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A Probabilistic Model for 
Estimating the Depth and 
Threshold Temperature of C-fiber 
Nociceptors
Tara Dezhdar1,2, Rabih A. Moshourab3, Ingo Fründ4, Gary R. Lewin1,3 &  
Michael Schmuker1,2,†,

The subjective experience of thermal pain follows the detection and encoding of noxious stimuli 
by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to 
access and the mechanisms of signal transduction remain unresolved. In order to understand how 
heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures 
that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor’s temperature 
threshold must be estimated, which in turn will depend on the depth at which transduction happens 
in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an 
estimation can currently only be achieved through modeling. However, the current state-of-the-art 
model to estimate temperature at the receptor suffers from the fact that it cannot account for the 
natural stochastic variability of neuronal responses. We improve this model using a probabilistic 
approach which accounts for uncertainties and potential noise in system. Using a data set of 24 
C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal 
properties of the system, the probabilistic model that we propose here is capable of providing 
estimates of threshold and depth in cases where the classical method fails.

For many years, pain has been subject to extensive neurobiological, clinical, and psychophysical stud-
ies1–3. Since the early 20th century when Charles Sherrington conducted neurophysiological experiments 
that started to define the neural process of detecting and responding to noxious, harmful stimuli as 
nociception and the responsible afferent neurons as nociceptors4, different types of nociceptors have been 
identified5,6. The main group includes polymodal unmyelinated nociceptors7, responding to potentially 
painful mechanical and heat stimulation, thus defined as mechano-heat sensitive C fibers (C-MH fib-
ers)8–11. Although C-fibers play a pivotal role in perception of noxious heat stimuli, less is known about 
the underlying mechanisms that transform heat and mechanical stimuli into neural activity12–14.

The pain pathway can be broken down in three major components: 1) transduction of heat or 
mechanical energy into electrical signals at the receptor site, 2) transmission and modulation of action 
potentials from peripheral receptor site to the Central Nervous System CNS and higher brain function, 
and 3) perception of signals as pain15. In recent years mathematical and computational models of the 
pain pathway have been developed and provided valuable insights into various aspects of pain, like acute 
pain16 and neuropathic pain within a dynamical system of neurons17,18, relating the input stimulation to 
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the sensation of pain in an artificial neural network19,20, or the temporal dynamics of pain perception 
using neuroimaging21. Recently, mathematical modeling of pain at the cellular level drew attention to 
the plausibility of physiological properties of nociceptors and bio-thermal properties of skin22,23. In heat 
sensitive sensory neurons, the threshold temperature was considered as a determinant for activation of 
heat sensitive ion channels, and to discriminate nociceptors from warm sensitive neurons. Despite the 
fact that there at least three ion channels activated by noxious heat are expressed in mouse nociceptors 
(TRPV1, TRPM3 and anoctamin-1)24–27 there is still no clear picture of where in the skin (e.g. dermal or 
epidermal free nerve endings) these physiologically important heat transducing ion channels are located. 
Thus computational models, based on real experimental data, can potentially provide constraints on the 
thermal changes that a noxious heat transducer must be able to detect in order to transform thermal 
energy into a noxious heat code in nociceptors. Measuring the threshold temperature of a nociceptor 
is complicated by the fact that the temperature at the location of receptor differs from the surface tem-
perature, because the skin is not a perfect heat conductor. In addition, the receptor endings are hard 
to access, due to the complex and variable histological structure of the skin (i.e. several layers, ridges, 
hair follicles), branching of the free nerve endings of C-fibers, and small diameters of terminal endings. 
Even the smallest thermocouples are large with respect to the epidermal and dermal thickness and as 
an external object they would change the conditions of heat flows. An infrared camera could detect the 
flow of heat, but it cannot reveal the position of nerve endings. Therefore, it is currently not possible to 
measure the temperature at the transduction site(s) in nociceptor endings directly.

To mitigate these shortcomings, mathematical models were used to estimate the threshold tempera-
ture as a parameter21,28–30. Tillman et al.30 showed that latency of the first action potential fired by a 
C-MH afferent depends primarily on the temperature at the location of the receptor (its depth), and is 
hence influenced by the heat conductance of the skin. Therefore, to obtain an accurate estimate of thresh-
old temperature of the receptor neurons, the first step has been to model the propagation of the temper-
ature in several layers of the skin from the surface to the receptor depth. Several models have been 
developed to estimate nociceptor depth and threshold by using neurophysiological recordings of nocic-
eptors or behavioral measurements to parameterize the heat diffusion equation to model the ability of 
the skin to conduct heat energy23,30–33. In a typical experimental protocol for this purpose, a heat elec-
trode is placed on the skin surface, through which ramped heat stimuli with different rates are applied. 
The time τ until the threshold is reached can be the time of reporting the sensation of pain in a behav-
ioral experiment31,33 or the latency of the first action potential in an electrophysiological recording30. 
Assuming that neurons fire at a set temperature, it is possible to estimate the firing threshold temperature 
and the depth of the receptor from the threshold time τ by solving the heat diffusivity equation for dif-
ferent ramp stimuli. The estimated threshold temperature reported in previous studies varies in a range 
from 39–41 °C23,30, 43 °C34, 45 °C28, and 47 °C35. However, only in the study by Tillman et al.30 were thresh-
old temperatures estimated at each neurons’ estimated depth, while the other studies obtained threshold 
temperature at an assumed fixed depth or at the surface of the skin, which may explain the tremendous 
variability of the estimates in spite of using the same stimulus parameters.

An accurate estimation of the time at which the threshold temperature was reached is essential for 
the classical approaches. Small inaccuracies in spike time measurement, internal random process which 
could result in a delay between reaching the threshold and generation of first action potential, and 
trial-to-trial variability of neural responses, can result to big inaccuracies in depths, and sometimes 
even make depth estimation impossible. Additionally, there are many sources of uncertainty in the esti-
mation method. For example, the bio-thermal skin parameters (e.g. thickness, thermal diffusivity) are 
difficult to estimate accurately, since they vary with the age, gender, recording area and even the hair 
cycle of the specimen36. Moreover, repeated recordings from one neuron are often difficult because of the 
dynamic experimental conditions when recording from C-fibers37. Therefore, the results of the classical 
approaches to estimate heat threshold and receptor depth have been disputed22 and often failed to yield 
reliable estimates30.

In this contribution, we reformulated the established model for temperature propagation in a probabil-
istic way. We thus open up the way to account for natural variability on receptor response and uncertain-
ties in other model parameters, enabling a statistical approach to the problem of inferring receptor depth 
from spike times and associated surface temperature. We introduce two modifications to the previous 
approach. First, we allow for a small, variable delay that can account for the variability of spike latency 
arising from deterministic properties of the system and/or ‘noise’, e.g. generated by random processes 
inside the neuron. Second, we use Monte-Carlo methods to deal with the uncertainty in bio-thermal 
parameters of skin model. To demonstrate the reliability of the new probabilistic model we applied both 
the classical approach and the probabilistic approach on a data set of extracellular recordings from 24 
C-MH nociceptors. We then estimated the receptor parameters, depth and threshold temperature of all 
neurons and evaluated the probabilistic model using model evidence tests. The proposed method suc-
ceeds in producing realistic estimates of both threshold and depth for all measured neurons, although 
previous methods failed to provide such estimates for all neurons.
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Results
Towards our aim to improve the classical model for depth and threshold estimation we first investigated 
the factors that rendered previous approaches unstable. We assumed that the instability of the classical 
model was mainly due to uncertainties of the threshold time and an incomplete skin model. Here, we use 
the term ‘threshold time’ to refer to the (not directly measureable) time at which the neuron reaches its 
firing threshold and action potential initiation. In the classical approach, threshold time is assumed to be 
equal to the time of the first spike. However, the first spike after stimulation onset may be generated with 
a small delay (latency noise), or it may be caused by spontaneous sub-threshold activity, especially in 
cases where the spike latency is very short compared to stimulus onset. To deal with these uncertainties 
and variability in spike times we (i) introduce a delay between threshold time and first spike (latency), 
(ii) allowing for some responses to be outliers that are not driven by the presented stimulus, and (iii) 
introduce a probabilistic model for the skin.

Classical method, directly using the heat transfer model to identify neuron properties. We 
first assessed the performance of the classical model to estimate receptor depth and threshold, based on 
the analytical solution of the heat diffusion equation. An attractive feature of the analytical approxima-
tion is that the solution at any point in the skin can be obtained independently from the skin model, 
which is particularly useful when the skin model is not completely determined, or when the skin is 
stimulated from the corium side to facilitate electrical stimulation and pharmacological manipulation 
of the primary afferents in in vitro skin preparations13. Figure 1a depicts a typical skin model in which 

Figure 1. Experimental conditions and schematic of skin model. (a) Schematic of skin model and a 
C-fiber. In a typical experimental protocol a heat electrode is placed on the surface of the skin. (b-c) Drift 
of different surface temperatures for all locations in the skin up to a depth of D =  5 mm as a schematic 
illustration. Each curve refers to a different surface temperature at different time points after stimulation 
onset of different experimental conditions. (b) All four curves intersect in a single point, which refers to 
threshold and depth of nerve endings. (c) There is no single solution of heat equation that is consistent 
for all four experimental conditions. (d) An example of in this study applied experimental protocol. Three 
heat ramped stimuli with different ramp durations were applied on the dermal side of the skin while the 
responses of one C-MH nociceptor to all three stimulus conditions were simultaneously recorded. The 
surface threshold temperatures Tthreshold are associated with the first spike times τ  for all three conditions. 
(e) Transfer of initial Tthreshold of all conditions through the skin layers for the example neuron. The curves 
intersect at the location of receptor and the same threshold temperature. Note that in our experiments the 
heat electrode was placed on the inside of the skin.
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the heat electrode is applied on the surface of the skin. The heat energy flows from epidermal to dermal 
and subcutaneous layers and reaches the free nerve endings of C-MH fibers at some point. The ability 
of each layer to absorb heat energy and attenuate the surface temperature during transfer depends on 
its thermal diffusivity.

Assuming a fixed temperature threshold of a neuron at a fixed depth, it is possible to infer this depth 
from the time until this threshold is reached after applying a constant supra-threshold temperature to the 
surface. Figure 1b depicts the state of the heat gradients within the skin for four different surface temper-
atures when reaching a threshold of T =  38.8 °C at a depth of D =  0.3 mm. Each curve hence refers to a 
different time point after stimulus onset, i.e. the latency of the first action potential. All curves intersect 
in a single point: the estimated depth of the receptor.

This idealized example illustrates how the classical approach to depth and threshold estimation 
depends on reliable spike latency. Neuronal “noise” that causes variability in spike timing unfavorably 
affects the performance of this method. Real-world measurements affected by noise thus often fail to 
intersect in a single point, as illustrated in Fig. 1c, thereby failing to provide estimates of location and 
threshold temperature.

We studied the capability of the classical approach to predict receptor threshold and depth in record-
ings from 24 C-MH neurons. Our experimental protocol consisted of three heat stimuli with three ramp 
rate durations of long: 16 s, middle: 4 s, and short (see Fig. 1d for an example). Each stimulus was applied 
only once and in the same order. The heat electrode was placed on the corium side of the skin, not on 
the epidermis (see Fig. 1e).

For a given threshold time τ = ⁎t  the relation between the surface temperature ( , ) = ( , )⁎T x t T t0surface  
at time t = t* and the attenuated threshold temperature = ( , )⁎T T x tthreshold surface  at the location x of the 
receptor can be entered in the solution of heat equation as formulated by Henriques38,
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We assume the skin has uniform temperature T 0 at stimulation onset. In equation (1), we used the 
short hand notation γ = /D a2 , with D being the receptor depth and κ ρ= /a c  the thermal diffusivity 
of skin. In the second equality, φ  denotes the cumulative distribution function of the standard normal 
distribution. Then all combinations of receptor depth Dand temperature threshold Tthreshold that are con-
sistent with these experimental conditions lie on a curve in the −D Tthreshold plane (see Fig. 1e). For the 
same cell under different experimental conditions ,+ +t T  another curve results (Fig. 1d,e). Assuming that 
the receptor threshold temperature is defined and the same for all three stimulus conditions, then the 
intersection between these curves corresponds to D and Tthreshold constellations that are consistent with 
both measurements.

To solve the equation (1) for three ramped heat stimuli we assumed that the threshold time was equal 
to the latency of the first spike (i.e. the time from ramp onset to the first spike, corrected by electrical 
conduction delay) for all three ramped stimuli, and measured the temperature at the surface at that time. 
Figure 2 shows the solution of the heat function and transfer of three surface temperatures ( )T tsurface i , 
( = , ,i 1 2 3 number of stimuli) in −D Tthreshold plane for 4 example C-MH neurons.

Only 2 out of 24 neurons intersected in a single point (Fig. 2a shows an example), 5 out of 24 inter-
sected in three close points and spanned a small triangle (e.g. Fig. 2b). For 12 out of 24 the temperature 
curves which correspond to two ramped stimuli intersected in one point but the third curve did not 
intersect the other two curves (e.g. Fig. 2c). For the remaining 5 neurons the curves did not intersect at 
all (e.g. Fig. 2d).

For the 2 neurons with a single intersection point distinct depth and threshold temperature were 
directly obtained by the intersection. For 5 neurons that the intersections span a small triangle we gen-
erated an average over the intersections. For cases where the intersections span wider ranges, generation 
of an average over stimulations induces a high variance in the estimated depth, leading to an expected 
large estimation error for threshold and depth.

The mean average receptor threshold temperature for the 2 neurons with a single intersection was 
39.44 °C and standard deviation of 5.7 °C, consistent with values found in the literature30. Yet, for the 
majority of neurons (17 out of 24) the classical method could not determine a threshold estimate of all 
three ramped stimuli, pointing out the potential for improvement of this classical approach toward a 
better estimation of depth and threshold.

The main limitation of the classical approach lies in its assumption that parameter constellations are 
either fully consistent with the experimental outcome (i.e. they are on the curve) and can be included in 
the estimation or they are completely inconsistent with the experimental outcome (not on the curve) and 
might be discarded. In the following sections we will use equation (1) as part of a probabilistic model, 
which allows us to formulate a continuous measure of consistency with the experimental outcome (a 
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likelihood function). This allows us to identify a unique most likely combination of receptor depth and 
temperature threshold.

Probabilistic method, Likelihood function. The classical method for inferring depth and temper-
ature threshold assumes that the latency of the response is exactly equal to the time when the tempera-
ture threshold was reached. Here, we weaken this assumption by introducing a delay, ∆ between the 
threshold time (Tthreshold) and the response latency (t lat). Thus we now evaluate equation (1) at 
= + ∆t tlat threshold . For measured responses to three ramped stimuli, we then have,

( )Φ γ
= + −







 + ∆
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T T T T
t

for i 1 2 3
2

threshold surface
i

surface
i

threshold i
0

In this equation, Tsurface
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i is the latency of the response in the i-th measurement. Equation 
(2) is a system of n =  3 equations with the same parameter Tthreshold and γ but n =  3 different tlat

i  and ∆i 
of three stimuli conditions. As we have shown in previous section it is not generally possible to determine 

Figure 2. Transfer curves of surface threshold temperature through the skin in a depth vs receptor 
threshold plane for three different ramp rates and four neurons. (a) All three curves intersect in a single 
point, which is the solution of equation (1) and refers to threshold and depth of this neuron. (b) Three 
curves intersect in three close points and span a triangle. The resulting threshold and depth was determined 
as an average over three curves. (c) Two curves intersect and the third one start at a very low Tsurface and 
remains below the other two. (d) The curves start at a very low initial temperature and do not intersect. 
There is not any single solution for equation (1).
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a single intersection point. However, because ≤ ∆ ≤t tthreshold
i

i lat
i , we can postulate that the delays should 

be (i) positive and (ii) small. We will therefore assume that ∆i are exponentially distributed with a rate 
parameter λ . In our experience the exact value of λ  did not change the results, so that we fixed λ  =  1 for 
all of the following. With the given data, we can write Δ i as a function of Tthreshold and γ, by inverting 
equation (2).

This allows us to write the log likelihood function;

∑γ λ γ( , ) = − ∆ ( , )
( )=

 T T
3threshold

i

n

i threshold
1

The parameters γ̂and Tthreshold that jointly maximize this function are maximum likelihood estimates 
of the underlying neuron parameters. After finding the estimate for γ̂, we can derive the depth using the 
equation γ= ⋅ˆD a2 .

We can view the negative of the right side of equation (3) as an error function that we attempt to 
minimize under the constraint that ∆ ≥ 0i . The smallest error can be attained if all delays are exactly 
zero in which case this method agrees with the classical method discussed in the previous section. In 
cases in which no unique parameters setting exists, the assumption that responses should be instantane-
ous, is relaxed by letting one or more ∆i be larger than zero. Note however that increasing the delays 
does also increase the error. Thus, the parameter constellation with minimal error will be one that is 
consistent with the data by assuming only minimal response delays.

Figure  3 shows, for two example neurons C-MH1 (Fig.  3a–c, single intersection, in Fig.  2a) and 
C-MH4 (Fig. 3d–f, no intersection in Fig. 2d) the stimulus traces for three different ramp rates (long-, 
middle- and short ramps) at the surface together with the attenuated stimulus traces at the classically 
estimated receptor location γ classic and at the probabilistic estimated receptor location γ probabilistic.

In example neuron C-MH1 the classically estimated normalized depth is γ = .2 04classic  and probabil-
istic estimated is γ = .1 05probabilistic . As Fig. 2a shows for C-MH1 the classical model results successfully 
in a single intersection. The probabilistic estimated location of neuron, however, is closer to the surface 
compared with the classical estimate. As a result the estimated stimulus at γ classic is weaker for all three 
ramp rates.

Note that in Fig. 3a the estimated delay for the longest ramp is close to zero but not for the middle 
ramp (Fig. 3b) and short ramp (Fig. 3c).

In the case of neuron C-MH4 the classical method failed to find an intersection of all three ramp 
stimuli (see Fig.  2d) and therefore the stimulus traces could not be tracked at location γ classic. But the 
probabilistic method estimated successfully a depth and thus the stimulus traces could be estimated at 
this location (see Fig. 3d-f). Note that neuron C-MH4 shows a small latency for all three ramp stimuli. 
The first spike in all three conditions occurred immediately after the stimulus onset. This observation 
may suggest that the first spike may actually have been caused by sources of activity other than the onset 
of the heat ramp.

Figure 4 summarizes the results of analysis of all neurons for three estimates Tthreshold, depth D and 
normalized depth γ. We divided all 24 C-MH neurons into two main groups: The group ‘Single intersec-
tion’ that includes 7 neurons for which the classical model successfully resulted in a single intersection 
or the intersections span a small triangle like neurons C-MH1 and C-MH2 of Fig. 2a-b. We refer to this 
group as ‘Group I’. The group ‘Two/None intersections’ that includes the remaining 17 neurons for which 
the classical model failed fully or partly to estimate any intersection like neurons C-MH3 and C-MH4 
of Fig. 2c-d. We refer to this group as ‘Group II’. The estimated parameters in ‘Group I’ for both classical 
and probabilistic models compared with the same parameters in ‘Group II’ reveals that in ‘Group I’ both 
approaches were successful. But, the classical model shows very implausible values for the ‘Group II’: a 
median threshold temperature of Tthreshold =  33.3 °C and mean depth of D =  12.5 mm. Previous studies 
have shown that the majority of C-MH fibers display a threshold of 43 °C2,34, but several studies have 
reported threshold temperature in a range of 36-47 °C28,30,39,40. Given the thickness of the skin < 1 mm in 
our experiments and the reported values of threshold temperature, the classical model failed to estimate 
the parameters for the ‘Group II’ with two/none intersections. The full probabilistic model shows for 
‘Group II’ a mean threshold of Tthreshold =  32.36 °C and a mean depth D =  0.9 mm. Hence this model likely 
failed to estimate Tthreshold (because it is implausibly low), but the estimated depth was consistent with the 
reported depth from the previous studies in range of 20-570 μ m30,39. Note that in our experimental setup 
the heat electrode was placed on the inside of the skin, so the depth of the receptor from the epidermis 
was De =  100 μ m (assuming that the skin is approximately 1 mm thick).

As a brief summary, in this section we showed that using a statistical model to estimate the param-
eters gives a successful parameter combination of depth for all neurons even when the classical model 
fails to give any parameter estimate. Yet, in the case of estimated threshold temperatures the values with a 
median of Tthreshold =  32.36 °C were lower than previously reported thresholds in range of 36–47 °C28,30,39,40. 
We then used the calculated depth to estimate the attenuated stimulus traces at the location of the recep-
tor ending.
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The major contribution of the probabilistic model is to incorporate noise by allowing for delay in 
first spike time. However, we didn’t cover the possibility that the first spike recorded after stimulus onset 
might be an ‘outlier’ which was not triggered by the stimulus, but rather generated by the (low) resting 
state activity of the receptor. Next we therefore addressed the question of how our results would change 
under the assumption that the first spike after stimulus onset may have been triggered by a probabilistic 
random process.

Selection method, discarding outlier responses. Every stimulus that is taken into account for the 
estimation of depth and threshold adds a certain amount of information and reduces the uncertainty of 
the estimation. But since there is also a certain probability that the first spike is not a response to the 
stimulus, every stimulus also adds a certain amount of noise to the estimation. Hence, there exists a 
potential tradeoff in adding as many recordings as possible to the estimation, or rejecting some of them 
as outliers. For example in our data for 12 out of 24 neurons in −D Tthreshold plane, two out of three 
curves intersect in one point, while the remaining curve either intersects in other points or does not 
intersect. Essentially, at least two ramp stimuli of different slope are required to observe an intersection 
of the curves. But, we asked if we reduce the variability of the estimate in the case of widely spanned 
ranges of intersections by omitting some curves.

Figure 3. The measured thermal stimulus traces applied on the surface of the skin with three ramp rates 
and the estimated stimulus traces within the skin at the estimated depth of neurons’ terminals for two 
example neurons C-MH1 and C-MH4. The estimation of the depth and Tthreshold was done according to the 
classical and probabilistic method. The probabilistic estimated Tthreshold is the solution of equation (3). The 
classical Tthreshold is the intersection of Ti

surface , i =  1,2,3 curves in D-Tthreshold plane for three ramp rates of 
equation (1). (a–c) The stimulus traces of neuron C-MH1 for (a) long ramp, (b) middle ramp, and (c) short 
ramp. Both classical and probabilistic methods successfully estimated the parameters. The classical model 
approached a single intersection of ramped stimuli and probabilistic method approached small delays. (d–f) 
The stimulus traces of neuron C-MH4 for (d) long ramp, (e) middle ramp, and (f) short ramp. The classical 
method failed to find an intersection but the probabilistic method resulted successfully to a parameters 
estimate.



www.nature.com/scientificreports/

8Scientific RepoRts | 5:17670 | DOI: 10.1038/srep17670

We extended this idea to the maximum likelihood framework described in the previous section. We 
introduced multiple probabilistic models that could describe the data and then decided which one pro-
vides a more concise description.

To discriminate between the models we employed a Bayesian testing procedure41 and used model 
comparison based on marginal likelihood42. This approach is usually applied to pairwise comparisons: 
to compare two models, the marginal likelihood of each model is evaluated. The ratio of the marginal 
likelihoods from model 1 and model 2 is called the Bayes Factor. If the ratio of marginal likelihoods 
from model 1 and model 2 is larger than 1, the first model is preferred and vice versa, the second model 
is preferred.

The main reason for adopting a Bayesian approach for model comparison is that Bayes factors provide 
a way of including other information as prior knowledge when assessing the evidence for a hypothesis. 
This is a strong advantage for data with lots of uncertainties, such as a small number of recorded neurons 
and no repetition of recordings for each stimulus, or an incomplete skin model. We can incorporate 
histological and bio-thermal information and results reported by other investigators as prior knowledge 
and use this to improve the estimation of receptor parameters. Furthermore, by integrating over the full 
parameter space, marginal likelihoods penalize complex models in a very natural way42,43.

Bayes Factors can only be calculated for pairwise comparisons. Yet, here we are interested in selecting 
the best out of multiple models. We therefore used the marginal likelihoods directly and chose the model 
that maximizes the marginal likelihood. For simplicity, we will refer to any of the models that exclude 
one or more stimuli from the determination of the neuron’s parameters as the ‘Selection model’.

The first model is the full probabilistic model described above, assuming a data set consisting of n 
different experimental conditions, e.g. ramped stimuli, where for all responses the first spikes have been 
triggered by the stimulus. More specifically, the first model assumes that the corresponding delays 
∆ = −t ti lat

i
threshold
i  (i =  1,2,3 number of stimuli) have a probability distribution with free parameters 

θ γ= , T{ }threshold1 . Here, the unknown skin parameters and other nuisance factors could go into θ1 as 
well.

In the ‘Selection models’ only for the first m <  n responses the first spikes have been triggered by the 
stimulus and would therefore contribute meaningfully to the estimate of depth and threshold. For the 

Figure 4. Estimated threshold temperature Tthreshold, depth D, and normalized depth γ of 24 C-MH 
neurons according to three methods: classical model, full probabilistic model and a selection model. For 
the selection model, in which the outlier curve was omitted, we chose the model with the highest evidence. 
Neurons are divided into two groups. In group ‘Single intersection’ or ‘Group I’ the classical model was 
successfully resulted in a single or very close intersection. This group includes 7 neurons. In ‘Two/None 
intersection’ or ‘Group II’ the classical model failed to estimate an intersection. This group includes 17 
neurons. The boxes extend from the lower to upper quartile values of the estimated in each group, with a 
white bar at the median. The whiskers show the range of the estimates. Flier points are those past the end of 
the whiskers.
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remaining responses the first spikes are the result of a stationary background process, e.g. spontaneous 
discharges or in any other way not triggered by the stimulus. Thus the second model assumes that only 
the first delays ∆i, i =  1,…,m, and m <  n have the same probability distribution with parameters θ1 and 
the remaining delays are based on processes with different distribution functions. This second model has 
a parameter vector ∪θ θ= ∆ , …, ∆+

∼ ∼
{ }m n2 1 1  that contains the parameters from the first model and 

some additional parameters to capture the times of the non-stimulus-triggered first spikes.
In the case of our data the delays of three ramped stimuli in first model M1 have the same probability 

distribution with the parameter space θ γ= , T{ }threshold1 . In instances of the selection models M2 only 
two delays out of three have the same distribution with the parameter space θ θ=2 1and the third delay 
has a density function Ρ λ( , )t  with parameter λ.

To compare the models, we use the marginal likelihood,

∫ Ρ ∆ θ Ρ θ θ= ( , ) ( ) ( )L M M d 4k k k k k k

In equation (4), Ρ θ(∆ , )Mk k  is the likelihood of observing the delays given the parameters θkunder 
model k. Making the dependence of the likelihood on the model explicit here illustrates that in addition 
to the parameters of the model, the likelihood of the data depends on the formulated model itself as well. 
The term Ρ θ( )Mk k  is the prior density of the parameters of model Mk. This term provides a way to 
include other information about plausible values of parameters. Our first concern is thus how to choose 
prior densities to represent the available information.

The prior densities offer an appropriate way of adding biologically meaningful constraints from the 
literature into a statistical model. In Table 1 we show a summary of reported parameters and the prior 
density functions we employed here (for more details of choice of prior densities see section methods).

We applied the ‘Selection models’ on the 24 neurons. To demonstrate the performance of the selection 
models, we chose the model M2,i (i-th stimulus was omitted) with the highest evidence and compared 
the estimates with the results of full probabilistic model M1 and with the classical model. Figure 4 shows 
the estimated Tthreshold, depth and normalized depth γ. The selection model shows for the ‘Group II’ a 
mean threshold of = .T 36 7threshold  °C and a mean depth D =  0.8 mm. In contrast to the full probabilistic 
model, the selection model approached successfully to a mean threshold temperature, which is consistent 
with the previous studies.

We supposed that the main reason why the classical model failed was its inability to account for 
neural noise and for statistical outliers in the responses. Thus, one might expect that a working stimulus 
selection model would mainly detect outliers, and thus exclude the response to one stimulus from the 
parameter determination for those neurons for which the classical model failed. To test this idea, we 
normalized the sum of the marginal likelihoods for each neuron across all candidate models to 1. We 
then plotted the normalized marginal likelihood for the full model that does not exclude any stimuli (see 
Fig. 5). Clearly, the marginal likelihood L full was larger for the ‘Group I’ for which the classical model had 
been successful than it was for the ‘Group II’ for which the classical model had failed to find a consistent 

Parameters Reported value Subject Reference Prior density Remark

Threshold 36 °C Human 40 N(38,2) First sensation

39–41 °C Monkey 30 N(38,2) First spike

43.2 °C Human 31 N(38,2) First pain

43 °C Human 39 N(38,2) –

45 °C Human 28 N(38,2) –

47 °C Rat 35 N(38,2) –

Depth D 20–570 μ m Monkey 30 B(4.75,2.25) C fibers

180–240 μ m Human 31 B(4.75,2.25) C fibers

100 μ m Human 39 B(4.75,2.25) C fibers

Thermal conductivity k 0.05–0.14 W/mk Pig, Human, 
Monkey, rat 22,30,38,53 U(0.05,0.14) Dermal & Epidermal

Density ρ 1116–1200 Kg/m3 Pig, Human, 
Monkey, rat 22,30,38,53 U(1116,1200) Dermal & Epidermal

Specific heat c 700–950 J/Kg K Pig, Human, 
Monkey, rat 22,30,38,53 U(700,950) Dermal & Epidermal

Table 1.  Priori distributions for different parameters. The reported values of Tthreshold were estimated 
at either first spike time or first time if reporting pain or any sensations. The priori density functions are: 
Normal distribution N, Beta distribution B, and Uniform distribution U.
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parameter estimate. Put another way, this indicates that for many neurons in ‘Group II’, one of the selec-
tion models provided a better description than the full model. As the selection models accounted for 
outliers, while the full model did not, we conclude that statistical outliers might have contributed to the 
failure of the classical method on the neurons in ‘Group II’.

Thus, the results from our method suggested that for ‘Group II’, selection models that accounted for 
statistical outliers were more successful at describing the data, suggesting that outliers had indeed con-
tributed to the failures of the classical method in these neurons.

Discussion
In this study we have shown that considering variability, noise and stochastic processes in study of 
primary afferent pain receptors improved the classical deterministic models to estimate the depth and 
threshold of C-fiber nociceptors. We have shown that allowing for a small delay in the first response of 
C-MH nociceptors modified the localization of the receptor neurons. Moreover, assuming some sto-
chastic activities which were not triggered by stimulus and discarding the outlier responses caused by 
these stochastic activities further improved the estimation of activation threshold of C-MH neurons. We 
demonstrated the reliability of our general framework on a challenging data set, in which the stimulus 
electrode was placed on the corium and dermal side of the skin, the thickness of measured skin was 
unknown and each stimulus condition was applied only once. Our approach provides a unique insight 
into how temperature impinges on heat transducers in their native, complex environment. Most studies 
have hitherto focused on activation of channels by membrane heating in an in vitro context where skin 
is absent44. Our study provides a framework to understand where and with what temperatures native 
heat transducers are activated in vivo.

Introducing delay in response time allows us to weaken the assumption that latency and the threshold 
time should be the same. However, a delay is justified only if the probabilistic model converges to the 
classical model in boundary condition. Because in classical model all delays are neglected it describes 
an ideal, noise-free case and thus represents the boundary condition for the probabilistic model when 
delays are zero. Hence in the boundary condition the classically estimated model parameters should 
maximize the log likelihood function of delays. Our results confirmed that for negligibly small delays, 
the probabilistically estimated parameters converge towards the classically estimated results. Hence, the 
probabilistic model improves the results in cases where the classical model failed and converges to the 
classical model in boundary condition.

An alternative way to account for noise in the system might be to add white noise into equation 
(1) and treat it as suggested in the classical method. However, this approach would require to either 
predetermine the amount of the noise, or to assume that noise is generated by a random process and 
systematically vary the parameter governing that process. Because of the unknown sources and amount 
of noise, the first method might add more uncertainties to the system and the latter method might result 
in a biological meaningless source of noise.

In fact, while the probabilistic model improved the estimation of depth, it did not improve the esti-
mate of the mean threshold temperature. The low average threshold temperature around the baseline 
temperature for some results estimated by probabilistic model suggests that for some responses, a small 
delay in threshold time might not be sufficient to deal with the noise. Indeed, the estimation of depth 
and threshold temperature was improved by discarding these outlier responses in the ‘Selection models’. 

Figure 5. Normalized marginal likelihood for the full probabilistic model M1 for two groups of neurons. 
The ‘Group I’ includes 7 neurons that could be estimated successfully by classical model. The ‘Group II’ 
includes the remaining 17 neurons. The error bars are the standard error of the mean.
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In addition, the marginal likelihood ratios suggested that the ‘Selection models’ described the observed 
latency better than the initial probabilistic model that used all stimuli to estimate the neuron’s parame-
ters. Using marginal likelihoods also offered a way of adding prior information about model parameters 
from the literature by choosing an a priori density function. For some parameters, there were multiple 
possibilities for choosing the prior density. This could have influenced our computation of model evi-
dence42. Yet, when we repeated our analysis with slightly different priors, the estimated model evidence 
consistently favored the same model (for more details see section methods; choice of prior density func-
tions). We therefore believe that our outlier-detection method is relatively insensitive to the choice of 
the exact parametric form of the prior distribution, as long as the range of values from the literature is 
captured.

Localization of sensory endings is particularly interesting for quantitative models that describe the 
responses of a neuron to stimulation and for attempts to uncover the neurons encoding strategy. For 
instance, in mathematical modeling of touch sensitive A-fibers several investigators have used the histo-
logically measured depth to model the somatosensory responses45–47. However, the thickness of epider-
mis and dermis is variable over a population of animals and depends on the gender, age, area and hair 
cycle, and anatomical location36. In many experimental setups the thickness of skin layers and location 
of neuron have not been measured. Even in such cases our method can be freely adapted to estimate 
the depth and threshold of neurons by replacing the heat stimulation with mechanical stimulation and 
the heat transfer function with the stress/strain functions. Whereas other investigators required complex 
and detailed skin models, we presented a simple probabilistic model of skin. This way, our method can 
provide results for cases in which the data do not warrant the formulation of a very detailed skin model, 
or where insufficient information about the thermodynamic properties of the studied tissue is available.

Methods
Experiments were performed in strict accordance with the recommendations in the Guide for the Care 
and Use of Laboratory Animals of the Max Delbrück Centre for Molecular Medicine. The protocol was 
approved by the Committee on the Ethics of Animal Experiments of Animal Welfare German authorities 
(LaGeSo; Permit Number: T (00383/12).

Skin nerve preparation and identification of single C-fibers. The skin-nerve preparation was 
used to record from single primary afferents48–51. Mice were killed by CO2 inhalation for 2–4 min fol-
lowed by cervical dislocation. The saphenous nerve and the shaved skin of the hind limb of the mouse 
were dissected free and placed in an organ bath at 32 °C. The chamber was perfused with a synthetic 
interstitial fluid (SIF buffer) the composition of which was (in mM): NaCl, 123; KCl, 3.5; MgSO4, 0.7; 
NaH2PO4, 1.7; CaCl2, 2.0; sodium gluconate, 9.5; glucose, 5.5; sucrose, 7.5; and HEPES, 10 at a pH of 
7.4. The skin was placed with the corium side up in the organ bath. The saphenous nerve was placed in 
an adjacent chamber on a mirror to aid and under microscopy fine filaments were teased from the nerve 
and placed on the recording electrode. Electrical isolation was achieved with mineral oil.

Single mechanically sensitive units were characterized by probing the skin with a glass rod for mechan-
ically responsive receptive fields. Figure 6 shows the anatomical location of all 24 neurons relative to the 
saphenous nerve trunk. Using an electrical stimulating electrode, we measured the conduction velocity 
(calculated by dividing conduction distance over electrical latency for the spike) to select C-fibers whose 
conduction velocity was in the C-fiber range < 1 m/s.

Thermal stimulation protocol. For heat stimulation, a Peltier element–based contact probe (4 ×  3 mm 
surface) applied thermal stimuli (custom device built by the Yale School of Medicine Instrumentation 
Repair and Design) to the receptive field of identified C fibers.

The stimulation protocol sent as a pre-programmed series of commands to the Peltier element were 
applied to all C-fibers. The thermal stimulation protocol consisted of 3 stimuli (32–48 °C) with different 
ramp durations (16 s, 4 s, 2 s) and the hold phase of 10 seconds. The interstimulation interval was 60 sec-
onds. The order of stimulation was first heat and then mechanical from the slowest to fastest ramps. After 

Figure 6. Schematic of hind-limb skin of mouse and anatomical locations of receptive field. For all 24 
neurons the locations of the receptive fields are illustrated in respect to the saphenous nerve trunk.
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the thermal stimulation we carried out a mechanical stimulation protocol, the results of which are not 
part of this manuscript. Data were obtained from 11 C57Bl6/N wildtype mice.

Heat transfer model of skin. Heat energy flows through the skin to the nociceptive terminals due 
to the temperature gradients. According to the second law of thermodynamics, heat flows from warmer 
location to colder location. With no heat source, these thermodynamical effects will let the skin relax to 
one homogeneous temperature. In an experimental set using a Peltier device, the stimulus acts as a heat 
source, inducing heat at one location which then flows through the skin and eventually results in a tem-
perature increase at the receptor site of neuron. Because the stimulus temperature varies over time, the 
resulting heat flow will vary over time as well. In addition, it varies in space because skin is not an ideal 
conductor and locations further from the stimulus receive lower heat energy and at a later time. Directly 
measuring the exact temperature profile in the skin at the depth of nociceptor is difficult. Therefore, heat 
transfer in the skin is typically modeled using thermodynamical laws32,38. The general equation describes 
heat flow in the skin by a diffusion equation,

∂
∂
=

∂

∂ ( )
T
t

a T
x 5

2
2

2

Here, = ( , )T T x t  is the temperature at time t and distance x from the stimulus contact, such that 
( , )T t0  is the experimentally applied heat stimulus and the temperature at other locations needs to be 

determined by solving equation (5). Furthermore, κ ρ= /a c  is called the thermal diffusivity. Thermal 
diffusivity is square root of the ratio between thermal conductivity κ and the product of density ρ and 
specific heat c of the skin.

When solving equation (5) analytically, one has to assume that the skin is a solid with uniform thermal 
properties. Given the complex structure of the skin, this assumption is likely to be violated. More realistic 
approaches therefore treat the skin as consisting of multiple layers, where each layer has uniform thermal 
properties but layers are allowed to differ in their thermal diffusivity. Typical models use separate layers 
for epidermis, dermis and subcutaneous tissue30,32. Other models have used four layers38 or up to eight 
layers28 in live animal models. In all these multi-layer approaches, the stimulus is assumed to be applied 
at the epidermal side of the skin and the thickness of each layer has to be specified in advance. Then, 
a system of equations describing the flow of heat into and out of each of the layers can be derived30,33. 
used a modified finite difference schemes to numerically solve these equations, while31,38 derived a first 
order approximation of the time-temperature relationship in every layer and at any distance from the 
skin surface according to the equation (1). This approximation was originally derived for experiments in 
which the stimulus is abruptly switched on and is then kept fixed until the threshold is reached. However, 
these approximations have also been successfully applied to conditions where the surface temperature is 
not constant but is known at every instant in time31. This perspective can be justified if we assume that 
heat conductance in the skin is sufficiently fast. Then the temperature at any distance can be computed 
quite accurately until the steady state temperature is reached.

Estimation of depth from γ using a Monte-Carlo method. Several investigators measured the 
epidermal and dermal thickness and their thermal properties. In Table 1 we summarized some measure-
ments. So far the experiments don’t differ, we would start usually with epidermis as superficial layer and 
estimate D for a determined diffusivity of epidermis according to,

γ
κ ρ
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If the estimated D does not exceed the histological measured epidermal thickness, we would accept 
it as the depth of nerve endings, otherwise γ would compose of epidermis and dermis layers
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Where, De is the depth of the epidermis, and Dd is the depth of dermis. To estimate D in equation (6) 
we would then determine De and thermal diffusivities and solve the equation for Dd.

In our data set, however, the heat electrode was placed on the dermal and subcutaneous site of the 
skin and the thickness of the skin wasn’t measured. This experimental redundancy prevented using a 
direct multilayer model of the skin. Therefore we reduced a two layer model with separate layers for 
epidermis, and dermis to a one layer model, which accords properties of both epidermis and dermis. 
Next step is to set the skin of a one layer model. To this end, we took the maximum and minimum 
reported values of thermal conductivity, density, and specific heat of epidermis and dermis from litera-
ture (see Table 1). We then sampled three sets for κ ρ,  and c from respective uniform distributions. The 
sampling range of the distributions were the maximum and minimum values for epidermis and dermis. 
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For the estimated normalized depth, γ, we drew every single parameter from the corresponding sampling 
distribution and computed the depth. We then repeated this procedures for the whole sampling sets with 
size of 108 and in the end averaged over the computed D.

Choice of prior density functions. In order to express the prior assumptions about the value of 
γ =

κ ρ/
D

c2
, we need an a priori density function of the depth and all parameters of the thermal diffu-

sivity. According to histological studies most C-MH fibers end in the epidermal to dermal layers of the 
skin52. Therefore, the probability of finding the nerve endings decreases with increasing depth, but it is 
unlikely to find nerve endings directly beneath the skin surface. Furthermore, depth cannot be larger 
than the skin’s thickness, which is in our experiments approximately 500 μ m to 1 mm. Note that in our 
experimental set up the position zero refers to some distances deep into dermis and subcutaneous tissue. 
The shape of this distribution seems to have a probability density function with asymmetric tails but a 
heavier tail toward zero. A distribution with this property is offered by Beta distribution. Beta distribu-
tion has two shape parameters α  and β . These shape parameters are determined if two properties of the 
distribution are known, for example the mode and a given percentile. In previous studies the locations 
of C-MH fibers were estimated in the depths ranging from 20 to 570 μ m (see Table  1 for references). 
Therefore, we scaled the Beta distribution in an interval of ≤ ≤D0 600 μ m and assumed that the depth 
of a receptor neuron had a Beta distribution with 75-80 percent of the distribution’s mass in an interval 
around median of an approximate width of 400 μ m and mode = . , .α

α β
−
+ +

[0 75 0 8]1
2

. We arbitrary chose 
two shape parameters α  =  4.75 and β  =  2.25 which satisfied these assumptions. In addition and to verify 
that this choice of prior did not influence our analysis, we also ran the same analysis with other shape 
parameters and a uniform and Weibull distribution.

We chose uniform distribution U(a,b) (with a and b being the minimum and maximum values of 
distribution) for the thermal diffusivity parameters. To this end γ composes of four distribution func-
tions in form of 

κ ρ/

D
c2

i

i i i

 and Di ~ B(4.75,2.25), κi ~ U(0.3,1.3), ci ~ U(700,950), and ρ i ~ U(1116,1200), 

(for the i-th draw from sampling population).To define an explicit density function Ρ γ( ) we firstly drew 
samples κ ρ, , , , = , …,D c i 1 10i i i i

8 from the respective distributions and calculated γ i. It is very diffi-
cult to derive an analytical form for the distribution of γ from these assumptions. Therefore, we approx-
imated the distribution of the sampled γ by a mixture of 3 Gaussian distributions with unknown 
parameters (estimated using expectation-maximization (EM) algorithm for fitting mixture-of-Gaussian 
models implemented in scikit-learn, the number of components was determined by minimizing Bayesian 
Information Criterion (BIC).).

A more complicated case is the prior Ρ λ( , )t  for the outliers ∆
∼

i in ‘Selection models’ M2. In order to 
create a meaningful marginal likelihood, the prior should be a proper probability density function42. In 
addition, the priors should be random statistical process that generate the first spikes independently of 
the stimulus. An example density that satisfies this property assumes that the first spike times are spon-
taneous events, which are generated by a Poisson process. Under these conditions the first spike time is 
a random event of an exponential distribution with a rate parameter λ ~ 10. To estimate the total evi-
dence for a model, we took the expectation with respect to λ. This expectation was implemented as a 
numerical integration.

In Table 1 we summarized all priori distribution functions for parameters from literature including 
the references.

Calculating the marginal likelihood. Typical strategies to estimate the marginal likelihood (4) are 
sampling (i.e. Monte-Carlo integration) or analytical approximations like the Laplace approximation, 
Variational Inference, or Expectation Propagation. For low dimensional parameter spaces (2-4 dimen-
sions), numerical integration may work as well. In equation (3), the delays are only given implicitly, 
which makes analytical approximations quite difficult. Furthermore, numerical integration techniques 
would be computationally very intensive due to the cost of solving equation (3). We therefore used a 
combination of analytical and numerical integration to determine the marginal likelihood. We inter-
preted the integral (4) as the expected value of the likelihood function Ρ θ(∆ , )Mk k , under the prior 
density Ρ θ( , )Mk k  for model Mk,

∫ θ θΕ Ρ(∆ ) = Ρ(∆ )Ρ( )θΡ( )
M M d[ ]k M k k k

k k

and used numerical integration according to trapezoidal rule to compute the expected value. The  
prior densities are for model M1: θ γΡ( ) = Ρ( ), Ρ( )T{ }threshold1  and for model M2: 
θ γ λΡ( ) = Ρ( ), Ρ( ), Ρ( , )T t{ }threshold2 . For ‘Selection models’, M2, however, we assumed the outlier 

first spike has a fixed value, so that we can formally write the likelihood for the outlier components as a 
dirac function δ ( − )t tlat , which allowed us to solve for the corresponding components of the marginal 
likelihood (4) analytically. All other parameters of model M2 were treated in the same way as in M1.
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For every potentially excluded stimulus in selection model M2, we estimated the ratio of the marginal 
likelihood for the full model M1 over the marginal likelihood for the model M2 without the excluded 
stimuli.
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