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Abstract
Novel families of short interspersed nuclear element (SINE) sequences in the human patho-

genic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into

tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families origi-

nating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site

duplications of short direct repeat sequences (4–14 bp) flanking the elements, an extended

tRNA-unrelated region and typical features of RNA polymerase III promoter sequences.

The elements ranged in size from 140–493 bp and were present in low copy number in the

genome and five out of eight were actively transcribed. One putative tRNAArg-derived

sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues

at its 3’-terminus. This element was similar in sequence to the I-4_AO element found in A. ory-

zae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus

Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also

identified and their 5’-5S rRNA-related regions show 50–65% and 60–75% similarity to

respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293

contains five copies of AfuSINE3 sequences ranging in size from 259–343 bp and two out of

five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in

the fungal genome revealed that the elements are enriched in pericentromeric and subtelo-

meric regions and inserted within gene-rich regions. We also demonstrated that some, but not

all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demon-

strated that infection of the fungus with mycoviruses had no apparent effects on SINE activity.

Introduction

Short interspersed nuclear element (SINE) sequences are short repetitive, non-coding
sequences ranging in size from 100–600 bp. SINE sequences are widely distributed in eukary-
otic genomes and have crucial roles in genome organization, genome evolution and

PLOS ONE | DOI:10.1371/journal.pone.0163215 October 13, 2016 1 / 19

a11111

OPENACCESS

Citation: Kanhayuwa L, Coutts RHA (2016) Short

Interspersed Nuclear Element (SINE) Sequences in

the Genome of the Human Pathogenic Fungus

Aspergillus fumigatus Af293. PLoS ONE 11(10):

e0163215. doi:10.1371/journal.pone.0163215

Editor: Kap-Hoon Han, Woosuk University,

REPUBLIC OF KOREA

Received: November 20, 2015

Accepted: September 6, 2016

Published: October 13, 2016

Copyright: © 2016 Kanhayuwa, Coutts. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163215&domain=pdf
http://creativecommons.org/licenses/by/4.0/


modulating gene expression. SINE sequences have been implicated as being involved in cell
survival during physiological stresses including heat shock, DNA damage, irradiation, oxida-
tive stress, low temperature, exposure to toxic agents, and infection by pathogens or protoplast
isolation [1–5]. SINE sequences are referred to as non-autonomous retrotransposons because
they usually depend on enzymes encoded by long nuclear interspersed element (LINE)
sequences for reverse transcription and retrotransposition. SINE sequences are transcribed by
RNA polymerase III (pol III). Subsequently RNA pol III-SINE transcripts are reverse tran-
scribed by reverse transcriptase (RT) and then re-integrated by endonuclease (EN) into various
sites in the genome [6]. Some SINE sequences, which possess an intact RNA pol III promoter,
are functionally active but the majority are not actively transcribed [6–8]. Large numbers of
SINE sequences in eukaryotes are derived from tRNAs while others are derived from 5S rRNAs
or 7SL RNAs [9].
To date SINE sequences have been reported in several fungi. For exampleMgSINE, isolated

from the rice blast fungusMagnaporthe grisea, is a 472 bp tRNA-derived SINE present in ca.
100 copies in the genome which possesses features similar to mammalian SINE sequences [10].
Another SINE identified inM. grisea is themgsr1 SINE which is an 800 bp element present in
ca. 40 copies in the genome [11]. Foxy is an active SINE family found in Fusarium oxysporum f.
sp. lycopersici strain Fo1007 and is present in ca. 160 copies in the genome [7]. SINE sequences
have also been identified in several other filamentous fungi including Egr1 (700 bp, ca. 50 cop-
ies; [12]) and egh1 (EGH24; 900 bp; [13]) both in Erysiphe graminis, nrs1 (500 bp, 11 copies) in
Nectria haematococca [14], SINE2-1_BG (a tRNA-derived SINE) in barley powderymildew,
Blumeria graminis [15, 16] and fifteen families of infSINEs sequences in the oomycete Phy-
tophthora infestans [17].

Aspergillus fumigatus is a saprophytic and thermotolerant filamentous fungus which pro-
duces large numbers of asexual spores. However, the production of functional sexual spores
(cleistothecia and ascospores) and its teleomorphNeosartorya fumigata have been described
[18]. Aspergillus fumigatus is an opportunistic, airborne fungal pathogen that causes pulmo-
nary invasive aspergillosis and is responsible for 90% of fungal infections in immunocompro-
mised patients [19]. A non-LTR (long terminal repeat) retrotransposon I-1_AF, which belongs
to the Tad clade of LINE-like element (LLEs), has been found in several copies in the A. fumi-
gatus Af293 genome. These elements encode a DNA/RNA-binding protein, EN, RT and RNase
H and insert randomly in the genome or precisely at the same target site in Afut2_AF [20, 21].
Recently a full description of the LLEs in several clinical and environmental isolates of A. fumi-
gatus has been presented [22]. However, the existence of SINE sequences in the A. fumigatus
genome is as yet not recorded.
The aim of this study was to investigate the occurrence of SINE sequences in the genome of

the prototype A. fumigatus Af293 isolate. The abundance and distribution of SINE sequences
were identified by interrogating the genomic DNA sequence for the occurrence of well-charac-
terized signature motif sequences using computational analyses prior to mapping on the fun-
gus genome and assessing potential transcription activity and silencing. Additionally the
insertion patterns and copy numbers of the elements were compared in isogenic virus-free and
virus-infectedA. fumigatus isolates.

Materials and Methods

Computational Identification of SINE Sequences in the A. fumigatus

Af293 Genome

Sequence dataset. The A. fumigatus Af293 reference genome sequence was accessed
through the NCBI database and was also retrieved from several other online sources including
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the CentralAspergillus Resource (CADRE; [23]), the BROAD INSTITUTEAspergillus compar-
ative database and the AspergillusGenomeDatabase (AspGD; [24]).
Search strategy and computational analyses. CENSOR software, developed by the

Genetic Information Research Institute (GIRI; [25]) was used to interrogate the A. fumigatus
Af293 genome sequences and screen for putative SINE sequences against a reference collection
of repeats. Homologous portions of the query and reference sequences were masked and
reports classifying all of the repeats that were discovered were generated. The RepeatMasker
server (version: open-4.0) [26], which screens DNA sequences for interspersed repeats, was
also used to screen the Af293 genome sequences against reference sequences in the Repbase
libraries [27]. The reported sequences, which were classified as non-long terminal repeats
(non-LTRs), SINE sequences, SINE2/tRNA and SINE3/5S were selected as SINE candidates
and subjected to further analysis.
To identify tRNA-related SINE sequences, genomic sequences were examined using the

tRNAScan-SE 1.21 program [28] to search for the presence of basic tRNA features such as RNA
pol III promoter sequences and tRNA cloverleaf secondary structures using relaxed parameters
and the EuFindtRNA algorithm. Subsequently selected sequences predicted from the program
were resubmitted to tRNAScan-SE using the default settings. Sequences yielding positive reads
were discarded as they were considered to be true tRNAs while the remaining sequences yielding
negative reads and showed no support for a 5’-tRNA-related region, were considered for further
analyses. The tRNA cloverleaf secondary structures and tRNA origin of the remaining sequences
were also identified. In addition, the Genomic tRNA Database (GtRNAdb) was alignedwith all
theA. fumigatus tRNA sequences to separate tRNAs from candidate SINE sequences.
All predicted SINE sequences retrieved from Censor, RepeatMasker and tRNAScan-SE were

submitted to BLAST analysis using accessible database sequences from the NCBI and A. fumi-
gatus GenomeMap Viewer to expand the boundaries of the masked sequences to 1,000 bp
upstream and 2,000 bp downstream of both termini. Sequences with predicted tRNA-related
structures were manually inspected for the presence of degenerate RNA pol III promoter A
and B box sequences, extended 3’ tRNA-unrelated sequences upstream of an oligothymidine
tract and also target site duplication (TSD) sequences flanking the SINE sequences. An addi-
tional check for the presence of the RNA pol III promoter sequence was performed by multiple
sequence alignment of the predicted SINE sequences with the A. fumigatus Af293 tRNA gene
sequences obtained from GtRNAdb. To identify 5S rRNA-related SINE sequences, sequences
classified as SINE3/5S using Censor and RepeatMasker were alignedwith the A. fumigatus 5S
rRNAs and searched for the RNA pol III promoter (A, IE and C boxes) sequence. The process
framework used for computational analysis of AfuSINEs is shown in S1 Fig.
Characterization, classification, distribution and location of SINE sequences was achieved

by comparative analysis of the sequences. All predictedAfuSINE sequences were compared
against the complete genome sequence of Af293 available on AspGD and CADRE by BLAST
to search for locations of each element on the chromosomes. Multiple sequence alignments
were performed using the Clustal Omega package [29] and MAFFTmultiple sequence align-
ment software version 7 [30] and manual edition of the sequences. Phylogenetic trees were
constructed using the neighbor-joining (NJ) method on MAFFT alignments [30].

Fungal Strains and Culture Conditions

A. fumigatus Af293, which is a clinical strain, was used throughout the study. Af293 is naturally
infected with a dsRNA mycovirus, Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1), and
NK125 is an isogenic, cured virus-free strain of the fungus [31]. A 20 μl suspension of fungal
conidia was inoculated on Aspergillus Complete Media (ACM; [32]) agar plates and incubated
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for 4 days at 7C. Ampicillin (100 μg/ml) was added to the growth mediumwhen required. For
liquid culture cultivation, a 10 ml suspension of ca. 5x108 conidia/ml was inoculated into 300
ml ACM broth and incubated at 37°C for 7 days on a rotary shaker at 150 rpm.

Nucleic Acid Preparations

A. fumigatus genomic DNA was prepared using the DNeasy1 Plant Mini Kit (QIAGEN, UK)
using the mini protocol as described by the manufacturer. Total RNA extracts were prepared
using the RNeasy1 Plant Mini Kit (QIAGEN, UK) with the small scale protocol or Trizol as
describedby the manufacturers. DNA contaminants were removed from total RNA prepara-
tions using TURBOTM DNase (Ambion, UK) prior to cDNA synthesis.

PCR and RT-PCR Amplification of A. fumigatus SINE Sequences

Sequence specific primers were designed based on the sequences of candidate SINE sequences
to cover the promoter regions, yielding amplicons ca. 100–150 bp in size (S1 Table). PCR
amplification was performed under high stringency PCR conditions described as follows; 94°C,
5 min; 35 cycles of 94°C 30 sec, 55 or 60°C 30 sec and 72°C 30 sec; followed by final extension
at 72°C for 5 min. RT-PCR amplification of A. fumigatus Af293 total RNA was performed
using the same PCR cycling procedure and primer sets. Complementary DNA was synthesised
using 10 μl of total RNA (ca. 50 ng/μl) using either random hexamers or sequence specific
primers and Superscript III reverse transcriptase (Invitrogen, UK) following the manufactur-
er’s protocol. PCR amplicons were separated by gel electrophoresis and visualized by SYBR
safe DNA staining.SouthernBlot Hybridization of A. fumigatus SINE SequenceAmplicons.
Aliquots of 10 μg of genomic DNA were individually digested overnight with 1 μl ofHindIII

(New England Biolabs) at 37°C. Genomic DNA was also used as a DNA template for probe
preparation and was labelled using the PCR DIG probe synthesis kit (Roche, UK) according to
the manufacturer’s instructions. Restriction fragments of genomic DNA were separated by
electrophoresis on 1% w/v agarose gels containing SYBR safe DNA stain in 1XTAE. Gels were
denatured in 0.25 N HCl and 0.5MNaOH + 1.5 M NaCl, followed by neutralization in 0.5 M
Tris-HCl + 1.5 M NaCl. The DNA was then transferred onto a positively charged Amersham
HybondTM-N membrane (GE healthcare) and nucleic acids were subsequently fixed by UV-
cross linking prior to probing.

Detection of Small RNA Molecules Homologous to A. fumigatus SINE

Sequences

Small, low molecular weight (LMW) RNAs were isolated using the procedure of Lu et al. [33]
with some minor modifications. Total RNA, high molecular weight RNA (HMWRNA) and
LMWRNA fractions were analyzed on 1.5% agarose and 15% (w/v) polyacrylamideTris-
borate-EDTA-urea gels (Bio-Rad, Sweden) (Fig 1A–1C). For the detection of homologous
SINE small RNAs, 100 μg of the small RNA fractionwas separated on polyacrylamide gels. For
northern blot hybridization of small RNAs, nucleic acids were transferred to nylon membranes
and fixed using 1-ethyl-3-(3-dimethylaminopropryl carbodiimide;EDC)-cross linking [34].
Prior to hybridization, probes were cleaved to an average length of 50 bp by alkaline hydrolysis
as described by Kreuze et al. [35].

Secondary Structure Prediction of A. fumigatus SINE Transcripts

The secondary structures of SINEs were predicted using Mfold [36] using default settings with
a folding temperature set to 37°C, which is the optimal growth temperature of A. fumigatus
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Af293. RNA structures showing the lowest free energies were accepted as the most likely struc-
tures for the AfuSINE sequences.

Results and Discussion

Search Strategy and Identification of AfuSINE Sequences by

Computational Analyses

Here we report for the first time the presence and distribution of SINE sequences in the A.
fumigatus Af293 genome by exploiting the availability of its complete genome sequence to
investigate their incidence. In this study, a computational search strategy was developed to pre-
dict the occurrence of A. fumigatus SINE sequences (designated as AfuSINE sequences) using
several bioinformatic software packages. The Af293 genomic sequences were initially screened
for the interspersed repeat consensus of SINE sequences using Censor and RepeatMasker
against the available sequences from the reference collection of repeats in the Repbase database.
The tRNAscan-SE search serverwas also used to screen for tRNA-related SINEs using relaxed
parameters. In total 17,269 candidate sequences were retrieved. These include simple repeats,
small RNAs, tRNAs, 5S rRNAs, 7SL RNAs, tRNA- and 5S rRNA-related sequences, sequences
homologous to SINE and LINE sequences as well as other transposons. However, since these
programs identify exact sequencematches, any data retrieved required further screening with
the tRNAscan-SE program using default parameters to eliminate true tRNA sequences. The 5S
rRNA sequences were eliminated by BLAST analysis against Af293 5S rRNAs on the NCBI
database. Subsequently, the sequences that do not exhibit SINE characteristics were discarded,

Fig 1. Detection of small RNA molecules homologous to AfuSINE sequences. Total RNAs isolated with

Trizol were electrophoresed on 1.5% agarose gels (a). After separation by PEG precipitation, high molecular

weight RNAs (HMW RNAs) and low molecular weight RNAs (LMW RNAs) were electrophoresed on 1.5% agarose

gels (b). The LMW fractions from 400 ng/μl of total RNA were resolved on 15% (w/v) polyacrylamide Tris-borate-

EDTA-urea gels and stained with SYBR Gold Nucleic Acid Gel Stain (c). Northern blot hybridization of small RNAs

homologous to AfuSINE sequences in A. fumigatus Af293 (d). LMW RNA fractions were isolated using TRIzol and

5 μg RNA sample was loaded into each well for northern blot analysis. Only small RNAs (<40 nt; arrowed) from the

antisense strand were detected.

doi:10.1371/journal.pone.0163215.g001
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leaving 145 candidate sequences nominated SINE2 sequences (tRNA-derived SINE sequences)
and SINE3 sequences (5S rRNA-derived SINE sequences) for further investigations including
the extension of SINE boundaries, BLAST analysis, and inspection of 5S rRNA-related SINE
and tRNA-related SINE features.
Following this analysis, thirteen candidate SINE sequences were identifiedwhich were

divided into AfuSINE2 and AfuSINE3 types. Most of these sequences possessed features in
common with generic SINE sequences but some lacked TSD and intact internal RNA pol III
sequences. However some did contain masked sequences similar to SINE sequences from a
broad spectrumof reference organisms includingA. oryzae,A. nidulans, B. graminis, Crypto-
coccus neoformans, arabidopsis, hedgehogs,mosquitoes and humans. The organization and
structure of representative AfuSINE sequences are shown in Table 1 and S2–S5 Figs.
5S rRNA-related SINE sequences (AfuSINE3). Families of five 5S rRNA-derived SINE-

like sequences (AfuSINE3) were discovered which are homologous to the 5’-terminal region of
fungal 5S rRNA sequences. The elements are present in five related copies following in silico
analysis (nominated AfuSINE3-1a,AfuSINE3-3a,AfuSINE3-3c,AfuSINE3-4a and AfuSINE3-5c
on chromosomes 1, 3, 4 and 5, respectively) with an average length of 259–343 bp. All five Afu-
SINE3 sequences are related to SINE3-1_OA, which is a 5S rRNA-derived A. oryzae SINE
(Table 1 and S4 Fig).
Pairwise alignment of the AfuSINE3 sequences with 5S rRNAs revealed that the 5’-terminal

head regions (positions 1 to 64) are well-preservedand are very similar to the sequences of A.
fumigatus 5S rRNA (S4 Fig). Significant similarity was also observedwhen the 5’-terminal head
together with portions of the body and tail of theAfuSINE3 sequenceswere alignedwithA. oryzae
SINE3-1_AO (S4 Fig) which in turn is 50–65% homologous and 60–75%% similar to 5S rRNA
gene sequences.With at least 60% similarity to the 5S rRNA species and a 60-nucleotide overlap,
these observations suggests that allAfuSINE3 sequences are indeed derived from 5S rRNA.
A comparison of the fiveAfuSINE3 sequences (positions 1 to 119) revealed similar conser-

vation at the 5’-terminal head sequences when some parts of the body regions were included (S6
Fig). However excluding the upstream sequence resulted in significant similarity only being
found at the beginning (24 nt) of the 3’-terminal divergent body sequence of the fiveAfuSINE3
candidates (S7 Fig). Regions of three type I RNA pol III domains (A, IE and C boxes) were poorly
conserved in AfuSINE3 as compared to typical 5S rRNAs (Fig 2 and S8 Fig). Additionally, the
AfuSINE3 sequences lack a termination signal for RNA pol III transcription (GCTTTTCG)apart
fromAfuSINE3-1a. This feature may result in continuous transcription activity extending the 5S
rRNA-related region towards the 3’ termini of theAfuSINE3 sequences.
Phylogenetic analysis showed that AfuSINE3-1a and AfuSINE3-3c cluster in the same clade

as SINE3-1_OA (S9 Fig). Two main considerations used to define an AfuSINE family in this
study are 1) their same common origin and 2) their same sequencemodule/structure.However,
the terminal (tail) sequences of some familial SINE sequenceswere variable and thus these were
omitted from theAfuSINE phylogram. From these criteria and the alignment of theAfuSINE3
candidate sequences were considered to have a common origin since the alignment showed simi-
larities in the 5’-terminal head and some parts of the body regions. Phylogenetic analysis showed
similar results, revealing all five predictedAfuSINE3 sequences grouped into two closely related,
distinct lineages. Thus, it can be inferred that AfuSINE3 sequences originate from the same gene.
tRNA-related SINE sequences (AfuSINE2). Eight tRNA-derived SINE-like sequences

(AfuSINE2) originating from different tRNAs were identifiedwhich ranged in size from 140–
493 bp. In order to identify internal RNA pol III promoter sequences (A and B boxes) with a
10–11 bp consensus sequence, the 5’-terminal regions of the AfuSINE2 sequences were aligned
with A. fumigatus Af293 tRNA sequences. However, both the AfuSINE2 RNA pol III A and B
box promoter sequences were degenerate with the former more degenerate than the latter.

SINEs in Aspergillus fumigatus Genome
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Consensus sequences of the RNA pol III promoter A and B boxes of tRNA-derived AfuSINE
sequences are shown in Fig 3. The 4–14 bp long TSD repeat sequences (a characteristic feature
of SINE genomic insertions) were partially degraded in some AfuSINE2 sequences with 1 or 2

Fig 2. Consensus sequences of A, IE and C box promoters of type I RNA pol III in 5S rRNA-derived

AfuSINE sequences (AfuSINE3s).

doi:10.1371/journal.pone.0163215.g002

Fig 3. Consensus A and B box promoter sequences of RNA pol III in tRNA-derived AfuSINE sequences

(AfuSINE2s).

doi:10.1371/journal.pone.0163215.g003
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residues missing e.g. in AfuSINE2-3c and AfuSINE2-5d. This degradation phenomenon might
reflect the age of the SINE and concern nucleotide substitution over many generations, over an
extended period of time [17]. As a consequence it’s possible that AfuSINE2-1amight have
emergedmore recently that the other AfuSINE2 sequences since it possessed intact direct
repeats. It has been documented that SINE insertion into the genome usually produces short
5–8 bp TSDs at the 5’- and 3’-termini of the sequence. However if SINE insertion is very
ancient, TSD identificationmight be difficult due to mutations in the sequence. Also a TC
motif located immediately upstream of the A/T-rich tail and an additional B box (B’ box)
downstream of the RNA pol III promoter were absent frommost of the AfuSINE2 sequences
except AfuSINE2-1awhich contained an additional B’ box GGTTCGATTCC sequences 20 bp
downstream of the B box. Interestingly this feature has been reported in some tRNA-related
VES SINEs, P.k. SINEs in bats and SINE B1 in rodents [37, 38, 39].
Additionally, none of the 5’-terminal regions of the AfuSINE2 sequences could be folded

into tRNA-like cloverleaf structures, which is in contrast to theMgSINE and theMIR SINE
sequences [10, 40].
No significant similarity was observed among the predictedAfuSINE2 sequences and they

appear to originate from different tRNA-related sequences (S10 Fig). The ancestral tRNA of
each AfuSINE2was identified using the tRNAscan-SE and multiple sequence alignment of the
predicted tRNA sequences. The results indicated that the five AfuSINE2 sequences are similar
in sequence to the 5’-tRNA-related regions of respectively tRNAAla, tRNAArg, tRNAGly, tRNA-
Met, tRNAThrand tRNASer. Phylogenetic analysis revealed that the predictedAfuSINE2
sequences do not group into distinct lineages as the bootstrap supports are too low to statisti-
cally support any of the nodes (S11 Fig).

Similarity of AfuSINE Sequences to Retrotransposons

Interestingly the AfuSINE2-1a 3’-terminal sequence was similar to that of LINE, I-
4_AO#LINE/Tad1, identified in A. oryzae [20, 21] following CENSOR analysis (Fig 4). Subse-
quently, the element was alignedmanually with retrotransposons found in the A. fumigatus
Af293 genome such as a retrotransposon-like element (Afut1-LTR; [41]) and a non-LTR retro-
transposon (I-1_AF; [20, 21]). The analysis revealed that the 3’-terminus of the AfuSINE2-1a at
positions 210–335 appears similar to the 3’-untranslated region (UTR) of the I-1_AF LINE-like
sequence which terminates the RT gene in ORF2. It has been proposed that sequence and
structural similarity of the 3’-terminal region of tRNA-derived SINE sequence with a corre-
sponding LINE sequence is crucial for its retrotransposition [42]. Since AfuSINEs are non-
autonomous retrotransposons with no gene coding capability, the elements may need to
exploit the action of other retrotransposons (such as LINEs) for their amplification and inser-
tion into the genome. Thus, the presence and transcription activity of retrotransposons such as
I-1_AF LINE sequences could signify the occurrence and activity of AfuSINE2-1a. Additionally,
it was noted that the 3’-terminus of AfuSINE2-1a terminates with a series of short repetitive
ACT trinucleotide sequences.

Distribution and Location of AfuSINE Sequences

The distribution and location of AfuSINE sequences on the eight chromosomes of the A. fumi-
gatus Af293 genome were investigated by a comparative analysis of the sequences. Computa-
tional analyses revealed that AfuSINE sequences are not abundant in the fungal genome (Fig
5). AfuSINE sequences are dispersed on chromosomes 1, 3, 4, 5 and 7, and are more abundant
on chromosomes 3 and 4. The elements are randomly dispersed in pericentromeric and subte-
lomeric regions on the chromosomes and insertedwithin gene-rich regions, normally in
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intergenic regions or close to coding regions similar to LLEs [22]. These observations suggest
that the insertion of SINE sequences and LLE sequences in A. fumigatus chromosomes may be
linked.
Interestingly, AfuSINE2_4c on chromosome 4 appears to be located very close to a LINE-

like retrotransposable sequence (LLE#4_3.0); a subclass previously identified in the A. fumiga-
tus Af293 genome [22]. The LLE#4_3.0 is a non-LTR retrotransposon from I clade which is
flanked by 13 bp TSDs and contains two overlapping ORFs (open reading frames) ORF1 and
ORF2. ORF1 encodes a 413-aa DNA/RNA-binding protein (pos. 175–1669) and ORF2
encodes a 1273-aa polyprotein (pos. 1666–5487) encoding an EN and a RT. The insertion of
AfuSINE2_4c next to the RT of LLE#4_3.0 LINE-like element (Fig 6) suggests that activity of
AfuSINE2_4c possibly relies on this LINE. However, AfuSINE2_4c is transcriptionally inactive
possibly because of inactivation of the LLE#4_3.0 RT domain by mutation. Since most of the
LLE sequences identified in the genome of A. fumigatus Af293 are not intact, this could poten-
tially contribute to loss of transcription and retrotransposition activities for some AfuSINE
sequences.

Transcription Activity of AfuSINE Sequences in the Genome by RT-PCR

Initially PCR amplification was performed using genomic DNA as a template under high strin-
gency PCR conditions. The results of these experiments showed the expected amplicons for the
thirteen candidate AfuSINE sequences (S12 Fig, lane 1 throughout) proving the existence of the
sequences on the A. fumigatus Af293 genome and confirming that the genomic information in
the database is correct. Additionally, a ladder of DNA amplicons of increasing size was not
found following PCR amplification indicating that AfuSINE sequences are not present as an
array on the genome.
Subsequently, RT-PCR amplification was performed using total RNA with the same sets of

primers to investigate the production of AfuSINE transcripts. The results illustrated that seven
out of thirteenAfuSINEs are transcriptionally active (viz.AfuSINE3-1a,AfuSINE3-3c,Afu-
SINE2-1a,AfuSINE2-3a,AfuSINE2-3c,AfuSINE2-4a and AfuSINE2-5d; S12 Fig, lane 2
throughout). No amplicons were observed from the cDNA (-RT) samples, indicating that

Fig 4. Structure of the AfuSINE2-1a tRNA-derived SINE. Structure of the AfuSINE2-1a tRNA-derived SINE

found in A. fumigatus Af293 (a) and the alignment of its 3’-terminus which is related to I-4_AO LINE (b).

doi:10.1371/journal.pone.0163215.g004
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contaminating genomic DNA was absent from the reactionmixtures for cDNA synthesis (S12
Fig, lane 3 throughout). All RT-PCR amplicons were sequenced to confirm their identity.
These results illustrated that the levels of transcription of the AfuSINEs are very low as com-
pared to the β-tubulin gene which is a constitutively expressed house-keeping gene. Addition-
ally RT-PCR analysis clearly demonstrated that not all of the AfuSINE sequences in the A.
fumigatus Af293 genome are transcribed.

Estimation of AfuSINE Copy Number in the A. fumigatus Af293 Genome

Only actively transcribed SINE sequences viz.AfuSINE3-1a,AfuSINE3-3c,AfuSINE2-1a,Afu-
SINE2-3a,AfuSINE2-3c,AfuSINE2-4a and AfuSINE2-5dwere investigated in this study. The
copy numbers and transposition of the sevenAfuSINE sequences above per genome of two

Fig 5. Mapping of SINE-like sequences of the A. fumigatus Af293 genome. Mapping of SINE-like sequences

on eight chromosomes of the A. fumigatus Af293 genome including previously described LINE-like sequences

(LLEs; [22]). Chromosome numbers are shown on the left and the size of each chromosome is shown on the right.

doi:10.1371/journal.pone.0163215.g005

SINEs in Aspergillus fumigatus Genome

PLOS ONE | DOI:10.1371/journal.pone.0163215 October 13, 2016 12 / 19



isogenicA. fumigatus Af293 lines, one infected with AfuTmV-1 and one virus-free (NK125;
[31]) were examined by Southern blot hybridization.A. fumigatus Af293 genomic DNA was
digested withHindIII which does not restrict the AfuSINE sequences, thus it can be assumed
that any single hybridizing band observed corresponds to one copy of each AfuSINE. Southern
analysis of the AfuSINE2 sequences showed strong, single hybridization signals for the Afu-
SINE2-3a,AfuSINE2-4a and AfuSINE2-5d sequences indicating that these elements are present
as single copies in the genome (Fig 7). Four or more strong hybridization signals were detected
with AfuSINE2-1a and AfuSINE2-3c, indicating that at least four copies of these elements are
present in the genome. At least five strong hybridization signals were detected for bothAfu-
SINE3-1a and AfuSINE3-3c, indicating several copies of each AfuSINE3 sequence dispersed in
the genome. The A. fumigatus fks gene, which is present as a single copy, was used as a control
in these experiments.
These results indicate that SINE sequences in A. fumigatus are present in very low copy

number. For instance AfuSINE3 sequences are present as ca. five copies which is in contrast to
other eukaryotic SINE families where ca. 104 copies of SINE3 types are present in the zebra fish
genome [8] and inM. grisea theMg-SINEwhere the copy number was estimated to be ca. 100
[10]. Because of the known and significant divergence in the Af293 SINE sequences and poten-
tial insertions and/or deletions within them it is likely that the copy numbers estimated here
are underestimates and represent the minimum copy numbers for each element. It is also likely
that A. fumigatus SINE RNA transcripts are silenced since Aspergilli encode all of the enzymes
required for the RNA silencing process and are active in vivo [43]. As the number of repetitive
elements in A. fumigatus are limited, this could contribute to the small size of the A. fumigatus
genome (29.4 Megabases) as compared to for instance the oomycete P. infestans genome which
consists of a large proportion of TEs and repeats contributing to a genome size of 240 Mega-
bases [17]. Thus, SINE abundance is clearly diverse and variable between different fungal and
oomycete species. Low copy number non-LTR retrotransposons with degenerate sequences are
likely to be lost from the genome as a result of genetic drift and natural selection [44].
Infection of A. fumigatus with mycoviruses causes some effects on retrotransposon activity.

For instance in A. fumigatus strain A56, it has been demonstrated recently that chrysovirus
infection stimulates LLEmobilization [22]. However infection of A. fumigatus strain Af293
with AfuTmV-1 had no obvious effects on AfuSINE transposition or copy number since both
virus-free and virus-infected isogenic lines showed identical hybridization patterns (Fig 7).

Detection of Small RNA Molecules Homologous to AfuSINE Sequences

To confirmAfuSINE regulation and gene silencing in A. fumigatus Af293, small RNAs homol-
ogous to AfuSINE sequences were identified following northern blot hybridization. DIG-

Fig 6. Structure of LINE-like element. Structure of LINE-like element (LLE#4_3.0; [22]) on A. fumigatus Af293

chromosome 4 showing insertion of the AfuSINE2_4c sequence next to the LLE RT.

doi:10.1371/journal.pone.0163215.g006
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labeled probes for AfuSINE sequences were in vitro transcribed in both sense and antisense ori-
entation to detect strand-specific small RNAs. In this study, only four representative actively
transcribedAfuSINEs (AfuSINE3-1a,AfuSINE2-1a,AfuSINE2-3a and AfuSINE2-4a) were
selected for detection of small RNAs.
Autoradiographic analysis showed weak hybridization signals of a band corresponding to

<40 nt for the antisense (-) strands of AfuSINE3-1a and AfuSINE2-1a (Fig 1D) while small
RNAs homologous to AfuSINE2-3a and AfuSINE2-4awere not detected. Constitutively
expressed control β-tubulin probes were also used to detect small RNAs homologous to the β-
tubulin gene. No hybridization signals were found in the controls, suggesting that hybridiza-
tion of small RNAs with AfuSINE probes was not attributable to mRNA degradation.
The presence of small RNAs (<40 nt) homologous to AfuSINE3-1a and AfuSINE2-1a

sequences suggests that these elements may be targeted for degradation and silencing in the
fungus. However, small RNAs were not detectedwith AfuSINE2-3a and AfuSINE2-4a suggest-
ing that not all AfuSINEs are targeted by host RNA silencing. In addition, hybridization signals
observed from the northern blot analysis are very weak possibly attributable to low transcrip-
tion activity of the elements resulting in low abundance of siRNAs.
In summary, our study has demonstrated the first computational search for SINE sequences

in theA. fumigatus Af293 genomic DNA. Distribution, copy number, transcription activity and
silencing of these elements have been described.Further research is required to investigate SINE

Fig 7. Southern blot hybridization of AfuSINE sequences in the genome of A. fumigatus Af293. Southern

blot hybridization of AfuSINE sequences in the genome of A. fumigatus Af293 (virus-infected strain; indicated by

plus sign) and A. fumigatus NK125 (virus-free strain; indicated by minus sign). HindIII-digested DNA of each strain

was separated in 1% agarose gels in 1xTAE, denatured and blotted onto nylon membrane. Hyperladder 1 (M; 10

kbp; Bioline) was used as marker.

doi:10.1371/journal.pone.0163215.g007
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distribution among other clinical and environmentalA. fumigatus isolates and to assess the effects
of AfuSINE sequences on adaptability and pathogenicity. Potentially activeAfuSINE sequences,
for example AfuSINE2-1a, might be further developed as a reverse genetic tool. The fact that this
element was actively transcribed, possessed intact 14 bp TSDs, a 5’-tRNA-related region corre-
sponding to tRNAArg as reported for most active tRNA-derived SINE [38, 45, 46], sequence simi-
larity to the I-1_AF LINE-like element and was a target for host silencing illustrates its potential.

Supporting Information

S1 Fig. Processing frameworkused for computational analysis of AfuSINEs.
(TIF)

S2 Fig. Structure of the representativeAfuSINE3 sequences.Predicted secondary structure
was performed usingMfold program (http://mfold.rna.albany.edu/?q=mfold) (Zuker, 2003).
(TIF)

S3 Fig. Structure of the representativeAfuSINE2 sequences.Predicted secondary structure
was performed usingMfold program (http://mfold.rna.albany.edu/?q=mfold) (Zuker, 2003).
(TIF)

S4 Fig. Sequence alignment of individualAfuSINE3with SINE3-1_AO from A. oryzae.The
alignment which was performed using the Clustal Omega program available at the EMBL-EBI
website.
(TIF)

S5 Fig. Sequence alignment of 5’ tRNA-related region of individualAfuSINE2with tRNA.
The alignment which was performed using the Clustal Omega program available at the
EMBL-EBI website.
(TIF)

S6 Fig. Multiple sequence alignment of theAfuSINE3 sequences.The 5S rRNA-related and
part of the body regions of each sequence were selected for the alignment which was performed
using the Clustal Omega program available at the EMBL-EBI website.
(TIF)

S7 Fig. Multiple sequence alignment of AfuSINE3 sequences.The 5S rRNA-unrelated
regions of each sequence were selected for the alignment which was performed using the Clus-
tal Omega program available at the EMBL-EBI website.
(TIF)

S8 Fig. Multiple sequence alignment of theAfuSINE3 sequences.The A, IE, and C boxes,
which constitute the type 1 pol III promoter, are aligned and highlighted in grey.
(TIF)

S9 Fig. Phylogenetic analysis of theAfuSINE3s,A. fumigatusAf293 5S rRNA, SINE3-1_AO
from A. oryzae and chickenDeuSINE3 element (AmnSINE1_GG). The 5S rRNA-related
regions (nt 1–119) of each sequence were selected for the alignment. A phylogenetic tree was
constructed using the fast Fourier transformMAFFT program L9INS-1(2). A bootstrap test
was conducted with 1,000 resamplings for the neighbor-joining trees. Numbers on the nodes
indicate percentage of bootstrap support from 1,000 replicates with branch lengths indicated.
(TIF)

S10 Fig. Multiple sequence alignment of theAfuSINE2 sequences.The tRNA-related region
(nt 1–72) of each sequence was selected for alignment which was performed using the MAFFT
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with L-INS-i parameter. Potential A and B boxes are highlighted in grey.
(TIF)

S11 Fig. Phylogenetic analysis of theAfuSINE2 sequences and other tRNA-derived SINEs.
The tRNA-related region (nt 1–72) of each sequence was selected for the alignment. A phyloge-
netic tree was constructed using the fast Fourier transformMAFFT program L9INS-1(2). A
bootstrap test was conducted with 1,000 resamplings for the neighbor-joining trees. Numbers
on the nodes indicate percentage of bootstrap support from 1,000 replicates with branch
lengths indicated.MIRc is a SINE2/tRNA (Pro) frommammals, Foxy is a tRNA-derived SINE
from Fusarium oxysporum f.sp. lycopersici, SINE2-1_BG is a SINE2/tRNA (Gly) from barley
powderymildew Blumeria graminis, MgSINE is a tRNA-derive SINE fromMagnaporthe grisea,
and LFSINE_Vert is a SINE2/tRNA (His) from Latimeria.
(TIF)

S12 Fig. Agarose gel electrophoresis of the PCR and RT-PCR products of the 13 candidate
AfuSINE.Agarose gel electrophoresis showing the PCR and RT-PCR products of the 13 candi-
date AfuSINE sequences; Lane 1 for each AfuSINE shows PCR amplicons generated from geno-
mic DNA; Lane 2 shows for each AfuSINE, amplicons generated following RT-PCR; Lane 3
shows for each AfuSINE, amplicons generated from (-RT) negative controls RT-PCR. Hyper-
ladder 1 (M; 10 kbp; Bioline) and Quick-Load1 100 bp DNA Ladder (NEB) were used as
markers. Electrophoretic analysis was performed in 2.5% agarose gels for 3 h at 80 V.
(TIF)

S1 Table. Oligonucleotideprimers used for PCR and RT-PCR amplification of A. fumiga-
tusAf293 SINE sequences.
(PDF)
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