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Observations of GRBs at High Redshift
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The extreme luminosity of gamma-ray bursts and their afterglows means they are
detectable, in principle, to very high redshifts. Although the redshift distribution of
GRBs is difficult to determine, due to incompleteness of present samples, we argue
that for Swift-detected bursts the median redshift is between 2.5 and 3, with a few
percent likely at z > 6. Thus, GRBs are potentially powerful probes of the era of
reionization, and the sources responsible for it. Moreover, it seems likely that they
can provide constraints on the star formation history of the universe, and may also
help in the determination of the cosmological parameters.
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1. Introduction

Long-duration gamma-ray bursts (GRBs) are becoming powerful probes of the dis-
tant universe. The overriding asset of GRBs is extreme luminosity over a very broad
wavelength range, which in principle allows them to be seen and studied to very
high redshift, z ∼ 20 (Lamb & Reichart 2000). They can be detected in gamma-
rays even in the presence of high column densities of intervening material, removing
one potential source of incompleteness bias. Furthermore, having stellar progeni-
tors, they can be detected irrespective of the luminosity of the star-forming host
itself. The drawback of GRBs is, of course, their rarity, and even in the Swift era it
continues to be a time-consuming business building up statistically useful samples.

The highest redshift found to-date is z = 6.30 for GRB 050904 (Haislip et al.

2006; Kawai et al. 2006). This compares well with the most distant galaxy with a
confirmed spectroscopic redshift of z = 6.95 (Iye et al. 2006). The number density
of bright galaxies (and quasars) decreases rapidly at early times, as expected in
hierarchical growth of structure, making them increasingly rare and hard to detect
at z > 6 (cf. Reed et al. 2003), and hence the searches for even higher redshift
GRBs all the more important.

In this review we first consider the crucial question of the redshift distribution
of GRBs, and what we can say about the numbers likely to be found at very high
redshifts. This includes consideration of the importance of “dark bursts”: those
with very faint or undetected optical afterglows.

We then outline some of the scientific programmes proposed or under way to use
GRBs to illuminate a number of cosmological questions, particularly considering the
role of GRBs as star formation indicators, and as a means of studying high-redshift
galaxies and their environments.
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2. The Redshift Distribution of GRBs

Various authors have attempted to predict the redshift distribution of GRBs. The
ingredients of such models are basically (a) a parametrization or prediction of the
star-formation history of the universe; combined with (b) some mapping from star-
formation rate to GRB rate and luminosity; and finally (c) convolving with a se-
lection function dependent on the instrument used for initial detection. The star-
formation history of the universe is already uncertain, particularly beyond z = 5,
which of course is one of the motivations for pursuing GRB studies, as discussed
below. Mapping star formation rate onto GRB rate, essentially an attempt to guess
the sensitivity of GRB rate and/or luminosity on factors such as metallicity, and in-
deed the metallicity distribution amongst the stellar populations present at a given
redshift, is currently a matter of educated guess-work. Even the selection function
of Swift/BAT is non-trivial since the detectability of a given GRB depends on its
spectrum and photon time history, along with instrumental factors such as position
in field of view and the state of the (evolving) detection algorithm.

Despite all these provisos, it is important to have some predictions for plausible
rates. Notable recent attempts include: Guetta, Piran & Waxman (2005) explore
a variety of different star-formation rate histories and GRB luminosity functions;
Natarajan et al. (2005) additionally incorporate a simple prescription for a low-
metallicity preference for GRBs; Yoon & Langer (2005) take a more sophisticated
approach to the metallicity question by explicitly identifying stellar evolution mod-
els which naturally lead to collapsar progenitors; Bromm & Loeb (2006) further
consider the possibility of a population III contribution to the high-z GRB rate.

The observed redshift distribution should also be treated with caution because
it is susceptible to further important selection effects. For example, those GRBs
with bright optical afterglows are much more likely to have a redshift measured
than those for which the optical afterglow is faint (cosmic time-dilation does help
here to some extent, since at fixed observer-time we see an earlier, and usually
intrinsically brighter, phase of the afterglow).

In fact, of all the GRBs which have been reasonably well-localised, less than 40%
have had direct redshift measurements, making them a highly incomplete sample.
A few redshifts have been measured for “dark” bursts, but only when the GRB is
pinned down well enough by its X-ray or radio position to identify a likely host, and
the host itself is a sufficiently bright to obtain a spectroscopic redshift. However, it
is important to remember that in many cases the lack of an optical afterglow may
be blamed on poor positioning of the burst, for example at low Galactic-latitude,
or being too close to the Sun or bright Moon for deep followup.

In an effort to improve this situation, Jakobsson et al. (2006) defined a subset
of all GRBs well-placed for optical observation. The selection criteria were that the
burst should have an X-ray position made public within 12 hours, the Galactic
foreground be low AV < 0.5, the burst be > 55◦ from the Sun, and not at a polar
declination, |dec| < 70◦. Imposing these restrictions reduces the GRB sample size,
but greatly increases the redshift completeness of those samples. In fact, Jakobsson
et al. (2006) were able to show that the median redshift of Swift discovered GRBs
is considerably higher than that of pre-Swift GRBs. An updated illustration of this
difference is shown by the red and blue lines in figure 1.

Unfortunately, even with the above restrictions, only 50–60% of the Swift GRB
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Figure 1. Cumulative histograms of redshifts obtained for uniformly-selected samples of
long-duration bursts as of end November 2006. The pre-Swift sample (blue) had a relatively
low median redshift around z = 1. For the Swift GRBs (selected following the criteria of
Jakobsson et al. 2006) the two lines are (a) an incomplete sub-sample with only those 43
bursts with well-determined redshifts (red); and, (b) the full sample of 83, including 40
bursts without redshifts (ie. generally optically fainter) placed in the distribution according
to their upper redshift limits based on photometry (black). The true, optically-unbiassed
Swift redshift distribution is likely, therefore, to be between these two lines.

sample have good redshifts (spectroscopic or photometric with many bands). How-
ever, many of the remaining bursts did at least have detections in UV, optical or
nIR bands which can be used to place an upper limit to their redshift. In particular,
when detected in the UV by UVOT, the upper limits can be relatively low. Indeed
less than 20% of the sample have no constraint on their redshift.

To visualise the maximum possible effect of redshift incompleteness we also plot
in figure 1 a black line which includes now all the bursts satisfying the selection
criteria, but placing those with no firm redshift at the maximum redshift they can
have given their bluest photometric detection. Reality is likely to lie somewhere
between the red and black curves, which is consistent with the Bromm & Loeb
(2006) prediction that ∼10% of Swift GRBs should lie beyond z = 5.

3. GRBs as a Means of Studying High-z Galaxies

Most of the methods used to find and study high-redshift galaxies rely on detecting
the galaxy in some waveband. In particular, in recent years Lyman-break galaxies
(LBGs), identified via their optical (rest-frame UV) colours (Steidel et al. 2003);
submm galaxies (Ivison et al. 2005); and Lyman-α emission line galaxies (Malhotra
& Rhoads 2006; Iye et al. 2006), have been central to our understanding of the
high-z galaxy population. However, since these techniques all rely on the galaxy
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being luminous enough to make it into the samples, they are biased towards the
bright end of the galaxy LF in whichever waveband the search is performed.

Quasar absorption lines can be used to locate galaxies based on absorbing col-
umn rather than luminosity, but it can be problematic to identify the counterpart
in emission against the bright quasar point source.

GRBs on the other hand, have stellar progenitors, and therefore select galaxies
independently of their luminosities. Their afterglow absorption line spectra give
redshifts, and indeed chemical and dynamical information about the host’s inter-
stellar medium, even for extremely faint galaxies. Furthermore, once the afterglow
has faded, the host can be studied directly. A good example of the power of GRBs
as a means of selecting high-redshift galaxies is that of GRB 020124, which was
undetected in a deep HST pointing to R ≈ 29.5 (Berger et al. 2002), and yet was
found to be a damped Lyman-α system at z = 3.20 through followup of its af-
terglow (Hjorth et al. 2003a). Vreeswijk et al. (2004) made a pioneering high-S/N
observation of another notable burst with a faint host galaxy, that of GRB 030323
with RAB ≈ 28, showing it to have a metallicity only a few percent of solar.

Studies of host samples continue to be troubled by the incompleteness of spec-
troscopy. However, despite that, interesting comparisons have been made between
GRB hosts and other populations. In particular, Fruchter et al. (2006) recently
compared GRB hosts to the hosts of core-collapse supernovae in the same redshift
range, and showed them to have quite different morphologies and luminosities on
the average. Since both are thought to have massive star progenitors, this is sur-
prising, although it confirms the long-noted fact that many GRB hosts are rather
small, irregular galaxies, and could be a consequence of a metallicity dependence
of GRB properties.

4. GRBs as Tracers of Star Formation

Since GRBs are produced by massive stars (eg. Hjorth et al. 2003b), which have
short life-times, one would expect the rate of GRBs is proportional to the massive
star formation rate at any given epoch (eg. Wijers et al. 1998). Assuming a universal
IMF (in common with most other SFR estimation techniques) allows us to infer a
total star formation rate history.

Advantages of GRBs as star formation indicators are that they are very bright
and can be seen through high columns of gas and dust. Furthermore, as discussed
above, we can count GRBs as a function of redshift even when their hosts are too
faint to have appeared in any photometric census of star formation.

Our hope then is that if GRBs can be shown to be an unbiassed tracer of star
formation, then the redshift distribution of GRBs can in principle be inverted to give
the global star formation rate history. The proportion of star formation occuring
in different populations of galaxies, should be reflected in the proportions of such
galaxies amongst the GRB hosts.

This hypothesis can be tested by looking at the distribution of star-forming
properties of GRB hosts. In the optical/UV, Jakobsson et al. (2005) found that a
small sample of GRB hosts with z ∼> 2 had a luminosity function consistent with
being a star-formation-weighted Lyman-break galaxy luminosity function. Since a
large proportion of high redshift star formation is thought to be dust-obscured,
it is of particular interest to investigate the fIR/submm/radio properties of GRB
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hosts. Early results showed that some hosts were indeed detectable in submm or
radio (Frail et al. 2002; Barnard et al. 2003; Berger et al. 2003b). Included amongst
the target sample were a number of hosts of “dark” bursts (identified via accurate
X-ray locations), helping mitigate against an optical bias.

However, subsequently it has become clear that the numbers are significantly
below predictions based on the expected high proportion of global star formation
taking place in ultra-luminous dusty galaxies (eg. Tanvir et al. 2004; Priddey et al.

2006; Le Floc’h et al. 2006). The conclusion of these studies is that whilst GRB hosts
are in general actively star-forming, very few are intensively star-forming ULIRG-
like galaxies. Once again, a plausible explanation is that GRBs are selecting smaller,
lower-metallicity galaxies (cf. Fynbo et al. 2003), which would make them less useful
as a probe of all star formation, but possibly increasingly useful as a tracer of higher
redshift star formation.

5. GRBs as a means of Studying the Era of Reionization

In conventional cosmology, after recombination the universe remained neutral until
the first collapsed sources began to emit UV radiation. This radiation ionized a
region around each source, and these regions eventually grew and merged to form
a nearly fully ionized intergalactic medium by a redshift of about z = 6. This
is known from spectroscopy of high-redshift quasars which show that the neutral
fraction was low (and dropping) at these redshifts.

Measurements of the electron-scattering optical depth by the Microwave Anisotropy
Probe (WMAP) observations of the microwave background, however, indicate that
reionization was substantially under way at earlier times, around z = 11 (Page
et al. 2006; Spergel et al. 2006). The epoch of the very earliest collapsed sources,
and the detailed time history of reionization, which may have proceeded in a slow
continuous way or in separate pop III and pop II phases, remain open questions
(eg. Furlanetto & Loeb 2005).

There is considerable interest in the nature of the first objects, and the phase
change that they brought about. However, probing further with QSOs becomes
difficult because of the rapidly diminishing number density of bright QSOs beyond
z = 6. QSO spectra are also difficult to analyse due to the bright emission lines
and the substantial “proximity” effect that a bright QSO has on the surrounding
intergalactic space. GRBs, on the other hand, have stellar progenitors, and so may
well be frequent in the high-z universe. They tend to reside in small galaxies,
with little proximity effect, and they have power-law continua against which it is
relatively easy, in principle, to measure absorption features (eg. Mesinger, Haiman
& Cen 2004).

The difficulty with GRBs is, of course, their transience and rarity. It is therefore
essential that any high-z bursts that are discovered are identified as such as soon as
possible, and followed up with nIR spectroscopy while the afterglow is still bright.
In the case of GRB 050904 the afterglow was already very faint when the Subaru
spectrum was obtained, but an estimate of the neutral fraction was still possible
(Totani et al. 2006; and Kawai et al. 2006).
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6. GRBs to Measure Cosmological Parameters

Given the diverse behaviour of GRBs, particularly of their prompt emission, the
prospects for their use as distance indicators would not seem promissing at first
sight. Nonetheless Berger, Kulkarni & Frail (2003) showed that after correcting for
beaming the majority of bursts seemed to have a “standard reservoir” of energy
that they released. Several other authors have also explored the correlation between
GRB luminosity (or energy) and other parameters that are independent (or partially
independent) of distance. Notably Ghirlanda, Ghisellini & Lazzati (2004) found a
remarkably tight relation collimation-corrected energy and the peak energy of the
νFν prompt spectrum.

The advantage of GRBs in this area is that they are found to considerably higher
redshifts than SNeIa, and so provide a complementary constraint on cosmological
world-models. The main drawback at the present is that there is only a small
and rather inhomogeneous sample of bursts available which must be used to both
calibrate the relation and provide cosmological constraints. For further discussion
see Ghirlanda in this volume.

7. Conclusions

We have seen that long-duration GRBs hold considerable promise as probes of the
high-redshift universe. As a final illustration, in figure 2 we show the history of the
most distant known quasar, galaxy and GRB over the past ∼50 years. Although
only a relative new-comer to this game, GRBs have rapidly become competetive,
and there are reasons to hope that with Swift, GLAST and other satellites providing
hundreds of localisations over the next few years, that they may become the method
of choice for studies of the earliest era of structure formation.

We thank R. McMahon for providing many of the references which went into making
figure 2, and A. Levan and R. Priddey for useful discussions.
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