBS -e test.err

#PBS -o test.out

#PBS -q cair_l

#PBS -l walltime =02:00:00

#PBS -k oe

#PBS -j oe

#PBS -e test.err

ulimit -s unlimited export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH :/soft/intel -compilers \
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/composerxe -2011.3.174/ compiler/lib/intel64 :/soft \

/intel -compilers/composerxe -2011.3.174/ ipp /../ compiler \

/lib/intel64 :/soft/intel -compilers/composerxe -2011.3.174 \

/ipp/lib/intel64 :/soft/intel -compilers/composerxe -2011.3.174\

/compiler/lib/intel64 :/soft/intel -compilers\

/composerxe -2011.3.174/ mkl/lib/intel64 :\

/soft/intel -compilers/composerxe -2011.3.174\

/tbb/lib/intel64 //cc4 .1.0 _libc2 .4 _kernel2 .6.16.21:/ usr \

/lib64/mpich2/lib:/soft/intel -compilers\

/composerxe -2011.3.174/ mpirt/lib/intel64

executable=Beam_Tracer_ClusterRun

Makehex=hexgen

#Move to directory

cd /cair -scratch/ltaylor/ClusterRun/SizeParam

# size parameter is to be incremented in step sizes of 1

for i in ‘seq 1 9‘; do

#Take node number and multiply by 10

cur_pos1=$(( PBS_ARRAYID *10))

#Then increment

cur_pos=$(( cur_pos1+i))

# Add this to 50

size_param=$((50+ cur_pos ))

# calculate radius and length , wavelength is set as 532nm

wavenumber =11.81

#radius=$(( size_param/wavenumber )) |bc

radius=$(echo "$size_param / $wavenumber" | bc -l )

#length=$((2* radius ))

length=$(echo "$radius *2.0" | bc -l)

# make a directory for this size

DirName="size_parameter$size_param"

mkdir $DirName

#Move into the directory for this size

cd $DirName

#test_file

echo $wavenumber > test_file.txt

echo $radius >> test_file.txt

echo $length >> test_file.txt

# Copy various files

cp ../ allcolumns.points .

cp ../ $Makehex .

# Generate crystal , put column length and width in file

echo $length > column_details.txt

echo $radius >> column_details.txt

#Makehex creates the corresponding prism crystal file

./ $Makehex

# rename the crystal file

NewName="Smooth_size$size_param"

mv test.crystal $NewName.crystal
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Appendix F. Example Bash Code for Generating a Scattering Database

# copy some more files

cp ../ prehexagon .

cp ../ eulerangles.txt .

cp ../ $executable .

# Make hexagon file

# (this is the file properties such as wavelength

#, refractive index etc)

#Insert crystal geomtry name

echo $NewName.crystal > hexagon

# default wavelength and refractive index

echo 0.532 1.31 0.0 >> hexagon

# remaining details for the file

cat prehexagon >> hexagon

# run file and make log file

./ $executable &> log.txt

cd ..

done
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Appendix G

Co-authored Paper: “Effects of
Surface Roughness with Two
Scales on Light Scattering by
Hexagonal Ice Crystals Large
Compared to the Wavelength:
DDA Results”

The following paper was published in the Journal of Quantative Spectroscopy and
Radiative Transfer (JQRST) in June 2016. The paper discusses the formation of a
a rough hexagonal ice crystal geometry whose roughness parameters were derived
from analysis of the surface of a sand grain. I contributed in the structure of the
paper, especially in the earlier sections. I also helped create many of the plots shown
throughout. The Beam Tracing model was applied to smooth crystal geometries to
identify various geometric optics peaks, and the beam paths that create them. In
addition, the model was used to determine how much of the incident energy is carried
away by certain beams.
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a b s t r a c t

The effect of ice crystal surface roughness on light scattering by ice crystals which are
large compared to the wavelength was studied, in particular changes to the 2D scattering
patterns, azimuthally averaged phase functions, degree of linear polarisation patterns and
asymmetry parameters for a range of orientations and roughness scales. It was found that
roughness has an effect on light scattering by hexagonal prisms, particularly when the
roughness features are of comparable size to the wavelength. The roughness model that
has the most effect on light scattering takes account of more than one roughness scale.

Rough geometry was implemented by a Gaussian roughness method that took
roughness parameters derived from sand grains, which have been reported to be suitable
proxies for rough ice crystals. Light scattering data for these geometries was computed
using the ADDA discrete dipole approximation method.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A hospitable climate is vital to our long-term survival,
and so the study of it is very important. The conclusion
that the climate is being changed rapidly by human
activity [1] makes this study even more urgent. Future
climate behaviour can be predicted by the use of climate
models, which work well for predicting the global climate
decades into the future; however, there are necessarily
assumptions and simplifications involved that limit the
accuracy of these methods. One of the largest sources of
error within these models is the interaction of clouds

with radiation [2]. It is known that clouds have a large
effect [3–5], but their interaction with climate is complex;
their overall effect depends on the balance between
reflected, absorbed and transmitted shortwave (from the
sun) and longwave (from the surface and lower clouds)
radiation [6].

Although cirrus clouds typically allow most incident
sunlight to pass through them, their extent makes them a
major factor for the climate; cirrus coverage is typically
30% [7]; over the tropics it is typically 70% [8]. It has been
shown that smooth hexagonal prisms with size parameter
X ¼ 2πr=λ (where r is the characteristic length of the par-
ticle and λ is the wavelength of the incident light) of at
least 100 exhibit the 22° halo [9]. This minimum size is a
consequence of diffraction – if the ice crystals are too small
then diffraction effects become stronger and the halo peak
is spread out. The halo is quite rarely seen with real cirrus
clouds [9] potentially due to the constituent ice crystals in
cirrus having complex geometries [10] and/or displaying
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surface roughness [11,12]; it is the latter which is the focus
of this work. Note that it has also been reported in the
literature [13] that irregularities in the geometry of hex-
agonal ice crystals can give rise to scattering properties
indicative of surface roughness, such as the smoothing out
of the phase function. Roughness of ice crystal surfaces has
a large effect on the radiative properties – experimental
results [14] show that surface roughness causes more light
to be scattered in the backward hemisphere, lowering the
asymmetry parameter. Understanding the extent to which
roughness causes this effect is important for better char-
acterising ice crystals in clouds.

Since direct imaging of particles in clouds is not accu-
rate enough to characterise particle roughness [15], pre-
vious work on characterising ice crystal roughness has
been done in the laboratory. Examples include using ice
crystal analogues [14], studying ice growth under a scan-
ning electron microscope [16–18], ice crystal creation

using cloud chambers [19] and retrieval of roughness
parameters from observations of dust [20]. Geometric
optics has been used to simulate light scattering by par-
ticles with large-scale irregularity [21], in which deviations
from perfect crystal geometry are modelled by randomly
tilted facets. This method has also been applied to model
surface roughness. However, as tilted facets are not usable
within exact light scattering models, the simulation is not
exactly repeatable and it does not account for more com-
plex ray paths, as the tilting only occurs when the ray hits
(i.e. there are no closed surfaces). Also, geometric optics is
an invalid approximation at smaller size parameters and
for wavelength-scale surface roughness features on larger
size parameter objects. Improved roughness modelling has
already been done, using the Improved Geometric Optics
(for large size parameters) and Pseudospectral Time-
Domain (for small size parameters) methods; however
the parameters used there were not derived from physical

Fig. 1. (a) The crystal in its unfolded state. The triangles will be folded down, and then the rectangle will be folded to create the prism facets. (b) The crystal
with its triangular parent facets folded down. Subfacet stretching can be seen at the edge where the rotation has taken place. (c) The crystal with its
triangular parent facets folded down and corrected edge subfacets. (d) The crystal after one subfacet rotation is complete. (e) The crystal with all the
sections folded into position and the unconnected edges joined together. (a)–(e) All have a correlation length of 1 μm and a standard deviation of 0.3 μm.
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measurements and do not account for the possibility of
multiple roughness scales [22].

In this work, Gaussian rough ice crystal models are
created using parameters taken from analysis of sand grain
surfaces, which have been found to have a similar effect on
light scattering as ice crystal roughness [23]. Simulations
were run using these roughened crystals on the Discrete
Dipole Approximation (DDA) light scattering software
ADDA [24].

2. Gaussian rough ice crystals

A Gaussian random crystal (Fig. 1e) is constructed from
a Gaussian random surface (Fig. 1a). This is a surface for
which the height varies as a function of the lateral x and y
dimension; the height of each point is calculated as a
Fourier series given in Eq. (1). Gaussian roughness has
previously been used to describe roughness for cylinders
[25], spheres [26], spheroids [27] and surfaces [28]. The
fundamental parameters in Gaussian roughness are a
correlation length, which describes the dominant spatial
frequencies, and a standard deviation, which describes the
variation in height.

2.1. Gaussian random surface

A method was devised for creating input files describ-
ing the geometry of roughened hexagonal prisms for use
with computational light scattering models.

The implementation of this involved the application of
a Gaussian random surface creation method, adapted from
previous work by Muinonen and Saarinen [25], which uses
a 2D Fourier series technique, taking as its parameters the
correlation length (l) and standard deviation of the height
(σ) to create roughness across a previously flat surface.
These two parameters can be chosen by the user; in this
work they are determined from analysis of a sand grain.
Theoretically, the height z of a point with coordinates (x,y)
on a rough surface is given by the following:

z x; yð Þ ¼
X1

p ¼ �1

X1
q ¼ �1

zpq eiðpKxþqKyÞ ð1Þ

Where K¼π/L is the wavenumber; L is half a period in x
and y, and must be chosen to be large compared to the
correlation length. zpq are independent Gaussian random
complex numbers, with zero means and variances:

Var Re zpq
� �� �¼ 1

8
1þδp0þδq0þ5δp0δq0
� �

cpqσ2 ð2aÞ

Var Im zpq
� �� �¼ 1

8
1þδp0þδq0�3δp0δq0
� �

cpqσ2 ð2bÞ

The same zpq values are used for all x,y. The cpq are
cosine series coefficients:

cpq ¼ 2�δp0
� � ffiffiffiffi

π
2

r
l
L
e
� 1

2p
2π2 l2

L2

� �" #
2�δq0
� � ffiffiffiffi

π
2

r
l
L
e
� 1

2q
2π2 l2

L2

� �" #

ð3Þ
Practicality requires that the summations in Eq. (1)

must be performed over finite ranges. As such, the corre-
lation statistics of the surface must be taken into account
to calculate suitable limits for p and q. To do this, we
consider the correlation function representing a Gaussian
random surface:

C ζ;η
� �¼ e

� ζ2 þ η2

2l2

� �
ð4Þ

Where ζ is the difference between the x positions of two
points and η is the difference between the y positions of
the same two points. The two dimensional Fourier

Fig. 2. An SEM scan of one of the analysed sand grains from Mitribah,
Kuwait. It has a diameter of approximately 40 μm.

Fig. 3. (a) The surface before it has had the overall profile removed. (b) The surface after the overall profile has been removed. (c) Power spectrum of the
surface in (b).
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expansion of the surface correlation function is:

C ζ;η
� �¼ X1

p ¼ �0

X1
q ¼ �0

cpq cos pKζ cos qKη ð5Þ

Evaluating Eqs. (4) and (5) for ζ¼0, η¼0, we find the
limits of the summations by seeking the p and q such that
the difference between the two equations is less than
10�6, that is:

1�
Xpmax

p ¼ �p0

Xqmax

q ¼ �q0

cpqo1� 10�6 ð6Þ

Where qmax must be less than or equal to pmax. Once pmax

and qmax have been found, they can be substituted for the
infinities in Eq. (1), which can be used to create the
Gaussian random surface.

2.2. Crystal geometry creation

The process of creating a Gaussian random surface is
shown in Fig. 1. The Gaussian random hexagonal prism is
created by generating a roughened surface that can be
folded to form a crystal. This is made up of six adjacent
rectangular parent facets which form the prismatic facets
and twelve equilateral triangular parent facets – two per
prism facet – which eventually form the basal facets
(Fig. 1a). After the roughening has been completed quad-
rilateral subfacets are generated.

Each triangular parent facet is folded along the edge
between it and its adjoining prism facet, leaving them
pointing down (Fig. 1b). It can be seen that subfacet
stretching occurs where the triangular parents join the
prism facets because the edge itself has not been rotated;
to correct for this, the edge is rotated around its position in
the unroughened state by 45° (Fig. 1c). Afterwards, the
individual prism facets are rotated in turn (Fig. 1d).

Once the rotations are complete, gaps left due to the
roughening procedure are joined together. The first and
last prism facets are connected using an interpolation
method. Likewise, interpolation is used to join the trian-
gles at either end of the prism facets together to create the
basal facets (Fig. 1e).

2.3. Obtaining Gaussian random surface parameters from
sand grain microscopy

To obtain suitable parameters for roughness genera-
tion, analysis of the surface of an ice crystal in a cirrus
cloud would be ideal. However, in situ cloud imaging
methods are not able to provide the required optical
resolution, and so a suitable proxy is needed. A sensitivity
study using arbitrarily chosen roughness parameters
would be the best approach; however the computational
demands are prohibitive. An alternative technique is to
derive roughness parameters from a physical model that
shows similar levels of roughness to that of ice crystals;

Fig. 4. (a) Simulated surface obtained after removing wavenumbers larger than 0.47 μm�1 from the Fourier transform of the surface in Fig. 3b and
transforming back into spatial coordinates. (b) Power spectrum of the surface in (a).

Fig. 5. (a) Simulated surface obtained after removing wavenumbers smaller than 0.47 μm�1 from the Fourier transform of the surface in Fig. 3b and
transforming back into spatial coordinates. (b) Power spectrum of the surface in (a).
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this is the method used in this study, which takes sand
grains as the physical model. These were chosen because
statistical measures of the texture of 2D scattering patterns
taken by the SID-3 (Small Ice Detector) probe are con-
sistent between sand grains and ice crystals from cirrus
clouds [23].

Samples (e.g. Fig. 2) were prepared for detailed
microscopy work using the Park Systems XE-100 Atomic
Force Microscope (AFM) at Cardiff University. For this,

suitably sized sand grains from a surface sample collected
in Mitribah, Kuwait were selected using optical micro-
scopy and mounted on a substrate. They needed to be less
than approximately 50 μm in diameter, preferably close
to this bound to get as large a scan area as possible
(measured grains varied from 40 μm to 54 μm). Ula-
nowski et al. [23] showed that sand grains of diameter
41 μm and 47 μm display comparable scattering pattern-
derived roughness to that of naturally occurring cirrus ice

Fig. 6. The crystal orientations used in this work with the incident beam propagating out of the page, shown for a two-scale rough crystal. The stripes on
the basal facets are a result of the interpolation used in the crystal creation procedure. All beam rotations are at 30° in the x–y plane; (a) has no other
rotation, (b) is rotated 10° in the y–z plane, (c) is rotated 20° in the y–z plane and (d) is rotated 30° in the y–z plane. The coordinate system used can be seen
in Fig. 7.

Fig. 7. Left: coordinate system of the incidence direction, which propagates in the negative x direction. Middle: the first rotation of the beam, which is
around the z-axis. Right: the second rotation of the beam, which is around the x-axis.
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crystals; similarly sized grains were chosen for this work
because it is not known if this conclusion holds true at
other sizes. This allowed for an effective scanning area of
20 μm�20 μm, as the AFM probe is unable to scan areas
that excessively deviate from being perpendicular to it.

To support the AFM work, images were taken of the
topography of the sample grains using a Scanning Electron
Microscope (SEM).

Data gained from the AFM work on sand grains was
analysed to derive the correlation length and standard
deviation values. Scanning artefacts were averaged out and
the surface had a 2D polynomial subtracted from it to
remove the grain's overall long-range profile and leave just
the roughness (Fig. 3b). The 2D polynomial was calculated
by performing a least square fit of the polynomial-
generated surface to the measured surface; the order
was increased until the roughness of the points of the
resultant surface visually appeared to have no variation as
a function of distance from the centre.

The resulting surface (Fig. 3b) was analysed to obtain
correlation length and standard deviation values for the
one-scale surface (as described in the next paragraph),
before being Fourier transformed. A wavenumber cut-off
was isotropically applied to split the power spectrum into
two parts; one containing only the high spatial frequencies
and one containing only the low spatial frequencies. Both
of these were then transformed back into spatial coordi-
nates to create two new surfaces. The one containing only
low spatial frequencies was visually compared with the
surface in Fig. 3b to check how it fit the latter's large scale
features. The cut-off was varied until it satisfied this check.
The resultant surfaces are shown in Figs. 4a and 5a with
corresponding power spectra in Figs. 4b and 5b.

These surfaces were analysed to obtain values for the
standard deviation and correlation length. Correlation
lengths for both surfaces were retrieved by calculating
autocorrelation and using a rearranged form of Eq. (4).
The surface created using only large wavenumbers shows
anomalously deviating z-values at the edges (a con-
sequence of applying an isotropic cropping and therefore
disregarding the effects of the finite sample size in the
power spectrum), as can be seen in Fig. 5a. These were
cropped out before the surface was used to derive these
parameters. The same procedure was used to obtain cor-
relation length and standard deviation for one-scale
roughness by applying it to the surface containing all
spatial frequencies (Fig. 3b). The correlation lengths and
standard deviations derived from the surfaces in Fig. 3b,
Figs. 4a and 5a were substituted into Eqs. (4) and (2),
respectively. This allowed for the creation of a one-scale
and a two-scale rough surface, both similar to that shown
in Fig. 1a, to be created through using Eq. (1). By folding
the resulting surface one is able to create a rough crystal;
to obtain the two-scale rough crystal, the two rough sur-
faces are superimposed before folding. In effect, this
method allows for the creation of rough particles with
roughness properties derived from actual rough particles.

3. DDA results

Computations were carried out using the ADDA [24]
implementation of the discrete dipole approximation light
scattering method to find the light intensity and degree of
linear polarisation (DLP, defined as –P12=P11, where these
are both elements of the 4�4 scattering matrix) as a
function of scattering angle and azimuthal angle for
smooth, one-scale rough and two-scale rough hexagonal
columns with an aspect ratio of 1 at a wavelength of
532 nm and refractive index n¼1.31þ0.0i. This aspect
ratio was chosen since our main interest is in the effect of
roughness, we note that this is in line with other studies,
e.g. [13,22,29]. Four different directions of the incident
beam were considered (Fig. 6) for a fixed crystal orienta-
tion (Fig. 7).

Using this model, the incident beam originally propa-
gates along the x-axis; Fig. 7 shows the rotations per-
formed to achieve these beam orientations; all make an
angle of 30° with the x axis in the x–y plane, and make a
final rotation of 0°, 10°, 20° or 30° around the x axis in the
y–z plane projection. Four crystal size parameters were
considered; 20, 40, 60 and 100, with roughness being
scaled proportionately with size.

The number of dipoles in the DDA presentation of the
geometry was chosen so that it can present the particle
roughness with reasonable accuracy, and that the dipole
size compared to the wavelength is small enough. For the
latter requirement, the ‘rule-of-thumb’ for ADDA [24] is
used, requiring that dr10/(λ|n|), with d being the dipole
size. We selected d¼0.0406107 for the largest size, so that
dipoles-per-wavelength is 13.3, while smaller sizes are
achieved by decreasing the dipole size.

There are no analytical methods to estimate the accuracy
of our DDA results, but we can check how well they satisfy
the reciprocity relation. Following the method in Schmidt
et al. [30], we report the 90° relative reciprocity error to be
0.037% and 0.045% for the largest smooth geometry with VV-
and HH-polarizations, and 0.0017% and 0.093% for the largest
geometry with two-scale roughness and VV- or HH-
polarizations. The relative reciprocity errors for these lar-
gest geometries are very small, and are expected to stay as
small or get smaller with smaller geometries.

Table 1
Ratios of correlation length and standard deviation to the wavelength of
the incident beam for one-scale and two-scale roughness at size para-
meters: 20, 40, 60 and 100. For these sizes, the number of dipoles used
per wavelength was 66.5, 33.25, 22.17 and 13.3 respectively. The wave-
length is 532 nm.

One-scale
roughness

Two-scale roughness

1st roughness scale 2nd rough-
ness scale

X l/λ σ/λ l/λ σ/λ l/λ σ/λ Total σ/λ

20 0.31 0.06 0.68 0.08 0.08 0.04 0.12
40 0.63 0.13 1.35 0.16 0.16 0.09 0.25
60 0.94 0.19 2.03 0.24 0.24 0.13 0.37
100 1.57 0.31 3.38 0.41 0.41 0.22 0.63
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Crystals with the dust-derived standard deviation and
correlation length are created at a size parameter of 32.5.
For one-scale roughness, correlation length 0.5 mm and
standard deviation 0.1 mm are used; for two-scale rough-
ness, the Gaussian random surfaces from the large scale
mode (correlation length 1.08 mm and standard deviation
0.13 mm) and from the small scale mode (correlation
length 0.13 mm and standard deviation 0.07 mm) were
superimposed. The coordinates that make up this crystal
are then scaled linearly to derive the coordinates of crys-
tals of size parameter 20, 40, 60 and 100.

Due to the scaling, the roughness parameter to wave-
length ratios increase linearly with size parameter, as can
be seen in Table 1. As these ratio values increase, the effect
of the roughness on light scattering also increases, as can
be seen for azimuthally averaged phase functions (which
appear in Fig. 8 and which, for brevity, we will call phase
functions from here on), asymmetry parameters (Table 2),
2D scattering patterns (Figs. 11a and 12a) and degree of
linear polarisation (Figs. 11–13). The Fraunhofer criterion
[38] for effectively smooth surfaces requires σ/λ o 1/
(32cos(α)) (corresponding to a phase difference of π/8

Fig. 8. Phase functions of smooth, one-scale rough and two-scale rough crystals. Different columns in the diagram represent different beam orientations –
from left to right, the angle in the y–z plane increases from 0° to 30° in steps of 10°. Different rows represent different size parameters – from top to bottom,
the size parameter is 20, 40, 60 and 100. Schematics above the top row show the crystal orientations where the incident beam propagates out of the page.
Insets within the graphs show close-ups of the backscatter – from 175° to 180°. The same colours are used for the same roughness scales throughout the
rest of this work. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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between two rays scattered at different points on the
surface), where alpha is the angle between the incident
wave vector and the surface normal of the corresponding
smooth surface. For direct forward and backscattering the
criterion has a value 0.031, which we note is about half the
value for σ/ λ for one scale roughness at size parameter 20,
where the differences in scattering properties compared to
the smooth crystal are found to be very small already.

Scattering from the largest size parameter smooth
prism can be readily interpreted from a geometric/physical
optics perspective, identifying peaks in the phase function
as being caused by reflection/refraction events with local
spreading caused by diffraction. We use the geometric

optics terminology here as a means for interpreting the
changes of scattering properties as the crystal is scaled.
Light passing very close to the crystal is also scattered and
so geometric optics (GO) ray tracing is usually combined
with diffraction at the projected cross section (e.g. [21]),
which we will refer to as external diffraction. If external
diffraction is computed as diffraction at the incidence
facing facets (a generalisation of Babinet's principle) and
diffraction of rays or beams leaving the crystal is
considered, scattering can be resolved azimuthally
(e.g. [31,32]).

For the orientation with a rotation of 0° in the y–z
plane, peaks can be seen for the smooth crystal at

Fig. 9. 175°–180° phase functions for smooth (blue), one-scale rough (red) and two-scale rough (green) crystals averaged over all four orientations (left
column) with corresponding “normalised-to-one” diagrams (right column). From top to bottom, the rows represent size parameters of 20, 40, 60 and 100.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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scattering angles of 0° (transmission through the two
parallel basal facets – known as δ-function transmission in
GO [33] – superposed with the external diffraction peak),
51° (caused by reflection off the prism facets), 80° (due to
light being transmitted through the two prism facets and
passing through the two opposite them) and 120° (Figs. 11
and 12). This latter peak is mainly due to light reflecting off
the basal facet and light passing through the basal facet
facing the beam, internally reflecting off the other basal
facet and exiting back through the first basal facet. There is
also a peak at 151° due to at least two internal reflections
either in one plane or including a rotation of reference
plane (skew rays).

As the incident beam is rotated in the x–y plane, the
prism reflection peak is split; at a rotation of 10°, peaks can
be seen at scattering angles of 10°, 48°, 55°, 120° and 160°;
at a rotation of 20°, peaks appear at scattering angles of
20°, 38°, 58°, 120° and 170°; finally, at a rotation of 30°,
peaks are visible at scattering angles of 28°, 60°, 120° and
180° (see 4th row of Fig. 8, blue line). It is important to
note that due to crystal symmetry more complex ray
interactions can produce the same exit angle (e.g. external
reflection and refraction into the crystal followed by
internal reflection followed by refraction out of the
crystal).

While such analysis is possible for smooth crystals, it
becomes far more difficult when surface roughness is

introduced due to the large number of sub-beams created
at external incidence. Looking at the 2D scattering patterns
in Figs. 11 and 12, we see that roughness reduces the
prominent features seen for the smooth crystal into
speckle. This blurring and spreading leads to the smooth-
ing out of the peaks and troughs in the phase function
(Fig. 8). For size parameter 100 the deviation in the phase
function from the smooth case is substantial after a scat-
tering angle of 10°. This can be seen also in the 2D scat-
tering patterns by the external diffraction peak at the
centre being the only remaining recognisable feature. Note
that scattering in the direct forward direction is notably
reduced due to roughness affecting the transmission peak,
in particular for two-scale roughness (Table 3). Decreasing
the size parameter reduces the influence roughness has on
the 2D scattering patterns, with relatively little change
occurring for the smallest size parameter (see Figs. 8 and
11). It can also be seen that two-scale roughness increases
the number of speckle spots compared to one-scale, and
that these spots decrease in size with increasing size
parameter, as discussed in [34]. The scaling of roughness
with size parameter means that smaller size parameters
have roughness features which are much smaller than the
wavelength (Table 1) which in turn means that light
scattering is only weakly sensitive to it. If the roughness
had not been scaled, it is possible that there would have
existed surface roughness with size comparable to the
wavelength. In such circumstances one would expect to
observe a noticeable deviation from the smooth case in the
associated scattering patterns and phase functions.

The 2D scattering patterns in Fig. 12 correspond to
scattering in the backward hemisphere, where the effects
of surface roughness are even more pronounced. For the
largest size parameter, one can easily see that the bright
spot at 120°, due to external reflection and some higher
order events, is entirely removed as the reflection becomes
diffuse and the transmission paths altered, leaving only
speckle. Furthermore, we notice that surface roughness
has less effect on the smallest size parameter, as for for-
ward scattering.

In summary we see that deviations from the smooth case
in the 2D scattering patterns and phase functions increase
with size, and that forward scattering is less sensitive to

Fig. 10. Diagrams showing the azimuthal (blue) and scattering (red)
angles for (a) forward 2D scattering patterns (Fig. 11) and backward 2D
scattering patterns (Fig. 12). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Asymmetry parameters calculated for the crystals for which light scattering was modelled. The orientation angles refer to the rotations explained in Fig. 7.

Orientation Smooth gs One-scale g1 g1 �gsð Þ
gs

%½ � Two-scale g2 g2 �gsð Þ
gs

%½ � Smooth gs One-scale g1 g1 �gsð Þ
gs

%½ � Two-scale g2 g2 �gsð Þ
gs

%½ �

Size parameter 20 Size parameter 40
30°,0° 0.725 0.724 �0.207 0.744 2.607 0.710 0.694 �2.295 0.716 0.845
30°,10° 0.722 0.719 �0.471 0.740 2.535 0.700 0.689 �1.628 0.714 1.956
30°,20° 0.720 0.720 0.014 0.736 2.166 0.694 0.698 0.475 0.716 3.140
30°,30° 0.720 0.718 �0.292 0.734 2.043 0.698 0.705 1.046 0.723 3.583
Mean 0.722 0.720 �0.236 0.739 2.342 0.701 0.696 �0.628 0.717 2.354

Size parameter 60 Size parameter 100
30°,0° 0.711 0.722 1.434 0.702 �1.251 0.764 0.758 �0.785 0.726 �5.012
30°,10° 0.727 0.739 1.568 0.700 �3.713 0.761 0.758 �0.368 0.713 �6.280
30°,20° 0.725 0.738 1.779 0.710 �2.137 0.771 0.768 �0.389 0.724 �6.111
30°,30° 0.724 0.746 2.996 0.722 �0.373 0.766 0.767 0.170 0.729 �4.856
Mean 0.722 0.736 1.952 0.708 �1.883 0.766 0.763 �0.340 0.723 �5.577
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surface roughness than back scattering. This is because
external diffraction, which has low sensitivity to surface
roughness as it depends on the crystal's 3-dimensional con-
tour, strongly contributes to forward scattering. Furthermore,
two-scale roughness results in more speckle than one-scale
roughness because of the change in σ=λ which leads to con-
siderable phase differences in the reflected light. Note that
due to the scaling of roughness with size, σ=λ is greatest at
larger size parameters, contributing to more pronounced
speckle with increasing crystal size. However, the angular
region enclosing the direct backscattering direction needs to
be considered separately. For orientations where direct back-
scattering is strong for the smooth crystal due to retro-
reflections at or close to 180° (4th column in Fig. 8) a reduc-
tion will be observed due to surface roughness, in a similar
way as was discussed for other large angles. This effect is
strongest for large size parameters and can be imagined as
distortion of the GO ray paths. However, for orientations
where direct backscattering is weak for the smooth crystal
(first column in Fig. 8) a slight increase with surface roughness

is seen, which would be predicted by GO due to suitable ray
paths becoming available which could also contribute to
coherent backscattering. Fig. 15 shows a 2D scattering pattern
over the angular range 175 ̂ rθr180 ̂ for the phase function
for size parameter 100.

Surface roughness causes the scattered field to have a
spatially wider distribution resulting in higher contribu-
tions into the direct backscattering direction. We expect
there to be an ‘optimum range’ of roughness parameters
which allows diffraction into the backscattering direction
with sufficiently high electric field amplitude. The half-
height width of the back scattering peak is about 0.6° for
size parameter 100 and increases with decreasing crystal
size. For size parameter 100 the phase functions between
175° and 180°of the two rough crystals look very similar
for all four orientations. The absolute values for double
scale roughness (see Figs. 8 and 15) are very slightly higher
but the enhancement factor is slightly less than for single
scale roughness. The latter is thought to be due to more
spread out diffraction which results in smaller irradiance

Fig. 11. Logarithmically scaled forward hemisphere 2D scattering patterns (a) and forward hemisphere degree of linear polarisation images (b) for the
crystal shown in the inset of the 4th column of Fig. 8. Different rows represent different crystal size parameters; from top to bottom, they represent size
parameters of 20, 40, 60 and 100. Different columns represent different roughnesses; from left to right they represent the smooth, one-scale rough and
two-scale rough cases. The azimuthal (blue) and scattering (red) angles can be seen in Fig. 10(a). Since brightness increases with crystal size parameter,
grey-scale ranges for the scattering patterns in (a) were varied to best show the features at each size parameter. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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contributions to the backscattering peak. In this work the
ratio of intensities at 180° and 175° is taken as a measure
for backscattering amplification. For the roughened
prisms, values averaged over the four orientations are 1.79
for the one-scale roughness and 1.45 for the two-scale.
Note that the maximum possible enhancement factor due
to interference is two. The observed peak height is fairly
independent of particle size (see insets of Figs. 8 and 9).
These observations are similar to results for roughened
hexagonal crystals with random orientation in [29] and
[35]. The effect of surface roughness on the polarisation of
the scattered light for the cases investigated is best dis-
cussed through use of the right column of Fig. 13. These
plots show clearly that the greatest deviation from the
smooth crystal's polarisation occurs in the backscattering.
This is no surprise since back-scattering is not only more
sensitive to surface roughness, but also contains con-
tributions from near spatial skew rays [36], which also
change with surface roughness. For all but the smallest
size parameter the magnitude of DLP stays broadly the
same (away from backscattering), irrespective of rough-
ness. Table 2 and Fig. 14 show the asymmetry parameters
for several fixed orientations (which should not be

considered to be representative of a cloud of randomly
oriented ice crystals) derived from DDA, including per-
centages of deviation from the value for the smooth
crystal. Crystal symmetry means that results for beam
rotations of 0°, 10° and 20° around the x-axis apply to
rotations around the same axis of 60°, 50° and 40°,
respectively. Experimental results on ice analogues with
submicron roughness (at size parameters of 395 and 493)
[14] and modelling results using Improved Geometric
Optics [37] have shown that the asymmetry parameter
would be expected to be reduced for rough crystals com-
pared to smooth ones. Modelling results from this study
are in agreement with this, with the greatest reduction in
the asymmetry parameter being seen at the largest size
parameter with two-scale roughness, potentially indicat-
ing that the two-scale roughness is more representative of
‘real’ roughness.

4. Conclusions

2D scattering pattern, phase function, asymmetry
parameter and degree of linear polarisation results were

Fig. 12. Same as Fig. 11, but for the backward scattering hemisphere. The azimuthal (blue) and scattering (red) angles can be seen in Fig. 10(b). Notice that
the size of the speckle in the 2D scattering patterns decreases with increasing size parameter. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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computed using the ADDA code for smooth, one-scale and
two-scale Gaussian rough crystals of various orientations
and size parameters of 20, 40, 60 and 100. Fourier analysis
of data obtained through atomic force microscopy of a
grain of Kuwaiti desert sand returned correlation lengths
and standard deviations which were used to create Gaus-
sian rough surfaces. These rough surfaces were then folded
to create rough crystals. The roughness was scaled linearly
with crystal size.

2D scattering patterns for fixed orientation of known
particle geometries are an important tool for interpreting

SID-3 patterns. Our results show that roughness causes
characteristic features related to smooth crystals to blur,
fragment and disappear leaving behind speckle, when the
scaling is large enough, for both forward and backward
scattering hemispheres; the effect is strongest for
the backscattering hemisphere. The roughness-induced
deviations become more apparent as the crystal size
parameter increases, and are more apparent for two-scale
roughness than for one-scale roughness. With two-scale
roughness at a size parameter of 100 considered, mainly
the external diffraction peak with some speckle remains

Fig. 13. Left column: azimuthally averaged degree of linear polarisation for smooth (blue), one-scale rough (red) and two-scale rough (green) crystals at the
same orientation as in Figs. 11 and 12. The first and last 5 degrees can be seen in the insets. Right column: the difference between the DLP of the smooth
crystal and the one-scale rough (red) and two-scale rough (green) crystals for each of the crystal sizes considered. The deviation graphs are intended to
more clearly show where DLP for the rough crystals deviates from DLP for the smooth crystals. Different rows represent different crystal size parameters;
from top to bottom, they represent size parameters of 20, 40, 60 and 100. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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for forward scattering. However, the angular region
enclosing the direct backscattering direction needs to be
considered separately. For orientations where direct
backscattering is strong for the smooth crystal due to
retro-reflections at or close to 180° it will be reduced by
surface roughness in a similar way as discussed for other
large scattering angles. Yet, for orientations where direct
backscattering is weak for the smooth crystal it is slightly

increased by surface roughness, which is thought to be
partly due to coherent backscattering.

Phase functions show that the effects of roughness
increase as the particle is scaled towards larger sizes with
larger roughness features in the investigated range - little
change is seen (compared to the smooth crystal case) for
rough crystals scaled to a size parameter of 20. It should be
noted that ðl=λÞ and ðσ=λÞ are very small at size parameter

Table 3
Percentage changes in direct forward transmission (i.e., a scattering angle of 0°) for one-scale and two-scale rough crystals, compared to the smooth crystal.
The orientation angles refer to the rotations explained in Fig. 7.

Orientation Size parameter 20 Size parameter 40 Size parameter 60 Size parameter 100

One-scale %
change

Two-scale %
change

One-scale %
change

Two-scale %
change

One-scale %
change

Two-scale %
change

One-scale %
change

Two-scale %
change

30°,0° 2.67 2.55 1.36 1.86 4.21 3.58 �2.36 �7.68
30°,10° 2.25 4.06 4.10 6.58 1.19 �0.39 �0.50 �5.36
30°,20° 2.20 3.28 4.52 9.45 0.95 �3.17 �2.64 �11.53
30°,30° 0.94 1.11 4.27 7.93 2.30 �2.14 �2.60 �12.80
Mean 2.02 2.76 3.53 6.37 2.12 �0.64 �2.05 �9.45

Fig. 14. Graphical representation of asymmetry parameter results of smooth (blue, triangle markers), one-scale rough (red, asterisk markers) and two-scale
rough (green, circle markers) crystals. Markers show the position of the mean and bars show the standard deviation of the asymmetry parameter derived
from the four computed orientations. Note that the orientations are not independent. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 15. Two-dimensional intensity patterns with linear scale for the size parameter 100 crystal in the orientation shown in the first column of Fig. 8 for the
angular region 175 ̂ rθr180 ̂ . (a) corresponds to the smooth crystal, (b) the one-scale rough crystal and (c) the two-scale rough crystal. It can be seen that
adding roughness increases the intensity of the backscattered light because of coherent backscattering.
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20; wavelength scale roughness features may well
increase light scattering by a crystal of this size.

As the asymmetry parameter is easily affected by orien-
tation we cannot draw firm conclusions on how roughness
affects it since the orientation sample is small. Calculation of a
sufficient number of random orientations for proper orienta-
tion averaging would be extremely computationally expen-
sive. That said, we see that deviation from the smooth case is
largest when the two-scale roughness is used in conjunction
with the largest size parameter, which is qualitatively in
agreement with previous experimental results [14].

Degree of linear polarisation 2D patterns show that,
compared to results for smooth crystals, roughness dis-
rupts patterns in scattering angle and azimuth for forward
and backward scattered light. Backward scattering is
affected more than forward scattering; the same effect as
seen for intensity. These effects become more pronounced
as the crystal is scaled up in size and for two-scale
roughness.

Overall we have shown that for hexagonal prisms
Gaussian roughness with the investigated parameters
reduces features seen in the phase function compared
with the smooth counterpart and reduces the asymmetry
parameter, as long as the effective period and amplitude
of the spectrum of spatial oscillations making up the
roughness are of an approximately equal or greater size to
the wavelength – this appears to begin happening
noticeably at a size parameter of 40. Larger roughness
features cause more deviation from scattering observed for
smooth crystals, but the most effective roughness model
for ice crystals investigated here takes account of both
large features and features whose size is small compared
to the wavelength.
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